213 lines
8.2 KiB
Python
213 lines
8.2 KiB
Python
|
# Copyright 2019 Huawei Technologies Co., Ltd
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
# ==============================================================================
|
||
|
"""
|
||
|
This is the test module for mindrecord
|
||
|
"""
|
||
|
import collections
|
||
|
import json
|
||
|
import os
|
||
|
import re
|
||
|
import string
|
||
|
|
||
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
from mindspore.dataset.transforms.vision import Inter
|
||
|
from mindspore import log as logger
|
||
|
|
||
|
import mindspore.dataset as ds
|
||
|
from mindspore.mindrecord import FileWriter
|
||
|
|
||
|
FILES_NUM = 4
|
||
|
CV_FILE_NAME = "../data/mindrecord/imagenet.mindrecord"
|
||
|
CV_DIR_NAME = "../data/mindrecord/testImageNetData"
|
||
|
|
||
|
|
||
|
@pytest.fixture
|
||
|
def add_and_remove_cv_file():
|
||
|
"""add/remove cv file"""
|
||
|
paths = ["{}{}".format(CV_FILE_NAME, str(x).rjust(1, '0'))
|
||
|
for x in range(FILES_NUM)]
|
||
|
for x in paths:
|
||
|
if os.path.exists("{}".format(x)):
|
||
|
os.remove("{}".format(x))
|
||
|
if os.path.exists("{}.db".format(x)):
|
||
|
os.remove("{}.db".format(x))
|
||
|
writer = FileWriter(CV_FILE_NAME, FILES_NUM)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
cv_schema_json = {"id": {"type": "int32"},
|
||
|
"file_name": {"type": "string"},
|
||
|
"label": {"type": "int32"},
|
||
|
"data": {"type": "bytes"}}
|
||
|
writer.add_schema(cv_schema_json, "img_schema")
|
||
|
writer.add_index(["file_name", "label"])
|
||
|
writer.write_raw_data(data)
|
||
|
writer.commit()
|
||
|
yield "yield_cv_data"
|
||
|
for x in paths:
|
||
|
os.remove("{}".format(x))
|
||
|
os.remove("{}.db".format(x))
|
||
|
|
||
|
|
||
|
def test_cv_minddataset_subset_random_sample_basic(add_and_remove_cv_file):
|
||
|
"""tutorial for cv minderdataset."""
|
||
|
columns_list = ["data", "file_name", "label"]
|
||
|
num_readers = 4
|
||
|
indices = [1, 2, 3, 5, 7]
|
||
|
sampler = ds.SubsetRandomSampler(indices)
|
||
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
||
|
sampler=sampler)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
assert data_set.get_dataset_size() == 10
|
||
|
num_iter = 0
|
||
|
for item in data_set.create_dict_iterator():
|
||
|
logger.info(
|
||
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
||
|
logger.info(
|
||
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||
|
logger.info(
|
||
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||
|
logger.info(
|
||
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
||
|
num_iter += 1
|
||
|
assert num_iter == 5
|
||
|
|
||
|
|
||
|
def test_cv_minddataset_subset_random_sample_replica(add_and_remove_cv_file):
|
||
|
"""tutorial for cv minderdataset."""
|
||
|
columns_list = ["data", "file_name", "label"]
|
||
|
num_readers = 4
|
||
|
indices = [1, 2, 2, 5, 7, 9]
|
||
|
sampler = ds.SubsetRandomSampler(indices)
|
||
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
||
|
sampler=sampler)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
assert data_set.get_dataset_size() == 10
|
||
|
num_iter = 0
|
||
|
for item in data_set.create_dict_iterator():
|
||
|
logger.info(
|
||
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
||
|
logger.info(
|
||
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||
|
logger.info(
|
||
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||
|
logger.info(
|
||
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
||
|
num_iter += 1
|
||
|
assert num_iter == 6
|
||
|
|
||
|
|
||
|
def test_cv_minddataset_subset_random_sample_empty(add_and_remove_cv_file):
|
||
|
"""tutorial for cv minderdataset."""
|
||
|
columns_list = ["data", "file_name", "label"]
|
||
|
num_readers = 4
|
||
|
indices = []
|
||
|
sampler = ds.SubsetRandomSampler(indices)
|
||
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
||
|
sampler=sampler)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
assert data_set.get_dataset_size() == 10
|
||
|
num_iter = 0
|
||
|
for item in data_set.create_dict_iterator():
|
||
|
logger.info(
|
||
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
||
|
logger.info(
|
||
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||
|
logger.info(
|
||
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||
|
logger.info(
|
||
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
||
|
num_iter += 1
|
||
|
assert num_iter == 0
|
||
|
|
||
|
|
||
|
def test_cv_minddataset_subset_random_sample_out_range(add_and_remove_cv_file):
|
||
|
"""tutorial for cv minderdataset."""
|
||
|
columns_list = ["data", "file_name", "label"]
|
||
|
num_readers = 4
|
||
|
indices = [1, 2, 4, 11, 13]
|
||
|
sampler = ds.SubsetRandomSampler(indices)
|
||
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
||
|
sampler=sampler)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
assert data_set.get_dataset_size() == 10
|
||
|
num_iter = 0
|
||
|
for item in data_set.create_dict_iterator():
|
||
|
logger.info(
|
||
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
||
|
logger.info(
|
||
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||
|
logger.info(
|
||
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||
|
logger.info(
|
||
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
||
|
num_iter += 1
|
||
|
assert num_iter == 5
|
||
|
|
||
|
|
||
|
def test_cv_minddataset_subset_random_sample_negative(add_and_remove_cv_file):
|
||
|
"""tutorial for cv minderdataset."""
|
||
|
columns_list = ["data", "file_name", "label"]
|
||
|
num_readers = 4
|
||
|
indices = [1, 2, 4, -1, -2]
|
||
|
sampler = ds.SubsetRandomSampler(indices)
|
||
|
data_set = ds.MindDataset(CV_FILE_NAME + "0", columns_list, num_readers,
|
||
|
sampler=sampler)
|
||
|
data = get_data(CV_DIR_NAME)
|
||
|
assert data_set.get_dataset_size() == 10
|
||
|
num_iter = 0
|
||
|
for item in data_set.create_dict_iterator():
|
||
|
logger.info(
|
||
|
"-------------- cv reader basic: {} ------------------------".format(num_iter))
|
||
|
logger.info(
|
||
|
"-------------- item[data]: {} -----------------------------".format(item["data"]))
|
||
|
logger.info(
|
||
|
"-------------- item[file_name]: {} ------------------------".format(item["file_name"]))
|
||
|
logger.info(
|
||
|
"-------------- item[label]: {} ----------------------------".format(item["label"]))
|
||
|
num_iter += 1
|
||
|
assert num_iter == 5
|
||
|
|
||
|
|
||
|
def get_data(dir_name):
|
||
|
"""
|
||
|
usage: get data from imagenet dataset
|
||
|
params:
|
||
|
dir_name: directory containing folder images and annotation information
|
||
|
|
||
|
"""
|
||
|
if not os.path.isdir(dir_name):
|
||
|
raise IOError("Directory {} not exists".format(dir_name))
|
||
|
img_dir = os.path.join(dir_name, "images")
|
||
|
ann_file = os.path.join(dir_name, "annotation.txt")
|
||
|
with open(ann_file, "r") as file_reader:
|
||
|
lines = file_reader.readlines()
|
||
|
|
||
|
data_list = []
|
||
|
for i, line in enumerate(lines):
|
||
|
try:
|
||
|
filename, label = line.split(",")
|
||
|
label = label.strip("\n")
|
||
|
with open(os.path.join(img_dir, filename), "rb") as file_reader:
|
||
|
img = file_reader.read()
|
||
|
data_json = {"id": i,
|
||
|
"file_name": filename,
|
||
|
"data": img,
|
||
|
"label": int(label)}
|
||
|
data_list.append(data_json)
|
||
|
except FileNotFoundError:
|
||
|
continue
|
||
|
return data_list
|