增加Tensor.ne和Tensor.maximum的中文接口文档
修正Tensor.ne和Tensor.maximum的英文接口文档
This commit is contained in:
parent
7c05d1ddcf
commit
04b2378763
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.maximum
|
||||
========================
|
||||
|
||||
.. py:method:: mindspore.Tensor.maximum(other)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.maximum`。
|
|
@ -0,0 +1,6 @@
|
|||
mindspore.Tensor.ne
|
||||
===================
|
||||
|
||||
.. py:method:: mindspore.Tensor.ne(other)
|
||||
|
||||
详情请参考 :func:`mindspore.ops.ne`。
|
|
@ -188,6 +188,7 @@ mindspore.Tensor
|
|||
mindspore.Tensor.masked_select
|
||||
mindspore.Tensor.matrix_power
|
||||
mindspore.Tensor.max
|
||||
mindspore.Tensor.maximum
|
||||
mindspore.Tensor.mean
|
||||
mindspore.Tensor.median
|
||||
mindspore.Tensor.mH
|
||||
|
@ -206,6 +207,7 @@ mindspore.Tensor
|
|||
mindspore.Tensor.nbytes
|
||||
mindspore.Tensor.ndim
|
||||
mindspore.Tensor.ndimension
|
||||
mindspore.Tensor.ne
|
||||
mindspore.Tensor.negative
|
||||
mindspore.Tensor.nelement
|
||||
mindspore.Tensor.new_ones
|
||||
|
|
|
@ -194,6 +194,7 @@
|
|||
mindspore.Tensor.masked_select
|
||||
mindspore.Tensor.matrix_power
|
||||
mindspore.Tensor.max
|
||||
mindspore.Tensor.maximum
|
||||
mindspore.Tensor.mean
|
||||
mindspore.Tensor.median
|
||||
mindspore.Tensor.mH
|
||||
|
@ -212,6 +213,7 @@
|
|||
mindspore.Tensor.nbytes
|
||||
mindspore.Tensor.ndim
|
||||
mindspore.Tensor.ndimension
|
||||
mindspore.Tensor.ne
|
||||
mindspore.Tensor.negative
|
||||
mindspore.Tensor.nelement
|
||||
mindspore.Tensor.new_ones
|
||||
|
|
|
@ -3941,43 +3941,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def maximum(self, other):
|
||||
r"""
|
||||
Computes the maximum of input tensors element-wise.
|
||||
|
||||
Note:
|
||||
- Inputs of `input` and `other` comply with the implicit type conversion rules to make the data
|
||||
types consistent.
|
||||
- The inputs must be two tensors or one tensor and one scalar.
|
||||
- When the inputs are two tensors,
|
||||
dtypes of them cannot be bool at the same time, and the shapes of them could be broadcast.
|
||||
- When the inputs are one tensor and one scalar,
|
||||
the scalar could only be a constant.
|
||||
- Broadcasting is supported.
|
||||
- If one of the elements being compared is a NaN, then that element is returned.
|
||||
|
||||
.. math::
|
||||
output_i = max(input_i, other_i)
|
||||
|
||||
Args:
|
||||
other (Union[Tensor, Number, bool]): The second input is a number or
|
||||
a bool when the first input is a tensor or a tensor whose data type is number or bool.
|
||||
|
||||
Returns:
|
||||
Tensor, the shape is the same as the one after broadcasting,
|
||||
and the data type is the one with higher precision or higher digits among the two inputs.
|
||||
|
||||
Raises:
|
||||
TypeError: If `input` and `other` is not one of the following: Tensor, Number, bool.
|
||||
ValueError: If `input` and `other` are not the same shape.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1.0, 5.0, 3.0]), mindspore.float32)
|
||||
>>> y = Tensor(np.array([4.0, 2.0, 6.0]), mindspore.float32)
|
||||
>>> output = x.maximum(y)
|
||||
>>> print(output)
|
||||
[4. 5. 6.]
|
||||
For details, please refer to :func:`mindspore.ops.maximum`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('maximum')(self, other)
|
||||
|
@ -4034,35 +3998,7 @@ class Tensor(Tensor_):
|
|||
|
||||
def ne(self, other):
|
||||
r"""
|
||||
Computes the non-equivalence of two tensors element-wise.
|
||||
|
||||
Note:
|
||||
- Input tensor and `other` comply with the implicit type conversion rules to make the data
|
||||
types consistent.
|
||||
- The inputs must be two tensors or one tensor and one scalar.
|
||||
- When the inputs are two tensors, the shapes of them could be broadcast.
|
||||
- When the inputs are one tensor and one scalar, the scalar could only be a constant.
|
||||
- Broadcasting is supported.
|
||||
|
||||
Args:
|
||||
other (Union[Tensor, Number, bool]): The second input is a number or
|
||||
a bool when the first input is a tensor or a tensor whose data type is number or bool.
|
||||
|
||||
Returns:
|
||||
Tensor, the shape is the same as the one after broadcasting,and the data type is bool.
|
||||
|
||||
Raises:
|
||||
TypeError: If input tensor and `other` is not one of the following: Tensor, Number, bool.
|
||||
TypeError: If neither input tensor and `other` is a Tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> x = Tensor(np.array([1, 2, 3]), mindspore.float32)
|
||||
>>> output = x.ne(2.0)
|
||||
>>> print(output)
|
||||
[ True False True]
|
||||
For details, please refer to :func:`mindspore.ops.ne`.
|
||||
"""
|
||||
self._init_check()
|
||||
return tensor_operator_registry.get('ne')(self, other)
|
||||
|
|
Loading…
Reference in New Issue