!6108 add model with loss test case

Merge pull request !6108 from hanyang/master
This commit is contained in:
mindspore-ci-bot 2020-09-12 16:58:23 +08:00 committed by Gitee
commit 02c6852699
3 changed files with 520 additions and 0 deletions

View File

@ -0,0 +1,121 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.neg = P.Neg().shard(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
_x = Tensor(np.ones([32, 128]), dtype=ms.float32)
_b = Tensor(np.ones([32]), dtype=ms.int32)
_w1 = Tensor(np.ones([512, 128]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, optimizer=opt)
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_neg_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1), (16, 1))
strategy2 = ((16, 1),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 16), (1, 16))
strategy2 = ((1, 16),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_neg_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((2, 2),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_repeat_calc2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 2), (4, 2))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)

View File

@ -0,0 +1,191 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, weight, weight2, strategy1=None, strategy2=None, is_parameter=True):
super().__init__()
self.concat = P.Concat(axis=0).shard(strategy1)
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul = P.Mul().shard(strategy2)
self.weight2 = Parameter(weight2, "w2")
def construct(self, x, b):
out = self.concat((self.weight, self.weight2))
out = self.mul(x, out)
return out
class Net2(Cell):
def __init__(self, weight, strategy1=None, strategy2=None, axis=0):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.concat = P.Concat(axis=axis).shard(strategy2)
self.weight = Parameter(weight, "w")
def construct(self, x, b):
out = self.mul(x, x)
out = self.concat((out, self.weight))
return out
class Net3(Cell):
def __init__(self, weight, weight2, weight3, strategy1=None, strategy2=None, is_parameter=True):
super().__init__()
self.concat = P.Concat(axis=0).shard(strategy1)
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul = P.Mul().shard(strategy2)
self.weight2 = Parameter(weight2, "w2")
self.weight3 = Parameter(weight3, "w3")
def construct(self, x, b):
out = self.concat((self.weight, self.weight2, self.weight3))
out = self.mul(x, out)
return out
_x = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64, 32, 32]), dtype=ms.int32)
_w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([32, 64, 32]), dtype=ms.float32)
_w3 = Tensor(np.ones([128, 16, 32]), dtype=ms.float32)
w1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32)
w2 = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
w3 = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt, amp_level="O2")
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_concat_parameter():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 2), (1, 4, 2))
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_concat_parameter_no_full_split():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2), (1, 2, 2))
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_concat_tensor_and_parameter():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 2, 2), (1, 2, 2))
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net(_w1, _w2, strategy1, strategy2, is_parameter=False)
compile_net(net)
def test_concat_output():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 4, 2), (1, 4, 2))
net = Net2(_w1, strategy1, strategy2)
compile_net(net)
def test_concat_output_no_full_split():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 2, 2), (1, 2, 2))
net = Net2(_w1, strategy1, strategy2)
compile_net(net)
def test_concat_no_strategy():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = None
net = Net2(_w3, strategy1, strategy2, axis=1)
compile_net(net)
def test_concat_auto_parallel():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net2(_w2)
compile_net(net)
def test_concat_auto_parallel2():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
strategy1 = None
strategy2 = None
net = Net2(_w3, strategy1, strategy2, axis=1)
compile_net(net)
def test_concat_auto_parallel_3_tensor():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net3(w1, w2, w3)
compile_net(net)

View File

@ -0,0 +1,208 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, weight, w2, begin, end, strides, strategy1=None, strategy2=None, is_parameter=True, mask=0):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.strided_slice = P.StridedSlice(begin_mask=mask).shard(strategy2)
if is_parameter:
self.weight = Parameter(weight, "w1")
else:
self.weight = weight
self.mul2 = P.Mul()
self.weight2 = Parameter(w2, "w2")
self.begin = begin
self.end = end
self.strides = strides
def construct(self, x, b):
out = self.strided_slice(
self.weight, self.begin, self.end, self.strides)
out = self.mul(x, out)
out = self.mul2(out, self.weight2)
return out
class Net2(Cell):
def __init__(self, weight2, begin, end, strides, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.strided_slice = P.StridedSlice().shard(strategy2)
self.weight2 = Parameter(weight2, "w2")
self.begin = begin
self.end = end
self.strides = strides
def construct(self, x, b):
out = self.mul(x, self.weight2)
out = self.strided_slice(out, self.begin, self.end, self.strides)
return out
_x = Tensor(np.ones([16, 64, 1]), dtype=ms.float32)
_b = Tensor(np.ones([16, 64, 32]), dtype=ms.float32)
_w1 = Tensor(np.ones([256, 64, 32]), dtype=ms.float32)
_w2 = Tensor(np.ones([128, 64, 1]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, optimizer=opt, amp_level="O2")
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_stridedslice_no_fully_fetch_split_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((2, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2, is_parameter=True)
with pytest.raises(RuntimeError):
compile_net(net)
def test_stridedslice_strides_no_1_split_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 2),
strategy1, strategy2, is_parameter=True)
with pytest.raises(RuntimeError):
compile_net(net)
def test_stridedslice_mask_no_0_split_error():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((2, 2, 2), (2, 2, 2))
strategy2 = ((1, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2, is_parameter=True, mask=1)
with pytest.raises(RuntimeError):
compile_net(net)
def test_stridedslice_begin_size_smaller():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0), (128, 64), (1, 1),
strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_stridedslice_parameter():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_stridedslice_tensor():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 4, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2, is_parameter=False)
compile_net(net)
def test_stridedslice_parameter_no_full_split():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 4, 1), (1, 4, 2))
strategy2 = ((1, 2, 2),)
net = Net(_w1, _w2, (0, 0, 0), (128, 64, 32), (1, 1, 1),
strategy1, strategy2, is_parameter=True)
compile_net(net)
def test_stridedslice_output():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = ((1, 8, 1),)
net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2)
compile_net(net)
def test_stridedslice_output_no_full_split():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = ((1, 4, 1),)
net = Net2(_w2, (0, 0, 0), (64, 64, 1), (1, 1, 1), strategy1, strategy2)
compile_net(net)
def test_stridedslice_no_strategy():
context.set_auto_parallel_context(
parallel_mode="semi_auto_parallel", device_num=8, global_rank=0)
strategy1 = ((1, 8, 1), (1, 8, 1))
strategy2 = None
net = Net2(_w2, (0, 0, 0), (128, 64, 1), (1, 1, 1), strategy1, strategy2)
compile_net(net)
def test_stridedslice_auto_parallel():
context.set_auto_parallel_context(
parallel_mode="auto_parallel", device_num=8, global_rank=0)
net = Net2(_w2, (0, 0, 0), (32, 64, 1), (1, 1, 1))
compile_net(net)