2022-04-06 16:53:42 +08:00
|
|
|
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
# ============================================================================
|
|
|
|
"""common utils for sparse tests"""
|
|
|
|
import platform
|
2022-08-23 11:06:51 +08:00
|
|
|
from mindspore import Tensor, CSRTensor, COOTensor, context, ops
|
|
|
|
import mindspore.common.dtype as mstype
|
2022-04-06 16:53:42 +08:00
|
|
|
|
|
|
|
|
|
|
|
def get_platform():
|
|
|
|
return platform.system().lower()
|
|
|
|
|
|
|
|
|
|
|
|
def compare_res(tensor_tup, numpy_tup):
|
|
|
|
assert len(tensor_tup) == len(numpy_tup)
|
|
|
|
for item in zip(tensor_tup, numpy_tup):
|
|
|
|
assert (item[0].asnumpy() == item[1]).all()
|
2022-08-23 11:06:51 +08:00
|
|
|
|
|
|
|
|
|
|
|
def compare_csr(csr1, csr2):
|
|
|
|
assert isinstance(csr1, CSRTensor)
|
|
|
|
assert isinstance(csr2, CSRTensor)
|
|
|
|
assert (csr1.indptr.asnumpy() == csr2.indptr.asnumpy()).all()
|
|
|
|
assert (csr1.indices.asnumpy() == csr2.indices.asnumpy()).all()
|
|
|
|
assert (csr1.values.asnumpy() == csr2.values.asnumpy()).all()
|
|
|
|
assert csr1.shape == csr2.shape
|
|
|
|
|
|
|
|
|
|
|
|
def compare_coo(coo1, coo2):
|
|
|
|
assert isinstance(coo1, COOTensor)
|
|
|
|
assert isinstance(coo2, COOTensor)
|
|
|
|
assert (coo1.indices.asnumpy() == coo2.indices.asnumpy()).all()
|
|
|
|
assert (coo1.values.asnumpy() == coo2.values.asnumpy()).all()
|
|
|
|
assert coo1.shape == coo2.shape
|
|
|
|
|
|
|
|
|
|
|
|
def get_csr_tensor():
|
|
|
|
indptr = Tensor([0, 1, 2], dtype=mstype.int32)
|
|
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
|
|
values = Tensor([1, 2], dtype=mstype.float32)
|
|
|
|
shape = (2, 4)
|
|
|
|
return CSRTensor(indptr, indices, values, shape)
|
|
|
|
|
|
|
|
|
|
|
|
def get_csr_components():
|
|
|
|
csr = get_csr_tensor()
|
|
|
|
res = (csr.indptr, csr.indices, csr.values, csr.shape)
|
|
|
|
return res
|
|
|
|
|
|
|
|
|
|
|
|
def get_csr_from_scalar(x):
|
|
|
|
indptr = Tensor([0, 1, 1], dtype=mstype.int32)
|
|
|
|
indices = Tensor([2], dtype=mstype.int32)
|
|
|
|
shape = (2, 3)
|
|
|
|
return CSRTensor(indptr, indices, x.reshape(1), shape)
|
|
|
|
|
|
|
|
|
|
|
|
def csr_add(csr_tensor, x):
|
|
|
|
return CSRTensor(csr_tensor.indptr, csr_tensor.indices, csr_tensor.values + x, csr_tensor.shape)
|
|
|
|
|
|
|
|
|
|
|
|
def forward_grad_net(net, *inputs, mode=context.GRAPH_MODE):
|
|
|
|
context.set_context(mode=mode)
|
|
|
|
forward = net(*inputs)
|
|
|
|
grad = ops.GradOperation(get_all=True)(net)(*inputs)
|
|
|
|
return forward, grad
|