add AdamWeightDecay CPU op and optimize with SIMD intinsics

This commit is contained in:
zhaosida 2021-04-26 19:35:06 +08:00
parent 81cd26bdc8
commit 0a920057a5
7 changed files with 489 additions and 2 deletions

View File

@ -119,6 +119,7 @@ checkopts()
ANDROID_STL="c++_shared"
ENABLE_MAKE_CLEAN="off"
X86_64_SIMD="off"
ARM_SIMD="off"
DEVICE_VERSION=""
DEVICE=""
ENABLE_NPU="off"
@ -331,6 +332,9 @@ checkopts()
if [[ "$OPTARG" == "sse" || "$OPTARG" == "avx" ]]; then
X86_64_SIMD="$OPTARG"
fi
if [[ "$OPTARG" == "neon" ]]; then
ARM_SIMD="$OPTARG"
fi
;;
H)
check_on_off $OPTARG H
@ -474,7 +478,7 @@ build_mindspore()
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_GPU=ON -DUSE_CUDA=ON -DCUDA_PATH=$CUDA_PATH -DMS_REQUIRE_CUDA_VERSION=${CUDA_VERSION}"
fi
if [[ "X$ENABLE_CPU" = "Xon" ]]; then
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_CPU=ON -DX86_64_SIMD=${X86_64_SIMD}"
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_CPU=ON -DX86_64_SIMD=${X86_64_SIMD} -DARM_SIMD=${ARM_SIMD}"
fi
if [[ "X$COMPILE_MINDDATA" = "Xon" ]]; then
CMAKE_ARGS="${CMAKE_ARGS} -DENABLE_MINDDATA=ON"

View File

@ -61,6 +61,18 @@ if(ENABLE_CPU)
message("not compiled quantum kernel_compiler")
set(QUANTUM_SRC_LIST "")
endif()
if("${ARM_SIMD}" STREQUAL "neon")
set(CPU_SIMD_SRC "${CMAKE_CURRENT_SOURCE_DIR}/cpu/adam_weight_decay_cpu_kernel.cc")
add_compile_definitions(ENABLE_NEON)
set_property(SOURCE ${CPU_SIMD_SRC} PROPERTY COMPILE_OPTIONS -O3 -ffast-math)
endif()
if("${X86_64_SIMD}" STREQUAL "avx")
set(CPU_SIMD_SRC "${CMAKE_CURRENT_SOURCE_DIR}/cpu/adam_weight_decay_cpu_kernel.cc")
add_compile_definitions(ENABLE_AVX512)
set_property(SOURCE ${CPU_SIMD_SRC} PROPERTY COMPILE_OPTIONS -O3 -fopenmp -mavx512f -ffast-math)
endif()
endif()
if(NOT (ENABLE_CPU AND (ENABLE_D OR ENABLE_GPU)))

View File

@ -0,0 +1,146 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/cpu/adam_weight_decay_cpu_kernel.h"
#include <cmath>
#include "backend/kernel_compiler/cpu/mkldnn/mkl_kernel_engine.h"
#include "runtime/device/cpu/cpu_device_address.h"
#include "utils/ms_utils.h"
namespace mindspore {
namespace kernel {
template <typename T>
void AdamWeightDecayCPUKernel::LaunchAdamWeightDecay(T *var, T *m, T *v, float lr, float beta1, float beta2,
float epsilon, T *decay, const T *gradient, size_t size) {
float beta1_minus = 1 - beta1;
float beta2_minus = 1 - beta2;
#if defined(ENABLE_AVX512)
MS_FLOAT32X16 beta1_16 = MS_MOV512_F32(beta1);
MS_FLOAT32X16 beta2_16 = MS_MOV512_F32(beta2);
MS_FLOAT32X16 beta1_minus_16 = MS_MOV512_F32(beta1_minus);
MS_FLOAT32X16 beta2_minus_16 = MS_MOV512_F32(beta2_minus);
MS_FLOAT32X16 lr_neg_16 = MS_MOV512_F32(-lr);
MS_FLOAT32X16 epsilon_16 = MS_MOV512_F32(epsilon);
MS_FLOAT32X16 decay_16 = MS_MOV512_F32(*decay);
#endif
#if defined(ENABLE_NEON)
MS_FLOAT32X4 epsilon_4 = MS_MOVQ_F32(epsilon);
float lr_neg = -lr;
#endif
auto task = [&](size_t start, size_t end) {
size_t i = start;
#if defined(ENABLE_AVX512)
if (end >= MS_AVX512_WIDTH) {
for (; i <= end - MS_AVX512_WIDTH; i += MS_AVX512_WIDTH) {
MS_FLOAT32X16 var_16 = MS_LD512_F32(var + i);
MS_FLOAT32X16 m_16 = MS_LD512_F32(m + i);
MS_FLOAT32X16 v_16 = MS_LD512_F32(v + i);
MS_FLOAT32X16 g_16 = MS_LD512_F32(gradient + i);
m_16 = MS_MUL512_F32(m_16, beta1_16);
m_16 = MS_FMA512_F32(g_16, beta1_minus_16, m_16);
v_16 = MS_MUL512_F32(v_16, beta2_16);
v_16 = MS_MUL512_F32(g_16, g_16);
v_16 = MS_FMA512_F32(g_16, beta2_minus_16, v_16);
g_16 = MS_SQRT512_F32(v_16);
g_16 = MS_DIV512_F32(m_16, MS_ADD512_F32(g_16, epsilon_16));
g_16 = MS_FMA512_F32(var_16, decay_16, g_16);
var_16 = MS_FMA512_F32(g_16, lr_neg_16, var_16);
MS_ST512_F32(var + i, var_16);
MS_ST512_F32(m + i, m_16);
MS_ST512_F32(v + i, v_16);
}
}
#endif
#if defined(ENABLE_NEON)
if (end >= MS_NEON_WIDTH) {
for (; i <= end - MS_NEON_WIDTH; i += MS_NEON_WIDTH) {
MS_FLOAT32X4 var_4 = MS_LDQ_F32(var + i);
MS_FLOAT32X4 m_4 = MS_LDQ_F32(m + i);
MS_FLOAT32X4 v_4 = MS_LDQ_F32(v + i);
MS_FLOAT32X4 g_4 = MS_LDQ_F32(gradient + i);
m_4 = MS_MULQ_N_F32(m_4, beta1);
m_4 = MS_MLAQ_N_F32(m_4, g_4, beta1_minus);
v_4 = MS_MULQ_N_F32(v_4, beta2);
g_4 = MS_MULQ_F32(g_4, g_4);
v_4 = MS_MLAQ_N_F32(v_4, g_4, beta2_minus);
g_4 = MS_SQRT_F32(v_4);
g_4 = MS_DIVQ_F32(m_4, MS_ADDQ_F32(g_4, epsilon_4));
g_4 = MS_MLAQ_N_F32(g_4, var_4, *decay);
var_4 = MS_MLAQ_N_F32(var_4, g_4, lr_neg);
MS_STQ_F32(var + i, var_4);
MS_STQ_F32(m + i, m_4);
MS_STQ_F32(v + i, v_4);
}
}
#endif
for (; i < end; i++) {
m[i] += (gradient[i] - m[i]) * beta1_minus;
v[i] += (gradient[i] * gradient[i] - v[i]) * beta2_minus;
T update = m[i] / (std::sqrt(v[i]) + epsilon);
update += decay[0] * var[i];
var[i] -= lr * update;
}
};
CPUKernelUtils::ParallelFor(task, size);
}
void AdamWeightDecayCPUKernel::InitKernel(const CNodePtr &kernel_node) {
MS_EXCEPTION_IF_NULL(kernel_node);
size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node);
if (input_num != 9) {
MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but AdamWeightDecay needs 9 inputs.";
}
size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node);
if (output_num != 3) {
MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but AdamWeightDecay needs 3 outputs.";
}
}
bool AdamWeightDecayCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
const std::vector<kernel::AddressPtr> &outputs) {
if (inputs.size() != 9) {
MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but AdamWeightDecay needs 9 inputs.";
}
if (outputs.size() != 3) {
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but AdamWeightDecay needs 3 outputs.";
}
if (inputs[0]->size != inputs[1]->size || inputs[0]->size != inputs[2]->size || inputs[0]->size != inputs[8]->size) {
MS_LOG(EXCEPTION) << "Error input data size!";
}
size_t f_size = sizeof(float);
if (inputs[3]->size != f_size || inputs[4]->size != f_size || inputs[5]->size != f_size ||
inputs[6]->size != f_size || inputs[7]->size != f_size) {
MS_LOG(EXCEPTION) << "The attribute beta, lr and epsilon must be float!";
}
auto var = reinterpret_cast<float *>(inputs[0]->addr);
auto m = reinterpret_cast<float *>(inputs[1]->addr);
auto v = reinterpret_cast<float *>(inputs[2]->addr);
float lr = reinterpret_cast<float *>(inputs[3]->addr)[0];
float beta1 = reinterpret_cast<float *>(inputs[4]->addr)[0];
float beta2 = reinterpret_cast<float *>(inputs[5]->addr)[0];
float epsilon = reinterpret_cast<float *>(inputs[6]->addr)[0];
auto decay = reinterpret_cast<float *>(inputs[7]->addr);
auto gradient = reinterpret_cast<float *>(inputs[8]->addr);
// multithreading
size_t lens = inputs[0]->size > 0 ? static_cast<size_t>(inputs[0]->size / sizeof(float)) : 1;
LaunchAdamWeightDecay<float>(var, m, v, lr, beta1, beta2, epsilon, decay, gradient, lens);
return true;
}
} // namespace kernel
} // namespace mindspore

View File

@ -0,0 +1,97 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ADAM_WEIGHT_DECAY_CPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ADAM_WEIGHT_DECAY_CPU_KERNEL_H_
#include <vector>
#include <memory>
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#if defined(ENABLE_AVX512)
#include <x86intrin.h>
#endif
#ifdef ENABLE_NEON
#define MS_FLOAT32X4 float32x4_t
#define MS_LDQ_F32 vld1q_f32
#define MS_MOVQ_F32 vmovq_n_f32
#define MS_STQ_F32 vst1q_f32
#define MS_ADDQ_F32(src1, src2) vaddq_f32(src1, src2)
#define MS_MULQ_F32(src1, src2) vmulq_f32(src1, src2)
#define MS_MULQ_N_F32(src1, src2) vmulq_n_f32(src1, src2)
#define MS_DIVQ_F32(src1, src2) vdivq_f32(src1, src2)
#define MS_MLAQ_F32(src1, src2, src3) vmlaq_f32(src1, src2, src3)
#define MS_MLAQ_N_F32(src1, src2, src3) vmlaq_n_f32(src1, src2, src3)
#define MS_SQRT_F32(src) vsqrtq_f32(src)
#define MS_CAST_F32_F16(src) vreinterpretq_f32_f16(src)
#define MS_NEON_WIDTH 4
#endif
#if defined(ENABLE_AVX512)
#define MS_FLOAT32X16 __m512
#define MS_LD512_F32 _mm512_loadu_ps
#define MS_ST512_F32 _mm512_storeu_ps
#define MS_MOV512_F32 _mm512_set1_ps
#define MS_ADD512_F32(src1, src2) _mm512_add_ps(src1, src2)
#define MS_MUL512_F32(src1, src2) _mm512_mul_ps(src1, src2)
#define MS_DIV512_F32(src1, src2) _mm512_div_ps(src1, src2)
#define MS_FMA512_F32(src1, src2, src3) _mm512_fmadd_ps(src1, src2, src3)
#define MS_SQRT512_F32(src) _mm512_sqrt_ps(src)
#define MS_CAST512_F32_S32(src) _mm512_castsi512_ps(src)
#define MS_AVX512_WIDTH 16
#endif
namespace mindspore {
namespace kernel {
class AdamWeightDecayCPUKernel : public CPUKernel {
public:
AdamWeightDecayCPUKernel() = default;
~AdamWeightDecayCPUKernel() override = default;
template <typename T>
void LaunchAdamWeightDecay(T *var, T *m, T *v, float lr, float beta1, float beta2, float epsilon, T *decay,
const T *gradient, size_t size);
void InitKernel(const CNodePtr &kernel_node) override;
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
private:
};
MS_REG_CPU_KERNEL(AdamWeightDecay,
KernelAttr()
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddInputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32)
.AddOutputAttr(kNumberTypeFloat32),
AdamWeightDecayCPUKernel)
} // namespace kernel
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_ADAM_WEIGHT_DECAY_CPU_KERNEL_H_

View File

@ -495,7 +495,7 @@ class AdamWeightDecay(PrimitiveWithInfer):
- **v** (Tensor) - The same shape and data type as `v`.
Supported Platforms:
``GPU``
``GPU`` ``CPU``
Examples:
>>> import numpy as np

View File

@ -0,0 +1,162 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""AdamWeightDecay, a customized Adam for pangu1. Input: gradient."""
import numpy as np
from mindspore.common import dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.common.tensor import Tensor
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from mindspore.nn.optim.optimizer import Optimizer
_adam_opt = C.MultitypeFuncGraph("adam_opt")
_scaler_one = Tensor(1, mstype.int32)
_scaler_ten = Tensor(10, mstype.float32)
@_adam_opt.register("Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
"Tensor", "Bool", "Bool")
def _update_run_kernel(opt, beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, decay_flags, optim_filter):
"""
Update parameters by AdamWeightDecay op.
"""
if optim_filter:
op_cast = P.Cast()
gradient_fp32 = op_cast(gradient, mstype.float32)
if decay_flags:
next_param = opt(param, m, v, lr, beta1, beta2, eps, F.cast(weight_decay, mstype.float32), gradient_fp32)
else:
next_param = opt(param, m, v, lr, beta1, beta2, eps, F.cast(0.0, mstype.float32), gradient_fp32)
return next_param
return gradient
def _check_param_value(beta1, beta2, eps, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_float_range(beta1, 0.0, 1.0, Rel.INC_NEITHER, "beta1", prim_name)
validator.check_float_range(beta2, 0.0, 1.0, Rel.INC_NEITHER, "beta2", prim_name)
validator.check_positive_float(eps, "eps", prim_name)
class AdamWeightDecayOp(Optimizer):
"""
Implements the Adam algorithm to fix the weight decay. It is a complete operator, not a combination of other ops.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
Args:
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` must be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value must be a list of `Parameter`.
- lr: Optional. If "lr" is in the keys, the value of the corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" is in the keys, the value of the corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" is in the keys, the value must be the order of parameters and
the order will be followed in the optimizer. There are no other keys in the `dict` and the parameters
which in the 'order_params' must be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
When the learning_rate is an Iterable or a Tensor in a 1D dimension, use the dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
dimension, use fixed learning rate. Other cases are not supported. The float learning rate must be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimations. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: 0.999.
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). It must be equal to or greater than 0. Default: 0.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
tuple[bool], all elements are True.
Supported Platforms:
``CPU``
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = AdamWeightDecayOp(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
... {'params': no_conv_params, 'lr': 0.01},
... {'order_params': net.trainable_params()}]
>>> optim = AdamWeightDecayOp(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
super(AdamWeightDecayOp, self).__init__(learning_rate, params, weight_decay)
_check_param_value(beta1, beta2, eps, self.cls_name)
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.moments1 = self.parameters.clone(prefix="adam_m", init='zeros')
self.moments2 = self.parameters.clone(prefix="adam_v", init='zeros')
self.hyper_map = C.HyperMap()
self.opt = P.AdamWeightDecay()
self.opt.add_prim_attr("primitive_target", "CPU")
def construct(self, gradients):
"""AdamWeightDecayOp"""
lr = self.get_lr()
if self.is_group:
if self.is_group_lr:
optim_result = self.map_(F.partial(_adam_opt, self.opt, self.beta1, self.beta2, self.eps),
lr, self.weight_decay, self.parameters, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.map_(F.partial(_adam_opt, self.opt, self.beta1, self.beta2, self.eps, lr),
self.weight_decay, self.parameters, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.map_(F.partial(_adam_opt, self.opt, self.beta1, self.beta2, self.eps, lr,
self.weight_decay),
self.parameters, self.moments1, self.moments2, gradients, self.decay_flags,
self.optim_filter)
if self.use_parallel:
self.broadcast_params(optim_result)
return optim_result

View File

@ -0,0 +1,66 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.nn import Dense
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.ops import operations as P
from model_zoo.official.nlp.gpt.src.adam import AdamWeightDecayOp
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
class NetAdamWeightDecay(nn.Cell):
def __init__(self):
super(NetAdamWeightDecay, self).__init__()
self.batch_size = 1
self.reshape = P.Reshape()
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
self.fc1 = Dense(16, 10, weight_init=weight)
def construct(self, input_x):
output = self.reshape(input_x, (self.batch_size, -1))
output = self.fc1(output)
return output
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_adam_weight_decay():
epoch = 3
net = NetAdamWeightDecay()
optimizer = AdamWeightDecayOp(filter(lambda x: x.requires_grad,
net.get_parameters()), learning_rate=0.01)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
train_network = TrainOneStepCell(
net_with_criterion, optimizer)
train_network.set_train()
losses1 = []
for _ in range(epoch):
data = Tensor(np.arange(0, 16).reshape(
1, 1, 4, 4).astype(np.float32) * 0.01)
label = Tensor(np.array([0]).astype(np.int32))
loss = train_network(data, label)
losses1.append(loss.asnumpy())
assert losses1[0] > losses1[1]
assert losses1[1] > losses1[2]