mindspore/include/api/model.h

212 lines
8.4 KiB
C
Raw Normal View History

/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_INCLUDE_API_MODEL_H
#define MINDSPORE_INCLUDE_API_MODEL_H
#include <string>
#include <vector>
#include <map>
#include <memory>
2021-01-26 17:06:34 +08:00
#include <utility>
#include "include/api/status.h"
#include "include/api/types.h"
#include "include/api/graph.h"
#include "include/api/context.h"
2021-07-09 18:07:51 +08:00
#include "include/api/callback/callback.h"
#include "include/api/cell.h"
2021-07-09 18:07:51 +08:00
#include "include/api/cfg.h"
#include "include/api/dual_abi_helper.h"
namespace mindspore {
class ModelImpl;
2021-07-09 18:07:51 +08:00
class Metrics;
namespace dataset {
class Dataset;
} // namespace dataset
/// \brief The Model class is used to define a MindSpore model, facilitating computational graph management.
class MS_API Model {
public:
Model();
~Model();
Model(const Model &) = delete;
void operator=(const Model &) = delete;
/// \brief Builds a model so that it can run on a device.
///
/// \param[in] graph GraphCell is a derivative of Cell. Cell is not available currently. GraphCell can be constructed
/// from Graph, for example, model.Build(GraphCell(graph), context).
/// \param[in] model_context A context used to store options during execution.
/// \param[in] train_cfg A config used by training.
///
/// \return Status.
2021-07-09 18:07:51 +08:00
Status Build(GraphCell graph, const std::shared_ptr<Context> &model_context = nullptr,
const std::shared_ptr<TrainCfg> &train_cfg = nullptr);
/// \brief Resizes the shapes of inputs.
///
/// \param[in] inputs A vector that includes all input tensors in order.
/// \param[in] dims Defines the new shapes of inputs, should be consistent with inputs.
///
/// \return Status.
2021-01-26 17:06:34 +08:00
Status Resize(const std::vector<MSTensor> &inputs, const std::vector<std::vector<int64_t>> &dims);
/// \brief Inference model.
///
/// \param[in] inputs A vector where model inputs are arranged in sequence.
/// \param[out] outputs Which is a pointer to a vector. The model outputs are filled in the container in sequence.
/// \param[in] before CallBack before predict.
/// \param[in] after CallBack after predict.
///
/// \return Status.
2021-07-07 11:13:09 +08:00
Status Predict(const std::vector<MSTensor> &inputs, std::vector<MSTensor> *outputs,
const MSKernelCallBack &before = nullptr, const MSKernelCallBack &after = nullptr);
2021-08-19 09:17:01 +08:00
/// \brief Load config file.
///
/// \param[in] config_path config file path.
///
/// \return Status.
Status LoadConfig(const std::string &config_path);
/// \brief Obtains all input tensors of the model.
///
/// \return The vector that includes all input tensors.
2021-01-26 17:06:34 +08:00
std::vector<MSTensor> GetInputs();
/// \brief Obtains the input tensor of the model by name.
///
/// \return The input tensor with the given name, if the name is not found, an invalid tensor is returned.
inline MSTensor GetInputByTensorName(const std::string &tensor_name);
2021-09-01 23:24:32 +08:00
/// \brief Obtains all gradient tensors of the model.
///
/// \return The vector that includes all gradient tensors.
std::vector<MSTensor> GetGradients() const;
/// \brief update gradient tensors of the model.
///
/// \param[in] inputs A vector new gradients.
/// \return Status of operation
Status ApplyGradients(const std::vector<MSTensor> &gradients);
/// \brief Obtains optimizer params tensors of the model.
///
/// \return The vector that includes all params tensors.
std::vector<MSTensor> GetOptimizerParams() const;
/// \brief update the optimizer parameters
///
/// \param[in] inputs A vector new optimizer params.
/// \return Status of operation
Status SetOptimizerParams(const std::vector<MSTensor> &params);
2021-07-09 18:07:51 +08:00
Status InitMetrics(std::vector<Metrics *> metrics);
std::vector<Metrics *> GetMetrics();
/// \brief Obtains all output tensors of the model.
///
/// \return The vector that includes all output tensors.
2021-01-26 17:06:34 +08:00
std::vector<MSTensor> GetOutputs();
/// \brief Obtains names of all output tensors of the model.
///
/// \return A vector that includes names of all output tensors.
inline std::vector<std::string> GetOutputTensorNames();
/// \brief Obtains the output tensor of the model by name.
///
/// \return The output tensor with the given name, if the name is not found, an invalid tensor is returned.
inline MSTensor GetOutputByTensorName(const std::string &tensor_name);
/// \brief Get output MSTensors of model by node name.
///
/// \param[in] node_name Define node name.
///
/// \note Deprecated, replace with GetOutputByTensorName
///
/// \return The vector of output MSTensor.
inline std::vector<MSTensor> GetOutputsByNodeName(const std::string &node_name);
/// \brief Inference model.
///
/// \param[in] device_type Device typeoptions are kGPU, kAscend910, etc.
/// \param[in] model_type The type of model file, options are ModelType::kMindIR, ModelType::kOM.
///
/// \return Is supported or not.
static bool CheckModelSupport(enum DeviceType device_type, ModelType model_type);
2021-07-09 18:07:51 +08:00
Status SetTrainMode(bool train);
bool GetTrainMode() const;
Status Train(int epochs, std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
Status Evaluate(std::shared_ptr<dataset::Dataset> ds, std::vector<TrainCallBack *> cbs);
/// \brief Build a model from model buffer so that it can run on a device. Only valid for Lite.
///
/// \param[in] model_data Define the buffer read from a model file.
/// \param[in] size Define bytes number of model buffer.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
/// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32.
/// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC.
///
/// \return Status.
2021-07-08 14:36:59 +08:00
Status Build(const void *model_data, size_t data_size, ModelType model_type,
const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {},
2021-07-15 10:33:18 +08:00
const std::string &dec_mode = kDecModeAesGcm);
/// \brief Load and build a model from model buffer so that it can run on a device. Only valid for Lite.
///
/// \param[in] model_path Define the model path.
/// \param[in] model_type Define The type of model file. Options: ModelType::kMindIR, ModelType::kOM. Only
/// ModelType::kMindIR is valid for Lite.
/// \param[in] model_context Define the context used to store options during execution.
/// \param[in] dec_key Define the key used to decrypt the ciphertext model. The key length is 16, 24, or 32.
/// \param[in] dec_mode Define the decryption mode. Options: AES-GCM, AES-CBC.
///
/// \return Status.
2021-07-15 10:33:18 +08:00
Status Build(const std::string &model_path, ModelType model_type,
const std::shared_ptr<Context> &model_context = nullptr, const Key &dec_key = {},
const std::string &dec_mode = kDecModeAesGcm);
2021-07-08 14:36:59 +08:00
private:
2021-07-09 18:07:51 +08:00
friend class Serialization;
// api without std::string
MSTensor GetInputByTensorName(const std::vector<char> &tensor_name);
std::vector<std::vector<char>> GetOutputTensorNamesChar();
MSTensor GetOutputByTensorName(const std::vector<char> &tensor_name);
std::vector<MSTensor> GetOutputsByNodeName(const std::vector<char> &node_name);
std::shared_ptr<ModelImpl> impl_;
};
MSTensor Model::GetInputByTensorName(const std::string &tensor_name) {
return GetInputByTensorName(StringToChar(tensor_name));
}
std::vector<std::string> Model::GetOutputTensorNames() { return VectorCharToString(GetOutputTensorNamesChar()); }
MSTensor Model::GetOutputByTensorName(const std::string &tensor_name) {
return GetOutputByTensorName(StringToChar(tensor_name));
}
2021-03-23 16:12:19 +08:00
std::vector<MSTensor> Model::GetOutputsByNodeName(const std::string &node_name) {
return GetOutputsByNodeName(StringToChar(node_name));
2021-03-23 16:12:19 +08:00
}
} // namespace mindspore
#endif // MINDSPORE_INCLUDE_API_MODEL_H