mindspore/tests/ut/python/dataset/test_minddataset_sampler.py

736 lines
31 KiB
Python
Raw Normal View History

2020-04-10 18:56:58 +08:00
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
This is the test module for mindrecord
"""
import os
2020-05-18 16:42:35 +08:00
import pytest
2020-06-08 15:35:52 +08:00
import numpy as np
2020-04-10 18:56:58 +08:00
2020-05-18 16:42:35 +08:00
import mindspore.dataset as ds
2020-04-10 18:56:58 +08:00
from mindspore import log as logger
2020-05-22 16:14:40 +08:00
from mindspore.dataset.text import to_str
2020-04-10 18:56:58 +08:00
from mindspore.mindrecord import FileWriter
FILES_NUM = 4
CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
@pytest.fixture
def add_and_remove_cv_file():
"""add/remove cv file"""
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
for x in range(FILES_NUM)]
try:
for x in paths:
if os.path.exists("{}".format(x)):
os.remove("{}".format(x))
if os.path.exists("{}.db".format(x)):
os.remove("{}.db".format(x))
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
data = get_data(CV_DIR_NAME, True)
cv_schema_json = {"id": {"type": "int32"},
"file_name": {"type": "string"},
"label": {"type": "int32"},
"data": {"type": "bytes"}}
writer.add_schema(cv_schema_json, "img_schema")
writer.add_index(["file_name", "label"])
writer.write_raw_data(data)
writer.commit()
yield "yield_cv_data"
except Exception as error:
for x in paths:
os.remove("{}".format(x))
os.remove("{}.db".format(x))
raise error
else:
for x in paths:
2020-04-10 18:56:58 +08:00
os.remove("{}".format(x))
os.remove("{}.db".format(x))
2020-05-18 10:31:46 +08:00
2020-05-07 14:53:41 +08:00
def test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
num_readers = 4
sampler = ds.PKSampler(2)
data_set = ds.MindDataset(CV_FILE_NAME + "0", None, num_readers,
sampler=sampler)
2020-04-10 18:56:58 +08:00
2020-05-07 14:53:41 +08:00
assert data_set.get_dataset_size() == 6
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
2020-05-07 14:53:41 +08:00
logger.info("-------------- item[file_name]: \
2020-05-22 16:14:40 +08:00
{}------------------------".format(to_str(item["file_name"])))
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
2020-05-07 14:53:41 +08:00
num_iter += 1
2020-05-18 10:31:46 +08:00
2020-04-14 20:50:44 +08:00
def test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(2)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 6
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
2020-05-04 15:47:59 +08:00
logger.info("-------------- item[data]: \
{}------------------------".format(item["data"][:10]))
2020-04-14 20:50:44 +08:00
logger.info("-------------- item[file_name]: \
2020-05-22 16:14:40 +08:00
{}------------------------".format(to_str(item["file_name"])))
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
2020-04-14 20:50:44 +08:00
num_iter += 1
def test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 9
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
2020-04-14 20:50:44 +08:00
logger.info("-------------- item[file_name]: \
2020-05-22 16:14:40 +08:00
{}------------------------".format(to_str(item["file_name"])))
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
2020-04-14 20:50:44 +08:00
num_iter += 1
2020-08-10 15:10:05 +08:00
assert num_iter == 9
def test_cv_minddataset_pk_sample_shuffle_1(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True, 'label', 5)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-08-10 15:10:05 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_pk_sample_shuffle_2(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(3, None, True, 'label', 10)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 9
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-08-10 15:10:05 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 9
2020-04-14 20:50:44 +08:00
2020-08-10 15:10:05 +08:00
def test_cv_minddataset_pk_sample_out_of_range_0(add_and_remove_cv_file):
2020-04-14 20:50:44 +08:00
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 15
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
2020-04-14 20:50:44 +08:00
logger.info("-------------- item[file_name]: \
2020-05-22 16:14:40 +08:00
{}------------------------".format(to_str(item["file_name"])))
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
2020-04-14 20:50:44 +08:00
num_iter += 1
2020-08-10 15:10:05 +08:00
assert num_iter == 15
def test_cv_minddataset_pk_sample_out_of_range_1(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True, 'label', 20)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 15
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-08-10 15:10:05 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 15
def test_cv_minddataset_pk_sample_out_of_range_2(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.PKSampler(5, None, True, 'label', 10)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-08-10 15:10:05 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info("-------------- item[file_name]: \
{}------------------------".format(to_str(item["file_name"])))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 10
2020-04-14 20:50:44 +08:00
2020-04-10 18:56:58 +08:00
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 3, 5, 7]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
2020-04-14 20:50:44 +08:00
assert data_set.get_dataset_size() == 5
2020-04-10 18:56:58 +08:00
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-04-10 18:56:58 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 2, 5, 7, 9]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
2020-05-18 10:31:46 +08:00
assert data_set.get_dataset_size() == 6
2020-04-10 18:56:58 +08:00
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-04-10 18:56:58 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 6
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = []
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
2020-04-14 20:50:44 +08:00
assert data_set.get_dataset_size() == 0
2020-04-10 18:56:58 +08:00
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-04-10 18:56:58 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 0
2020-04-14 20:50:44 +08:00
def test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file):
2020-04-10 18:56:58 +08:00
"""tutorial for cv minderdataset."""
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, 11, 13]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
2020-05-18 10:31:46 +08:00
assert data_set.get_dataset_size() == 5
2020-04-10 18:56:58 +08:00
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-04-10 18:56:58 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
num_readers = 4
indices = [1, 2, 4, -1, -2]
sampler = ds.SubsetRandomSampler(indices)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
2020-04-14 20:50:44 +08:00
assert data_set.get_dataset_size() == 5
2020-04-10 18:56:58 +08:00
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-04-10 18:56:58 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
2020-06-08 15:35:52 +08:00
def test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.RandomSampler()
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
num_iter = 0
new_dataset = []
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
new_dataset.append(item['file_name'])
assert num_iter == 10
assert new_dataset != [x['file_name'] for x in data]
def test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.RandomSampler()
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 10
ds1 = data_set.repeat(3)
num_iter = 0
epoch1_dataset = []
epoch2_dataset = []
epoch3_dataset = []
for item in ds1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
if num_iter <= 10:
epoch1_dataset.append(item['file_name'])
elif num_iter <= 20:
epoch2_dataset.append(item['file_name'])
else:
epoch3_dataset.append(item['file_name'])
assert num_iter == 30
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
def test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.RandomSampler(replacement=True, num_samples=5)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 5
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
assert num_iter == 5
def test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.SequentialSampler(1, 4)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
assert data_set.get_dataset_size() == 4
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter+1]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 4
def test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
sampler = ds.SequentialSampler(2, 10)
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
sampler=sampler)
dataset_size = data_set.get_dataset_size()
assert dataset_size == 10
num_iter = 0
for item in data_set.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- cv reader basic: {} ------------------------".format(num_iter))
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[(num_iter + 2) % dataset_size]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 10
def test_cv_minddataset_split_basic(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([8, 2], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 2
def test_cv_minddataset_split_exact_percent(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([0.8, 0.2], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 8]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 2
def test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
num_readers, shuffle=False)
d1, d2 = d.split([0.41, 0.59], randomize=False)
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 4
assert d2.get_dataset_size() == 6
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(
data[num_iter]['file_name'], dtype='S')
num_iter += 1
assert num_iter == 4
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
assert item['file_name'] == np.array(data[num_iter + 4]['file_name'],
dtype='S')
num_iter += 1
assert num_iter == 6
def test_cv_minddataset_split_deterministic(add_and_remove_cv_file):
columns_list = ["data", "file_name", "label"]
num_readers = 4
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
num_readers, shuffle=False)
# should set seed to avoid data overlap
ds.config.set_seed(111)
d1, d2 = d.split([0.8, 0.2])
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
d1_dataset = []
d2_dataset = []
num_iter = 0
for item in d1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
d1_dataset.append(item['file_name'])
num_iter += 1
assert num_iter == 8
num_iter = 0
for item in d2.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
d2_dataset.append(item['file_name'])
num_iter += 1
assert num_iter == 2
inter_dataset = [x for x in d1_dataset if x in d2_dataset]
assert inter_dataset == [] # intersection of d1 and d2
def test_cv_minddataset_split_sharding(add_and_remove_cv_file):
data = get_data(CV_DIR_NAME, True)
columns_list = ["data", "file_name", "label"]
num_readers = 4
d = ds.MindDataset(CV_FILE_NAME + "0", columns_list,
num_readers, shuffle=False)
# should set seed to avoid data overlap
ds.config.set_seed(111)
d1, d2 = d.split([0.8, 0.2])
assert d.get_dataset_size() == 10
assert d1.get_dataset_size() == 8
assert d2.get_dataset_size() == 2
distributed_sampler = ds.DistributedSampler(2, 0)
d1.use_sampler(distributed_sampler)
assert d1.get_dataset_size() == 4
num_iter = 0
d1_shard1 = []
for item in d1.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
d1_shard1.append(item['file_name'])
assert num_iter == 4
assert d1_shard1 != [x['file_name'] for x in data[0:4]]
distributed_sampler = ds.DistributedSampler(2, 1)
d1.use_sampler(distributed_sampler)
assert d1.get_dataset_size() == 4
d1s = d1.repeat(3)
epoch1_dataset = []
epoch2_dataset = []
epoch3_dataset = []
num_iter = 0
for item in d1s.create_dict_iterator(num_epochs=1):
2020-06-08 15:35:52 +08:00
logger.info(
"-------------- item[data]: {} -----------------------------".format(item["data"]))
logger.info(
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
logger.info(
"-------------- item[label]: {} ----------------------------".format(item["label"]))
num_iter += 1
if num_iter <= 4:
epoch1_dataset.append(item['file_name'])
elif num_iter <= 8:
epoch2_dataset.append(item['file_name'])
else:
epoch3_dataset.append(item['file_name'])
assert len(epoch1_dataset) == 4
assert len(epoch2_dataset) == 4
assert len(epoch3_dataset) == 4
inter_dataset = [x for x in d1_shard1 if x in epoch1_dataset]
assert inter_dataset == [] # intersection of d1's shard1 and d1's shard2
assert epoch1_dataset not in (epoch2_dataset, epoch3_dataset)
assert epoch2_dataset not in (epoch1_dataset, epoch3_dataset)
assert epoch3_dataset not in (epoch1_dataset, epoch2_dataset)
epoch1_dataset.sort()
epoch2_dataset.sort()
epoch3_dataset.sort()
assert epoch1_dataset != epoch2_dataset
assert epoch2_dataset != epoch3_dataset
assert epoch3_dataset != epoch1_dataset
2020-06-08 15:35:52 +08:00
2020-04-14 20:50:44 +08:00
def get_data(dir_name, sampler=False):
2020-04-10 18:56:58 +08:00
"""
usage: get data from imagenet dataset
params:
dir_name: directory containing folder images and annotation information
"""
if not os.path.isdir(dir_name):
raise IOError("Directory {} not exists".format(dir_name))
img_dir = os.path.join(dir_name, "images")
2020-04-14 20:50:44 +08:00
if sampler:
ann_file = os.path.join(dir_name, "annotation_sampler.txt")
else:
ann_file = os.path.join(dir_name, "annotation.txt")
2020-04-10 18:56:58 +08:00
with open(ann_file, "r") as file_reader:
lines = file_reader.readlines()
data_list = []
for i, line in enumerate(lines):
try:
filename, label = line.split(",")
label = label.strip("\n")
with open(os.path.join(img_dir, filename), "rb") as file_reader:
img = file_reader.read()
data_json = {"id": i,
"file_name": filename,
"data": img,
"label": int(label)}
data_list.append(data_json)
except FileNotFoundError:
continue
return data_list
if __name__ == '__main__':
test_cv_minddataset_pk_sample_no_column(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_basic(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_shuffle(add_and_remove_cv_file)
test_cv_minddataset_pk_sample_out_of_range(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_out_of_range(add_and_remove_cv_file)
test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_basic(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_repeat(add_and_remove_cv_file)
test_cv_minddataset_random_sampler_replacement(add_and_remove_cv_file)
test_cv_minddataset_sequential_sampler_basic(add_and_remove_cv_file)
test_cv_minddataset_sequential_sampler_exceed_size(add_and_remove_cv_file)
test_cv_minddataset_split_basic(add_and_remove_cv_file)
test_cv_minddataset_split_exact_percent(add_and_remove_cv_file)
test_cv_minddataset_split_fuzzy_percent(add_and_remove_cv_file)
test_cv_minddataset_split_deterministic(add_and_remove_cv_file)
test_cv_minddataset_split_sharding(add_and_remove_cv_file)