!17396 Fix bug of loss can not converge when temp cell in network
From: @joylvliang Reviewed-by: @ginfung,@chujinjin Signed-off-by: @chujinjin
This commit is contained in:
commit
00d00877be
|
@ -1433,10 +1433,6 @@ void GradExecutor::UpdateForwardTensorInfoInBpropGraph(const OpExecInfoPtr &op_e
|
||||||
MS_LOG(DEBUG) << "Current op info: " << op_info;
|
MS_LOG(DEBUG) << "Current op info: " << op_info;
|
||||||
|
|
||||||
std::vector<tensor::TensorPtr> all_op_tensors;
|
std::vector<tensor::TensorPtr> all_op_tensors;
|
||||||
// Get input tensors
|
|
||||||
for (size_t i = 0; i < op_exec_info->op_inputs.size(); ++i) {
|
|
||||||
TensorValueToTensor(parse::data_converter::PyDataToValue(op_exec_info->op_inputs[i]), &all_op_tensors);
|
|
||||||
}
|
|
||||||
// Get output tensors
|
// Get output tensors
|
||||||
TensorValueToTensor(parse::data_converter::PyDataToValue(out_real), &all_op_tensors);
|
TensorValueToTensor(parse::data_converter::PyDataToValue(out_real), &all_op_tensors);
|
||||||
// Save all tensors info of current op
|
// Save all tensors info of current op
|
||||||
|
@ -1950,22 +1946,24 @@ void GradExecutor::NewGraphInner(py::object *ret, const py::object &cell, const
|
||||||
auto cell_id = GetCellId(cell, args);
|
auto cell_id = GetCellId(cell, args);
|
||||||
MS_LOG(DEBUG) << "NewGraphInner start " << args.size() << " " << cell_id;
|
MS_LOG(DEBUG) << "NewGraphInner start " << args.size() << " " << cell_id;
|
||||||
if (top_cell_ != nullptr && cell_stack_.empty()) {
|
if (top_cell_ != nullptr && cell_stack_.empty()) {
|
||||||
// non-first step
|
// Non-first step
|
||||||
if (already_run_top_cell_.find(cell_id) != already_run_top_cell_.end()) {
|
if (already_run_top_cell_.find(cell_id) != already_run_top_cell_.end()) {
|
||||||
// top cell
|
// Top cell forward run.
|
||||||
const auto &pre_top_cell = already_run_top_cell_.at(cell_id);
|
const auto &pre_top_cell = already_run_top_cell_.at(cell_id);
|
||||||
if (!pre_top_cell->is_dynamic()) {
|
if (!pre_top_cell->is_dynamic()) {
|
||||||
MS_LOG(DEBUG) << "Top cell " << cell_id << " is not dynamic or ms_function, no need to run NewGraphInner again";
|
MS_LOG(DEBUG) << "Top cell " << cell_id << " is not dynamic, no need to run NewGraphInner again";
|
||||||
ResetTopCellInfo(pre_top_cell, args);
|
ResetTopCellInfo(pre_top_cell, args);
|
||||||
set_top_cell(pre_top_cell);
|
set_top_cell(pre_top_cell);
|
||||||
|
cached_top_cell_forward_running_ = true;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
} else if (top_cell()->IsSubCell(cell_id) && !top_cell()->is_dynamic()) {
|
} else if (top_cell()->IsSubCell(cell_id) || cached_top_cell_forward_running_) {
|
||||||
// non-top cell
|
// Sub cell (may be a temporary cell) forward run in cache process.
|
||||||
MS_LOG(DEBUG) << "no need to run NewGraphInner again";
|
MS_LOG(DEBUG) << "No need to run NewGraphInner again";
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// When the cell has custom bprop, in_custom_bprop_cell is lager than 0
|
// When the cell has custom bprop, in_custom_bprop_cell is lager than 0
|
||||||
if (py::hasattr(cell, parse::CUSTOM_BPROP_NAME)) {
|
if (py::hasattr(cell, parse::CUSTOM_BPROP_NAME)) {
|
||||||
custom_bprop_cell_count_ += 1;
|
custom_bprop_cell_count_ += 1;
|
||||||
|
@ -2093,6 +2091,7 @@ void GradExecutor::EndGraphInner(py::object *ret, const py::object &cell, const
|
||||||
MS_LOG(DEBUG) << "Current cell " << cell_id << " no need to run EndGraphInner again";
|
MS_LOG(DEBUG) << "Current cell " << cell_id << " no need to run EndGraphInner again";
|
||||||
if (top_cell()->is_topest() && cell_id == top_cell()->cell_id()) {
|
if (top_cell()->is_topest() && cell_id == top_cell()->cell_id()) {
|
||||||
set_grad_flag(false);
|
set_grad_flag(false);
|
||||||
|
cached_top_cell_forward_running_ = false;
|
||||||
}
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -2442,7 +2441,7 @@ void GradExecutor::CheckNeedCompileGraph() {
|
||||||
MS_LOG(DEBUG) << "Pre all op info : " << pre_all_op_info;
|
MS_LOG(DEBUG) << "Pre all op info : " << pre_all_op_info;
|
||||||
MS_LOG(DEBUG) << "New all op info : " << new_all_op_info;
|
MS_LOG(DEBUG) << "New all op info : " << new_all_op_info;
|
||||||
if (pre_all_op_info != new_all_op_info) {
|
if (pre_all_op_info != new_all_op_info) {
|
||||||
MS_LOG(DEBUG) << "The op info has been changed or new top cell has ms_function, need to compile graph again";
|
MS_LOG(DEBUG) << "The op info has been changed, need to compile graph again";
|
||||||
EraseTopCellFromTopCellList(pre_top_cell);
|
EraseTopCellFromTopCellList(pre_top_cell);
|
||||||
pre_top_cell->clear();
|
pre_top_cell->clear();
|
||||||
already_run_top_cell_[top_cell_id] = new_top_cell;
|
already_run_top_cell_[top_cell_id] = new_top_cell;
|
||||||
|
@ -2663,6 +2662,7 @@ void GradExecutor::ClearRes() {
|
||||||
grad_flag_ = false;
|
grad_flag_ = false;
|
||||||
need_renormalize_ = false;
|
need_renormalize_ = false;
|
||||||
grad_is_running_ = false;
|
grad_is_running_ = false;
|
||||||
|
cached_top_cell_forward_running_ = false;
|
||||||
top_cell_ = nullptr;
|
top_cell_ = nullptr;
|
||||||
curr_g_ = nullptr;
|
curr_g_ = nullptr;
|
||||||
bprop_cell_list_.clear();
|
bprop_cell_list_.clear();
|
||||||
|
|
|
@ -265,6 +265,7 @@ class GradExecutor {
|
||||||
bool grad_flag_{false};
|
bool grad_flag_{false};
|
||||||
bool need_renormalize_{false};
|
bool need_renormalize_{false};
|
||||||
bool grad_is_running_{false};
|
bool grad_is_running_{false};
|
||||||
|
bool cached_top_cell_forward_running_{false};
|
||||||
int custom_bprop_cell_count_{0};
|
int custom_bprop_cell_count_{0};
|
||||||
size_t grad_order_{0};
|
size_t grad_order_{0};
|
||||||
|
|
||||||
|
|
|
@ -20,7 +20,6 @@ from copy import deepcopy
|
||||||
|
|
||||||
import mindspore as ms
|
import mindspore as ms
|
||||||
import mindspore.nn as nn
|
import mindspore.nn as nn
|
||||||
from mindspore import ms_function
|
|
||||||
from mindspore.common.initializer import (Normal, One, Uniform, Zero)
|
from mindspore.common.initializer import (Normal, One, Uniform, Zero)
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.ops.composite import clip_by_value
|
from mindspore.ops.composite import clip_by_value
|
||||||
|
@ -346,7 +345,6 @@ def _decode_arch_def(arch_def, depth_multiplier=1.0, depth_trunc='ceil'):
|
||||||
return arch_args
|
return arch_args
|
||||||
|
|
||||||
|
|
||||||
@ms_function
|
|
||||||
def hard_swish(x):
|
def hard_swish(x):
|
||||||
x = P.Cast()(x, ms.float32)
|
x = P.Cast()(x, ms.float32)
|
||||||
y = x + 3.0
|
y = x + 3.0
|
||||||
|
|
|
@ -0,0 +1,86 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
import numpy as np
|
||||||
|
import pytest
|
||||||
|
import mindspore.context as context
|
||||||
|
import mindspore.nn as nn
|
||||||
|
from mindspore import Tensor
|
||||||
|
import mindspore.ops as P
|
||||||
|
from mindspore.nn.optim import Momentum
|
||||||
|
from mindspore.common import ParameterTuple
|
||||||
|
|
||||||
|
|
||||||
|
class GradofParams(nn.Cell):
|
||||||
|
def __init__(self, net, sens=False):
|
||||||
|
super().__init__()
|
||||||
|
self.grad = P.GradOperation(get_all=False, get_by_list=True, sens_param=sens)
|
||||||
|
self.net = net
|
||||||
|
self.params = ParameterTuple(self.net.trainable_params())
|
||||||
|
|
||||||
|
def construct(self, *x):
|
||||||
|
out = self.grad(self.net, self.params)(*x)
|
||||||
|
return out
|
||||||
|
|
||||||
|
@pytest.mark.level0
|
||||||
|
@pytest.mark.platform_arm_ascend_training
|
||||||
|
@pytest.mark.platform_x86_ascend_training
|
||||||
|
@pytest.mark.platform_x86_gpu_training
|
||||||
|
@pytest.mark.env_onecard
|
||||||
|
def test_pynative_temporary_cell_variables():
|
||||||
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
|
|
||||||
|
class Net(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.add = P.Add()
|
||||||
|
self.conv = nn.Conv2d(1, 1, 3, weight_init='ones', pad_mode='pad')
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x = self.conv(x)
|
||||||
|
x = self.relu(x)
|
||||||
|
x = self.add(x, x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
class TempCellNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.add = P.Add()
|
||||||
|
self.conv = nn.Conv2d(1, 1, 3, weight_init='ones', pad_mode='pad')
|
||||||
|
|
||||||
|
def construct(self, x):
|
||||||
|
x = self.conv(x)
|
||||||
|
x = nn.ReLU()(x)
|
||||||
|
x = self.add(x, x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
input_data = Tensor(np.random.randn(1, 1, 224, 224).astype(np.float32))
|
||||||
|
# The first net run
|
||||||
|
net = Net()
|
||||||
|
backnet = GradofParams(net)
|
||||||
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
|
||||||
|
grad_first = backnet(input_data)
|
||||||
|
optimizer(grad_first)
|
||||||
|
grad_second = backnet(input_data)
|
||||||
|
# The second net run
|
||||||
|
compare_net = TempCellNet()
|
||||||
|
compare_backnet = GradofParams(compare_net)
|
||||||
|
compare_optimizer = Momentum(filter(lambda x: x.requires_grad, compare_net.get_parameters()), 0.1, 0.9)
|
||||||
|
compare_grad_first = compare_backnet(input_data)
|
||||||
|
compare_optimizer(compare_grad_first)
|
||||||
|
compare_grad_second = compare_backnet(input_data)
|
||||||
|
# compare result
|
||||||
|
assert np.allclose(grad_first[0].asnumpy(), compare_grad_first[0].asnumpy(), 0.01, 0.01)
|
||||||
|
assert np.allclose(grad_second[0].asnumpy(), compare_grad_second[0].asnumpy(), 0.01, 0.01)
|
Loading…
Reference in New Issue