2020-03-27 14:49:12 +08:00
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""ResNet."""
|
|
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
|
|
from mindspore.ops import operations as P
|
|
|
|
from mindspore.common.tensor import Tensor
|
|
|
|
|
|
|
|
|
|
|
|
def _weight_variable(shape, factor=0.01):
|
|
|
|
init_value = np.random.randn(*shape).astype(np.float32) * factor
|
|
|
|
return Tensor(init_value)
|
|
|
|
|
|
|
|
|
|
|
|
def _conv3x3(in_channel, out_channel, stride=1):
|
|
|
|
weight_shape = (out_channel, in_channel, 3, 3)
|
|
|
|
weight = _weight_variable(weight_shape)
|
|
|
|
return nn.Conv2d(in_channel, out_channel,
|
|
|
|
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
|
|
|
|
|
|
|
|
|
|
|
def _conv1x1(in_channel, out_channel, stride=1):
|
|
|
|
weight_shape = (out_channel, in_channel, 1, 1)
|
|
|
|
weight = _weight_variable(weight_shape)
|
|
|
|
return nn.Conv2d(in_channel, out_channel,
|
|
|
|
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
|
|
|
|
|
|
|
|
|
|
|
def _conv7x7(in_channel, out_channel, stride=1):
|
|
|
|
weight_shape = (out_channel, in_channel, 7, 7)
|
|
|
|
weight = _weight_variable(weight_shape)
|
|
|
|
return nn.Conv2d(in_channel, out_channel,
|
|
|
|
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
|
|
|
|
|
|
|
|
|
|
|
def _bn(channel):
|
|
|
|
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
|
|
|
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
|
|
|
|
|
|
|
|
|
|
|
def _bn_last(channel):
|
|
|
|
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
|
|
|
|
gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1)
|
|
|
|
|
|
|
|
|
|
|
|
def _fc(in_channel, out_channel):
|
|
|
|
weight_shape = (out_channel, in_channel)
|
|
|
|
weight = _weight_variable(weight_shape)
|
|
|
|
return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0)
|
|
|
|
|
|
|
|
|
|
|
|
class ResidualBlock(nn.Cell):
|
|
|
|
"""
|
|
|
|
ResNet V1 residual block definition.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
in_channel (int): Input channel.
|
|
|
|
out_channel (int): Output channel.
|
|
|
|
stride (int): Stride size for the first convolutional layer. Default: 1.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> ResidualBlock(3, 256, stride=2)
|
|
|
|
"""
|
|
|
|
expansion = 4
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
in_channel,
|
|
|
|
out_channel,
|
|
|
|
stride=1):
|
|
|
|
super(ResidualBlock, self).__init__()
|
|
|
|
|
|
|
|
channel = out_channel // self.expansion
|
|
|
|
self.conv1 = _conv1x1(in_channel, channel, stride=1)
|
|
|
|
self.bn1 = _bn(channel)
|
|
|
|
|
|
|
|
self.conv2 = _conv3x3(channel, channel, stride=stride)
|
|
|
|
self.bn2 = _bn(channel)
|
|
|
|
|
|
|
|
self.conv3 = _conv1x1(channel, out_channel, stride=1)
|
|
|
|
self.bn3 = _bn_last(out_channel)
|
|
|
|
|
|
|
|
self.relu = nn.ReLU()
|
|
|
|
|
|
|
|
self.down_sample = False
|
|
|
|
|
|
|
|
if stride != 1 or in_channel != out_channel:
|
|
|
|
self.down_sample = True
|
|
|
|
self.down_sample_layer = None
|
|
|
|
|
|
|
|
if self.down_sample:
|
|
|
|
self.down_sample_layer = nn.SequentialCell([_conv1x1(in_channel, out_channel, stride),
|
|
|
|
_bn(out_channel)])
|
2021-02-01 10:28:27 +08:00
|
|
|
self.add = P.Add()
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
identity = x
|
|
|
|
|
|
|
|
out = self.conv1(x)
|
|
|
|
out = self.bn1(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv2(out)
|
|
|
|
out = self.bn2(out)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
out = self.conv3(out)
|
|
|
|
out = self.bn3(out)
|
|
|
|
|
|
|
|
if self.down_sample:
|
|
|
|
identity = self.down_sample_layer(identity)
|
|
|
|
|
|
|
|
out = self.add(out, identity)
|
|
|
|
out = self.relu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class ResNet(nn.Cell):
|
|
|
|
"""
|
|
|
|
ResNet architecture.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
block (Cell): Block for network.
|
|
|
|
layer_nums (list): Numbers of block in different layers.
|
|
|
|
in_channels (list): Input channel in each layer.
|
|
|
|
out_channels (list): Output channel in each layer.
|
|
|
|
strides (list): Stride size in each layer.
|
|
|
|
num_classes (int): The number of classes that the training images are belonging to.
|
|
|
|
Returns:
|
|
|
|
Tensor, output tensor.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> ResNet(ResidualBlock,
|
|
|
|
>>> [3, 4, 6, 3],
|
|
|
|
>>> [64, 256, 512, 1024],
|
|
|
|
>>> [256, 512, 1024, 2048],
|
|
|
|
>>> [1, 2, 2, 2],
|
|
|
|
>>> 10)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self,
|
|
|
|
block,
|
|
|
|
layer_nums,
|
|
|
|
in_channels,
|
|
|
|
out_channels,
|
|
|
|
strides,
|
|
|
|
num_classes):
|
|
|
|
super(ResNet, self).__init__()
|
|
|
|
|
|
|
|
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
|
|
|
|
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
|
|
|
|
|
|
|
|
self.conv1 = _conv7x7(3, 64, stride=2)
|
|
|
|
self.bn1 = _bn(64)
|
|
|
|
self.relu = P.ReLU()
|
2020-04-29 11:41:10 +08:00
|
|
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
self.layer1 = self._make_layer(block,
|
|
|
|
layer_nums[0],
|
|
|
|
in_channel=in_channels[0],
|
|
|
|
out_channel=out_channels[0],
|
|
|
|
stride=strides[0])
|
|
|
|
self.layer2 = self._make_layer(block,
|
|
|
|
layer_nums[1],
|
|
|
|
in_channel=in_channels[1],
|
|
|
|
out_channel=out_channels[1],
|
|
|
|
stride=strides[1])
|
|
|
|
self.layer3 = self._make_layer(block,
|
|
|
|
layer_nums[2],
|
|
|
|
in_channel=in_channels[2],
|
|
|
|
out_channel=out_channels[2],
|
|
|
|
stride=strides[2])
|
|
|
|
self.layer4 = self._make_layer(block,
|
|
|
|
layer_nums[3],
|
|
|
|
in_channel=in_channels[3],
|
|
|
|
out_channel=out_channels[3],
|
|
|
|
stride=strides[3])
|
|
|
|
|
|
|
|
self.mean = P.ReduceMean(keep_dims=True)
|
|
|
|
self.flatten = nn.Flatten()
|
|
|
|
self.end_point = _fc(out_channels[3], num_classes)
|
|
|
|
|
|
|
|
def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
|
|
|
|
"""
|
|
|
|
Make stage network of ResNet.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
block (Cell): Resnet block.
|
|
|
|
layer_num (int): Layer number.
|
|
|
|
in_channel (int): Input channel.
|
|
|
|
out_channel (int): Output channel.
|
|
|
|
stride (int): Stride size for the first convolutional layer.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
SequentialCell, the output layer.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
|
|
|
|
"""
|
|
|
|
layers = []
|
|
|
|
|
|
|
|
resnet_block = block(in_channel, out_channel, stride=stride)
|
|
|
|
layers.append(resnet_block)
|
|
|
|
|
|
|
|
for _ in range(1, layer_num):
|
|
|
|
resnet_block = block(out_channel, out_channel, stride=1)
|
|
|
|
layers.append(resnet_block)
|
|
|
|
|
|
|
|
return nn.SequentialCell(layers)
|
|
|
|
|
|
|
|
def construct(self, x):
|
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.bn1(x)
|
|
|
|
x = self.relu(x)
|
2020-04-29 11:41:10 +08:00
|
|
|
c1 = self.maxpool(x)
|
2020-03-27 14:49:12 +08:00
|
|
|
|
|
|
|
c2 = self.layer1(c1)
|
|
|
|
c3 = self.layer2(c2)
|
|
|
|
c4 = self.layer3(c3)
|
|
|
|
c5 = self.layer4(c4)
|
|
|
|
|
|
|
|
out = self.mean(c5, (2, 3))
|
|
|
|
out = self.flatten(out)
|
|
|
|
out = self.end_point(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
def resnet50(class_num=10):
|
|
|
|
"""
|
|
|
|
Get ResNet50 neural network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
class_num (int): Class number.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Cell, cell instance of ResNet50 neural network.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> net = resnet50(10)
|
|
|
|
"""
|
|
|
|
return ResNet(ResidualBlock,
|
|
|
|
[3, 4, 6, 3],
|
|
|
|
[64, 256, 512, 1024],
|
|
|
|
[256, 512, 1024, 2048],
|
|
|
|
[1, 2, 2, 2],
|
|
|
|
class_num)
|
2020-04-26 15:35:11 +08:00
|
|
|
|
|
|
|
def resnet101(class_num=1001):
|
|
|
|
"""
|
|
|
|
Get ResNet101 neural network.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
class_num (int): Class number.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Cell, cell instance of ResNet101 neural network.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> net = resnet101(1001)
|
|
|
|
"""
|
|
|
|
return ResNet(ResidualBlock,
|
|
|
|
[3, 4, 23, 3],
|
|
|
|
[64, 256, 512, 1024],
|
|
|
|
[256, 512, 1024, 2048],
|
|
|
|
[1, 2, 2, 2],
|
2020-04-26 17:57:12 +08:00
|
|
|
class_num)
|