modify_normal_seed
This commit is contained in:
parent
c3d1f54c7f
commit
04075671cf
|
@ -19,7 +19,7 @@ import math
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from scipy.stats import truncnorm
|
from scipy.stats import truncnorm
|
||||||
|
from .seed import _get_graph_seed
|
||||||
from . import dtype as mstype
|
from . import dtype as mstype
|
||||||
from .tensor import Tensor, MetaTensor
|
from .tensor import Tensor, MetaTensor
|
||||||
from .._c_expression import random_normal
|
from .._c_expression import random_normal
|
||||||
|
@ -40,8 +40,19 @@ class Initializer:
|
||||||
"""
|
"""
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
self._kwargs = kwargs
|
self._kwargs = kwargs
|
||||||
self.shape = None
|
self._seed = None
|
||||||
self.dtype = None
|
|
||||||
|
@property
|
||||||
|
def seed(self):
|
||||||
|
seed_ = self._seed if self._seed is not None else 1
|
||||||
|
_, seed = _get_graph_seed(seed_, "init")
|
||||||
|
return seed
|
||||||
|
|
||||||
|
@seed.setter
|
||||||
|
def seed(self, value):
|
||||||
|
if not isinstance(value, int):
|
||||||
|
raise TypeError("'value' must be int type.")
|
||||||
|
self._seed = value
|
||||||
|
|
||||||
def _initialize(self, *kwargs):
|
def _initialize(self, *kwargs):
|
||||||
raise NotImplementedError('Must be overridden!')
|
raise NotImplementedError('Must be overridden!')
|
||||||
|
@ -353,7 +364,7 @@ class Normal(Initializer):
|
||||||
self.sigma = sigma
|
self.sigma = sigma
|
||||||
|
|
||||||
def _initialize(self, arr):
|
def _initialize(self, arr):
|
||||||
seed = np.random.get_state()[1][0]
|
seed = self.seed
|
||||||
output_tensor = Tensor(np.zeros(arr.shape, dtype=np.float32))
|
output_tensor = Tensor(np.zeros(arr.shape, dtype=np.float32))
|
||||||
random_normal(0, self.sigma, arr.shape, seed, output_tensor)
|
random_normal(0, self.sigma, arr.shape, seed, output_tensor)
|
||||||
output_data = output_tensor.asnumpy()
|
output_data = output_tensor.asnumpy()
|
||||||
|
@ -434,8 +445,7 @@ def initializer(init, shape=None, dtype=mstype.float32):
|
||||||
elif isinstance(init, numbers.Number):
|
elif isinstance(init, numbers.Number):
|
||||||
init = Constant(init)
|
init = Constant(init)
|
||||||
shape = shape if shape is not None else init.shape
|
shape = shape if shape is not None else init.shape
|
||||||
dtype = init.dtype if init.dtype is not None else dtype
|
init_obj = MetaTensor(dtype, shape, init)
|
||||||
init_obj = MetaTensor(init, dtype, shape)
|
|
||||||
return init_obj
|
return init_obj
|
||||||
|
|
||||||
__all__ = [
|
__all__ = [
|
||||||
|
|
|
@ -30,7 +30,7 @@ def _reset_op_seed():
|
||||||
"""
|
"""
|
||||||
Reset op seeds in the kernel's dictionary.
|
Reset op seeds in the kernel's dictionary.
|
||||||
"""
|
"""
|
||||||
for kernel_name, op_seed in _KERNEL_SEED.items():
|
for (kernel_name, op_seed) in _KERNEL_SEED:
|
||||||
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -404,7 +404,7 @@ class MetaTensor(MetaTensor_):
|
||||||
Returns:
|
Returns:
|
||||||
Array, an array after being initialized.
|
Array, an array after being initialized.
|
||||||
"""
|
"""
|
||||||
def __init__(self, init, dtype, shape):
|
def __init__(self, dtype, shape, init=None):
|
||||||
#check param
|
#check param
|
||||||
self.init = init
|
self.init = init
|
||||||
MetaTensor_.__init__(self, dtype, shape)
|
MetaTensor_.__init__(self, dtype, shape)
|
||||||
|
@ -419,6 +419,9 @@ class MetaTensor(MetaTensor_):
|
||||||
using the same slice can generate the same tensor.
|
using the same slice can generate the same tensor.
|
||||||
shape (list[int]): Shape of the slice, it is used when initialize a slice of the parameter.
|
shape (list[int]): Shape of the slice, it is used when initialize a slice of the parameter.
|
||||||
"""
|
"""
|
||||||
|
if self.init is None:
|
||||||
|
raise TypeError("to_dense must be set MetaTensor.init, init can't be None")
|
||||||
|
|
||||||
if shape is None:
|
if shape is None:
|
||||||
shape = self.shape
|
shape = self.shape
|
||||||
|
|
||||||
|
@ -428,15 +431,28 @@ class MetaTensor(MetaTensor_):
|
||||||
msg = "Error shape={}".format(shape)
|
msg = "Error shape={}".format(shape)
|
||||||
logger.error(msg)
|
logger.error(msg)
|
||||||
raise ValueError(msg)
|
raise ValueError(msg)
|
||||||
from .seed import get_seed
|
class seed_context:
|
||||||
global_seed = get_seed()
|
'''set and restore seed'''
|
||||||
need_set_seed = ((slice_index is not None) and (global_seed is None))
|
def __init__(self, init):
|
||||||
seed_saved = np.random.get_state()[1][0]
|
self.init = init
|
||||||
if need_set_seed:
|
from .seed import get_seed
|
||||||
np.random.seed(slice_index)
|
global_seed = get_seed()
|
||||||
self.init(arr)
|
self._np_seed = np.random.get_state()[1][0]
|
||||||
if need_set_seed:
|
self.need_set_seed = ((slice_index is not None) and (global_seed is None))
|
||||||
np.random.seed(seed_saved)
|
self.seed = self.init.seed
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
if self.need_set_seed:
|
||||||
|
np.random.seed(slice_index)
|
||||||
|
self.init.seed = slice_index
|
||||||
|
|
||||||
|
def __exit__(self, ptype, value, trace):
|
||||||
|
if self.need_set_seed:
|
||||||
|
np.random.seed(self._np_seed)
|
||||||
|
self.init.seed = self.seed
|
||||||
|
|
||||||
|
with seed_context(self.init):
|
||||||
|
self.init(arr)
|
||||||
return Tensor(arr, dtype=self.dtype)
|
return Tensor(arr, dtype=self.dtype)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -24,6 +24,7 @@ from mindspore import Tensor
|
||||||
from mindspore.common import dtype as mstype
|
from mindspore.common import dtype as mstype
|
||||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||||
from mindspore.nn.optim import Adam
|
from mindspore.nn.optim import Adam
|
||||||
|
from mindspore.common import set_seed
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.common.initializer import TruncatedNormal
|
from mindspore.common.initializer import TruncatedNormal
|
||||||
from mindspore.parallel._ps_context import _is_role_pserver, _is_role_worker
|
from mindspore.parallel._ps_context import _is_role_pserver, _is_role_worker
|
||||||
|
@ -95,12 +96,12 @@ def do_sparse_embedding(ps=False):
|
||||||
|
|
||||||
envs = os.environ
|
envs = os.environ
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
np.random.seed(0)
|
set_seed(0)
|
||||||
ps_loss = do_sparse_embedding(True)
|
ps_loss = do_sparse_embedding(True)
|
||||||
|
|
||||||
if _is_role_worker():
|
if _is_role_worker():
|
||||||
context.reset_ps_context()
|
context.reset_ps_context()
|
||||||
np.random.seed(0)
|
set_seed(0)
|
||||||
no_ps_loss = do_sparse_embedding()
|
no_ps_loss = do_sparse_embedding()
|
||||||
context.set_ps_context(enable_ps=True)
|
context.set_ps_context(enable_ps=True)
|
||||||
|
|
||||||
|
|
|
@ -14,7 +14,7 @@
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from numpy import allclose
|
from numpy import allclose
|
||||||
|
from mindspore.common import set_seed
|
||||||
import mindspore.common.initializer as init
|
import mindspore.common.initializer as init
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
from mindspore import Parameter
|
from mindspore import Parameter
|
||||||
|
@ -40,10 +40,10 @@ class ParameterNet(nn.Cell):
|
||||||
|
|
||||||
|
|
||||||
def test_using_same_seed_for_initializer():
|
def test_using_same_seed_for_initializer():
|
||||||
np.random.seed(0)
|
set_seed(0)
|
||||||
net1 = ParameterNet()
|
net1 = ParameterNet()
|
||||||
net1.init_parameters_data()
|
net1.init_parameters_data()
|
||||||
np.random.seed(0)
|
set_seed(0)
|
||||||
net2 = ParameterNet()
|
net2 = ParameterNet()
|
||||||
net2.init_parameters_data()
|
net2.init_parameters_data()
|
||||||
for key in net1.parameters_dict():
|
for key in net1.parameters_dict():
|
||||||
|
|
Loading…
Reference in New Issue