mindspore/tests/ut/python/dataset/test_five_crop.py

116 lines
3.6 KiB
Python
Raw Normal View History

# Copyright 2020 Huawei Technologies Co., Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Testing FiveCrop in DE
"""
import matplotlib.pyplot as plt
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def visualize(image_1, image_2):
"""
visualizes the image using FiveCrop
"""
plt.subplot(161)
plt.imshow(image_1)
plt.title("Original")
for i, image in enumerate(image_2):
image = (image.transpose(1, 2, 0) * 255).astype(np.uint8)
plt.subplot(162 + i)
plt.imshow(image)
plt.title("image {} in FiveCrop".format(i + 1))
plt.show()
def test_five_crop_op():
"""
Test FiveCrop
"""
logger.info("test_five_crop")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
vision.Decode(),
vision.ToTensor(),
]
transform_1 = vision.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_2 = [
vision.Decode(),
vision.FiveCrop(200),
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images
]
transform_2 = vision.ComposeOp(transforms_2)
data2 = data2.map(input_columns=["image"], operations=transform_2())
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_2 = item2["image"]
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
# visualize(image_1, image_2)
# The output data should be of a 4D tensor shape, a stack of 5 images.
assert len(image_2.shape) == 4
assert image_2.shape[0] == 5
def test_five_crop_error_msg():
"""
Test FiveCrop error message.
"""
logger.info("test_five_crop_error_msg")
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
vision.Decode(),
vision.FiveCrop(200),
vision.ToTensor()
]
transform = vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
with pytest.raises(RuntimeError) as info:
data.create_tuple_iterator().get_next()
error_msg = "TypeError: img should be PIL Image or Numpy array. Got <class 'tuple'>"
# error msg comes from ToTensor()
assert error_msg in str(info.value)
if __name__ == "__main__":
test_five_crop_op()
test_five_crop_error_msg()