mindspore/tests/perf_test/test_lenet.py

76 lines
2.2 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LeNet test."""
import numpy as np
2020-05-29 15:08:02 +08:00
from lenet import LeNet5
import mindspore.nn as nn
2020-05-13 11:30:27 +08:00
import mindspore.ops.composite as C
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _cell_graph_executor
context.set_context(mode=context.GRAPH_MODE)
2020-08-24 10:22:10 +08:00
2020-08-25 20:16:08 +08:00
grad_all_with_sens = C.GradOperation(get_all=True, sens_param=True)
2020-08-24 10:22:10 +08:00
batch_size = 1
channel = 1
height = 32
weight = 32
num_class = 10
class LeNetGrad(nn.Cell):
"""Backward of LeNet"""
2020-05-13 11:30:27 +08:00
def __init__(self, network):
super(LeNetGrad, self).__init__()
2020-08-24 10:22:10 +08:00
self.grad_op = grad_all_with_sens
self.network = network
def construct(self, x, sens):
grad_op = self.grad_op(self.network)(x, sens)
return grad_op
def test_compile():
"""Compile forward graph"""
net = LeNet(num_class=num_class)
np.random.seed(7)
inp = Tensor(np.array(np.random.randn(batch_size,
channel,
height,
weight) * 3, np.float32))
_cell_graph_executor.compile(net, inp)
def test_compile_grad():
"""Compile forward and backward graph"""
2020-05-29 15:08:02 +08:00
net = LeNet5(num_class=num_class)
inp = Tensor(np.array(np.random.randn(batch_size,
channel,
height,
weight) * 3, np.float32))
sens = Tensor(np.ones([batch_size, num_class]).astype(np.float32))
grad_op = LeNetGrad(net)
_cell_graph_executor.compile(grad_op, inp, sens)