2022-04-07 05:33:09 +08:00
|
|
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import tempfile
|
|
|
|
import glob
|
|
|
|
import shutil
|
|
|
|
import pytest
|
|
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
|
|
import mindspore.context as context
|
|
|
|
import mindspore.nn as nn
|
|
|
|
import mindspore.ops as ops
|
|
|
|
from mindspore import Tensor
|
|
|
|
from dump_test_utils import generate_dump_json, check_dump_structure
|
|
|
|
from tests.security_utils import security_off_wrap
|
|
|
|
|
|
|
|
|
|
|
|
class ConvNet(nn.Cell):
|
|
|
|
def __init__(self):
|
|
|
|
super(ConvNet, self).__init__()
|
|
|
|
self.conv2 = ops.Conv2D(out_channel=3, kernel_size=1)
|
|
|
|
|
|
|
|
def construct(self, x, weight):
|
|
|
|
return self.conv2(x, weight)
|
|
|
|
|
|
|
|
|
|
|
|
def run_trans_flag(test_name):
|
|
|
|
if sys.platform != 'linux':
|
|
|
|
return
|
|
|
|
with tempfile.TemporaryDirectory(dir='/tmp') as tmp_dir:
|
|
|
|
dump_path = os.path.join(tmp_dir, test_name)
|
|
|
|
dump_config_path = os.path.join(tmp_dir, '{}.json'.format(test_name))
|
|
|
|
generate_dump_json(dump_path, dump_config_path, test_name)
|
|
|
|
os.environ['MINDSPORE_DUMP_CONFIG'] = dump_config_path
|
|
|
|
if os.path.isdir(dump_path):
|
|
|
|
shutil.rmtree(dump_path)
|
|
|
|
net = ConvNet()
|
|
|
|
tensor = Tensor(np.ones([1, 3, 3, 3]), ms.float32)
|
|
|
|
weight = Tensor(np.ones([3, 3, 1, 1]), ms.float32)
|
|
|
|
expect = net(tensor, weight)
|
|
|
|
check_dump_structure(dump_path, dump_config_path, 1, 1, 1)
|
|
|
|
dump_data_path = os.path.join(dump_path, 'rank_0', 'Net', '0', '0')
|
|
|
|
assert os.path.exists(dump_data_path)
|
|
|
|
if test_name == "test_e2e_dump_trans_true":
|
|
|
|
# tensor data in host format.
|
|
|
|
output_name = "Conv2D.Conv2D-op*.0.0.*.output.0.DefaultFormat.npy"
|
|
|
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
|
|
|
real_path = os.path.realpath(output_path)
|
|
|
|
output = np.load(real_path)
|
|
|
|
assert output.shape == (1, 3, 3, 3)
|
|
|
|
assert np.array_equal(output, expect)
|
|
|
|
elif test_name == "test_e2e_dump_trans_false":
|
|
|
|
# tensor data in device format.
|
|
|
|
output_name = "Conv2D.Conv2D-op*.0.0.*.output.0.NC1HWC0.npy"
|
|
|
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
|
|
|
real_path = os.path.realpath(output_path)
|
|
|
|
output = np.load(real_path)
|
|
|
|
assert output.shape == (1, 1, 3, 3, 16)
|
|
|
|
else:
|
|
|
|
# tensor data in host format.
|
|
|
|
output_name = "Conv2D.Conv2D-op*.*.*.*.output.0.NCHW.npy"
|
|
|
|
output_path = glob.glob(os.path.join(dump_data_path, output_name))[0]
|
|
|
|
real_path = os.path.realpath(output_path)
|
|
|
|
output = np.load(real_path)
|
|
|
|
assert output.shape == (1, 3, 3, 3)
|
|
|
|
assert np.array_equal(output, expect)
|
|
|
|
del os.environ['MINDSPORE_DUMP_CONFIG']
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@security_off_wrap
|
|
|
|
def test_ascend_e2e_trans_true():
|
|
|
|
"""
|
|
|
|
Feature: Ascend e2e dump.
|
|
|
|
Description: Test e2e dump in Ascend with trans_flag is configured to true.
|
|
|
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
|
|
|
"""
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
run_trans_flag("test_e2e_dump_trans_true")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@security_off_wrap
|
|
|
|
def test_ascend_e2e_trans_false():
|
|
|
|
"""
|
|
|
|
Feature: Ascend e2e dump.
|
|
|
|
Description: Test e2e dump in Ascend with trans_flag is configured to false.
|
|
|
|
Expectation: Dump files has tensor data in device format.
|
|
|
|
"""
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
run_trans_flag("test_e2e_dump_trans_false")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@security_off_wrap
|
|
|
|
def test_ascend_kernel_by_kernel_trans_true():
|
|
|
|
"""
|
|
|
|
Feature: Ascend kernel by kernel dump.
|
|
|
|
Description: Test kernel by kernel dump in Ascend with trans_flag is configured to true.
|
|
|
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
|
|
|
"""
|
|
|
|
os.environ['GRAPH_OP_RUN'] = "1"
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
run_trans_flag("test_e2e_dump_trans_true")
|
|
|
|
del os.environ['GRAPH_OP_RUN']
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0
|
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@security_off_wrap
|
|
|
|
def test_ascend_kernel_by_kernel_trans_false():
|
|
|
|
"""
|
|
|
|
Feature: Ascend kernel by kernel dump.
|
|
|
|
Description: Test kernel by kernel dump in Ascend with trans_flag is configured to false.
|
|
|
|
Expectation: Dump files has tensor data in device format.
|
|
|
|
"""
|
|
|
|
os.environ['GRAPH_OP_RUN'] = "1"
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
run_trans_flag("test_e2e_dump_trans_false")
|
|
|
|
del os.environ['GRAPH_OP_RUN']
|
|
|
|
|
|
|
|
|
2022-06-22 17:44:13 +08:00
|
|
|
@pytest.mark.level0
|
2022-04-07 05:33:09 +08:00
|
|
|
@pytest.mark.platform_arm_ascend_training
|
|
|
|
@pytest.mark.platform_x86_ascend_training
|
|
|
|
@pytest.mark.env_onecard
|
|
|
|
@security_off_wrap
|
|
|
|
def test_ascend_a_plus_m_conversion():
|
|
|
|
"""
|
|
|
|
Feature: Ascend A+M dump.
|
|
|
|
Description: Test A+M dump in Ascend and check the format of the dump data.
|
|
|
|
Expectation: Dump files has tensor data in host format (4 dimensions).
|
|
|
|
"""
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
|
|
run_trans_flag("test_async_dump_npy")
|