forked from OSchip/llvm-project
4789 lines
178 KiB
C++
4789 lines
178 KiB
C++
//===- InstCombineCalls.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visitCall, visitInvoke, and visitCallBr functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NumSimplified, "Number of library calls simplified");
|
|
|
|
static cl::opt<unsigned> GuardWideningWindow(
|
|
"instcombine-guard-widening-window",
|
|
cl::init(3),
|
|
cl::desc("How wide an instruction window to bypass looking for "
|
|
"another guard"));
|
|
|
|
/// Return the specified type promoted as it would be to pass though a va_arg
|
|
/// area.
|
|
static Type *getPromotedType(Type *Ty) {
|
|
if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
|
|
if (ITy->getBitWidth() < 32)
|
|
return Type::getInt32Ty(Ty->getContext());
|
|
}
|
|
return Ty;
|
|
}
|
|
|
|
/// Return a constant boolean vector that has true elements in all positions
|
|
/// where the input constant data vector has an element with the sign bit set.
|
|
static Constant *getNegativeIsTrueBoolVec(ConstantDataVector *V) {
|
|
SmallVector<Constant *, 32> BoolVec;
|
|
IntegerType *BoolTy = Type::getInt1Ty(V->getContext());
|
|
for (unsigned I = 0, E = V->getNumElements(); I != E; ++I) {
|
|
Constant *Elt = V->getElementAsConstant(I);
|
|
assert((isa<ConstantInt>(Elt) || isa<ConstantFP>(Elt)) &&
|
|
"Unexpected constant data vector element type");
|
|
bool Sign = V->getElementType()->isIntegerTy()
|
|
? cast<ConstantInt>(Elt)->isNegative()
|
|
: cast<ConstantFP>(Elt)->isNegative();
|
|
BoolVec.push_back(ConstantInt::get(BoolTy, Sign));
|
|
}
|
|
return ConstantVector::get(BoolVec);
|
|
}
|
|
|
|
Instruction *InstCombiner::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
|
|
unsigned DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
|
|
unsigned CopyDstAlign = MI->getDestAlignment();
|
|
if (CopyDstAlign < DstAlign){
|
|
MI->setDestAlignment(DstAlign);
|
|
return MI;
|
|
}
|
|
|
|
unsigned SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
|
|
unsigned CopySrcAlign = MI->getSourceAlignment();
|
|
if (CopySrcAlign < SrcAlign) {
|
|
MI->setSourceAlignment(SrcAlign);
|
|
return MI;
|
|
}
|
|
|
|
// If we have a store to a location which is known constant, we can conclude
|
|
// that the store must be storing the constant value (else the memory
|
|
// wouldn't be constant), and this must be a noop.
|
|
if (AA->pointsToConstantMemory(MI->getDest())) {
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
|
|
return MI;
|
|
}
|
|
|
|
// If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
|
|
// load/store.
|
|
ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (!MemOpLength) return nullptr;
|
|
|
|
// Source and destination pointer types are always "i8*" for intrinsic. See
|
|
// if the size is something we can handle with a single primitive load/store.
|
|
// A single load+store correctly handles overlapping memory in the memmove
|
|
// case.
|
|
uint64_t Size = MemOpLength->getLimitedValue();
|
|
assert(Size && "0-sized memory transferring should be removed already.");
|
|
|
|
if (Size > 8 || (Size&(Size-1)))
|
|
return nullptr; // If not 1/2/4/8 bytes, exit.
|
|
|
|
// If it is an atomic and alignment is less than the size then we will
|
|
// introduce the unaligned memory access which will be later transformed
|
|
// into libcall in CodeGen. This is not evident performance gain so disable
|
|
// it now.
|
|
if (isa<AtomicMemTransferInst>(MI))
|
|
if (CopyDstAlign < Size || CopySrcAlign < Size)
|
|
return nullptr;
|
|
|
|
// Use an integer load+store unless we can find something better.
|
|
unsigned SrcAddrSp =
|
|
cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
|
|
unsigned DstAddrSp =
|
|
cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
|
|
|
|
IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
|
|
Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
|
|
Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
|
|
|
|
// If the memcpy has metadata describing the members, see if we can get the
|
|
// TBAA tag describing our copy.
|
|
MDNode *CopyMD = nullptr;
|
|
if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
|
|
CopyMD = M;
|
|
} else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
|
|
if (M->getNumOperands() == 3 && M->getOperand(0) &&
|
|
mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
|
|
mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
|
|
M->getOperand(1) &&
|
|
mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
|
|
mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
|
|
Size &&
|
|
M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
|
|
CopyMD = cast<MDNode>(M->getOperand(2));
|
|
}
|
|
|
|
Value *Src = Builder.CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
|
|
Value *Dest = Builder.CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
|
|
LoadInst *L = Builder.CreateLoad(IntType, Src);
|
|
// Alignment from the mem intrinsic will be better, so use it.
|
|
L->setAlignment(CopySrcAlign);
|
|
if (CopyMD)
|
|
L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
|
|
MDNode *LoopMemParallelMD =
|
|
MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
|
|
if (LoopMemParallelMD)
|
|
L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
|
|
MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
|
|
if (AccessGroupMD)
|
|
L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
|
|
|
|
StoreInst *S = Builder.CreateStore(L, Dest);
|
|
// Alignment from the mem intrinsic will be better, so use it.
|
|
S->setAlignment(CopyDstAlign);
|
|
if (CopyMD)
|
|
S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
|
|
if (LoopMemParallelMD)
|
|
S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
|
|
if (AccessGroupMD)
|
|
S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
|
|
|
|
if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
|
|
// non-atomics can be volatile
|
|
L->setVolatile(MT->isVolatile());
|
|
S->setVolatile(MT->isVolatile());
|
|
}
|
|
if (isa<AtomicMemTransferInst>(MI)) {
|
|
// atomics have to be unordered
|
|
L->setOrdering(AtomicOrdering::Unordered);
|
|
S->setOrdering(AtomicOrdering::Unordered);
|
|
}
|
|
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setLength(Constant::getNullValue(MemOpLength->getType()));
|
|
return MI;
|
|
}
|
|
|
|
Instruction *InstCombiner::SimplifyAnyMemSet(AnyMemSetInst *MI) {
|
|
unsigned Alignment = getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
|
|
if (MI->getDestAlignment() < Alignment) {
|
|
MI->setDestAlignment(Alignment);
|
|
return MI;
|
|
}
|
|
|
|
// If we have a store to a location which is known constant, we can conclude
|
|
// that the store must be storing the constant value (else the memory
|
|
// wouldn't be constant), and this must be a noop.
|
|
if (AA->pointsToConstantMemory(MI->getDest())) {
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
|
|
return MI;
|
|
}
|
|
|
|
// Extract the length and alignment and fill if they are constant.
|
|
ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
|
|
ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
|
|
if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
|
|
return nullptr;
|
|
uint64_t Len = LenC->getLimitedValue();
|
|
Alignment = MI->getDestAlignment();
|
|
assert(Len && "0-sized memory setting should be removed already.");
|
|
|
|
// Alignment 0 is identity for alignment 1 for memset, but not store.
|
|
if (Alignment == 0)
|
|
Alignment = 1;
|
|
|
|
// If it is an atomic and alignment is less than the size then we will
|
|
// introduce the unaligned memory access which will be later transformed
|
|
// into libcall in CodeGen. This is not evident performance gain so disable
|
|
// it now.
|
|
if (isa<AtomicMemSetInst>(MI))
|
|
if (Alignment < Len)
|
|
return nullptr;
|
|
|
|
// memset(s,c,n) -> store s, c (for n=1,2,4,8)
|
|
if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
|
|
Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
|
|
|
|
Value *Dest = MI->getDest();
|
|
unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
|
|
Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
|
|
Dest = Builder.CreateBitCast(Dest, NewDstPtrTy);
|
|
|
|
// Extract the fill value and store.
|
|
uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
|
|
StoreInst *S = Builder.CreateStore(ConstantInt::get(ITy, Fill), Dest,
|
|
MI->isVolatile());
|
|
S->setAlignment(Alignment);
|
|
if (isa<AtomicMemSetInst>(MI))
|
|
S->setOrdering(AtomicOrdering::Unordered);
|
|
|
|
// Set the size of the copy to 0, it will be deleted on the next iteration.
|
|
MI->setLength(Constant::getNullValue(LenC->getType()));
|
|
return MI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *simplifyX86immShift(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
bool LogicalShift = false;
|
|
bool ShiftLeft = false;
|
|
|
|
switch (II.getIntrinsicID()) {
|
|
default: llvm_unreachable("Unexpected intrinsic!");
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_avx2_psra_d:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
case Intrinsic::x86_avx512_psra_q_128:
|
|
case Intrinsic::x86_avx512_psrai_q_128:
|
|
case Intrinsic::x86_avx512_psra_q_256:
|
|
case Intrinsic::x86_avx512_psrai_q_256:
|
|
case Intrinsic::x86_avx512_psra_d_512:
|
|
case Intrinsic::x86_avx512_psra_q_512:
|
|
case Intrinsic::x86_avx512_psra_w_512:
|
|
case Intrinsic::x86_avx512_psrai_d_512:
|
|
case Intrinsic::x86_avx512_psrai_q_512:
|
|
case Intrinsic::x86_avx512_psrai_w_512:
|
|
LogicalShift = false; ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_sse2_psrl_d:
|
|
case Intrinsic::x86_sse2_psrl_q:
|
|
case Intrinsic::x86_sse2_psrl_w:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_avx2_psrl_d:
|
|
case Intrinsic::x86_avx2_psrl_q:
|
|
case Intrinsic::x86_avx2_psrl_w:
|
|
case Intrinsic::x86_avx2_psrli_d:
|
|
case Intrinsic::x86_avx2_psrli_q:
|
|
case Intrinsic::x86_avx2_psrli_w:
|
|
case Intrinsic::x86_avx512_psrl_d_512:
|
|
case Intrinsic::x86_avx512_psrl_q_512:
|
|
case Intrinsic::x86_avx512_psrl_w_512:
|
|
case Intrinsic::x86_avx512_psrli_d_512:
|
|
case Intrinsic::x86_avx512_psrli_q_512:
|
|
case Intrinsic::x86_avx512_psrli_w_512:
|
|
LogicalShift = true; ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_sse2_psll_d:
|
|
case Intrinsic::x86_sse2_psll_q:
|
|
case Intrinsic::x86_sse2_psll_w:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_avx2_psll_d:
|
|
case Intrinsic::x86_avx2_psll_q:
|
|
case Intrinsic::x86_avx2_psll_w:
|
|
case Intrinsic::x86_avx2_pslli_d:
|
|
case Intrinsic::x86_avx2_pslli_q:
|
|
case Intrinsic::x86_avx2_pslli_w:
|
|
case Intrinsic::x86_avx512_psll_d_512:
|
|
case Intrinsic::x86_avx512_psll_q_512:
|
|
case Intrinsic::x86_avx512_psll_w_512:
|
|
case Intrinsic::x86_avx512_pslli_d_512:
|
|
case Intrinsic::x86_avx512_pslli_q_512:
|
|
case Intrinsic::x86_avx512_pslli_w_512:
|
|
LogicalShift = true; ShiftLeft = true;
|
|
break;
|
|
}
|
|
assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
|
|
|
|
// Simplify if count is constant.
|
|
auto Arg1 = II.getArgOperand(1);
|
|
auto CAZ = dyn_cast<ConstantAggregateZero>(Arg1);
|
|
auto CDV = dyn_cast<ConstantDataVector>(Arg1);
|
|
auto CInt = dyn_cast<ConstantInt>(Arg1);
|
|
if (!CAZ && !CDV && !CInt)
|
|
return nullptr;
|
|
|
|
APInt Count(64, 0);
|
|
if (CDV) {
|
|
// SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
|
|
// operand to compute the shift amount.
|
|
auto VT = cast<VectorType>(CDV->getType());
|
|
unsigned BitWidth = VT->getElementType()->getPrimitiveSizeInBits();
|
|
assert((64 % BitWidth) == 0 && "Unexpected packed shift size");
|
|
unsigned NumSubElts = 64 / BitWidth;
|
|
|
|
// Concatenate the sub-elements to create the 64-bit value.
|
|
for (unsigned i = 0; i != NumSubElts; ++i) {
|
|
unsigned SubEltIdx = (NumSubElts - 1) - i;
|
|
auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
|
|
Count <<= BitWidth;
|
|
Count |= SubElt->getValue().zextOrTrunc(64);
|
|
}
|
|
}
|
|
else if (CInt)
|
|
Count = CInt->getValue();
|
|
|
|
auto Vec = II.getArgOperand(0);
|
|
auto VT = cast<VectorType>(Vec->getType());
|
|
auto SVT = VT->getElementType();
|
|
unsigned VWidth = VT->getNumElements();
|
|
unsigned BitWidth = SVT->getPrimitiveSizeInBits();
|
|
|
|
// If shift-by-zero then just return the original value.
|
|
if (Count.isNullValue())
|
|
return Vec;
|
|
|
|
// Handle cases when Shift >= BitWidth.
|
|
if (Count.uge(BitWidth)) {
|
|
// If LogicalShift - just return zero.
|
|
if (LogicalShift)
|
|
return ConstantAggregateZero::get(VT);
|
|
|
|
// If ArithmeticShift - clamp Shift to (BitWidth - 1).
|
|
Count = APInt(64, BitWidth - 1);
|
|
}
|
|
|
|
// Get a constant vector of the same type as the first operand.
|
|
auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
|
|
auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
|
|
|
|
if (ShiftLeft)
|
|
return Builder.CreateShl(Vec, ShiftVec);
|
|
|
|
if (LogicalShift)
|
|
return Builder.CreateLShr(Vec, ShiftVec);
|
|
|
|
return Builder.CreateAShr(Vec, ShiftVec);
|
|
}
|
|
|
|
// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
|
|
// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
|
|
// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
|
|
static Value *simplifyX86varShift(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
bool LogicalShift = false;
|
|
bool ShiftLeft = false;
|
|
|
|
switch (II.getIntrinsicID()) {
|
|
default: llvm_unreachable("Unexpected intrinsic!");
|
|
case Intrinsic::x86_avx2_psrav_d:
|
|
case Intrinsic::x86_avx2_psrav_d_256:
|
|
case Intrinsic::x86_avx512_psrav_q_128:
|
|
case Intrinsic::x86_avx512_psrav_q_256:
|
|
case Intrinsic::x86_avx512_psrav_d_512:
|
|
case Intrinsic::x86_avx512_psrav_q_512:
|
|
case Intrinsic::x86_avx512_psrav_w_128:
|
|
case Intrinsic::x86_avx512_psrav_w_256:
|
|
case Intrinsic::x86_avx512_psrav_w_512:
|
|
LogicalShift = false;
|
|
ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_avx2_psrlv_d:
|
|
case Intrinsic::x86_avx2_psrlv_d_256:
|
|
case Intrinsic::x86_avx2_psrlv_q:
|
|
case Intrinsic::x86_avx2_psrlv_q_256:
|
|
case Intrinsic::x86_avx512_psrlv_d_512:
|
|
case Intrinsic::x86_avx512_psrlv_q_512:
|
|
case Intrinsic::x86_avx512_psrlv_w_128:
|
|
case Intrinsic::x86_avx512_psrlv_w_256:
|
|
case Intrinsic::x86_avx512_psrlv_w_512:
|
|
LogicalShift = true;
|
|
ShiftLeft = false;
|
|
break;
|
|
case Intrinsic::x86_avx2_psllv_d:
|
|
case Intrinsic::x86_avx2_psllv_d_256:
|
|
case Intrinsic::x86_avx2_psllv_q:
|
|
case Intrinsic::x86_avx2_psllv_q_256:
|
|
case Intrinsic::x86_avx512_psllv_d_512:
|
|
case Intrinsic::x86_avx512_psllv_q_512:
|
|
case Intrinsic::x86_avx512_psllv_w_128:
|
|
case Intrinsic::x86_avx512_psllv_w_256:
|
|
case Intrinsic::x86_avx512_psllv_w_512:
|
|
LogicalShift = true;
|
|
ShiftLeft = true;
|
|
break;
|
|
}
|
|
assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
|
|
|
|
// Simplify if all shift amounts are constant/undef.
|
|
auto *CShift = dyn_cast<Constant>(II.getArgOperand(1));
|
|
if (!CShift)
|
|
return nullptr;
|
|
|
|
auto Vec = II.getArgOperand(0);
|
|
auto VT = cast<VectorType>(II.getType());
|
|
auto SVT = VT->getVectorElementType();
|
|
int NumElts = VT->getNumElements();
|
|
int BitWidth = SVT->getIntegerBitWidth();
|
|
|
|
// Collect each element's shift amount.
|
|
// We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
|
|
bool AnyOutOfRange = false;
|
|
SmallVector<int, 8> ShiftAmts;
|
|
for (int I = 0; I < NumElts; ++I) {
|
|
auto *CElt = CShift->getAggregateElement(I);
|
|
if (CElt && isa<UndefValue>(CElt)) {
|
|
ShiftAmts.push_back(-1);
|
|
continue;
|
|
}
|
|
|
|
auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
|
|
if (!COp)
|
|
return nullptr;
|
|
|
|
// Handle out of range shifts.
|
|
// If LogicalShift - set to BitWidth (special case).
|
|
// If ArithmeticShift - set to (BitWidth - 1) (sign splat).
|
|
APInt ShiftVal = COp->getValue();
|
|
if (ShiftVal.uge(BitWidth)) {
|
|
AnyOutOfRange = LogicalShift;
|
|
ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
|
|
continue;
|
|
}
|
|
|
|
ShiftAmts.push_back((int)ShiftVal.getZExtValue());
|
|
}
|
|
|
|
// If all elements out of range or UNDEF, return vector of zeros/undefs.
|
|
// ArithmeticShift should only hit this if they are all UNDEF.
|
|
auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
|
|
if (llvm::all_of(ShiftAmts, OutOfRange)) {
|
|
SmallVector<Constant *, 8> ConstantVec;
|
|
for (int Idx : ShiftAmts) {
|
|
if (Idx < 0) {
|
|
ConstantVec.push_back(UndefValue::get(SVT));
|
|
} else {
|
|
assert(LogicalShift && "Logical shift expected");
|
|
ConstantVec.push_back(ConstantInt::getNullValue(SVT));
|
|
}
|
|
}
|
|
return ConstantVector::get(ConstantVec);
|
|
}
|
|
|
|
// We can't handle only some out of range values with generic logical shifts.
|
|
if (AnyOutOfRange)
|
|
return nullptr;
|
|
|
|
// Build the shift amount constant vector.
|
|
SmallVector<Constant *, 8> ShiftVecAmts;
|
|
for (int Idx : ShiftAmts) {
|
|
if (Idx < 0)
|
|
ShiftVecAmts.push_back(UndefValue::get(SVT));
|
|
else
|
|
ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
|
|
}
|
|
auto ShiftVec = ConstantVector::get(ShiftVecAmts);
|
|
|
|
if (ShiftLeft)
|
|
return Builder.CreateShl(Vec, ShiftVec);
|
|
|
|
if (LogicalShift)
|
|
return Builder.CreateLShr(Vec, ShiftVec);
|
|
|
|
return Builder.CreateAShr(Vec, ShiftVec);
|
|
}
|
|
|
|
static Value *simplifyX86pack(IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder, bool IsSigned) {
|
|
Value *Arg0 = II.getArgOperand(0);
|
|
Value *Arg1 = II.getArgOperand(1);
|
|
Type *ResTy = II.getType();
|
|
|
|
// Fast all undef handling.
|
|
if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
|
|
return UndefValue::get(ResTy);
|
|
|
|
Type *ArgTy = Arg0->getType();
|
|
unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
|
|
unsigned NumSrcElts = ArgTy->getVectorNumElements();
|
|
assert(ResTy->getVectorNumElements() == (2 * NumSrcElts) &&
|
|
"Unexpected packing types");
|
|
|
|
unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
|
|
unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
|
|
unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
|
|
assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
|
|
"Unexpected packing types");
|
|
|
|
// Constant folding.
|
|
if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
|
|
return nullptr;
|
|
|
|
// Clamp Values - signed/unsigned both use signed clamp values, but they
|
|
// differ on the min/max values.
|
|
APInt MinValue, MaxValue;
|
|
if (IsSigned) {
|
|
// PACKSS: Truncate signed value with signed saturation.
|
|
// Source values less than dst minint are saturated to minint.
|
|
// Source values greater than dst maxint are saturated to maxint.
|
|
MinValue =
|
|
APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
|
|
MaxValue =
|
|
APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
|
|
} else {
|
|
// PACKUS: Truncate signed value with unsigned saturation.
|
|
// Source values less than zero are saturated to zero.
|
|
// Source values greater than dst maxuint are saturated to maxuint.
|
|
MinValue = APInt::getNullValue(SrcScalarSizeInBits);
|
|
MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
|
|
}
|
|
|
|
auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
|
|
auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
|
|
Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
|
|
Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
|
|
Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
|
|
Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
|
|
|
|
// Shuffle clamped args together at the lane level.
|
|
SmallVector<unsigned, 32> PackMask;
|
|
for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
|
|
for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
|
|
PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
|
|
for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
|
|
PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
|
|
}
|
|
auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
|
|
|
|
// Truncate to dst size.
|
|
return Builder.CreateTrunc(Shuffle, ResTy);
|
|
}
|
|
|
|
static Value *simplifyX86movmsk(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *Arg = II.getArgOperand(0);
|
|
Type *ResTy = II.getType();
|
|
Type *ArgTy = Arg->getType();
|
|
|
|
// movmsk(undef) -> zero as we must ensure the upper bits are zero.
|
|
if (isa<UndefValue>(Arg))
|
|
return Constant::getNullValue(ResTy);
|
|
|
|
// We can't easily peek through x86_mmx types.
|
|
if (!ArgTy->isVectorTy())
|
|
return nullptr;
|
|
|
|
// Expand MOVMSK to compare/bitcast/zext:
|
|
// e.g. PMOVMSKB(v16i8 x):
|
|
// %cmp = icmp slt <16 x i8> %x, zeroinitializer
|
|
// %int = bitcast <16 x i1> %cmp to i16
|
|
// %res = zext i16 %int to i32
|
|
unsigned NumElts = ArgTy->getVectorNumElements();
|
|
Type *IntegerVecTy = VectorType::getInteger(cast<VectorType>(ArgTy));
|
|
Type *IntegerTy = Builder.getIntNTy(NumElts);
|
|
|
|
Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
|
|
Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
|
|
Res = Builder.CreateBitCast(Res, IntegerTy);
|
|
Res = Builder.CreateZExtOrTrunc(Res, ResTy);
|
|
return Res;
|
|
}
|
|
|
|
static Value *simplifyX86addcarry(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Value *CarryIn = II.getArgOperand(0);
|
|
Value *Op1 = II.getArgOperand(1);
|
|
Value *Op2 = II.getArgOperand(2);
|
|
Type *RetTy = II.getType();
|
|
Type *OpTy = Op1->getType();
|
|
assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
|
|
RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
|
|
"Unexpected types for x86 addcarry");
|
|
|
|
// If carry-in is zero, this is just an unsigned add with overflow.
|
|
if (match(CarryIn, m_ZeroInt())) {
|
|
Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
|
|
{ Op1, Op2 });
|
|
// The types have to be adjusted to match the x86 call types.
|
|
Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
|
|
Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
|
|
Builder.getInt8Ty());
|
|
Value *Res = UndefValue::get(RetTy);
|
|
Res = Builder.CreateInsertValue(Res, UAddOV, 0);
|
|
return Builder.CreateInsertValue(Res, UAddResult, 1);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *simplifyX86insertps(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
|
|
if (!CInt)
|
|
return nullptr;
|
|
|
|
VectorType *VecTy = cast<VectorType>(II.getType());
|
|
assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
|
|
|
|
// The immediate permute control byte looks like this:
|
|
// [3:0] - zero mask for each 32-bit lane
|
|
// [5:4] - select one 32-bit destination lane
|
|
// [7:6] - select one 32-bit source lane
|
|
|
|
uint8_t Imm = CInt->getZExtValue();
|
|
uint8_t ZMask = Imm & 0xf;
|
|
uint8_t DestLane = (Imm >> 4) & 0x3;
|
|
uint8_t SourceLane = (Imm >> 6) & 0x3;
|
|
|
|
ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
|
|
|
|
// If all zero mask bits are set, this was just a weird way to
|
|
// generate a zero vector.
|
|
if (ZMask == 0xf)
|
|
return ZeroVector;
|
|
|
|
// Initialize by passing all of the first source bits through.
|
|
uint32_t ShuffleMask[4] = { 0, 1, 2, 3 };
|
|
|
|
// We may replace the second operand with the zero vector.
|
|
Value *V1 = II.getArgOperand(1);
|
|
|
|
if (ZMask) {
|
|
// If the zero mask is being used with a single input or the zero mask
|
|
// overrides the destination lane, this is a shuffle with the zero vector.
|
|
if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
|
|
(ZMask & (1 << DestLane))) {
|
|
V1 = ZeroVector;
|
|
// We may still move 32-bits of the first source vector from one lane
|
|
// to another.
|
|
ShuffleMask[DestLane] = SourceLane;
|
|
// The zero mask may override the previous insert operation.
|
|
for (unsigned i = 0; i < 4; ++i)
|
|
if ((ZMask >> i) & 0x1)
|
|
ShuffleMask[i] = i + 4;
|
|
} else {
|
|
// TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Replace the selected destination lane with the selected source lane.
|
|
ShuffleMask[DestLane] = SourceLane + 4;
|
|
}
|
|
|
|
return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
|
|
}
|
|
|
|
/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
|
|
/// or conversion to a shuffle vector.
|
|
static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
|
|
ConstantInt *CILength, ConstantInt *CIIndex,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto LowConstantHighUndef = [&](uint64_t Val) {
|
|
Type *IntTy64 = Type::getInt64Ty(II.getContext());
|
|
Constant *Args[] = {ConstantInt::get(IntTy64, Val),
|
|
UndefValue::get(IntTy64)};
|
|
return ConstantVector::get(Args);
|
|
};
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C0 = dyn_cast<Constant>(Op0);
|
|
ConstantInt *CI0 =
|
|
C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
|
|
// Attempt to constant fold.
|
|
if (CILength && CIIndex) {
|
|
// From AMD documentation: "The bit index and field length are each six
|
|
// bits in length other bits of the field are ignored."
|
|
APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
|
|
APInt APLength = CILength->getValue().zextOrTrunc(6);
|
|
|
|
unsigned Index = APIndex.getZExtValue();
|
|
|
|
// From AMD documentation: "a value of zero in the field length is
|
|
// defined as length of 64".
|
|
unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
|
|
|
|
// From AMD documentation: "If the sum of the bit index + length field
|
|
// is greater than 64, the results are undefined".
|
|
unsigned End = Index + Length;
|
|
|
|
// Note that both field index and field length are 8-bit quantities.
|
|
// Since variables 'Index' and 'Length' are unsigned values
|
|
// obtained from zero-extending field index and field length
|
|
// respectively, their sum should never wrap around.
|
|
if (End > 64)
|
|
return UndefValue::get(II.getType());
|
|
|
|
// If we are inserting whole bytes, we can convert this to a shuffle.
|
|
// Lowering can recognize EXTRQI shuffle masks.
|
|
if ((Length % 8) == 0 && (Index % 8) == 0) {
|
|
// Convert bit indices to byte indices.
|
|
Length /= 8;
|
|
Index /= 8;
|
|
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Type *IntTy32 = Type::getInt32Ty(II.getContext());
|
|
VectorType *ShufTy = VectorType::get(IntTy8, 16);
|
|
|
|
SmallVector<Constant *, 16> ShuffleMask;
|
|
for (int i = 0; i != (int)Length; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + Index)));
|
|
for (int i = Length; i != 8; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(UndefValue::get(IntTy32));
|
|
|
|
Value *SV = Builder.CreateShuffleVector(
|
|
Builder.CreateBitCast(Op0, ShufTy),
|
|
ConstantAggregateZero::get(ShufTy), ConstantVector::get(ShuffleMask));
|
|
return Builder.CreateBitCast(SV, II.getType());
|
|
}
|
|
|
|
// Constant Fold - shift Index'th bit to lowest position and mask off
|
|
// Length bits.
|
|
if (CI0) {
|
|
APInt Elt = CI0->getValue();
|
|
Elt.lshrInPlace(Index);
|
|
Elt = Elt.zextOrTrunc(Length);
|
|
return LowConstantHighUndef(Elt.getZExtValue());
|
|
}
|
|
|
|
// If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
|
|
Value *Args[] = {Op0, CILength, CIIndex};
|
|
Module *M = II.getModule();
|
|
Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
|
|
return Builder.CreateCall(F, Args);
|
|
}
|
|
}
|
|
|
|
// Constant Fold - extraction from zero is always {zero, undef}.
|
|
if (CI0 && CI0->isZero())
|
|
return LowConstantHighUndef(0);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
|
|
/// folding or conversion to a shuffle vector.
|
|
static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
|
|
APInt APLength, APInt APIndex,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// From AMD documentation: "The bit index and field length are each six bits
|
|
// in length other bits of the field are ignored."
|
|
APIndex = APIndex.zextOrTrunc(6);
|
|
APLength = APLength.zextOrTrunc(6);
|
|
|
|
// Attempt to constant fold.
|
|
unsigned Index = APIndex.getZExtValue();
|
|
|
|
// From AMD documentation: "a value of zero in the field length is
|
|
// defined as length of 64".
|
|
unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
|
|
|
|
// From AMD documentation: "If the sum of the bit index + length field
|
|
// is greater than 64, the results are undefined".
|
|
unsigned End = Index + Length;
|
|
|
|
// Note that both field index and field length are 8-bit quantities.
|
|
// Since variables 'Index' and 'Length' are unsigned values
|
|
// obtained from zero-extending field index and field length
|
|
// respectively, their sum should never wrap around.
|
|
if (End > 64)
|
|
return UndefValue::get(II.getType());
|
|
|
|
// If we are inserting whole bytes, we can convert this to a shuffle.
|
|
// Lowering can recognize INSERTQI shuffle masks.
|
|
if ((Length % 8) == 0 && (Index % 8) == 0) {
|
|
// Convert bit indices to byte indices.
|
|
Length /= 8;
|
|
Index /= 8;
|
|
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Type *IntTy32 = Type::getInt32Ty(II.getContext());
|
|
VectorType *ShufTy = VectorType::get(IntTy8, 16);
|
|
|
|
SmallVector<Constant *, 16> ShuffleMask;
|
|
for (int i = 0; i != (int)Index; ++i)
|
|
ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
|
|
for (int i = 0; i != (int)Length; ++i)
|
|
ShuffleMask.push_back(
|
|
Constant::getIntegerValue(IntTy32, APInt(32, i + 16)));
|
|
for (int i = Index + Length; i != 8; ++i)
|
|
ShuffleMask.push_back(Constant::getIntegerValue(IntTy32, APInt(32, i)));
|
|
for (int i = 8; i != 16; ++i)
|
|
ShuffleMask.push_back(UndefValue::get(IntTy32));
|
|
|
|
Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
|
|
Builder.CreateBitCast(Op1, ShufTy),
|
|
ConstantVector::get(ShuffleMask));
|
|
return Builder.CreateBitCast(SV, II.getType());
|
|
}
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C0 = dyn_cast<Constant>(Op0);
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CI00 =
|
|
C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
ConstantInt *CI10 =
|
|
C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
|
|
// Constant Fold - insert bottom Length bits starting at the Index'th bit.
|
|
if (CI00 && CI10) {
|
|
APInt V00 = CI00->getValue();
|
|
APInt V10 = CI10->getValue();
|
|
APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
|
|
V00 = V00 & ~Mask;
|
|
V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
|
|
APInt Val = V00 | V10;
|
|
Type *IntTy64 = Type::getInt64Ty(II.getContext());
|
|
Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
|
|
UndefValue::get(IntTy64)};
|
|
return ConstantVector::get(Args);
|
|
}
|
|
|
|
// If we were an INSERTQ call, we'll save demanded elements if we convert to
|
|
// INSERTQI.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
|
|
Type *IntTy8 = Type::getInt8Ty(II.getContext());
|
|
Constant *CILength = ConstantInt::get(IntTy8, Length, false);
|
|
Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
|
|
|
|
Value *Args[] = {Op0, Op1, CILength, CIIndex};
|
|
Module *M = II.getModule();
|
|
Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
|
|
return Builder.CreateCall(F, Args);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Attempt to convert pshufb* to shufflevector if the mask is constant.
|
|
static Value *simplifyX86pshufb(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
auto *VecTy = cast<VectorType>(II.getType());
|
|
auto *MaskEltTy = Type::getInt32Ty(II.getContext());
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
|
|
"Unexpected number of elements in shuffle mask!");
|
|
|
|
// Construct a shuffle mask from constant integers or UNDEFs.
|
|
Constant *Indexes[64] = {nullptr};
|
|
|
|
// Each byte in the shuffle control mask forms an index to permute the
|
|
// corresponding byte in the destination operand.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *COp = V->getAggregateElement(I);
|
|
if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(COp)) {
|
|
Indexes[I] = UndefValue::get(MaskEltTy);
|
|
continue;
|
|
}
|
|
|
|
int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
|
|
|
|
// If the most significant bit (bit[7]) of each byte of the shuffle
|
|
// control mask is set, then zero is written in the result byte.
|
|
// The zero vector is in the right-hand side of the resulting
|
|
// shufflevector.
|
|
|
|
// The value of each index for the high 128-bit lane is the least
|
|
// significant 4 bits of the respective shuffle control byte.
|
|
Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
|
|
Indexes[I] = ConstantInt::get(MaskEltTy, Index);
|
|
}
|
|
|
|
auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
|
|
auto V1 = II.getArgOperand(0);
|
|
auto V2 = Constant::getNullValue(VecTy);
|
|
return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
|
|
}
|
|
|
|
/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
|
|
static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
auto *VecTy = cast<VectorType>(II.getType());
|
|
auto *MaskEltTy = Type::getInt32Ty(II.getContext());
|
|
unsigned NumElts = VecTy->getVectorNumElements();
|
|
bool IsPD = VecTy->getScalarType()->isDoubleTy();
|
|
unsigned NumLaneElts = IsPD ? 2 : 4;
|
|
assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
|
|
|
|
// Construct a shuffle mask from constant integers or UNDEFs.
|
|
Constant *Indexes[16] = {nullptr};
|
|
|
|
// The intrinsics only read one or two bits, clear the rest.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *COp = V->getAggregateElement(I);
|
|
if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(COp)) {
|
|
Indexes[I] = UndefValue::get(MaskEltTy);
|
|
continue;
|
|
}
|
|
|
|
APInt Index = cast<ConstantInt>(COp)->getValue();
|
|
Index = Index.zextOrTrunc(32).getLoBits(2);
|
|
|
|
// The PD variants uses bit 1 to select per-lane element index, so
|
|
// shift down to convert to generic shuffle mask index.
|
|
if (IsPD)
|
|
Index.lshrInPlace(1);
|
|
|
|
// The _256 variants are a bit trickier since the mask bits always index
|
|
// into the corresponding 128 half. In order to convert to a generic
|
|
// shuffle, we have to make that explicit.
|
|
Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
|
|
|
|
Indexes[I] = ConstantInt::get(MaskEltTy, Index);
|
|
}
|
|
|
|
auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, NumElts));
|
|
auto V1 = II.getArgOperand(0);
|
|
auto V2 = UndefValue::get(V1->getType());
|
|
return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
|
|
}
|
|
|
|
/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
|
|
static Value *simplifyX86vpermv(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *V = dyn_cast<Constant>(II.getArgOperand(1));
|
|
if (!V)
|
|
return nullptr;
|
|
|
|
auto *VecTy = cast<VectorType>(II.getType());
|
|
auto *MaskEltTy = Type::getInt32Ty(II.getContext());
|
|
unsigned Size = VecTy->getNumElements();
|
|
assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
|
|
"Unexpected shuffle mask size");
|
|
|
|
// Construct a shuffle mask from constant integers or UNDEFs.
|
|
Constant *Indexes[64] = {nullptr};
|
|
|
|
for (unsigned I = 0; I < Size; ++I) {
|
|
Constant *COp = V->getAggregateElement(I);
|
|
if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(COp)) {
|
|
Indexes[I] = UndefValue::get(MaskEltTy);
|
|
continue;
|
|
}
|
|
|
|
uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
|
|
Index &= Size - 1;
|
|
Indexes[I] = ConstantInt::get(MaskEltTy, Index);
|
|
}
|
|
|
|
auto ShuffleMask = ConstantVector::get(makeArrayRef(Indexes, Size));
|
|
auto V1 = II.getArgOperand(0);
|
|
auto V2 = UndefValue::get(VecTy);
|
|
return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
|
|
}
|
|
|
|
// TODO, Obvious Missing Transforms:
|
|
// * Narrow width by halfs excluding zero/undef lanes
|
|
Value *InstCombiner::simplifyMaskedLoad(IntrinsicInst &II) {
|
|
Value *LoadPtr = II.getArgOperand(0);
|
|
unsigned Alignment = cast<ConstantInt>(II.getArgOperand(1))->getZExtValue();
|
|
|
|
// If the mask is all ones or undefs, this is a plain vector load of the 1st
|
|
// argument.
|
|
if (maskIsAllOneOrUndef(II.getArgOperand(2)))
|
|
return Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
|
|
"unmaskedload");
|
|
|
|
// If we can unconditionally load from this address, replace with a
|
|
// load/select idiom. TODO: use DT for context sensitive query
|
|
if (isDereferenceableAndAlignedPointer(LoadPtr, II.getType(), Alignment,
|
|
II.getModule()->getDataLayout(),
|
|
&II, nullptr)) {
|
|
Value *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
|
|
"unmaskedload");
|
|
return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO, Obvious Missing Transforms:
|
|
// * Single constant active lane -> store
|
|
// * Narrow width by halfs excluding zero/undef lanes
|
|
Instruction *InstCombiner::simplifyMaskedStore(IntrinsicInst &II) {
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// If the mask is all zeros, this instruction does nothing.
|
|
if (ConstMask->isNullValue())
|
|
return eraseInstFromFunction(II);
|
|
|
|
// If the mask is all ones, this is a plain vector store of the 1st argument.
|
|
if (ConstMask->isAllOnesValue()) {
|
|
Value *StorePtr = II.getArgOperand(1);
|
|
unsigned Alignment = cast<ConstantInt>(II.getArgOperand(2))->getZExtValue();
|
|
return new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
|
|
}
|
|
|
|
// Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
|
|
APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
|
|
APInt UndefElts(DemandedElts.getBitWidth(), 0);
|
|
if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
|
|
DemandedElts, UndefElts)) {
|
|
II.setOperand(0, V);
|
|
return &II;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO, Obvious Missing Transforms:
|
|
// * Single constant active lane load -> load
|
|
// * Dereferenceable address & few lanes -> scalarize speculative load/selects
|
|
// * Adjacent vector addresses -> masked.load
|
|
// * Narrow width by halfs excluding zero/undef lanes
|
|
// * Vector splat address w/known mask -> scalar load
|
|
// * Vector incrementing address -> vector masked load
|
|
Instruction *InstCombiner::simplifyMaskedGather(IntrinsicInst &II) {
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO, Obvious Missing Transforms:
|
|
// * Single constant active lane -> store
|
|
// * Adjacent vector addresses -> masked.store
|
|
// * Narrow store width by halfs excluding zero/undef lanes
|
|
// * Vector splat address w/known mask -> scalar store
|
|
// * Vector incrementing address -> vector masked store
|
|
Instruction *InstCombiner::simplifyMaskedScatter(IntrinsicInst &II) {
|
|
auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// If the mask is all zeros, a scatter does nothing.
|
|
if (ConstMask->isNullValue())
|
|
return eraseInstFromFunction(II);
|
|
|
|
// Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
|
|
APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
|
|
APInt UndefElts(DemandedElts.getBitWidth(), 0);
|
|
if (Value *V = SimplifyDemandedVectorElts(II.getOperand(0),
|
|
DemandedElts, UndefElts)) {
|
|
II.setOperand(0, V);
|
|
return &II;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorElts(II.getOperand(1),
|
|
DemandedElts, UndefElts)) {
|
|
II.setOperand(1, V);
|
|
return &II;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// This function transforms launder.invariant.group and strip.invariant.group
|
|
/// like:
|
|
/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
|
|
/// launder(strip(%x)) -> launder(%x)
|
|
/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
|
|
/// strip(launder(%x)) -> strip(%x)
|
|
/// This is legal because it preserves the most recent information about
|
|
/// the presence or absence of invariant.group.
|
|
static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
|
|
InstCombiner &IC) {
|
|
auto *Arg = II.getArgOperand(0);
|
|
auto *StrippedArg = Arg->stripPointerCasts();
|
|
auto *StrippedInvariantGroupsArg = Arg->stripPointerCastsAndInvariantGroups();
|
|
if (StrippedArg == StrippedInvariantGroupsArg)
|
|
return nullptr; // No launders/strips to remove.
|
|
|
|
Value *Result = nullptr;
|
|
|
|
if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
|
|
Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
|
|
else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
|
|
Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
|
|
else
|
|
llvm_unreachable(
|
|
"simplifyInvariantGroupIntrinsic only handles launder and strip");
|
|
if (Result->getType()->getPointerAddressSpace() !=
|
|
II.getType()->getPointerAddressSpace())
|
|
Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
|
|
if (Result->getType() != II.getType())
|
|
Result = IC.Builder.CreateBitCast(Result, II.getType());
|
|
|
|
return cast<Instruction>(Result);
|
|
}
|
|
|
|
static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombiner &IC) {
|
|
assert((II.getIntrinsicID() == Intrinsic::cttz ||
|
|
II.getIntrinsicID() == Intrinsic::ctlz) &&
|
|
"Expected cttz or ctlz intrinsic");
|
|
bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
|
|
Value *Op0 = II.getArgOperand(0);
|
|
Value *X;
|
|
// ctlz(bitreverse(x)) -> cttz(x)
|
|
// cttz(bitreverse(x)) -> ctlz(x)
|
|
if (match(Op0, m_BitReverse(m_Value(X)))) {
|
|
Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
|
|
Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
|
|
return CallInst::Create(F, {X, II.getArgOperand(1)});
|
|
}
|
|
|
|
if (IsTZ) {
|
|
// cttz(-x) -> cttz(x)
|
|
if (match(Op0, m_Neg(m_Value(X)))) {
|
|
II.setOperand(0, X);
|
|
return &II;
|
|
}
|
|
|
|
// cttz(abs(x)) -> cttz(x)
|
|
// cttz(nabs(x)) -> cttz(x)
|
|
Value *Y;
|
|
SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
|
|
if (SPF == SPF_ABS || SPF == SPF_NABS) {
|
|
II.setOperand(0, X);
|
|
return &II;
|
|
}
|
|
}
|
|
|
|
KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
|
|
|
|
// Create a mask for bits above (ctlz) or below (cttz) the first known one.
|
|
unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
|
|
: Known.countMaxLeadingZeros();
|
|
unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
|
|
: Known.countMinLeadingZeros();
|
|
|
|
// If all bits above (ctlz) or below (cttz) the first known one are known
|
|
// zero, this value is constant.
|
|
// FIXME: This should be in InstSimplify because we're replacing an
|
|
// instruction with a constant.
|
|
if (PossibleZeros == DefiniteZeros) {
|
|
auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
|
|
return IC.replaceInstUsesWith(II, C);
|
|
}
|
|
|
|
// If the input to cttz/ctlz is known to be non-zero,
|
|
// then change the 'ZeroIsUndef' parameter to 'true'
|
|
// because we know the zero behavior can't affect the result.
|
|
if (!Known.One.isNullValue() ||
|
|
isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
|
|
&IC.getDominatorTree())) {
|
|
if (!match(II.getArgOperand(1), m_One())) {
|
|
II.setOperand(1, IC.Builder.getTrue());
|
|
return &II;
|
|
}
|
|
}
|
|
|
|
// Add range metadata since known bits can't completely reflect what we know.
|
|
// TODO: Handle splat vectors.
|
|
auto *IT = dyn_cast<IntegerType>(Op0->getType());
|
|
if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
|
|
Metadata *LowAndHigh[] = {
|
|
ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
|
|
ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
|
|
II.setMetadata(LLVMContext::MD_range,
|
|
MDNode::get(II.getContext(), LowAndHigh));
|
|
return &II;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *foldCtpop(IntrinsicInst &II, InstCombiner &IC) {
|
|
assert(II.getIntrinsicID() == Intrinsic::ctpop &&
|
|
"Expected ctpop intrinsic");
|
|
Value *Op0 = II.getArgOperand(0);
|
|
Value *X;
|
|
// ctpop(bitreverse(x)) -> ctpop(x)
|
|
// ctpop(bswap(x)) -> ctpop(x)
|
|
if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X)))) {
|
|
II.setOperand(0, X);
|
|
return &II;
|
|
}
|
|
|
|
// FIXME: Try to simplify vectors of integers.
|
|
auto *IT = dyn_cast<IntegerType>(Op0->getType());
|
|
if (!IT)
|
|
return nullptr;
|
|
|
|
unsigned BitWidth = IT->getBitWidth();
|
|
KnownBits Known(BitWidth);
|
|
IC.computeKnownBits(Op0, Known, 0, &II);
|
|
|
|
unsigned MinCount = Known.countMinPopulation();
|
|
unsigned MaxCount = Known.countMaxPopulation();
|
|
|
|
// Add range metadata since known bits can't completely reflect what we know.
|
|
if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
|
|
Metadata *LowAndHigh[] = {
|
|
ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
|
|
ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
|
|
II.setMetadata(LLVMContext::MD_range,
|
|
MDNode::get(II.getContext(), LowAndHigh));
|
|
return &II;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// TODO: If the x86 backend knew how to convert a bool vector mask back to an
|
|
// XMM register mask efficiently, we could transform all x86 masked intrinsics
|
|
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
|
|
static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
|
|
Value *Ptr = II.getOperand(0);
|
|
Value *Mask = II.getOperand(1);
|
|
Constant *ZeroVec = Constant::getNullValue(II.getType());
|
|
|
|
// Special case a zero mask since that's not a ConstantDataVector.
|
|
// This masked load instruction creates a zero vector.
|
|
if (isa<ConstantAggregateZero>(Mask))
|
|
return IC.replaceInstUsesWith(II, ZeroVec);
|
|
|
|
auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
|
|
if (!ConstMask)
|
|
return nullptr;
|
|
|
|
// The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
|
|
// to allow target-independent optimizations.
|
|
|
|
// First, cast the x86 intrinsic scalar pointer to a vector pointer to match
|
|
// the LLVM intrinsic definition for the pointer argument.
|
|
unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
|
|
PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
|
|
Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
|
|
|
|
// Second, convert the x86 XMM integer vector mask to a vector of bools based
|
|
// on each element's most significant bit (the sign bit).
|
|
Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
|
|
|
|
// The pass-through vector for an x86 masked load is a zero vector.
|
|
CallInst *NewMaskedLoad =
|
|
IC.Builder.CreateMaskedLoad(PtrCast, 1, BoolMask, ZeroVec);
|
|
return IC.replaceInstUsesWith(II, NewMaskedLoad);
|
|
}
|
|
|
|
// TODO: If the x86 backend knew how to convert a bool vector mask back to an
|
|
// XMM register mask efficiently, we could transform all x86 masked intrinsics
|
|
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
|
|
static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
|
|
Value *Ptr = II.getOperand(0);
|
|
Value *Mask = II.getOperand(1);
|
|
Value *Vec = II.getOperand(2);
|
|
|
|
// Special case a zero mask since that's not a ConstantDataVector:
|
|
// this masked store instruction does nothing.
|
|
if (isa<ConstantAggregateZero>(Mask)) {
|
|
IC.eraseInstFromFunction(II);
|
|
return true;
|
|
}
|
|
|
|
// The SSE2 version is too weird (eg, unaligned but non-temporal) to do
|
|
// anything else at this level.
|
|
if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
|
|
return false;
|
|
|
|
auto *ConstMask = dyn_cast<ConstantDataVector>(Mask);
|
|
if (!ConstMask)
|
|
return false;
|
|
|
|
// The mask is constant. Convert this x86 intrinsic to the LLVM instrinsic
|
|
// to allow target-independent optimizations.
|
|
|
|
// First, cast the x86 intrinsic scalar pointer to a vector pointer to match
|
|
// the LLVM intrinsic definition for the pointer argument.
|
|
unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
|
|
PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
|
|
Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
|
|
|
|
// Second, convert the x86 XMM integer vector mask to a vector of bools based
|
|
// on each element's most significant bit (the sign bit).
|
|
Constant *BoolMask = getNegativeIsTrueBoolVec(ConstMask);
|
|
|
|
IC.Builder.CreateMaskedStore(Vec, PtrCast, 1, BoolMask);
|
|
|
|
// 'Replace uses' doesn't work for stores. Erase the original masked store.
|
|
IC.eraseInstFromFunction(II);
|
|
return true;
|
|
}
|
|
|
|
// Constant fold llvm.amdgcn.fmed3 intrinsics for standard inputs.
|
|
//
|
|
// A single NaN input is folded to minnum, so we rely on that folding for
|
|
// handling NaNs.
|
|
static APFloat fmed3AMDGCN(const APFloat &Src0, const APFloat &Src1,
|
|
const APFloat &Src2) {
|
|
APFloat Max3 = maxnum(maxnum(Src0, Src1), Src2);
|
|
|
|
APFloat::cmpResult Cmp0 = Max3.compare(Src0);
|
|
assert(Cmp0 != APFloat::cmpUnordered && "nans handled separately");
|
|
if (Cmp0 == APFloat::cmpEqual)
|
|
return maxnum(Src1, Src2);
|
|
|
|
APFloat::cmpResult Cmp1 = Max3.compare(Src1);
|
|
assert(Cmp1 != APFloat::cmpUnordered && "nans handled separately");
|
|
if (Cmp1 == APFloat::cmpEqual)
|
|
return maxnum(Src0, Src2);
|
|
|
|
return maxnum(Src0, Src1);
|
|
}
|
|
|
|
/// Convert a table lookup to shufflevector if the mask is constant.
|
|
/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
|
|
/// which case we could lower the shufflevector with rev64 instructions
|
|
/// as it's actually a byte reverse.
|
|
static Value *simplifyNeonTbl1(const IntrinsicInst &II,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Bail out if the mask is not a constant.
|
|
auto *C = dyn_cast<Constant>(II.getArgOperand(1));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
auto *VecTy = cast<VectorType>(II.getType());
|
|
unsigned NumElts = VecTy->getNumElements();
|
|
|
|
// Only perform this transformation for <8 x i8> vector types.
|
|
if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
|
|
return nullptr;
|
|
|
|
uint32_t Indexes[8];
|
|
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *COp = C->getAggregateElement(I);
|
|
|
|
if (!COp || !isa<ConstantInt>(COp))
|
|
return nullptr;
|
|
|
|
Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
|
|
|
|
// Make sure the mask indices are in range.
|
|
if (Indexes[I] >= NumElts)
|
|
return nullptr;
|
|
}
|
|
|
|
auto *ShuffleMask = ConstantDataVector::get(II.getContext(),
|
|
makeArrayRef(Indexes));
|
|
auto *V1 = II.getArgOperand(0);
|
|
auto *V2 = Constant::getNullValue(V1->getType());
|
|
return Builder.CreateShuffleVector(V1, V2, ShuffleMask);
|
|
}
|
|
|
|
/// Convert a vector load intrinsic into a simple llvm load instruction.
|
|
/// This is beneficial when the underlying object being addressed comes
|
|
/// from a constant, since we get constant-folding for free.
|
|
static Value *simplifyNeonVld1(const IntrinsicInst &II,
|
|
unsigned MemAlign,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
auto *IntrAlign = dyn_cast<ConstantInt>(II.getArgOperand(1));
|
|
|
|
if (!IntrAlign)
|
|
return nullptr;
|
|
|
|
unsigned Alignment = IntrAlign->getLimitedValue() < MemAlign ?
|
|
MemAlign : IntrAlign->getLimitedValue();
|
|
|
|
if (!isPowerOf2_32(Alignment))
|
|
return nullptr;
|
|
|
|
auto *BCastInst = Builder.CreateBitCast(II.getArgOperand(0),
|
|
PointerType::get(II.getType(), 0));
|
|
return Builder.CreateAlignedLoad(II.getType(), BCastInst, Alignment);
|
|
}
|
|
|
|
// Returns true iff the 2 intrinsics have the same operands, limiting the
|
|
// comparison to the first NumOperands.
|
|
static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
|
|
unsigned NumOperands) {
|
|
assert(I.getNumArgOperands() >= NumOperands && "Not enough operands");
|
|
assert(E.getNumArgOperands() >= NumOperands && "Not enough operands");
|
|
for (unsigned i = 0; i < NumOperands; i++)
|
|
if (I.getArgOperand(i) != E.getArgOperand(i))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Remove trivially empty start/end intrinsic ranges, i.e. a start
|
|
// immediately followed by an end (ignoring debuginfo or other
|
|
// start/end intrinsics in between). As this handles only the most trivial
|
|
// cases, tracking the nesting level is not needed:
|
|
//
|
|
// call @llvm.foo.start(i1 0) ; &I
|
|
// call @llvm.foo.start(i1 0)
|
|
// call @llvm.foo.end(i1 0) ; This one will not be skipped: it will be removed
|
|
// call @llvm.foo.end(i1 0)
|
|
static bool removeTriviallyEmptyRange(IntrinsicInst &I, unsigned StartID,
|
|
unsigned EndID, InstCombiner &IC) {
|
|
assert(I.getIntrinsicID() == StartID &&
|
|
"Start intrinsic does not have expected ID");
|
|
BasicBlock::iterator BI(I), BE(I.getParent()->end());
|
|
for (++BI; BI != BE; ++BI) {
|
|
if (auto *E = dyn_cast<IntrinsicInst>(BI)) {
|
|
if (isa<DbgInfoIntrinsic>(E) || E->getIntrinsicID() == StartID)
|
|
continue;
|
|
if (E->getIntrinsicID() == EndID &&
|
|
haveSameOperands(I, *E, E->getNumArgOperands())) {
|
|
IC.eraseInstFromFunction(*E);
|
|
IC.eraseInstFromFunction(I);
|
|
return true;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Convert NVVM intrinsics to target-generic LLVM code where possible.
|
|
static Instruction *SimplifyNVVMIntrinsic(IntrinsicInst *II, InstCombiner &IC) {
|
|
// Each NVVM intrinsic we can simplify can be replaced with one of:
|
|
//
|
|
// * an LLVM intrinsic,
|
|
// * an LLVM cast operation,
|
|
// * an LLVM binary operation, or
|
|
// * ad-hoc LLVM IR for the particular operation.
|
|
|
|
// Some transformations are only valid when the module's
|
|
// flush-denormals-to-zero (ftz) setting is true/false, whereas other
|
|
// transformations are valid regardless of the module's ftz setting.
|
|
enum FtzRequirementTy {
|
|
FTZ_Any, // Any ftz setting is ok.
|
|
FTZ_MustBeOn, // Transformation is valid only if ftz is on.
|
|
FTZ_MustBeOff, // Transformation is valid only if ftz is off.
|
|
};
|
|
// Classes of NVVM intrinsics that can't be replaced one-to-one with a
|
|
// target-generic intrinsic, cast op, or binary op but that we can nonetheless
|
|
// simplify.
|
|
enum SpecialCase {
|
|
SPC_Reciprocal,
|
|
};
|
|
|
|
// SimplifyAction is a poor-man's variant (plus an additional flag) that
|
|
// represents how to replace an NVVM intrinsic with target-generic LLVM IR.
|
|
struct SimplifyAction {
|
|
// Invariant: At most one of these Optionals has a value.
|
|
Optional<Intrinsic::ID> IID;
|
|
Optional<Instruction::CastOps> CastOp;
|
|
Optional<Instruction::BinaryOps> BinaryOp;
|
|
Optional<SpecialCase> Special;
|
|
|
|
FtzRequirementTy FtzRequirement = FTZ_Any;
|
|
|
|
SimplifyAction() = default;
|
|
|
|
SimplifyAction(Intrinsic::ID IID, FtzRequirementTy FtzReq)
|
|
: IID(IID), FtzRequirement(FtzReq) {}
|
|
|
|
// Cast operations don't have anything to do with FTZ, so we skip that
|
|
// argument.
|
|
SimplifyAction(Instruction::CastOps CastOp) : CastOp(CastOp) {}
|
|
|
|
SimplifyAction(Instruction::BinaryOps BinaryOp, FtzRequirementTy FtzReq)
|
|
: BinaryOp(BinaryOp), FtzRequirement(FtzReq) {}
|
|
|
|
SimplifyAction(SpecialCase Special, FtzRequirementTy FtzReq)
|
|
: Special(Special), FtzRequirement(FtzReq) {}
|
|
};
|
|
|
|
// Try to generate a SimplifyAction describing how to replace our
|
|
// IntrinsicInstr with target-generic LLVM IR.
|
|
const SimplifyAction Action = [II]() -> SimplifyAction {
|
|
switch (II->getIntrinsicID()) {
|
|
// NVVM intrinsics that map directly to LLVM intrinsics.
|
|
case Intrinsic::nvvm_ceil_d:
|
|
return {Intrinsic::ceil, FTZ_Any};
|
|
case Intrinsic::nvvm_ceil_f:
|
|
return {Intrinsic::ceil, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_ceil_ftz_f:
|
|
return {Intrinsic::ceil, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fabs_d:
|
|
return {Intrinsic::fabs, FTZ_Any};
|
|
case Intrinsic::nvvm_fabs_f:
|
|
return {Intrinsic::fabs, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fabs_ftz_f:
|
|
return {Intrinsic::fabs, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_floor_d:
|
|
return {Intrinsic::floor, FTZ_Any};
|
|
case Intrinsic::nvvm_floor_f:
|
|
return {Intrinsic::floor, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_floor_ftz_f:
|
|
return {Intrinsic::floor, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fma_rn_d:
|
|
return {Intrinsic::fma, FTZ_Any};
|
|
case Intrinsic::nvvm_fma_rn_f:
|
|
return {Intrinsic::fma, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fma_rn_ftz_f:
|
|
return {Intrinsic::fma, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fmax_d:
|
|
return {Intrinsic::maxnum, FTZ_Any};
|
|
case Intrinsic::nvvm_fmax_f:
|
|
return {Intrinsic::maxnum, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fmax_ftz_f:
|
|
return {Intrinsic::maxnum, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_fmin_d:
|
|
return {Intrinsic::minnum, FTZ_Any};
|
|
case Intrinsic::nvvm_fmin_f:
|
|
return {Intrinsic::minnum, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_fmin_ftz_f:
|
|
return {Intrinsic::minnum, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_round_d:
|
|
return {Intrinsic::round, FTZ_Any};
|
|
case Intrinsic::nvvm_round_f:
|
|
return {Intrinsic::round, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_round_ftz_f:
|
|
return {Intrinsic::round, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_sqrt_rn_d:
|
|
return {Intrinsic::sqrt, FTZ_Any};
|
|
case Intrinsic::nvvm_sqrt_f:
|
|
// nvvm_sqrt_f is a special case. For most intrinsics, foo_ftz_f is the
|
|
// ftz version, and foo_f is the non-ftz version. But nvvm_sqrt_f adopts
|
|
// the ftz-ness of the surrounding code. sqrt_rn_f and sqrt_rn_ftz_f are
|
|
// the versions with explicit ftz-ness.
|
|
return {Intrinsic::sqrt, FTZ_Any};
|
|
case Intrinsic::nvvm_sqrt_rn_f:
|
|
return {Intrinsic::sqrt, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_sqrt_rn_ftz_f:
|
|
return {Intrinsic::sqrt, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_trunc_d:
|
|
return {Intrinsic::trunc, FTZ_Any};
|
|
case Intrinsic::nvvm_trunc_f:
|
|
return {Intrinsic::trunc, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_trunc_ftz_f:
|
|
return {Intrinsic::trunc, FTZ_MustBeOn};
|
|
|
|
// NVVM intrinsics that map to LLVM cast operations.
|
|
//
|
|
// Note that llvm's target-generic conversion operators correspond to the rz
|
|
// (round to zero) versions of the nvvm conversion intrinsics, even though
|
|
// most everything else here uses the rn (round to nearest even) nvvm ops.
|
|
case Intrinsic::nvvm_d2i_rz:
|
|
case Intrinsic::nvvm_f2i_rz:
|
|
case Intrinsic::nvvm_d2ll_rz:
|
|
case Intrinsic::nvvm_f2ll_rz:
|
|
return {Instruction::FPToSI};
|
|
case Intrinsic::nvvm_d2ui_rz:
|
|
case Intrinsic::nvvm_f2ui_rz:
|
|
case Intrinsic::nvvm_d2ull_rz:
|
|
case Intrinsic::nvvm_f2ull_rz:
|
|
return {Instruction::FPToUI};
|
|
case Intrinsic::nvvm_i2d_rz:
|
|
case Intrinsic::nvvm_i2f_rz:
|
|
case Intrinsic::nvvm_ll2d_rz:
|
|
case Intrinsic::nvvm_ll2f_rz:
|
|
return {Instruction::SIToFP};
|
|
case Intrinsic::nvvm_ui2d_rz:
|
|
case Intrinsic::nvvm_ui2f_rz:
|
|
case Intrinsic::nvvm_ull2d_rz:
|
|
case Intrinsic::nvvm_ull2f_rz:
|
|
return {Instruction::UIToFP};
|
|
|
|
// NVVM intrinsics that map to LLVM binary ops.
|
|
case Intrinsic::nvvm_add_rn_d:
|
|
return {Instruction::FAdd, FTZ_Any};
|
|
case Intrinsic::nvvm_add_rn_f:
|
|
return {Instruction::FAdd, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_add_rn_ftz_f:
|
|
return {Instruction::FAdd, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_mul_rn_d:
|
|
return {Instruction::FMul, FTZ_Any};
|
|
case Intrinsic::nvvm_mul_rn_f:
|
|
return {Instruction::FMul, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_mul_rn_ftz_f:
|
|
return {Instruction::FMul, FTZ_MustBeOn};
|
|
case Intrinsic::nvvm_div_rn_d:
|
|
return {Instruction::FDiv, FTZ_Any};
|
|
case Intrinsic::nvvm_div_rn_f:
|
|
return {Instruction::FDiv, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_div_rn_ftz_f:
|
|
return {Instruction::FDiv, FTZ_MustBeOn};
|
|
|
|
// The remainder of cases are NVVM intrinsics that map to LLVM idioms, but
|
|
// need special handling.
|
|
//
|
|
// We seem to be missing intrinsics for rcp.approx.{ftz.}f32, which is just
|
|
// as well.
|
|
case Intrinsic::nvvm_rcp_rn_d:
|
|
return {SPC_Reciprocal, FTZ_Any};
|
|
case Intrinsic::nvvm_rcp_rn_f:
|
|
return {SPC_Reciprocal, FTZ_MustBeOff};
|
|
case Intrinsic::nvvm_rcp_rn_ftz_f:
|
|
return {SPC_Reciprocal, FTZ_MustBeOn};
|
|
|
|
// We do not currently simplify intrinsics that give an approximate answer.
|
|
// These include:
|
|
//
|
|
// - nvvm_cos_approx_{f,ftz_f}
|
|
// - nvvm_ex2_approx_{d,f,ftz_f}
|
|
// - nvvm_lg2_approx_{d,f,ftz_f}
|
|
// - nvvm_sin_approx_{f,ftz_f}
|
|
// - nvvm_sqrt_approx_{f,ftz_f}
|
|
// - nvvm_rsqrt_approx_{d,f,ftz_f}
|
|
// - nvvm_div_approx_{ftz_d,ftz_f,f}
|
|
// - nvvm_rcp_approx_ftz_d
|
|
//
|
|
// Ideally we'd encode them as e.g. "fast call @llvm.cos", where "fast"
|
|
// means that fastmath is enabled in the intrinsic. Unfortunately only
|
|
// binary operators (currently) have a fastmath bit in SelectionDAG, so this
|
|
// information gets lost and we can't select on it.
|
|
//
|
|
// TODO: div and rcp are lowered to a binary op, so these we could in theory
|
|
// lower them to "fast fdiv".
|
|
|
|
default:
|
|
return {};
|
|
}
|
|
}();
|
|
|
|
// If Action.FtzRequirementTy is not satisfied by the module's ftz state, we
|
|
// can bail out now. (Notice that in the case that IID is not an NVVM
|
|
// intrinsic, we don't have to look up any module metadata, as
|
|
// FtzRequirementTy will be FTZ_Any.)
|
|
if (Action.FtzRequirement != FTZ_Any) {
|
|
bool FtzEnabled =
|
|
II->getFunction()->getFnAttribute("nvptx-f32ftz").getValueAsString() ==
|
|
"true";
|
|
|
|
if (FtzEnabled != (Action.FtzRequirement == FTZ_MustBeOn))
|
|
return nullptr;
|
|
}
|
|
|
|
// Simplify to target-generic intrinsic.
|
|
if (Action.IID) {
|
|
SmallVector<Value *, 4> Args(II->arg_operands());
|
|
// All the target-generic intrinsics currently of interest to us have one
|
|
// type argument, equal to that of the nvvm intrinsic's argument.
|
|
Type *Tys[] = {II->getArgOperand(0)->getType()};
|
|
return CallInst::Create(
|
|
Intrinsic::getDeclaration(II->getModule(), *Action.IID, Tys), Args);
|
|
}
|
|
|
|
// Simplify to target-generic binary op.
|
|
if (Action.BinaryOp)
|
|
return BinaryOperator::Create(*Action.BinaryOp, II->getArgOperand(0),
|
|
II->getArgOperand(1), II->getName());
|
|
|
|
// Simplify to target-generic cast op.
|
|
if (Action.CastOp)
|
|
return CastInst::Create(*Action.CastOp, II->getArgOperand(0), II->getType(),
|
|
II->getName());
|
|
|
|
// All that's left are the special cases.
|
|
if (!Action.Special)
|
|
return nullptr;
|
|
|
|
switch (*Action.Special) {
|
|
case SPC_Reciprocal:
|
|
// Simplify reciprocal.
|
|
return BinaryOperator::Create(
|
|
Instruction::FDiv, ConstantFP::get(II->getArgOperand(0)->getType(), 1),
|
|
II->getArgOperand(0), II->getName());
|
|
}
|
|
llvm_unreachable("All SpecialCase enumerators should be handled in switch.");
|
|
}
|
|
|
|
Instruction *InstCombiner::visitVAStartInst(VAStartInst &I) {
|
|
removeTriviallyEmptyRange(I, Intrinsic::vastart, Intrinsic::vaend, *this);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitVACopyInst(VACopyInst &I) {
|
|
removeTriviallyEmptyRange(I, Intrinsic::vacopy, Intrinsic::vaend, *this);
|
|
return nullptr;
|
|
}
|
|
|
|
static Instruction *canonicalizeConstantArg0ToArg1(CallInst &Call) {
|
|
assert(Call.getNumArgOperands() > 1 && "Need at least 2 args to swap");
|
|
Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
|
|
if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
|
|
Call.setArgOperand(0, Arg1);
|
|
Call.setArgOperand(1, Arg0);
|
|
return &Call;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombiner::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
|
|
WithOverflowInst *WO = cast<WithOverflowInst>(II);
|
|
Value *OperationResult = nullptr;
|
|
Constant *OverflowResult = nullptr;
|
|
if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
|
|
WO->getRHS(), *WO, OperationResult, OverflowResult))
|
|
return CreateOverflowTuple(WO, OperationResult, OverflowResult);
|
|
return nullptr;
|
|
}
|
|
|
|
/// CallInst simplification. This mostly only handles folding of intrinsic
|
|
/// instructions. For normal calls, it allows visitCallBase to do the heavy
|
|
/// lifting.
|
|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
|
|
if (Value *V = SimplifyCall(&CI, SQ.getWithInstruction(&CI)))
|
|
return replaceInstUsesWith(CI, V);
|
|
|
|
if (isFreeCall(&CI, &TLI))
|
|
return visitFree(CI);
|
|
|
|
// If the caller function is nounwind, mark the call as nounwind, even if the
|
|
// callee isn't.
|
|
if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
|
|
CI.setDoesNotThrow();
|
|
return &CI;
|
|
}
|
|
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
|
|
if (!II) return visitCallBase(CI);
|
|
|
|
// Intrinsics cannot occur in an invoke or a callbr, so handle them here
|
|
// instead of in visitCallBase.
|
|
if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
|
|
bool Changed = false;
|
|
|
|
// memmove/cpy/set of zero bytes is a noop.
|
|
if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
|
|
if (NumBytes->isNullValue())
|
|
return eraseInstFromFunction(CI);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
|
|
if (CI->getZExtValue() == 1) {
|
|
// Replace the instruction with just byte operations. We would
|
|
// transform other cases to loads/stores, but we don't know if
|
|
// alignment is sufficient.
|
|
}
|
|
}
|
|
|
|
// No other transformations apply to volatile transfers.
|
|
if (auto *M = dyn_cast<MemIntrinsic>(MI))
|
|
if (M->isVolatile())
|
|
return nullptr;
|
|
|
|
// If we have a memmove and the source operation is a constant global,
|
|
// then the source and dest pointers can't alias, so we can change this
|
|
// into a call to memcpy.
|
|
if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
|
|
if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
|
|
if (GVSrc->isConstant()) {
|
|
Module *M = CI.getModule();
|
|
Intrinsic::ID MemCpyID =
|
|
isa<AtomicMemMoveInst>(MMI)
|
|
? Intrinsic::memcpy_element_unordered_atomic
|
|
: Intrinsic::memcpy;
|
|
Type *Tys[3] = { CI.getArgOperand(0)->getType(),
|
|
CI.getArgOperand(1)->getType(),
|
|
CI.getArgOperand(2)->getType() };
|
|
CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
|
|
// memmove(x,x,size) -> noop.
|
|
if (MTI->getSource() == MTI->getDest())
|
|
return eraseInstFromFunction(CI);
|
|
}
|
|
|
|
// If we can determine a pointer alignment that is bigger than currently
|
|
// set, update the alignment.
|
|
if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
|
|
if (Instruction *I = SimplifyAnyMemTransfer(MTI))
|
|
return I;
|
|
} else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
|
|
if (Instruction *I = SimplifyAnyMemSet(MSI))
|
|
return I;
|
|
}
|
|
|
|
if (Changed) return II;
|
|
}
|
|
|
|
// For vector result intrinsics, use the generic demanded vector support.
|
|
if (II->getType()->isVectorTy()) {
|
|
auto VWidth = II->getType()->getVectorNumElements();
|
|
APInt UndefElts(VWidth, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
|
|
if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
|
|
if (V != II)
|
|
return replaceInstUsesWith(*II, V);
|
|
return II;
|
|
}
|
|
}
|
|
|
|
if (Instruction *I = SimplifyNVVMIntrinsic(II, *this))
|
|
return I;
|
|
|
|
auto SimplifyDemandedVectorEltsLow = [this](Value *Op, unsigned Width,
|
|
unsigned DemandedWidth) {
|
|
APInt UndefElts(Width, 0);
|
|
APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
|
|
return SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
|
|
};
|
|
|
|
Intrinsic::ID IID = II->getIntrinsicID();
|
|
switch (IID) {
|
|
default: break;
|
|
case Intrinsic::objectsize:
|
|
if (Value *V = lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/false))
|
|
return replaceInstUsesWith(CI, V);
|
|
return nullptr;
|
|
case Intrinsic::bswap: {
|
|
Value *IIOperand = II->getArgOperand(0);
|
|
Value *X = nullptr;
|
|
|
|
// bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
|
|
if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
|
|
unsigned C = X->getType()->getPrimitiveSizeInBits() -
|
|
IIOperand->getType()->getPrimitiveSizeInBits();
|
|
Value *CV = ConstantInt::get(X->getType(), C);
|
|
Value *V = Builder.CreateLShr(X, CV);
|
|
return new TruncInst(V, IIOperand->getType());
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::masked_load:
|
|
if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
|
|
return replaceInstUsesWith(CI, SimplifiedMaskedOp);
|
|
break;
|
|
case Intrinsic::masked_store:
|
|
return simplifyMaskedStore(*II);
|
|
case Intrinsic::masked_gather:
|
|
return simplifyMaskedGather(*II);
|
|
case Intrinsic::masked_scatter:
|
|
return simplifyMaskedScatter(*II);
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
|
|
return replaceInstUsesWith(*II, SkippedBarrier);
|
|
break;
|
|
case Intrinsic::powi:
|
|
if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
|
// 0 and 1 are handled in instsimplify
|
|
|
|
// powi(x, -1) -> 1/x
|
|
if (Power->isMinusOne())
|
|
return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
|
|
II->getArgOperand(0));
|
|
// powi(x, 2) -> x*x
|
|
if (Power->equalsInt(2))
|
|
return BinaryOperator::CreateFMul(II->getArgOperand(0),
|
|
II->getArgOperand(0));
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::cttz:
|
|
case Intrinsic::ctlz:
|
|
if (auto *I = foldCttzCtlz(*II, *this))
|
|
return I;
|
|
break;
|
|
|
|
case Intrinsic::ctpop:
|
|
if (auto *I = foldCtpop(*II, *this))
|
|
return I;
|
|
break;
|
|
|
|
case Intrinsic::fshl:
|
|
case Intrinsic::fshr: {
|
|
Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
|
|
Type *Ty = II->getType();
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
Constant *ShAmtC;
|
|
if (match(II->getArgOperand(2), m_Constant(ShAmtC)) &&
|
|
!isa<ConstantExpr>(ShAmtC) && !ShAmtC->containsConstantExpression()) {
|
|
// Canonicalize a shift amount constant operand to modulo the bit-width.
|
|
Constant *WidthC = ConstantInt::get(Ty, BitWidth);
|
|
Constant *ModuloC = ConstantExpr::getURem(ShAmtC, WidthC);
|
|
if (ModuloC != ShAmtC) {
|
|
II->setArgOperand(2, ModuloC);
|
|
return II;
|
|
}
|
|
assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
|
|
ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
|
|
"Shift amount expected to be modulo bitwidth");
|
|
|
|
// Canonicalize funnel shift right by constant to funnel shift left. This
|
|
// is not entirely arbitrary. For historical reasons, the backend may
|
|
// recognize rotate left patterns but miss rotate right patterns.
|
|
if (IID == Intrinsic::fshr) {
|
|
// fshr X, Y, C --> fshl X, Y, (BitWidth - C)
|
|
Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
|
|
Module *Mod = II->getModule();
|
|
Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
|
|
return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
|
|
}
|
|
assert(IID == Intrinsic::fshl &&
|
|
"All funnel shifts by simple constants should go left");
|
|
|
|
// fshl(X, 0, C) --> shl X, C
|
|
// fshl(X, undef, C) --> shl X, C
|
|
if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
|
|
return BinaryOperator::CreateShl(Op0, ShAmtC);
|
|
|
|
// fshl(0, X, C) --> lshr X, (BW-C)
|
|
// fshl(undef, X, C) --> lshr X, (BW-C)
|
|
if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
|
|
return BinaryOperator::CreateLShr(Op1,
|
|
ConstantExpr::getSub(WidthC, ShAmtC));
|
|
|
|
// fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
|
|
if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
|
|
Module *Mod = II->getModule();
|
|
Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
|
|
return CallInst::Create(Bswap, { Op0 });
|
|
}
|
|
}
|
|
|
|
// Left or right might be masked.
|
|
if (SimplifyDemandedInstructionBits(*II))
|
|
return &CI;
|
|
|
|
// The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
|
|
// so only the low bits of the shift amount are demanded if the bitwidth is
|
|
// a power-of-2.
|
|
if (!isPowerOf2_32(BitWidth))
|
|
break;
|
|
APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
|
|
KnownBits Op2Known(BitWidth);
|
|
if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
|
|
return &CI;
|
|
break;
|
|
}
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::sadd_with_overflow: {
|
|
if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
|
|
return I;
|
|
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
|
|
return I;
|
|
|
|
// Given 2 constant operands whose sum does not overflow:
|
|
// uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
|
|
// saddo (X +nsw C0), C1 -> saddo X, C0 + C1
|
|
Value *X;
|
|
const APInt *C0, *C1;
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
bool IsSigned = IID == Intrinsic::sadd_with_overflow;
|
|
bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
|
|
: match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
|
|
if (HasNWAdd && match(Arg1, m_APInt(C1))) {
|
|
bool Overflow;
|
|
APInt NewC =
|
|
IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
|
|
if (!Overflow)
|
|
return replaceInstUsesWith(
|
|
*II, Builder.CreateBinaryIntrinsic(
|
|
IID, X, ConstantInt::get(Arg1->getType(), NewC)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::umul_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
|
|
return I;
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case Intrinsic::usub_with_overflow:
|
|
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
|
|
return I;
|
|
break;
|
|
|
|
case Intrinsic::ssub_with_overflow: {
|
|
if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
|
|
return I;
|
|
|
|
Constant *C;
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
// Given a constant C that is not the minimum signed value
|
|
// for an integer of a given bit width:
|
|
//
|
|
// ssubo X, C -> saddo X, -C
|
|
if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
|
|
Value *NegVal = ConstantExpr::getNeg(C);
|
|
// Build a saddo call that is equivalent to the discovered
|
|
// ssubo call.
|
|
return replaceInstUsesWith(
|
|
*II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
|
|
Arg0, NegVal));
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::sadd_sat:
|
|
if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
|
|
return I;
|
|
LLVM_FALLTHROUGH;
|
|
case Intrinsic::usub_sat:
|
|
case Intrinsic::ssub_sat: {
|
|
SaturatingInst *SI = cast<SaturatingInst>(II);
|
|
Type *Ty = SI->getType();
|
|
Value *Arg0 = SI->getLHS();
|
|
Value *Arg1 = SI->getRHS();
|
|
|
|
// Make use of known overflow information.
|
|
OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
|
|
Arg0, Arg1, SI);
|
|
switch (OR) {
|
|
case OverflowResult::MayOverflow:
|
|
break;
|
|
case OverflowResult::NeverOverflows:
|
|
if (SI->isSigned())
|
|
return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
|
|
else
|
|
return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
|
|
case OverflowResult::AlwaysOverflowsLow: {
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
|
|
return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
|
|
}
|
|
case OverflowResult::AlwaysOverflowsHigh: {
|
|
unsigned BitWidth = Ty->getScalarSizeInBits();
|
|
APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
|
|
return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
|
|
}
|
|
}
|
|
|
|
// ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
|
|
Constant *C;
|
|
if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
|
|
C->isNotMinSignedValue()) {
|
|
Value *NegVal = ConstantExpr::getNeg(C);
|
|
return replaceInstUsesWith(
|
|
*II, Builder.CreateBinaryIntrinsic(
|
|
Intrinsic::sadd_sat, Arg0, NegVal));
|
|
}
|
|
|
|
// sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
|
|
// sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
|
|
// if Val and Val2 have the same sign
|
|
if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
|
|
Value *X;
|
|
const APInt *Val, *Val2;
|
|
APInt NewVal;
|
|
bool IsUnsigned =
|
|
IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
|
|
if (Other->getIntrinsicID() == IID &&
|
|
match(Arg1, m_APInt(Val)) &&
|
|
match(Other->getArgOperand(0), m_Value(X)) &&
|
|
match(Other->getArgOperand(1), m_APInt(Val2))) {
|
|
if (IsUnsigned)
|
|
NewVal = Val->uadd_sat(*Val2);
|
|
else if (Val->isNonNegative() == Val2->isNonNegative()) {
|
|
bool Overflow;
|
|
NewVal = Val->sadd_ov(*Val2, Overflow);
|
|
if (Overflow) {
|
|
// Both adds together may add more than SignedMaxValue
|
|
// without saturating the final result.
|
|
break;
|
|
}
|
|
} else {
|
|
// Cannot fold saturated addition with different signs.
|
|
break;
|
|
}
|
|
|
|
return replaceInstUsesWith(
|
|
*II, Builder.CreateBinaryIntrinsic(
|
|
IID, X, ConstantInt::get(II->getType(), NewVal)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::minnum:
|
|
case Intrinsic::maxnum:
|
|
case Intrinsic::minimum:
|
|
case Intrinsic::maximum: {
|
|
if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
|
|
return I;
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
Value *X, *Y;
|
|
if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
|
|
(Arg0->hasOneUse() || Arg1->hasOneUse())) {
|
|
// If both operands are negated, invert the call and negate the result:
|
|
// min(-X, -Y) --> -(max(X, Y))
|
|
// max(-X, -Y) --> -(min(X, Y))
|
|
Intrinsic::ID NewIID;
|
|
switch (IID) {
|
|
case Intrinsic::maxnum:
|
|
NewIID = Intrinsic::minnum;
|
|
break;
|
|
case Intrinsic::minnum:
|
|
NewIID = Intrinsic::maxnum;
|
|
break;
|
|
case Intrinsic::maximum:
|
|
NewIID = Intrinsic::minimum;
|
|
break;
|
|
case Intrinsic::minimum:
|
|
NewIID = Intrinsic::maximum;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected intrinsic ID");
|
|
}
|
|
Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
|
|
Instruction *FNeg = BinaryOperator::CreateFNeg(NewCall);
|
|
FNeg->copyIRFlags(II);
|
|
return FNeg;
|
|
}
|
|
|
|
// m(m(X, C2), C1) -> m(X, C)
|
|
const APFloat *C1, *C2;
|
|
if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
|
|
if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
|
|
((match(M->getArgOperand(0), m_Value(X)) &&
|
|
match(M->getArgOperand(1), m_APFloat(C2))) ||
|
|
(match(M->getArgOperand(1), m_Value(X)) &&
|
|
match(M->getArgOperand(0), m_APFloat(C2))))) {
|
|
APFloat Res(0.0);
|
|
switch (IID) {
|
|
case Intrinsic::maxnum:
|
|
Res = maxnum(*C1, *C2);
|
|
break;
|
|
case Intrinsic::minnum:
|
|
Res = minnum(*C1, *C2);
|
|
break;
|
|
case Intrinsic::maximum:
|
|
Res = maximum(*C1, *C2);
|
|
break;
|
|
case Intrinsic::minimum:
|
|
Res = minimum(*C1, *C2);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unexpected intrinsic ID");
|
|
}
|
|
Instruction *NewCall = Builder.CreateBinaryIntrinsic(
|
|
IID, X, ConstantFP::get(Arg0->getType(), Res));
|
|
NewCall->copyIRFlags(II);
|
|
return replaceInstUsesWith(*II, NewCall);
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::fmuladd: {
|
|
// Canonicalize fast fmuladd to the separate fmul + fadd.
|
|
if (II->isFast()) {
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
Builder.setFastMathFlags(II->getFastMathFlags());
|
|
Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
|
|
II->getArgOperand(1));
|
|
Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
|
|
Add->takeName(II);
|
|
return replaceInstUsesWith(*II, Add);
|
|
}
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case Intrinsic::fma: {
|
|
if (Instruction *I = canonicalizeConstantArg0ToArg1(CI))
|
|
return I;
|
|
|
|
// fma fneg(x), fneg(y), z -> fma x, y, z
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
Value *X, *Y;
|
|
if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
|
|
II->setArgOperand(0, X);
|
|
II->setArgOperand(1, Y);
|
|
return II;
|
|
}
|
|
|
|
// fma fabs(x), fabs(x), z -> fma x, x, z
|
|
if (match(Src0, m_FAbs(m_Value(X))) &&
|
|
match(Src1, m_FAbs(m_Specific(X)))) {
|
|
II->setArgOperand(0, X);
|
|
II->setArgOperand(1, X);
|
|
return II;
|
|
}
|
|
|
|
// fma x, 1, z -> fadd x, z
|
|
if (match(Src1, m_FPOne())) {
|
|
auto *FAdd = BinaryOperator::CreateFAdd(Src0, II->getArgOperand(2));
|
|
FAdd->copyFastMathFlags(II);
|
|
return FAdd;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::fabs: {
|
|
Value *Cond;
|
|
Constant *LHS, *RHS;
|
|
if (match(II->getArgOperand(0),
|
|
m_Select(m_Value(Cond), m_Constant(LHS), m_Constant(RHS)))) {
|
|
CallInst *Call0 = Builder.CreateCall(II->getCalledFunction(), {LHS});
|
|
CallInst *Call1 = Builder.CreateCall(II->getCalledFunction(), {RHS});
|
|
return SelectInst::Create(Cond, Call0, Call1);
|
|
}
|
|
|
|
LLVM_FALLTHROUGH;
|
|
}
|
|
case Intrinsic::ceil:
|
|
case Intrinsic::floor:
|
|
case Intrinsic::round:
|
|
case Intrinsic::nearbyint:
|
|
case Intrinsic::rint:
|
|
case Intrinsic::trunc: {
|
|
Value *ExtSrc;
|
|
if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
|
|
// Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
|
|
Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
|
|
return new FPExtInst(NarrowII, II->getType());
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::cos:
|
|
case Intrinsic::amdgcn_cos: {
|
|
Value *X;
|
|
Value *Src = II->getArgOperand(0);
|
|
if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
|
|
// cos(-x) -> cos(x)
|
|
// cos(fabs(x)) -> cos(x)
|
|
II->setArgOperand(0, X);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::sin: {
|
|
Value *X;
|
|
if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
|
|
// sin(-x) --> -sin(x)
|
|
Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
|
|
Instruction *FNeg = BinaryOperator::CreateFNeg(NewSin);
|
|
FNeg->copyFastMathFlags(II);
|
|
return FNeg;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::ppc_altivec_lvx:
|
|
case Intrinsic::ppc_altivec_lvxl:
|
|
// Turn PPC lvx -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
|
|
&DT) >= 16) {
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(II->getType(), Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_lxvw4x:
|
|
case Intrinsic::ppc_vsx_lxvd2x: {
|
|
// Turn PPC VSX loads into normal loads.
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(II->getType(), Ptr, Twine(""), false, 1);
|
|
}
|
|
case Intrinsic::ppc_altivec_stvx:
|
|
case Intrinsic::ppc_altivec_stvxl:
|
|
// Turn stvx -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
|
|
&DT) >= 16) {
|
|
Type *OpPtrTy =
|
|
PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_vsx_stxvw4x:
|
|
case Intrinsic::ppc_vsx_stxvd2x: {
|
|
// Turn PPC VSX stores into normal stores.
|
|
Type *OpPtrTy = PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr, false, 1);
|
|
}
|
|
case Intrinsic::ppc_qpx_qvlfs:
|
|
// Turn PPC QPX qvlfs -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL, II, &AC,
|
|
&DT) >= 16) {
|
|
Type *VTy = VectorType::get(Builder.getFloatTy(),
|
|
II->getType()->getVectorNumElements());
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(VTy));
|
|
Value *Load = Builder.CreateLoad(VTy, Ptr);
|
|
return new FPExtInst(Load, II->getType());
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvlfd:
|
|
// Turn PPC QPX qvlfd -> load if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(0), 32, DL, II, &AC,
|
|
&DT) >= 32) {
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(0),
|
|
PointerType::getUnqual(II->getType()));
|
|
return new LoadInst(II->getType(), Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvstfs:
|
|
// Turn PPC QPX qvstfs -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL, II, &AC,
|
|
&DT) >= 16) {
|
|
Type *VTy = VectorType::get(Builder.getFloatTy(),
|
|
II->getArgOperand(0)->getType()->getVectorNumElements());
|
|
Value *TOp = Builder.CreateFPTrunc(II->getArgOperand(0), VTy);
|
|
Type *OpPtrTy = PointerType::getUnqual(VTy);
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(TOp, Ptr);
|
|
}
|
|
break;
|
|
case Intrinsic::ppc_qpx_qvstfd:
|
|
// Turn PPC QPX qvstfd -> store if the pointer is known aligned.
|
|
if (getOrEnforceKnownAlignment(II->getArgOperand(1), 32, DL, II, &AC,
|
|
&DT) >= 32) {
|
|
Type *OpPtrTy =
|
|
PointerType::getUnqual(II->getArgOperand(0)->getType());
|
|
Value *Ptr = Builder.CreateBitCast(II->getArgOperand(1), OpPtrTy);
|
|
return new StoreInst(II->getArgOperand(0), Ptr);
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_bmi_bextr_32:
|
|
case Intrinsic::x86_bmi_bextr_64:
|
|
case Intrinsic::x86_tbm_bextri_u32:
|
|
case Intrinsic::x86_tbm_bextri_u64:
|
|
// If the RHS is a constant we can try some simplifications.
|
|
if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
|
uint64_t Shift = C->getZExtValue();
|
|
uint64_t Length = (Shift >> 8) & 0xff;
|
|
Shift &= 0xff;
|
|
unsigned BitWidth = II->getType()->getIntegerBitWidth();
|
|
// If the length is 0 or the shift is out of range, replace with zero.
|
|
if (Length == 0 || Shift >= BitWidth)
|
|
return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
|
|
// If the LHS is also a constant, we can completely constant fold this.
|
|
if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
|
|
uint64_t Result = InC->getZExtValue() >> Shift;
|
|
if (Length > BitWidth)
|
|
Length = BitWidth;
|
|
Result &= maskTrailingOnes<uint64_t>(Length);
|
|
return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
|
|
}
|
|
// TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
|
|
// are only masking bits that a shift already cleared?
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_bmi_bzhi_32:
|
|
case Intrinsic::x86_bmi_bzhi_64:
|
|
// If the RHS is a constant we can try some simplifications.
|
|
if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
|
|
uint64_t Index = C->getZExtValue() & 0xff;
|
|
unsigned BitWidth = II->getType()->getIntegerBitWidth();
|
|
if (Index >= BitWidth)
|
|
return replaceInstUsesWith(CI, II->getArgOperand(0));
|
|
if (Index == 0)
|
|
return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), 0));
|
|
// If the LHS is also a constant, we can completely constant fold this.
|
|
if (auto *InC = dyn_cast<ConstantInt>(II->getArgOperand(0))) {
|
|
uint64_t Result = InC->getZExtValue();
|
|
Result &= maskTrailingOnes<uint64_t>(Index);
|
|
return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Result));
|
|
}
|
|
// TODO should we convert this to an AND if the RHS is constant?
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_vcvtph2ps_128:
|
|
case Intrinsic::x86_vcvtph2ps_256: {
|
|
auto Arg = II->getArgOperand(0);
|
|
auto ArgType = cast<VectorType>(Arg->getType());
|
|
auto RetType = cast<VectorType>(II->getType());
|
|
unsigned ArgWidth = ArgType->getNumElements();
|
|
unsigned RetWidth = RetType->getNumElements();
|
|
assert(RetWidth <= ArgWidth && "Unexpected input/return vector widths");
|
|
assert(ArgType->isIntOrIntVectorTy() &&
|
|
ArgType->getScalarSizeInBits() == 16 &&
|
|
"CVTPH2PS input type should be 16-bit integer vector");
|
|
assert(RetType->getScalarType()->isFloatTy() &&
|
|
"CVTPH2PS output type should be 32-bit float vector");
|
|
|
|
// Constant folding: Convert to generic half to single conversion.
|
|
if (isa<ConstantAggregateZero>(Arg))
|
|
return replaceInstUsesWith(*II, ConstantAggregateZero::get(RetType));
|
|
|
|
if (isa<ConstantDataVector>(Arg)) {
|
|
auto VectorHalfAsShorts = Arg;
|
|
if (RetWidth < ArgWidth) {
|
|
SmallVector<uint32_t, 8> SubVecMask;
|
|
for (unsigned i = 0; i != RetWidth; ++i)
|
|
SubVecMask.push_back((int)i);
|
|
VectorHalfAsShorts = Builder.CreateShuffleVector(
|
|
Arg, UndefValue::get(ArgType), SubVecMask);
|
|
}
|
|
|
|
auto VectorHalfType =
|
|
VectorType::get(Type::getHalfTy(II->getContext()), RetWidth);
|
|
auto VectorHalfs =
|
|
Builder.CreateBitCast(VectorHalfAsShorts, VectorHalfType);
|
|
auto VectorFloats = Builder.CreateFPExt(VectorHalfs, RetType);
|
|
return replaceInstUsesWith(*II, VectorFloats);
|
|
}
|
|
|
|
// We only use the lowest lanes of the argument.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg, ArgWidth, RetWidth)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse_cvtss2si:
|
|
case Intrinsic::x86_sse_cvtss2si64:
|
|
case Intrinsic::x86_sse_cvttss2si:
|
|
case Intrinsic::x86_sse_cvttss2si64:
|
|
case Intrinsic::x86_sse2_cvtsd2si:
|
|
case Intrinsic::x86_sse2_cvtsd2si64:
|
|
case Intrinsic::x86_sse2_cvttsd2si:
|
|
case Intrinsic::x86_sse2_cvttsd2si64:
|
|
case Intrinsic::x86_avx512_vcvtss2si32:
|
|
case Intrinsic::x86_avx512_vcvtss2si64:
|
|
case Intrinsic::x86_avx512_vcvtss2usi32:
|
|
case Intrinsic::x86_avx512_vcvtss2usi64:
|
|
case Intrinsic::x86_avx512_vcvtsd2si32:
|
|
case Intrinsic::x86_avx512_vcvtsd2si64:
|
|
case Intrinsic::x86_avx512_vcvtsd2usi32:
|
|
case Intrinsic::x86_avx512_vcvtsd2usi64:
|
|
case Intrinsic::x86_avx512_cvttss2si:
|
|
case Intrinsic::x86_avx512_cvttss2si64:
|
|
case Intrinsic::x86_avx512_cvttss2usi:
|
|
case Intrinsic::x86_avx512_cvttss2usi64:
|
|
case Intrinsic::x86_avx512_cvttsd2si:
|
|
case Intrinsic::x86_avx512_cvttsd2si64:
|
|
case Intrinsic::x86_avx512_cvttsd2usi:
|
|
case Intrinsic::x86_avx512_cvttsd2usi64: {
|
|
// These intrinsics only demand the 0th element of their input vectors. If
|
|
// we can simplify the input based on that, do so now.
|
|
Value *Arg = II->getArgOperand(0);
|
|
unsigned VWidth = Arg->getType()->getVectorNumElements();
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_mmx_pmovmskb:
|
|
case Intrinsic::x86_sse_movmsk_ps:
|
|
case Intrinsic::x86_sse2_movmsk_pd:
|
|
case Intrinsic::x86_sse2_pmovmskb_128:
|
|
case Intrinsic::x86_avx_movmsk_pd_256:
|
|
case Intrinsic::x86_avx_movmsk_ps_256:
|
|
case Intrinsic::x86_avx2_pmovmskb:
|
|
if (Value *V = simplifyX86movmsk(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse_comieq_ss:
|
|
case Intrinsic::x86_sse_comige_ss:
|
|
case Intrinsic::x86_sse_comigt_ss:
|
|
case Intrinsic::x86_sse_comile_ss:
|
|
case Intrinsic::x86_sse_comilt_ss:
|
|
case Intrinsic::x86_sse_comineq_ss:
|
|
case Intrinsic::x86_sse_ucomieq_ss:
|
|
case Intrinsic::x86_sse_ucomige_ss:
|
|
case Intrinsic::x86_sse_ucomigt_ss:
|
|
case Intrinsic::x86_sse_ucomile_ss:
|
|
case Intrinsic::x86_sse_ucomilt_ss:
|
|
case Intrinsic::x86_sse_ucomineq_ss:
|
|
case Intrinsic::x86_sse2_comieq_sd:
|
|
case Intrinsic::x86_sse2_comige_sd:
|
|
case Intrinsic::x86_sse2_comigt_sd:
|
|
case Intrinsic::x86_sse2_comile_sd:
|
|
case Intrinsic::x86_sse2_comilt_sd:
|
|
case Intrinsic::x86_sse2_comineq_sd:
|
|
case Intrinsic::x86_sse2_ucomieq_sd:
|
|
case Intrinsic::x86_sse2_ucomige_sd:
|
|
case Intrinsic::x86_sse2_ucomigt_sd:
|
|
case Intrinsic::x86_sse2_ucomile_sd:
|
|
case Intrinsic::x86_sse2_ucomilt_sd:
|
|
case Intrinsic::x86_sse2_ucomineq_sd:
|
|
case Intrinsic::x86_avx512_vcomi_ss:
|
|
case Intrinsic::x86_avx512_vcomi_sd:
|
|
case Intrinsic::x86_avx512_mask_cmp_ss:
|
|
case Intrinsic::x86_avx512_mask_cmp_sd: {
|
|
// These intrinsics only demand the 0th element of their input vectors. If
|
|
// we can simplify the input based on that, do so now.
|
|
bool MadeChange = false;
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
unsigned VWidth = Arg0->getType()->getVectorNumElements();
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
MadeChange = true;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
|
|
II->setArgOperand(1, V);
|
|
MadeChange = true;
|
|
}
|
|
if (MadeChange)
|
|
return II;
|
|
break;
|
|
}
|
|
case Intrinsic::x86_avx512_cmp_pd_128:
|
|
case Intrinsic::x86_avx512_cmp_pd_256:
|
|
case Intrinsic::x86_avx512_cmp_pd_512:
|
|
case Intrinsic::x86_avx512_cmp_ps_128:
|
|
case Intrinsic::x86_avx512_cmp_ps_256:
|
|
case Intrinsic::x86_avx512_cmp_ps_512: {
|
|
// Folding cmp(sub(a,b),0) -> cmp(a,b) and cmp(0,sub(a,b)) -> cmp(b,a)
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
bool Arg0IsZero = match(Arg0, m_PosZeroFP());
|
|
if (Arg0IsZero)
|
|
std::swap(Arg0, Arg1);
|
|
Value *A, *B;
|
|
// This fold requires only the NINF(not +/- inf) since inf minus
|
|
// inf is nan.
|
|
// NSZ(No Signed Zeros) is not needed because zeros of any sign are
|
|
// equal for both compares.
|
|
// NNAN is not needed because nans compare the same for both compares.
|
|
// The compare intrinsic uses the above assumptions and therefore
|
|
// doesn't require additional flags.
|
|
if ((match(Arg0, m_OneUse(m_FSub(m_Value(A), m_Value(B)))) &&
|
|
match(Arg1, m_PosZeroFP()) && isa<Instruction>(Arg0) &&
|
|
cast<Instruction>(Arg0)->getFastMathFlags().noInfs())) {
|
|
if (Arg0IsZero)
|
|
std::swap(A, B);
|
|
II->setArgOperand(0, A);
|
|
II->setArgOperand(1, B);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_avx512_add_ps_512:
|
|
case Intrinsic::x86_avx512_div_ps_512:
|
|
case Intrinsic::x86_avx512_mul_ps_512:
|
|
case Intrinsic::x86_avx512_sub_ps_512:
|
|
case Intrinsic::x86_avx512_add_pd_512:
|
|
case Intrinsic::x86_avx512_div_pd_512:
|
|
case Intrinsic::x86_avx512_mul_pd_512:
|
|
case Intrinsic::x86_avx512_sub_pd_512:
|
|
// If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
|
|
// IR operations.
|
|
if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
|
|
if (R->getValue() == 4) {
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
|
|
Value *V;
|
|
switch (IID) {
|
|
default: llvm_unreachable("Case stmts out of sync!");
|
|
case Intrinsic::x86_avx512_add_ps_512:
|
|
case Intrinsic::x86_avx512_add_pd_512:
|
|
V = Builder.CreateFAdd(Arg0, Arg1);
|
|
break;
|
|
case Intrinsic::x86_avx512_sub_ps_512:
|
|
case Intrinsic::x86_avx512_sub_pd_512:
|
|
V = Builder.CreateFSub(Arg0, Arg1);
|
|
break;
|
|
case Intrinsic::x86_avx512_mul_ps_512:
|
|
case Intrinsic::x86_avx512_mul_pd_512:
|
|
V = Builder.CreateFMul(Arg0, Arg1);
|
|
break;
|
|
case Intrinsic::x86_avx512_div_ps_512:
|
|
case Intrinsic::x86_avx512_div_pd_512:
|
|
V = Builder.CreateFDiv(Arg0, Arg1);
|
|
break;
|
|
}
|
|
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::x86_avx512_mask_add_ss_round:
|
|
case Intrinsic::x86_avx512_mask_div_ss_round:
|
|
case Intrinsic::x86_avx512_mask_mul_ss_round:
|
|
case Intrinsic::x86_avx512_mask_sub_ss_round:
|
|
case Intrinsic::x86_avx512_mask_add_sd_round:
|
|
case Intrinsic::x86_avx512_mask_div_sd_round:
|
|
case Intrinsic::x86_avx512_mask_mul_sd_round:
|
|
case Intrinsic::x86_avx512_mask_sub_sd_round:
|
|
// If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
|
|
// IR operations.
|
|
if (auto *R = dyn_cast<ConstantInt>(II->getArgOperand(4))) {
|
|
if (R->getValue() == 4) {
|
|
// Extract the element as scalars.
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
Value *LHS = Builder.CreateExtractElement(Arg0, (uint64_t)0);
|
|
Value *RHS = Builder.CreateExtractElement(Arg1, (uint64_t)0);
|
|
|
|
Value *V;
|
|
switch (IID) {
|
|
default: llvm_unreachable("Case stmts out of sync!");
|
|
case Intrinsic::x86_avx512_mask_add_ss_round:
|
|
case Intrinsic::x86_avx512_mask_add_sd_round:
|
|
V = Builder.CreateFAdd(LHS, RHS);
|
|
break;
|
|
case Intrinsic::x86_avx512_mask_sub_ss_round:
|
|
case Intrinsic::x86_avx512_mask_sub_sd_round:
|
|
V = Builder.CreateFSub(LHS, RHS);
|
|
break;
|
|
case Intrinsic::x86_avx512_mask_mul_ss_round:
|
|
case Intrinsic::x86_avx512_mask_mul_sd_round:
|
|
V = Builder.CreateFMul(LHS, RHS);
|
|
break;
|
|
case Intrinsic::x86_avx512_mask_div_ss_round:
|
|
case Intrinsic::x86_avx512_mask_div_sd_round:
|
|
V = Builder.CreateFDiv(LHS, RHS);
|
|
break;
|
|
}
|
|
|
|
// Handle the masking aspect of the intrinsic.
|
|
Value *Mask = II->getArgOperand(3);
|
|
auto *C = dyn_cast<ConstantInt>(Mask);
|
|
// We don't need a select if we know the mask bit is a 1.
|
|
if (!C || !C->getValue()[0]) {
|
|
// Cast the mask to an i1 vector and then extract the lowest element.
|
|
auto *MaskTy = VectorType::get(Builder.getInt1Ty(),
|
|
cast<IntegerType>(Mask->getType())->getBitWidth());
|
|
Mask = Builder.CreateBitCast(Mask, MaskTy);
|
|
Mask = Builder.CreateExtractElement(Mask, (uint64_t)0);
|
|
// Extract the lowest element from the passthru operand.
|
|
Value *Passthru = Builder.CreateExtractElement(II->getArgOperand(2),
|
|
(uint64_t)0);
|
|
V = Builder.CreateSelect(Mask, V, Passthru);
|
|
}
|
|
|
|
// Insert the result back into the original argument 0.
|
|
V = Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
|
|
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
}
|
|
break;
|
|
|
|
// Constant fold ashr( <A x Bi>, Ci ).
|
|
// Constant fold lshr( <A x Bi>, Ci ).
|
|
// Constant fold shl( <A x Bi>, Ci ).
|
|
case Intrinsic::x86_sse2_psrai_d:
|
|
case Intrinsic::x86_sse2_psrai_w:
|
|
case Intrinsic::x86_avx2_psrai_d:
|
|
case Intrinsic::x86_avx2_psrai_w:
|
|
case Intrinsic::x86_avx512_psrai_q_128:
|
|
case Intrinsic::x86_avx512_psrai_q_256:
|
|
case Intrinsic::x86_avx512_psrai_d_512:
|
|
case Intrinsic::x86_avx512_psrai_q_512:
|
|
case Intrinsic::x86_avx512_psrai_w_512:
|
|
case Intrinsic::x86_sse2_psrli_d:
|
|
case Intrinsic::x86_sse2_psrli_q:
|
|
case Intrinsic::x86_sse2_psrli_w:
|
|
case Intrinsic::x86_avx2_psrli_d:
|
|
case Intrinsic::x86_avx2_psrli_q:
|
|
case Intrinsic::x86_avx2_psrli_w:
|
|
case Intrinsic::x86_avx512_psrli_d_512:
|
|
case Intrinsic::x86_avx512_psrli_q_512:
|
|
case Intrinsic::x86_avx512_psrli_w_512:
|
|
case Intrinsic::x86_sse2_pslli_d:
|
|
case Intrinsic::x86_sse2_pslli_q:
|
|
case Intrinsic::x86_sse2_pslli_w:
|
|
case Intrinsic::x86_avx2_pslli_d:
|
|
case Intrinsic::x86_avx2_pslli_q:
|
|
case Intrinsic::x86_avx2_pslli_w:
|
|
case Intrinsic::x86_avx512_pslli_d_512:
|
|
case Intrinsic::x86_avx512_pslli_q_512:
|
|
case Intrinsic::x86_avx512_pslli_w_512:
|
|
if (Value *V = simplifyX86immShift(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_psra_d:
|
|
case Intrinsic::x86_sse2_psra_w:
|
|
case Intrinsic::x86_avx2_psra_d:
|
|
case Intrinsic::x86_avx2_psra_w:
|
|
case Intrinsic::x86_avx512_psra_q_128:
|
|
case Intrinsic::x86_avx512_psra_q_256:
|
|
case Intrinsic::x86_avx512_psra_d_512:
|
|
case Intrinsic::x86_avx512_psra_q_512:
|
|
case Intrinsic::x86_avx512_psra_w_512:
|
|
case Intrinsic::x86_sse2_psrl_d:
|
|
case Intrinsic::x86_sse2_psrl_q:
|
|
case Intrinsic::x86_sse2_psrl_w:
|
|
case Intrinsic::x86_avx2_psrl_d:
|
|
case Intrinsic::x86_avx2_psrl_q:
|
|
case Intrinsic::x86_avx2_psrl_w:
|
|
case Intrinsic::x86_avx512_psrl_d_512:
|
|
case Intrinsic::x86_avx512_psrl_q_512:
|
|
case Intrinsic::x86_avx512_psrl_w_512:
|
|
case Intrinsic::x86_sse2_psll_d:
|
|
case Intrinsic::x86_sse2_psll_q:
|
|
case Intrinsic::x86_sse2_psll_w:
|
|
case Intrinsic::x86_avx2_psll_d:
|
|
case Intrinsic::x86_avx2_psll_q:
|
|
case Intrinsic::x86_avx2_psll_w:
|
|
case Intrinsic::x86_avx512_psll_d_512:
|
|
case Intrinsic::x86_avx512_psll_q_512:
|
|
case Intrinsic::x86_avx512_psll_w_512: {
|
|
if (Value *V = simplifyX86immShift(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
|
|
// operand to compute the shift amount.
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
"Unexpected packed shift size");
|
|
unsigned VWidth = Arg1->getType()->getVectorNumElements();
|
|
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
|
|
II->setArgOperand(1, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_avx2_psllv_d:
|
|
case Intrinsic::x86_avx2_psllv_d_256:
|
|
case Intrinsic::x86_avx2_psllv_q:
|
|
case Intrinsic::x86_avx2_psllv_q_256:
|
|
case Intrinsic::x86_avx512_psllv_d_512:
|
|
case Intrinsic::x86_avx512_psllv_q_512:
|
|
case Intrinsic::x86_avx512_psllv_w_128:
|
|
case Intrinsic::x86_avx512_psllv_w_256:
|
|
case Intrinsic::x86_avx512_psllv_w_512:
|
|
case Intrinsic::x86_avx2_psrav_d:
|
|
case Intrinsic::x86_avx2_psrav_d_256:
|
|
case Intrinsic::x86_avx512_psrav_q_128:
|
|
case Intrinsic::x86_avx512_psrav_q_256:
|
|
case Intrinsic::x86_avx512_psrav_d_512:
|
|
case Intrinsic::x86_avx512_psrav_q_512:
|
|
case Intrinsic::x86_avx512_psrav_w_128:
|
|
case Intrinsic::x86_avx512_psrav_w_256:
|
|
case Intrinsic::x86_avx512_psrav_w_512:
|
|
case Intrinsic::x86_avx2_psrlv_d:
|
|
case Intrinsic::x86_avx2_psrlv_d_256:
|
|
case Intrinsic::x86_avx2_psrlv_q:
|
|
case Intrinsic::x86_avx2_psrlv_q_256:
|
|
case Intrinsic::x86_avx512_psrlv_d_512:
|
|
case Intrinsic::x86_avx512_psrlv_q_512:
|
|
case Intrinsic::x86_avx512_psrlv_w_128:
|
|
case Intrinsic::x86_avx512_psrlv_w_256:
|
|
case Intrinsic::x86_avx512_psrlv_w_512:
|
|
if (Value *V = simplifyX86varShift(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_packssdw_128:
|
|
case Intrinsic::x86_sse2_packsswb_128:
|
|
case Intrinsic::x86_avx2_packssdw:
|
|
case Intrinsic::x86_avx2_packsswb:
|
|
case Intrinsic::x86_avx512_packssdw_512:
|
|
case Intrinsic::x86_avx512_packsswb_512:
|
|
if (Value *V = simplifyX86pack(*II, Builder, true))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_packuswb_128:
|
|
case Intrinsic::x86_sse41_packusdw:
|
|
case Intrinsic::x86_avx2_packusdw:
|
|
case Intrinsic::x86_avx2_packuswb:
|
|
case Intrinsic::x86_avx512_packusdw_512:
|
|
case Intrinsic::x86_avx512_packuswb_512:
|
|
if (Value *V = simplifyX86pack(*II, Builder, false))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_pclmulqdq:
|
|
case Intrinsic::x86_pclmulqdq_256:
|
|
case Intrinsic::x86_pclmulqdq_512: {
|
|
if (auto *C = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
|
|
unsigned Imm = C->getZExtValue();
|
|
|
|
bool MadeChange = false;
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
unsigned VWidth = Arg0->getType()->getVectorNumElements();
|
|
|
|
APInt UndefElts1(VWidth, 0);
|
|
APInt DemandedElts1 = APInt::getSplat(VWidth,
|
|
APInt(2, (Imm & 0x01) ? 2 : 1));
|
|
if (Value *V = SimplifyDemandedVectorElts(Arg0, DemandedElts1,
|
|
UndefElts1)) {
|
|
II->setArgOperand(0, V);
|
|
MadeChange = true;
|
|
}
|
|
|
|
APInt UndefElts2(VWidth, 0);
|
|
APInt DemandedElts2 = APInt::getSplat(VWidth,
|
|
APInt(2, (Imm & 0x10) ? 2 : 1));
|
|
if (Value *V = SimplifyDemandedVectorElts(Arg1, DemandedElts2,
|
|
UndefElts2)) {
|
|
II->setArgOperand(1, V);
|
|
MadeChange = true;
|
|
}
|
|
|
|
// If either input elements are undef, the result is zero.
|
|
if (DemandedElts1.isSubsetOf(UndefElts1) ||
|
|
DemandedElts2.isSubsetOf(UndefElts2))
|
|
return replaceInstUsesWith(*II,
|
|
ConstantAggregateZero::get(II->getType()));
|
|
|
|
if (MadeChange)
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse41_insertps:
|
|
if (Value *V = simplifyX86insertps(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_sse4a_extrq: {
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth0 = Op0->getType()->getVectorNumElements();
|
|
unsigned VWidth1 = Op1->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
|
|
VWidth1 == 16 && "Unexpected operand sizes");
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CILength =
|
|
C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
|
|
: nullptr;
|
|
ConstantInt *CIIndex =
|
|
C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
|
|
: nullptr;
|
|
|
|
// Attempt to simplify to a constant, shuffle vector or EXTRQI call.
|
|
if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// EXTRQ only uses the lowest 64-bits of the first 128-bit vector
|
|
// operands and the lowest 16-bits of the second.
|
|
bool MadeChange = false;
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
|
|
II->setArgOperand(0, V);
|
|
MadeChange = true;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
|
|
II->setArgOperand(1, V);
|
|
MadeChange = true;
|
|
}
|
|
if (MadeChange)
|
|
return II;
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_extrqi: {
|
|
// EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
|
|
// bits of the lower 64-bits. The upper 64-bits are undefined.
|
|
Value *Op0 = II->getArgOperand(0);
|
|
unsigned VWidth = Op0->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
|
|
"Unexpected operand size");
|
|
|
|
// See if we're dealing with constant values.
|
|
ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(1));
|
|
ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(2));
|
|
|
|
// Attempt to simplify to a constant or shuffle vector.
|
|
if (Value *V = simplifyX86extrq(*II, Op0, CILength, CIIndex, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
|
|
// EXTRQI only uses the lowest 64-bits of the first 128-bit vector
|
|
// operand.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_insertq: {
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth = Op0->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
|
|
Op1->getType()->getVectorNumElements() == 2 &&
|
|
"Unexpected operand size");
|
|
|
|
// See if we're dealing with constant values.
|
|
Constant *C1 = dyn_cast<Constant>(Op1);
|
|
ConstantInt *CI11 =
|
|
C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
|
|
: nullptr;
|
|
|
|
// Attempt to simplify to a constant, shuffle vector or INSERTQI call.
|
|
if (CI11) {
|
|
const APInt &V11 = CI11->getValue();
|
|
APInt Len = V11.zextOrTrunc(6);
|
|
APInt Idx = V11.lshr(8).zextOrTrunc(6);
|
|
if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
|
|
// INSERTQ only uses the lowest 64-bits of the first 128-bit vector
|
|
// operand.
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
|
|
II->setArgOperand(0, V);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse4a_insertqi: {
|
|
// INSERTQI: Extract lowest Length bits from lower half of second source and
|
|
// insert over first source starting at Index bit. The upper 64-bits are
|
|
// undefined.
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
unsigned VWidth0 = Op0->getType()->getVectorNumElements();
|
|
unsigned VWidth1 = Op1->getType()->getVectorNumElements();
|
|
assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
|
|
Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
|
|
VWidth1 == 2 && "Unexpected operand sizes");
|
|
|
|
// See if we're dealing with constant values.
|
|
ConstantInt *CILength = dyn_cast<ConstantInt>(II->getArgOperand(2));
|
|
ConstantInt *CIIndex = dyn_cast<ConstantInt>(II->getArgOperand(3));
|
|
|
|
// Attempt to simplify to a constant or shuffle vector.
|
|
if (CILength && CIIndex) {
|
|
APInt Len = CILength->getValue().zextOrTrunc(6);
|
|
APInt Idx = CIIndex->getValue().zextOrTrunc(6);
|
|
if (Value *V = simplifyX86insertq(*II, Op0, Op1, Len, Idx, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
}
|
|
|
|
// INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
|
|
// operands.
|
|
bool MadeChange = false;
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
|
|
II->setArgOperand(0, V);
|
|
MadeChange = true;
|
|
}
|
|
if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
|
|
II->setArgOperand(1, V);
|
|
MadeChange = true;
|
|
}
|
|
if (MadeChange)
|
|
return II;
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_sse41_pblendvb:
|
|
case Intrinsic::x86_sse41_blendvps:
|
|
case Intrinsic::x86_sse41_blendvpd:
|
|
case Intrinsic::x86_avx_blendv_ps_256:
|
|
case Intrinsic::x86_avx_blendv_pd_256:
|
|
case Intrinsic::x86_avx2_pblendvb: {
|
|
// fold (blend A, A, Mask) -> A
|
|
Value *Op0 = II->getArgOperand(0);
|
|
Value *Op1 = II->getArgOperand(1);
|
|
Value *Mask = II->getArgOperand(2);
|
|
if (Op0 == Op1)
|
|
return replaceInstUsesWith(CI, Op0);
|
|
|
|
// Zero Mask - select 1st argument.
|
|
if (isa<ConstantAggregateZero>(Mask))
|
|
return replaceInstUsesWith(CI, Op0);
|
|
|
|
// Constant Mask - select 1st/2nd argument lane based on top bit of mask.
|
|
if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
|
|
Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
|
|
return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
|
|
}
|
|
|
|
// Convert to a vector select if we can bypass casts and find a boolean
|
|
// vector condition value.
|
|
Value *BoolVec;
|
|
Mask = peekThroughBitcast(Mask);
|
|
if (match(Mask, m_SExt(m_Value(BoolVec))) &&
|
|
BoolVec->getType()->isVectorTy() &&
|
|
BoolVec->getType()->getScalarSizeInBits() == 1) {
|
|
assert(Mask->getType()->getPrimitiveSizeInBits() ==
|
|
II->getType()->getPrimitiveSizeInBits() &&
|
|
"Not expecting mask and operands with different sizes");
|
|
|
|
unsigned NumMaskElts = Mask->getType()->getVectorNumElements();
|
|
unsigned NumOperandElts = II->getType()->getVectorNumElements();
|
|
if (NumMaskElts == NumOperandElts)
|
|
return SelectInst::Create(BoolVec, Op1, Op0);
|
|
|
|
// If the mask has less elements than the operands, each mask bit maps to
|
|
// multiple elements of the operands. Bitcast back and forth.
|
|
if (NumMaskElts < NumOperandElts) {
|
|
Value *CastOp0 = Builder.CreateBitCast(Op0, Mask->getType());
|
|
Value *CastOp1 = Builder.CreateBitCast(Op1, Mask->getType());
|
|
Value *Sel = Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
|
|
return new BitCastInst(Sel, II->getType());
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::x86_ssse3_pshuf_b_128:
|
|
case Intrinsic::x86_avx2_pshuf_b:
|
|
case Intrinsic::x86_avx512_pshuf_b_512:
|
|
if (Value *V = simplifyX86pshufb(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_avx_vpermilvar_ps:
|
|
case Intrinsic::x86_avx_vpermilvar_ps_256:
|
|
case Intrinsic::x86_avx512_vpermilvar_ps_512:
|
|
case Intrinsic::x86_avx_vpermilvar_pd:
|
|
case Intrinsic::x86_avx_vpermilvar_pd_256:
|
|
case Intrinsic::x86_avx512_vpermilvar_pd_512:
|
|
if (Value *V = simplifyX86vpermilvar(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_avx2_permd:
|
|
case Intrinsic::x86_avx2_permps:
|
|
case Intrinsic::x86_avx512_permvar_df_256:
|
|
case Intrinsic::x86_avx512_permvar_df_512:
|
|
case Intrinsic::x86_avx512_permvar_di_256:
|
|
case Intrinsic::x86_avx512_permvar_di_512:
|
|
case Intrinsic::x86_avx512_permvar_hi_128:
|
|
case Intrinsic::x86_avx512_permvar_hi_256:
|
|
case Intrinsic::x86_avx512_permvar_hi_512:
|
|
case Intrinsic::x86_avx512_permvar_qi_128:
|
|
case Intrinsic::x86_avx512_permvar_qi_256:
|
|
case Intrinsic::x86_avx512_permvar_qi_512:
|
|
case Intrinsic::x86_avx512_permvar_sf_512:
|
|
case Intrinsic::x86_avx512_permvar_si_512:
|
|
if (Value *V = simplifyX86vpermv(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::x86_avx_maskload_ps:
|
|
case Intrinsic::x86_avx_maskload_pd:
|
|
case Intrinsic::x86_avx_maskload_ps_256:
|
|
case Intrinsic::x86_avx_maskload_pd_256:
|
|
case Intrinsic::x86_avx2_maskload_d:
|
|
case Intrinsic::x86_avx2_maskload_q:
|
|
case Intrinsic::x86_avx2_maskload_d_256:
|
|
case Intrinsic::x86_avx2_maskload_q_256:
|
|
if (Instruction *I = simplifyX86MaskedLoad(*II, *this))
|
|
return I;
|
|
break;
|
|
|
|
case Intrinsic::x86_sse2_maskmov_dqu:
|
|
case Intrinsic::x86_avx_maskstore_ps:
|
|
case Intrinsic::x86_avx_maskstore_pd:
|
|
case Intrinsic::x86_avx_maskstore_ps_256:
|
|
case Intrinsic::x86_avx_maskstore_pd_256:
|
|
case Intrinsic::x86_avx2_maskstore_d:
|
|
case Intrinsic::x86_avx2_maskstore_q:
|
|
case Intrinsic::x86_avx2_maskstore_d_256:
|
|
case Intrinsic::x86_avx2_maskstore_q_256:
|
|
if (simplifyX86MaskedStore(*II, *this))
|
|
return nullptr;
|
|
break;
|
|
|
|
case Intrinsic::x86_addcarry_32:
|
|
case Intrinsic::x86_addcarry_64:
|
|
if (Value *V = simplifyX86addcarry(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::ppc_altivec_vperm:
|
|
// Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
|
|
// Note that ppc_altivec_vperm has a big-endian bias, so when creating
|
|
// a vectorshuffle for little endian, we must undo the transformation
|
|
// performed on vec_perm in altivec.h. That is, we must complement
|
|
// the permutation mask with respect to 31 and reverse the order of
|
|
// V1 and V2.
|
|
if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
|
|
assert(Mask->getType()->getVectorNumElements() == 16 &&
|
|
"Bad type for intrinsic!");
|
|
|
|
// Check that all of the elements are integer constants or undefs.
|
|
bool AllEltsOk = true;
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
Constant *Elt = Mask->getAggregateElement(i);
|
|
if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
|
|
AllEltsOk = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (AllEltsOk) {
|
|
// Cast the input vectors to byte vectors.
|
|
Value *Op0 = Builder.CreateBitCast(II->getArgOperand(0),
|
|
Mask->getType());
|
|
Value *Op1 = Builder.CreateBitCast(II->getArgOperand(1),
|
|
Mask->getType());
|
|
Value *Result = UndefValue::get(Op0->getType());
|
|
|
|
// Only extract each element once.
|
|
Value *ExtractedElts[32];
|
|
memset(ExtractedElts, 0, sizeof(ExtractedElts));
|
|
|
|
for (unsigned i = 0; i != 16; ++i) {
|
|
if (isa<UndefValue>(Mask->getAggregateElement(i)))
|
|
continue;
|
|
unsigned Idx =
|
|
cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
|
|
Idx &= 31; // Match the hardware behavior.
|
|
if (DL.isLittleEndian())
|
|
Idx = 31 - Idx;
|
|
|
|
if (!ExtractedElts[Idx]) {
|
|
Value *Op0ToUse = (DL.isLittleEndian()) ? Op1 : Op0;
|
|
Value *Op1ToUse = (DL.isLittleEndian()) ? Op0 : Op1;
|
|
ExtractedElts[Idx] =
|
|
Builder.CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
|
|
Builder.getInt32(Idx&15));
|
|
}
|
|
|
|
// Insert this value into the result vector.
|
|
Result = Builder.CreateInsertElement(Result, ExtractedElts[Idx],
|
|
Builder.getInt32(i));
|
|
}
|
|
return CastInst::Create(Instruction::BitCast, Result, CI.getType());
|
|
}
|
|
}
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vld1: {
|
|
unsigned MemAlign = getKnownAlignment(II->getArgOperand(0),
|
|
DL, II, &AC, &DT);
|
|
if (Value *V = simplifyNeonVld1(*II, MemAlign, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
unsigned MemAlign =
|
|
getKnownAlignment(II->getArgOperand(0), DL, II, &AC, &DT);
|
|
unsigned AlignArg = II->getNumArgOperands() - 1;
|
|
ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
|
|
if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
|
|
II->setArgOperand(AlignArg,
|
|
ConstantInt::get(Type::getInt32Ty(II->getContext()),
|
|
MemAlign, false));
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vtbl1:
|
|
case Intrinsic::aarch64_neon_tbl1:
|
|
if (Value *V = simplifyNeonTbl1(*II, Builder))
|
|
return replaceInstUsesWith(*II, V);
|
|
break;
|
|
|
|
case Intrinsic::arm_neon_vmulls:
|
|
case Intrinsic::arm_neon_vmullu:
|
|
case Intrinsic::aarch64_neon_smull:
|
|
case Intrinsic::aarch64_neon_umull: {
|
|
Value *Arg0 = II->getArgOperand(0);
|
|
Value *Arg1 = II->getArgOperand(1);
|
|
|
|
// Handle mul by zero first:
|
|
if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
|
|
return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
|
|
}
|
|
|
|
// Check for constant LHS & RHS - in this case we just simplify.
|
|
bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
|
|
IID == Intrinsic::aarch64_neon_umull);
|
|
VectorType *NewVT = cast<VectorType>(II->getType());
|
|
if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
|
|
if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
|
|
CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
|
|
CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
|
|
|
|
return replaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
|
|
}
|
|
|
|
// Couldn't simplify - canonicalize constant to the RHS.
|
|
std::swap(Arg0, Arg1);
|
|
}
|
|
|
|
// Handle mul by one:
|
|
if (Constant *CV1 = dyn_cast<Constant>(Arg1))
|
|
if (ConstantInt *Splat =
|
|
dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
|
|
if (Splat->isOne())
|
|
return CastInst::CreateIntegerCast(Arg0, II->getType(),
|
|
/*isSigned=*/!Zext);
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::arm_neon_aesd:
|
|
case Intrinsic::arm_neon_aese:
|
|
case Intrinsic::aarch64_crypto_aesd:
|
|
case Intrinsic::aarch64_crypto_aese: {
|
|
Value *DataArg = II->getArgOperand(0);
|
|
Value *KeyArg = II->getArgOperand(1);
|
|
|
|
// Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
|
|
Value *Data, *Key;
|
|
if (match(KeyArg, m_ZeroInt()) &&
|
|
match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
|
|
II->setArgOperand(0, Data);
|
|
II->setArgOperand(1, Key);
|
|
return II;
|
|
}
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_rcp: {
|
|
Value *Src = II->getArgOperand(0);
|
|
|
|
// TODO: Move to ConstantFolding/InstSimplify?
|
|
if (isa<UndefValue>(Src))
|
|
return replaceInstUsesWith(CI, Src);
|
|
|
|
if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
|
|
const APFloat &ArgVal = C->getValueAPF();
|
|
APFloat Val(ArgVal.getSemantics(), 1.0);
|
|
APFloat::opStatus Status = Val.divide(ArgVal,
|
|
APFloat::rmNearestTiesToEven);
|
|
// Only do this if it was exact and therefore not dependent on the
|
|
// rounding mode.
|
|
if (Status == APFloat::opOK)
|
|
return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_rsq: {
|
|
Value *Src = II->getArgOperand(0);
|
|
|
|
// TODO: Move to ConstantFolding/InstSimplify?
|
|
if (isa<UndefValue>(Src))
|
|
return replaceInstUsesWith(CI, Src);
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_frexp_mant:
|
|
case Intrinsic::amdgcn_frexp_exp: {
|
|
Value *Src = II->getArgOperand(0);
|
|
if (const ConstantFP *C = dyn_cast<ConstantFP>(Src)) {
|
|
int Exp;
|
|
APFloat Significand = frexp(C->getValueAPF(), Exp,
|
|
APFloat::rmNearestTiesToEven);
|
|
|
|
if (IID == Intrinsic::amdgcn_frexp_mant) {
|
|
return replaceInstUsesWith(CI, ConstantFP::get(II->getContext(),
|
|
Significand));
|
|
}
|
|
|
|
// Match instruction special case behavior.
|
|
if (Exp == APFloat::IEK_NaN || Exp == APFloat::IEK_Inf)
|
|
Exp = 0;
|
|
|
|
return replaceInstUsesWith(CI, ConstantInt::get(II->getType(), Exp));
|
|
}
|
|
|
|
if (isa<UndefValue>(Src))
|
|
return replaceInstUsesWith(CI, UndefValue::get(II->getType()));
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_class: {
|
|
enum {
|
|
S_NAN = 1 << 0, // Signaling NaN
|
|
Q_NAN = 1 << 1, // Quiet NaN
|
|
N_INFINITY = 1 << 2, // Negative infinity
|
|
N_NORMAL = 1 << 3, // Negative normal
|
|
N_SUBNORMAL = 1 << 4, // Negative subnormal
|
|
N_ZERO = 1 << 5, // Negative zero
|
|
P_ZERO = 1 << 6, // Positive zero
|
|
P_SUBNORMAL = 1 << 7, // Positive subnormal
|
|
P_NORMAL = 1 << 8, // Positive normal
|
|
P_INFINITY = 1 << 9 // Positive infinity
|
|
};
|
|
|
|
const uint32_t FullMask = S_NAN | Q_NAN | N_INFINITY | N_NORMAL |
|
|
N_SUBNORMAL | N_ZERO | P_ZERO | P_SUBNORMAL | P_NORMAL | P_INFINITY;
|
|
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
const ConstantInt *CMask = dyn_cast<ConstantInt>(Src1);
|
|
if (!CMask) {
|
|
if (isa<UndefValue>(Src0))
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
if (isa<UndefValue>(Src1))
|
|
return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
|
|
break;
|
|
}
|
|
|
|
uint32_t Mask = CMask->getZExtValue();
|
|
|
|
// If all tests are made, it doesn't matter what the value is.
|
|
if ((Mask & FullMask) == FullMask)
|
|
return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), true));
|
|
|
|
if ((Mask & FullMask) == 0)
|
|
return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), false));
|
|
|
|
if (Mask == (S_NAN | Q_NAN)) {
|
|
// Equivalent of isnan. Replace with standard fcmp.
|
|
Value *FCmp = Builder.CreateFCmpUNO(Src0, Src0);
|
|
FCmp->takeName(II);
|
|
return replaceInstUsesWith(*II, FCmp);
|
|
}
|
|
|
|
if (Mask == (N_ZERO | P_ZERO)) {
|
|
// Equivalent of == 0.
|
|
Value *FCmp = Builder.CreateFCmpOEQ(
|
|
Src0, ConstantFP::get(Src0->getType(), 0.0));
|
|
|
|
FCmp->takeName(II);
|
|
return replaceInstUsesWith(*II, FCmp);
|
|
}
|
|
|
|
// fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
|
|
if (((Mask & S_NAN) || (Mask & Q_NAN)) && isKnownNeverNaN(Src0, &TLI)) {
|
|
II->setArgOperand(1, ConstantInt::get(Src1->getType(),
|
|
Mask & ~(S_NAN | Q_NAN)));
|
|
return II;
|
|
}
|
|
|
|
const ConstantFP *CVal = dyn_cast<ConstantFP>(Src0);
|
|
if (!CVal) {
|
|
if (isa<UndefValue>(Src0))
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
// Clamp mask to used bits
|
|
if ((Mask & FullMask) != Mask) {
|
|
CallInst *NewCall = Builder.CreateCall(II->getCalledFunction(),
|
|
{ Src0, ConstantInt::get(Src1->getType(), Mask & FullMask) }
|
|
);
|
|
|
|
NewCall->takeName(II);
|
|
return replaceInstUsesWith(*II, NewCall);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
const APFloat &Val = CVal->getValueAPF();
|
|
|
|
bool Result =
|
|
((Mask & S_NAN) && Val.isNaN() && Val.isSignaling()) ||
|
|
((Mask & Q_NAN) && Val.isNaN() && !Val.isSignaling()) ||
|
|
((Mask & N_INFINITY) && Val.isInfinity() && Val.isNegative()) ||
|
|
((Mask & N_NORMAL) && Val.isNormal() && Val.isNegative()) ||
|
|
((Mask & N_SUBNORMAL) && Val.isDenormal() && Val.isNegative()) ||
|
|
((Mask & N_ZERO) && Val.isZero() && Val.isNegative()) ||
|
|
((Mask & P_ZERO) && Val.isZero() && !Val.isNegative()) ||
|
|
((Mask & P_SUBNORMAL) && Val.isDenormal() && !Val.isNegative()) ||
|
|
((Mask & P_NORMAL) && Val.isNormal() && !Val.isNegative()) ||
|
|
((Mask & P_INFINITY) && Val.isInfinity() && !Val.isNegative());
|
|
|
|
return replaceInstUsesWith(*II, ConstantInt::get(II->getType(), Result));
|
|
}
|
|
case Intrinsic::amdgcn_cvt_pkrtz: {
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
|
|
if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
|
|
const fltSemantics &HalfSem
|
|
= II->getType()->getScalarType()->getFltSemantics();
|
|
bool LosesInfo;
|
|
APFloat Val0 = C0->getValueAPF();
|
|
APFloat Val1 = C1->getValueAPF();
|
|
Val0.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
|
|
Val1.convert(HalfSem, APFloat::rmTowardZero, &LosesInfo);
|
|
|
|
Constant *Folded = ConstantVector::get({
|
|
ConstantFP::get(II->getContext(), Val0),
|
|
ConstantFP::get(II->getContext(), Val1) });
|
|
return replaceInstUsesWith(*II, Folded);
|
|
}
|
|
}
|
|
|
|
if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_cvt_pknorm_i16:
|
|
case Intrinsic::amdgcn_cvt_pknorm_u16:
|
|
case Intrinsic::amdgcn_cvt_pk_i16:
|
|
case Intrinsic::amdgcn_cvt_pk_u16: {
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
|
|
if (isa<UndefValue>(Src0) && isa<UndefValue>(Src1))
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_ubfe:
|
|
case Intrinsic::amdgcn_sbfe: {
|
|
// Decompose simple cases into standard shifts.
|
|
Value *Src = II->getArgOperand(0);
|
|
if (isa<UndefValue>(Src))
|
|
return replaceInstUsesWith(*II, Src);
|
|
|
|
unsigned Width;
|
|
Type *Ty = II->getType();
|
|
unsigned IntSize = Ty->getIntegerBitWidth();
|
|
|
|
ConstantInt *CWidth = dyn_cast<ConstantInt>(II->getArgOperand(2));
|
|
if (CWidth) {
|
|
Width = CWidth->getZExtValue();
|
|
if ((Width & (IntSize - 1)) == 0)
|
|
return replaceInstUsesWith(*II, ConstantInt::getNullValue(Ty));
|
|
|
|
if (Width >= IntSize) {
|
|
// Hardware ignores high bits, so remove those.
|
|
II->setArgOperand(2, ConstantInt::get(CWidth->getType(),
|
|
Width & (IntSize - 1)));
|
|
return II;
|
|
}
|
|
}
|
|
|
|
unsigned Offset;
|
|
ConstantInt *COffset = dyn_cast<ConstantInt>(II->getArgOperand(1));
|
|
if (COffset) {
|
|
Offset = COffset->getZExtValue();
|
|
if (Offset >= IntSize) {
|
|
II->setArgOperand(1, ConstantInt::get(COffset->getType(),
|
|
Offset & (IntSize - 1)));
|
|
return II;
|
|
}
|
|
}
|
|
|
|
bool Signed = IID == Intrinsic::amdgcn_sbfe;
|
|
|
|
if (!CWidth || !COffset)
|
|
break;
|
|
|
|
// The case of Width == 0 is handled above, which makes this tranformation
|
|
// safe. If Width == 0, then the ashr and lshr instructions become poison
|
|
// value since the shift amount would be equal to the bit size.
|
|
assert(Width != 0);
|
|
|
|
// TODO: This allows folding to undef when the hardware has specific
|
|
// behavior?
|
|
if (Offset + Width < IntSize) {
|
|
Value *Shl = Builder.CreateShl(Src, IntSize - Offset - Width);
|
|
Value *RightShift = Signed ? Builder.CreateAShr(Shl, IntSize - Width)
|
|
: Builder.CreateLShr(Shl, IntSize - Width);
|
|
RightShift->takeName(II);
|
|
return replaceInstUsesWith(*II, RightShift);
|
|
}
|
|
|
|
Value *RightShift = Signed ? Builder.CreateAShr(Src, Offset)
|
|
: Builder.CreateLShr(Src, Offset);
|
|
|
|
RightShift->takeName(II);
|
|
return replaceInstUsesWith(*II, RightShift);
|
|
}
|
|
case Intrinsic::amdgcn_exp:
|
|
case Intrinsic::amdgcn_exp_compr: {
|
|
ConstantInt *En = cast<ConstantInt>(II->getArgOperand(1));
|
|
unsigned EnBits = En->getZExtValue();
|
|
if (EnBits == 0xf)
|
|
break; // All inputs enabled.
|
|
|
|
bool IsCompr = IID == Intrinsic::amdgcn_exp_compr;
|
|
bool Changed = false;
|
|
for (int I = 0; I < (IsCompr ? 2 : 4); ++I) {
|
|
if ((!IsCompr && (EnBits & (1 << I)) == 0) ||
|
|
(IsCompr && ((EnBits & (0x3 << (2 * I))) == 0))) {
|
|
Value *Src = II->getArgOperand(I + 2);
|
|
if (!isa<UndefValue>(Src)) {
|
|
II->setArgOperand(I + 2, UndefValue::get(Src->getType()));
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Changed)
|
|
return II;
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_fmed3: {
|
|
// Note this does not preserve proper sNaN behavior if IEEE-mode is enabled
|
|
// for the shader.
|
|
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
Value *Src2 = II->getArgOperand(2);
|
|
|
|
// Checking for NaN before canonicalization provides better fidelity when
|
|
// mapping other operations onto fmed3 since the order of operands is
|
|
// unchanged.
|
|
CallInst *NewCall = nullptr;
|
|
if (match(Src0, m_NaN()) || isa<UndefValue>(Src0)) {
|
|
NewCall = Builder.CreateMinNum(Src1, Src2);
|
|
} else if (match(Src1, m_NaN()) || isa<UndefValue>(Src1)) {
|
|
NewCall = Builder.CreateMinNum(Src0, Src2);
|
|
} else if (match(Src2, m_NaN()) || isa<UndefValue>(Src2)) {
|
|
NewCall = Builder.CreateMaxNum(Src0, Src1);
|
|
}
|
|
|
|
if (NewCall) {
|
|
NewCall->copyFastMathFlags(II);
|
|
NewCall->takeName(II);
|
|
return replaceInstUsesWith(*II, NewCall);
|
|
}
|
|
|
|
bool Swap = false;
|
|
// Canonicalize constants to RHS operands.
|
|
//
|
|
// fmed3(c0, x, c1) -> fmed3(x, c0, c1)
|
|
if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
|
|
std::swap(Src0, Src1);
|
|
Swap = true;
|
|
}
|
|
|
|
if (isa<Constant>(Src1) && !isa<Constant>(Src2)) {
|
|
std::swap(Src1, Src2);
|
|
Swap = true;
|
|
}
|
|
|
|
if (isa<Constant>(Src0) && !isa<Constant>(Src1)) {
|
|
std::swap(Src0, Src1);
|
|
Swap = true;
|
|
}
|
|
|
|
if (Swap) {
|
|
II->setArgOperand(0, Src0);
|
|
II->setArgOperand(1, Src1);
|
|
II->setArgOperand(2, Src2);
|
|
return II;
|
|
}
|
|
|
|
if (const ConstantFP *C0 = dyn_cast<ConstantFP>(Src0)) {
|
|
if (const ConstantFP *C1 = dyn_cast<ConstantFP>(Src1)) {
|
|
if (const ConstantFP *C2 = dyn_cast<ConstantFP>(Src2)) {
|
|
APFloat Result = fmed3AMDGCN(C0->getValueAPF(), C1->getValueAPF(),
|
|
C2->getValueAPF());
|
|
return replaceInstUsesWith(*II,
|
|
ConstantFP::get(Builder.getContext(), Result));
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_icmp:
|
|
case Intrinsic::amdgcn_fcmp: {
|
|
const ConstantInt *CC = cast<ConstantInt>(II->getArgOperand(2));
|
|
// Guard against invalid arguments.
|
|
int64_t CCVal = CC->getZExtValue();
|
|
bool IsInteger = IID == Intrinsic::amdgcn_icmp;
|
|
if ((IsInteger && (CCVal < CmpInst::FIRST_ICMP_PREDICATE ||
|
|
CCVal > CmpInst::LAST_ICMP_PREDICATE)) ||
|
|
(!IsInteger && (CCVal < CmpInst::FIRST_FCMP_PREDICATE ||
|
|
CCVal > CmpInst::LAST_FCMP_PREDICATE)))
|
|
break;
|
|
|
|
Value *Src0 = II->getArgOperand(0);
|
|
Value *Src1 = II->getArgOperand(1);
|
|
|
|
if (auto *CSrc0 = dyn_cast<Constant>(Src0)) {
|
|
if (auto *CSrc1 = dyn_cast<Constant>(Src1)) {
|
|
Constant *CCmp = ConstantExpr::getCompare(CCVal, CSrc0, CSrc1);
|
|
if (CCmp->isNullValue()) {
|
|
return replaceInstUsesWith(
|
|
*II, ConstantExpr::getSExt(CCmp, II->getType()));
|
|
}
|
|
|
|
// The result of V_ICMP/V_FCMP assembly instructions (which this
|
|
// intrinsic exposes) is one bit per thread, masked with the EXEC
|
|
// register (which contains the bitmask of live threads). So a
|
|
// comparison that always returns true is the same as a read of the
|
|
// EXEC register.
|
|
Function *NewF = Intrinsic::getDeclaration(
|
|
II->getModule(), Intrinsic::read_register, II->getType());
|
|
Metadata *MDArgs[] = {MDString::get(II->getContext(), "exec")};
|
|
MDNode *MD = MDNode::get(II->getContext(), MDArgs);
|
|
Value *Args[] = {MetadataAsValue::get(II->getContext(), MD)};
|
|
CallInst *NewCall = Builder.CreateCall(NewF, Args);
|
|
NewCall->addAttribute(AttributeList::FunctionIndex,
|
|
Attribute::Convergent);
|
|
NewCall->takeName(II);
|
|
return replaceInstUsesWith(*II, NewCall);
|
|
}
|
|
|
|
// Canonicalize constants to RHS.
|
|
CmpInst::Predicate SwapPred
|
|
= CmpInst::getSwappedPredicate(static_cast<CmpInst::Predicate>(CCVal));
|
|
II->setArgOperand(0, Src1);
|
|
II->setArgOperand(1, Src0);
|
|
II->setArgOperand(2, ConstantInt::get(CC->getType(),
|
|
static_cast<int>(SwapPred)));
|
|
return II;
|
|
}
|
|
|
|
if (CCVal != CmpInst::ICMP_EQ && CCVal != CmpInst::ICMP_NE)
|
|
break;
|
|
|
|
// Canonicalize compare eq with true value to compare != 0
|
|
// llvm.amdgcn.icmp(zext (i1 x), 1, eq)
|
|
// -> llvm.amdgcn.icmp(zext (i1 x), 0, ne)
|
|
// llvm.amdgcn.icmp(sext (i1 x), -1, eq)
|
|
// -> llvm.amdgcn.icmp(sext (i1 x), 0, ne)
|
|
Value *ExtSrc;
|
|
if (CCVal == CmpInst::ICMP_EQ &&
|
|
((match(Src1, m_One()) && match(Src0, m_ZExt(m_Value(ExtSrc)))) ||
|
|
(match(Src1, m_AllOnes()) && match(Src0, m_SExt(m_Value(ExtSrc))))) &&
|
|
ExtSrc->getType()->isIntegerTy(1)) {
|
|
II->setArgOperand(1, ConstantInt::getNullValue(Src1->getType()));
|
|
II->setArgOperand(2, ConstantInt::get(CC->getType(), CmpInst::ICMP_NE));
|
|
return II;
|
|
}
|
|
|
|
CmpInst::Predicate SrcPred;
|
|
Value *SrcLHS;
|
|
Value *SrcRHS;
|
|
|
|
// Fold compare eq/ne with 0 from a compare result as the predicate to the
|
|
// intrinsic. The typical use is a wave vote function in the library, which
|
|
// will be fed from a user code condition compared with 0. Fold in the
|
|
// redundant compare.
|
|
|
|
// llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, ne)
|
|
// -> llvm.amdgcn.[if]cmp(a, b, pred)
|
|
//
|
|
// llvm.amdgcn.icmp([sz]ext ([if]cmp pred a, b), 0, eq)
|
|
// -> llvm.amdgcn.[if]cmp(a, b, inv pred)
|
|
if (match(Src1, m_Zero()) &&
|
|
match(Src0,
|
|
m_ZExtOrSExt(m_Cmp(SrcPred, m_Value(SrcLHS), m_Value(SrcRHS))))) {
|
|
if (CCVal == CmpInst::ICMP_EQ)
|
|
SrcPred = CmpInst::getInversePredicate(SrcPred);
|
|
|
|
Intrinsic::ID NewIID = CmpInst::isFPPredicate(SrcPred) ?
|
|
Intrinsic::amdgcn_fcmp : Intrinsic::amdgcn_icmp;
|
|
|
|
Type *Ty = SrcLHS->getType();
|
|
if (auto *CmpType = dyn_cast<IntegerType>(Ty)) {
|
|
// Promote to next legal integer type.
|
|
unsigned Width = CmpType->getBitWidth();
|
|
unsigned NewWidth = Width;
|
|
|
|
// Don't do anything for i1 comparisons.
|
|
if (Width == 1)
|
|
break;
|
|
|
|
if (Width <= 16)
|
|
NewWidth = 16;
|
|
else if (Width <= 32)
|
|
NewWidth = 32;
|
|
else if (Width <= 64)
|
|
NewWidth = 64;
|
|
else if (Width > 64)
|
|
break; // Can't handle this.
|
|
|
|
if (Width != NewWidth) {
|
|
IntegerType *CmpTy = Builder.getIntNTy(NewWidth);
|
|
if (CmpInst::isSigned(SrcPred)) {
|
|
SrcLHS = Builder.CreateSExt(SrcLHS, CmpTy);
|
|
SrcRHS = Builder.CreateSExt(SrcRHS, CmpTy);
|
|
} else {
|
|
SrcLHS = Builder.CreateZExt(SrcLHS, CmpTy);
|
|
SrcRHS = Builder.CreateZExt(SrcRHS, CmpTy);
|
|
}
|
|
}
|
|
} else if (!Ty->isFloatTy() && !Ty->isDoubleTy() && !Ty->isHalfTy())
|
|
break;
|
|
|
|
Function *NewF =
|
|
Intrinsic::getDeclaration(II->getModule(), NewIID,
|
|
{ II->getType(),
|
|
SrcLHS->getType() });
|
|
Value *Args[] = { SrcLHS, SrcRHS,
|
|
ConstantInt::get(CC->getType(), SrcPred) };
|
|
CallInst *NewCall = Builder.CreateCall(NewF, Args);
|
|
NewCall->takeName(II);
|
|
return replaceInstUsesWith(*II, NewCall);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::amdgcn_wqm_vote: {
|
|
// wqm_vote is identity when the argument is constant.
|
|
if (!isa<Constant>(II->getArgOperand(0)))
|
|
break;
|
|
|
|
return replaceInstUsesWith(*II, II->getArgOperand(0));
|
|
}
|
|
case Intrinsic::amdgcn_kill: {
|
|
const ConstantInt *C = dyn_cast<ConstantInt>(II->getArgOperand(0));
|
|
if (!C || !C->getZExtValue())
|
|
break;
|
|
|
|
// amdgcn.kill(i1 1) is a no-op
|
|
return eraseInstFromFunction(CI);
|
|
}
|
|
case Intrinsic::amdgcn_update_dpp: {
|
|
Value *Old = II->getArgOperand(0);
|
|
|
|
auto BC = cast<ConstantInt>(II->getArgOperand(5));
|
|
auto RM = cast<ConstantInt>(II->getArgOperand(3));
|
|
auto BM = cast<ConstantInt>(II->getArgOperand(4));
|
|
if (BC->isZeroValue() ||
|
|
RM->getZExtValue() != 0xF ||
|
|
BM->getZExtValue() != 0xF ||
|
|
isa<UndefValue>(Old))
|
|
break;
|
|
|
|
// If bound_ctrl = 1, row mask = bank mask = 0xf we can omit old value.
|
|
II->setOperand(0, UndefValue::get(Old->getType()));
|
|
return II;
|
|
}
|
|
case Intrinsic::amdgcn_readfirstlane:
|
|
case Intrinsic::amdgcn_readlane: {
|
|
// A constant value is trivially uniform.
|
|
if (Constant *C = dyn_cast<Constant>(II->getArgOperand(0)))
|
|
return replaceInstUsesWith(*II, C);
|
|
|
|
// The rest of these may not be safe if the exec may not be the same between
|
|
// the def and use.
|
|
Value *Src = II->getArgOperand(0);
|
|
Instruction *SrcInst = dyn_cast<Instruction>(Src);
|
|
if (SrcInst && SrcInst->getParent() != II->getParent())
|
|
break;
|
|
|
|
// readfirstlane (readfirstlane x) -> readfirstlane x
|
|
// readlane (readfirstlane x), y -> readfirstlane x
|
|
if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readfirstlane>()))
|
|
return replaceInstUsesWith(*II, Src);
|
|
|
|
if (IID == Intrinsic::amdgcn_readfirstlane) {
|
|
// readfirstlane (readlane x, y) -> readlane x, y
|
|
if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>()))
|
|
return replaceInstUsesWith(*II, Src);
|
|
} else {
|
|
// readlane (readlane x, y), y -> readlane x, y
|
|
if (match(Src, m_Intrinsic<Intrinsic::amdgcn_readlane>(
|
|
m_Value(), m_Specific(II->getArgOperand(1)))))
|
|
return replaceInstUsesWith(*II, Src);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case Intrinsic::stackrestore: {
|
|
// If the save is right next to the restore, remove the restore. This can
|
|
// happen when variable allocas are DCE'd.
|
|
if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
|
|
if (SS->getIntrinsicID() == Intrinsic::stacksave) {
|
|
// Skip over debug info.
|
|
if (SS->getNextNonDebugInstruction() == II) {
|
|
return eraseInstFromFunction(CI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan down this block to see if there is another stack restore in the
|
|
// same block without an intervening call/alloca.
|
|
BasicBlock::iterator BI(II);
|
|
Instruction *TI = II->getParent()->getTerminator();
|
|
bool CannotRemove = false;
|
|
for (++BI; &*BI != TI; ++BI) {
|
|
if (isa<AllocaInst>(BI)) {
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
|
|
if (auto *II2 = dyn_cast<IntrinsicInst>(BCI)) {
|
|
// If there is a stackrestore below this one, remove this one.
|
|
if (II2->getIntrinsicID() == Intrinsic::stackrestore)
|
|
return eraseInstFromFunction(CI);
|
|
|
|
// Bail if we cross over an intrinsic with side effects, such as
|
|
// llvm.stacksave, llvm.read_register, or llvm.setjmp.
|
|
if (II2->mayHaveSideEffects()) {
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
} else {
|
|
// If we found a non-intrinsic call, we can't remove the stack
|
|
// restore.
|
|
CannotRemove = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the stack restore is in a return, resume, or unwind block and if there
|
|
// are no allocas or calls between the restore and the return, nuke the
|
|
// restore.
|
|
if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
|
|
return eraseInstFromFunction(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::lifetime_start:
|
|
// Asan needs to poison memory to detect invalid access which is possible
|
|
// even for empty lifetime range.
|
|
if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
|
|
II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
|
|
II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
|
|
break;
|
|
|
|
if (removeTriviallyEmptyRange(*II, Intrinsic::lifetime_start,
|
|
Intrinsic::lifetime_end, *this))
|
|
return nullptr;
|
|
break;
|
|
case Intrinsic::assume: {
|
|
Value *IIOperand = II->getArgOperand(0);
|
|
// Remove an assume if it is followed by an identical assume.
|
|
// TODO: Do we need this? Unless there are conflicting assumptions, the
|
|
// computeKnownBits(IIOperand) below here eliminates redundant assumes.
|
|
Instruction *Next = II->getNextNonDebugInstruction();
|
|
if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
|
|
return eraseInstFromFunction(CI);
|
|
|
|
// Canonicalize assume(a && b) -> assume(a); assume(b);
|
|
// Note: New assumption intrinsics created here are registered by
|
|
// the InstCombineIRInserter object.
|
|
FunctionType *AssumeIntrinsicTy = II->getFunctionType();
|
|
Value *AssumeIntrinsic = II->getCalledValue();
|
|
Value *A, *B;
|
|
if (match(IIOperand, m_And(m_Value(A), m_Value(B)))) {
|
|
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, II->getName());
|
|
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
// assume(!(a || b)) -> assume(!a); assume(!b);
|
|
if (match(IIOperand, m_Not(m_Or(m_Value(A), m_Value(B))))) {
|
|
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
|
|
Builder.CreateNot(A), II->getName());
|
|
Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
|
|
Builder.CreateNot(B), II->getName());
|
|
return eraseInstFromFunction(*II);
|
|
}
|
|
|
|
// assume( (load addr) != null ) -> add 'nonnull' metadata to load
|
|
// (if assume is valid at the load)
|
|
CmpInst::Predicate Pred;
|
|
Instruction *LHS;
|
|
if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
|
|
Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
|
|
LHS->getType()->isPointerTy() &&
|
|
isValidAssumeForContext(II, LHS, &DT)) {
|
|
MDNode *MD = MDNode::get(II->getContext(), None);
|
|
LHS->setMetadata(LLVMContext::MD_nonnull, MD);
|
|
return eraseInstFromFunction(*II);
|
|
|
|
// TODO: apply nonnull return attributes to calls and invokes
|
|
// TODO: apply range metadata for range check patterns?
|
|
}
|
|
|
|
// If there is a dominating assume with the same condition as this one,
|
|
// then this one is redundant, and should be removed.
|
|
KnownBits Known(1);
|
|
computeKnownBits(IIOperand, Known, 0, II);
|
|
if (Known.isAllOnes())
|
|
return eraseInstFromFunction(*II);
|
|
|
|
// Update the cache of affected values for this assumption (we might be
|
|
// here because we just simplified the condition).
|
|
AC.updateAffectedValues(II);
|
|
break;
|
|
}
|
|
case Intrinsic::experimental_gc_relocate: {
|
|
// Translate facts known about a pointer before relocating into
|
|
// facts about the relocate value, while being careful to
|
|
// preserve relocation semantics.
|
|
Value *DerivedPtr = cast<GCRelocateInst>(II)->getDerivedPtr();
|
|
|
|
// Remove the relocation if unused, note that this check is required
|
|
// to prevent the cases below from looping forever.
|
|
if (II->use_empty())
|
|
return eraseInstFromFunction(*II);
|
|
|
|
// Undef is undef, even after relocation.
|
|
// TODO: provide a hook for this in GCStrategy. This is clearly legal for
|
|
// most practical collectors, but there was discussion in the review thread
|
|
// about whether it was legal for all possible collectors.
|
|
if (isa<UndefValue>(DerivedPtr))
|
|
// Use undef of gc_relocate's type to replace it.
|
|
return replaceInstUsesWith(*II, UndefValue::get(II->getType()));
|
|
|
|
if (auto *PT = dyn_cast<PointerType>(II->getType())) {
|
|
// The relocation of null will be null for most any collector.
|
|
// TODO: provide a hook for this in GCStrategy. There might be some
|
|
// weird collector this property does not hold for.
|
|
if (isa<ConstantPointerNull>(DerivedPtr))
|
|
// Use null-pointer of gc_relocate's type to replace it.
|
|
return replaceInstUsesWith(*II, ConstantPointerNull::get(PT));
|
|
|
|
// isKnownNonNull -> nonnull attribute
|
|
if (!II->hasRetAttr(Attribute::NonNull) &&
|
|
isKnownNonZero(DerivedPtr, DL, 0, &AC, II, &DT)) {
|
|
II->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
|
|
return II;
|
|
}
|
|
}
|
|
|
|
// TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
|
|
// Canonicalize on the type from the uses to the defs
|
|
|
|
// TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
|
|
break;
|
|
}
|
|
|
|
case Intrinsic::experimental_guard: {
|
|
// Is this guard followed by another guard? We scan forward over a small
|
|
// fixed window of instructions to handle common cases with conditions
|
|
// computed between guards.
|
|
Instruction *NextInst = II->getNextNode();
|
|
for (unsigned i = 0; i < GuardWideningWindow; i++) {
|
|
// Note: Using context-free form to avoid compile time blow up
|
|
if (!isSafeToSpeculativelyExecute(NextInst))
|
|
break;
|
|
NextInst = NextInst->getNextNode();
|
|
}
|
|
Value *NextCond = nullptr;
|
|
if (match(NextInst,
|
|
m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
|
|
Value *CurrCond = II->getArgOperand(0);
|
|
|
|
// Remove a guard that it is immediately preceded by an identical guard.
|
|
if (CurrCond == NextCond)
|
|
return eraseInstFromFunction(*NextInst);
|
|
|
|
// Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
|
|
Instruction* MoveI = II->getNextNode();
|
|
while (MoveI != NextInst) {
|
|
auto *Temp = MoveI;
|
|
MoveI = MoveI->getNextNode();
|
|
Temp->moveBefore(II);
|
|
}
|
|
II->setArgOperand(0, Builder.CreateAnd(CurrCond, NextCond));
|
|
return eraseInstFromFunction(*NextInst);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return visitCallBase(*II);
|
|
}
|
|
|
|
// Fence instruction simplification
|
|
Instruction *InstCombiner::visitFenceInst(FenceInst &FI) {
|
|
// Remove identical consecutive fences.
|
|
Instruction *Next = FI.getNextNonDebugInstruction();
|
|
if (auto *NFI = dyn_cast<FenceInst>(Next))
|
|
if (FI.isIdenticalTo(NFI))
|
|
return eraseInstFromFunction(FI);
|
|
return nullptr;
|
|
}
|
|
|
|
// InvokeInst simplification
|
|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
|
|
return visitCallBase(II);
|
|
}
|
|
|
|
// CallBrInst simplification
|
|
Instruction *InstCombiner::visitCallBrInst(CallBrInst &CBI) {
|
|
return visitCallBase(CBI);
|
|
}
|
|
|
|
/// If this cast does not affect the value passed through the varargs area, we
|
|
/// can eliminate the use of the cast.
|
|
static bool isSafeToEliminateVarargsCast(const CallBase &Call,
|
|
const DataLayout &DL,
|
|
const CastInst *const CI,
|
|
const int ix) {
|
|
if (!CI->isLosslessCast())
|
|
return false;
|
|
|
|
// If this is a GC intrinsic, avoid munging types. We need types for
|
|
// statepoint reconstruction in SelectionDAG.
|
|
// TODO: This is probably something which should be expanded to all
|
|
// intrinsics since the entire point of intrinsics is that
|
|
// they are understandable by the optimizer.
|
|
if (isStatepoint(&Call) || isGCRelocate(&Call) || isGCResult(&Call))
|
|
return false;
|
|
|
|
// The size of ByVal or InAlloca arguments is derived from the type, so we
|
|
// can't change to a type with a different size. If the size were
|
|
// passed explicitly we could avoid this check.
|
|
if (!Call.isByValOrInAllocaArgument(ix))
|
|
return true;
|
|
|
|
Type* SrcTy =
|
|
cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
|
|
Type *DstTy = Call.isByValArgument(ix)
|
|
? Call.getParamByValType(ix)
|
|
: cast<PointerType>(CI->getType())->getElementType();
|
|
if (!SrcTy->isSized() || !DstTy->isSized())
|
|
return false;
|
|
if (DL.getTypeAllocSize(SrcTy) != DL.getTypeAllocSize(DstTy))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI) {
|
|
if (!CI->getCalledFunction()) return nullptr;
|
|
|
|
auto InstCombineRAUW = [this](Instruction *From, Value *With) {
|
|
replaceInstUsesWith(*From, With);
|
|
};
|
|
auto InstCombineErase = [this](Instruction *I) {
|
|
eraseInstFromFunction(*I);
|
|
};
|
|
LibCallSimplifier Simplifier(DL, &TLI, ORE, BFI, PSI, InstCombineRAUW,
|
|
InstCombineErase);
|
|
if (Value *With = Simplifier.optimizeCall(CI)) {
|
|
++NumSimplified;
|
|
return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
|
|
// Strip off at most one level of pointer casts, looking for an alloca. This
|
|
// is good enough in practice and simpler than handling any number of casts.
|
|
Value *Underlying = TrampMem->stripPointerCasts();
|
|
if (Underlying != TrampMem &&
|
|
(!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
|
|
return nullptr;
|
|
if (!isa<AllocaInst>(Underlying))
|
|
return nullptr;
|
|
|
|
IntrinsicInst *InitTrampoline = nullptr;
|
|
for (User *U : TrampMem->users()) {
|
|
IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
|
|
if (!II)
|
|
return nullptr;
|
|
if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
|
|
if (InitTrampoline)
|
|
// More than one init_trampoline writes to this value. Give up.
|
|
return nullptr;
|
|
InitTrampoline = II;
|
|
continue;
|
|
}
|
|
if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
|
|
// Allow any number of calls to adjust.trampoline.
|
|
continue;
|
|
return nullptr;
|
|
}
|
|
|
|
// No call to init.trampoline found.
|
|
if (!InitTrampoline)
|
|
return nullptr;
|
|
|
|
// Check that the alloca is being used in the expected way.
|
|
if (InitTrampoline->getOperand(0) != TrampMem)
|
|
return nullptr;
|
|
|
|
return InitTrampoline;
|
|
}
|
|
|
|
static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
|
|
Value *TrampMem) {
|
|
// Visit all the previous instructions in the basic block, and try to find a
|
|
// init.trampoline which has a direct path to the adjust.trampoline.
|
|
for (BasicBlock::iterator I = AdjustTramp->getIterator(),
|
|
E = AdjustTramp->getParent()->begin();
|
|
I != E;) {
|
|
Instruction *Inst = &*--I;
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
|
|
if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
|
|
II->getOperand(0) == TrampMem)
|
|
return II;
|
|
if (Inst->mayWriteToMemory())
|
|
return nullptr;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Given a call to llvm.adjust.trampoline, find and return the corresponding
|
|
// call to llvm.init.trampoline if the call to the trampoline can be optimized
|
|
// to a direct call to a function. Otherwise return NULL.
|
|
static IntrinsicInst *findInitTrampoline(Value *Callee) {
|
|
Callee = Callee->stripPointerCasts();
|
|
IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
|
|
if (!AdjustTramp ||
|
|
AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
|
|
return nullptr;
|
|
|
|
Value *TrampMem = AdjustTramp->getOperand(0);
|
|
|
|
if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
|
|
return IT;
|
|
if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
|
|
return IT;
|
|
return nullptr;
|
|
}
|
|
|
|
static void annotateAnyAllocSite(CallBase &Call, const TargetLibraryInfo *TLI) {
|
|
ConstantInt *Op0C = dyn_cast<ConstantInt>(Call.getOperand(0));
|
|
ConstantInt *Op1C = (Call.getNumArgOperands() == 1)
|
|
? nullptr
|
|
: dyn_cast<ConstantInt>(Call.getOperand(1));
|
|
// Bail out if the allocation size is zero.
|
|
if ((Op0C && Op0C->isNullValue()) || (Op1C && Op1C->isNullValue()))
|
|
return;
|
|
|
|
if (isMallocLikeFn(&Call, TLI) && Op0C) {
|
|
if (isOpNewLikeFn(&Call, TLI))
|
|
Call.addAttribute(AttributeList::ReturnIndex,
|
|
Attribute::getWithDereferenceableBytes(
|
|
Call.getContext(), Op0C->getZExtValue()));
|
|
else
|
|
Call.addAttribute(AttributeList::ReturnIndex,
|
|
Attribute::getWithDereferenceableOrNullBytes(
|
|
Call.getContext(), Op0C->getZExtValue()));
|
|
} else if (isReallocLikeFn(&Call, TLI) && Op1C) {
|
|
Call.addAttribute(AttributeList::ReturnIndex,
|
|
Attribute::getWithDereferenceableOrNullBytes(
|
|
Call.getContext(), Op1C->getZExtValue()));
|
|
} else if (isCallocLikeFn(&Call, TLI) && Op0C && Op1C) {
|
|
bool Overflow;
|
|
const APInt &N = Op0C->getValue();
|
|
APInt Size = N.umul_ov(Op1C->getValue(), Overflow);
|
|
if (!Overflow)
|
|
Call.addAttribute(AttributeList::ReturnIndex,
|
|
Attribute::getWithDereferenceableOrNullBytes(
|
|
Call.getContext(), Size.getZExtValue()));
|
|
}
|
|
}
|
|
|
|
/// Improvements for call, callbr and invoke instructions.
|
|
Instruction *InstCombiner::visitCallBase(CallBase &Call) {
|
|
if (isAllocationFn(&Call, &TLI))
|
|
annotateAnyAllocSite(Call, &TLI);
|
|
|
|
if (isAllocLikeFn(&Call, &TLI))
|
|
return visitAllocSite(Call);
|
|
|
|
bool Changed = false;
|
|
|
|
// Mark any parameters that are known to be non-null with the nonnull
|
|
// attribute. This is helpful for inlining calls to functions with null
|
|
// checks on their arguments.
|
|
SmallVector<unsigned, 4> ArgNos;
|
|
unsigned ArgNo = 0;
|
|
|
|
for (Value *V : Call.args()) {
|
|
if (V->getType()->isPointerTy() &&
|
|
!Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
|
|
isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
|
|
ArgNos.push_back(ArgNo);
|
|
ArgNo++;
|
|
}
|
|
|
|
assert(ArgNo == Call.arg_size() && "sanity check");
|
|
|
|
if (!ArgNos.empty()) {
|
|
AttributeList AS = Call.getAttributes();
|
|
LLVMContext &Ctx = Call.getContext();
|
|
AS = AS.addParamAttribute(Ctx, ArgNos,
|
|
Attribute::get(Ctx, Attribute::NonNull));
|
|
Call.setAttributes(AS);
|
|
Changed = true;
|
|
}
|
|
|
|
// If the callee is a pointer to a function, attempt to move any casts to the
|
|
// arguments of the call/callbr/invoke.
|
|
Value *Callee = Call.getCalledValue();
|
|
if (!isa<Function>(Callee) && transformConstExprCastCall(Call))
|
|
return nullptr;
|
|
|
|
if (Function *CalleeF = dyn_cast<Function>(Callee)) {
|
|
// Remove the convergent attr on calls when the callee is not convergent.
|
|
if (Call.isConvergent() && !CalleeF->isConvergent() &&
|
|
!CalleeF->isIntrinsic()) {
|
|
LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
|
|
<< "\n");
|
|
Call.setNotConvergent();
|
|
return &Call;
|
|
}
|
|
|
|
// If the call and callee calling conventions don't match, this call must
|
|
// be unreachable, as the call is undefined.
|
|
if (CalleeF->getCallingConv() != Call.getCallingConv() &&
|
|
// Only do this for calls to a function with a body. A prototype may
|
|
// not actually end up matching the implementation's calling conv for a
|
|
// variety of reasons (e.g. it may be written in assembly).
|
|
!CalleeF->isDeclaration()) {
|
|
Instruction *OldCall = &Call;
|
|
CreateNonTerminatorUnreachable(OldCall);
|
|
// If OldCall does not return void then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!OldCall->getType()->isVoidTy())
|
|
replaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
|
|
if (isa<CallInst>(OldCall))
|
|
return eraseInstFromFunction(*OldCall);
|
|
|
|
// We cannot remove an invoke or a callbr, because it would change thexi
|
|
// CFG, just change the callee to a null pointer.
|
|
cast<CallBase>(OldCall)->setCalledFunction(
|
|
CalleeF->getFunctionType(),
|
|
Constant::getNullValue(CalleeF->getType()));
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
if ((isa<ConstantPointerNull>(Callee) &&
|
|
!NullPointerIsDefined(Call.getFunction())) ||
|
|
isa<UndefValue>(Callee)) {
|
|
// If Call does not return void then replaceAllUsesWith undef.
|
|
// This allows ValueHandlers and custom metadata to adjust itself.
|
|
if (!Call.getType()->isVoidTy())
|
|
replaceInstUsesWith(Call, UndefValue::get(Call.getType()));
|
|
|
|
if (Call.isTerminator()) {
|
|
// Can't remove an invoke or callbr because we cannot change the CFG.
|
|
return nullptr;
|
|
}
|
|
|
|
// This instruction is not reachable, just remove it.
|
|
CreateNonTerminatorUnreachable(&Call);
|
|
return eraseInstFromFunction(Call);
|
|
}
|
|
|
|
if (IntrinsicInst *II = findInitTrampoline(Callee))
|
|
return transformCallThroughTrampoline(Call, *II);
|
|
|
|
PointerType *PTy = cast<PointerType>(Callee->getType());
|
|
FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
|
|
if (FTy->isVarArg()) {
|
|
int ix = FTy->getNumParams();
|
|
// See if we can optimize any arguments passed through the varargs area of
|
|
// the call.
|
|
for (auto I = Call.arg_begin() + FTy->getNumParams(), E = Call.arg_end();
|
|
I != E; ++I, ++ix) {
|
|
CastInst *CI = dyn_cast<CastInst>(*I);
|
|
if (CI && isSafeToEliminateVarargsCast(Call, DL, CI, ix)) {
|
|
*I = CI->getOperand(0);
|
|
|
|
// Update the byval type to match the argument type.
|
|
if (Call.isByValArgument(ix)) {
|
|
Call.removeParamAttr(ix, Attribute::ByVal);
|
|
Call.addParamAttr(
|
|
ix, Attribute::getWithByValType(
|
|
Call.getContext(),
|
|
CI->getOperand(0)->getType()->getPointerElementType()));
|
|
}
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
|
|
// Inline asm calls cannot throw - mark them 'nounwind'.
|
|
Call.setDoesNotThrow();
|
|
Changed = true;
|
|
}
|
|
|
|
// Try to optimize the call if possible, we require DataLayout for most of
|
|
// this. None of these calls are seen as possibly dead so go ahead and
|
|
// delete the instruction now.
|
|
if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
|
|
Instruction *I = tryOptimizeCall(CI);
|
|
// If we changed something return the result, etc. Otherwise let
|
|
// the fallthrough check.
|
|
if (I) return eraseInstFromFunction(*I);
|
|
}
|
|
|
|
return Changed ? &Call : nullptr;
|
|
}
|
|
|
|
/// If the callee is a constexpr cast of a function, attempt to move the cast to
|
|
/// the arguments of the call/callbr/invoke.
|
|
bool InstCombiner::transformConstExprCastCall(CallBase &Call) {
|
|
auto *Callee = dyn_cast<Function>(Call.getCalledValue()->stripPointerCasts());
|
|
if (!Callee)
|
|
return false;
|
|
|
|
// If this is a call to a thunk function, don't remove the cast. Thunks are
|
|
// used to transparently forward all incoming parameters and outgoing return
|
|
// values, so it's important to leave the cast in place.
|
|
if (Callee->hasFnAttribute("thunk"))
|
|
return false;
|
|
|
|
// If this is a musttail call, the callee's prototype must match the caller's
|
|
// prototype with the exception of pointee types. The code below doesn't
|
|
// implement that, so we can't do this transform.
|
|
// TODO: Do the transform if it only requires adding pointer casts.
|
|
if (Call.isMustTailCall())
|
|
return false;
|
|
|
|
Instruction *Caller = &Call;
|
|
const AttributeList &CallerPAL = Call.getAttributes();
|
|
|
|
// Okay, this is a cast from a function to a different type. Unless doing so
|
|
// would cause a type conversion of one of our arguments, change this call to
|
|
// be a direct call with arguments casted to the appropriate types.
|
|
FunctionType *FT = Callee->getFunctionType();
|
|
Type *OldRetTy = Caller->getType();
|
|
Type *NewRetTy = FT->getReturnType();
|
|
|
|
// Check to see if we are changing the return type...
|
|
if (OldRetTy != NewRetTy) {
|
|
|
|
if (NewRetTy->isStructTy())
|
|
return false; // TODO: Handle multiple return values.
|
|
|
|
if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
|
|
if (Callee->isDeclaration())
|
|
return false; // Cannot transform this return value.
|
|
|
|
if (!Caller->use_empty() &&
|
|
// void -> non-void is handled specially
|
|
!NewRetTy->isVoidTy())
|
|
return false; // Cannot transform this return value.
|
|
}
|
|
|
|
if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
|
|
AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
|
|
if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
|
|
return false; // Attribute not compatible with transformed value.
|
|
}
|
|
|
|
// If the callbase is an invoke/callbr instruction, and the return value is
|
|
// used by a PHI node in a successor, we cannot change the return type of
|
|
// the call because there is no place to put the cast instruction (without
|
|
// breaking the critical edge). Bail out in this case.
|
|
if (!Caller->use_empty()) {
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
|
|
for (User *U : II->users())
|
|
if (PHINode *PN = dyn_cast<PHINode>(U))
|
|
if (PN->getParent() == II->getNormalDest() ||
|
|
PN->getParent() == II->getUnwindDest())
|
|
return false;
|
|
// FIXME: Be conservative for callbr to avoid a quadratic search.
|
|
if (isa<CallBrInst>(Caller))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
unsigned NumActualArgs = Call.arg_size();
|
|
unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
|
|
|
|
// Prevent us turning:
|
|
// declare void @takes_i32_inalloca(i32* inalloca)
|
|
// call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
|
|
//
|
|
// into:
|
|
// call void @takes_i32_inalloca(i32* null)
|
|
//
|
|
// Similarly, avoid folding away bitcasts of byval calls.
|
|
if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
|
|
Callee->getAttributes().hasAttrSomewhere(Attribute::ByVal))
|
|
return false;
|
|
|
|
auto AI = Call.arg_begin();
|
|
for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
|
|
Type *ParamTy = FT->getParamType(i);
|
|
Type *ActTy = (*AI)->getType();
|
|
|
|
if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
|
|
return false; // Cannot transform this parameter value.
|
|
|
|
if (AttrBuilder(CallerPAL.getParamAttributes(i))
|
|
.overlaps(AttributeFuncs::typeIncompatible(ParamTy)))
|
|
return false; // Attribute not compatible with transformed value.
|
|
|
|
if (Call.isInAllocaArgument(i))
|
|
return false; // Cannot transform to and from inalloca.
|
|
|
|
// If the parameter is passed as a byval argument, then we have to have a
|
|
// sized type and the sized type has to have the same size as the old type.
|
|
if (ParamTy != ActTy && CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
|
|
PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
|
|
if (!ParamPTy || !ParamPTy->getElementType()->isSized())
|
|
return false;
|
|
|
|
Type *CurElTy = Call.getParamByValType(i);
|
|
if (DL.getTypeAllocSize(CurElTy) !=
|
|
DL.getTypeAllocSize(ParamPTy->getElementType()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (Callee->isDeclaration()) {
|
|
// Do not delete arguments unless we have a function body.
|
|
if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
|
|
return false;
|
|
|
|
// If the callee is just a declaration, don't change the varargsness of the
|
|
// call. We don't want to introduce a varargs call where one doesn't
|
|
// already exist.
|
|
PointerType *APTy = cast<PointerType>(Call.getCalledValue()->getType());
|
|
if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
|
|
return false;
|
|
|
|
// If both the callee and the cast type are varargs, we still have to make
|
|
// sure the number of fixed parameters are the same or we have the same
|
|
// ABI issues as if we introduce a varargs call.
|
|
if (FT->isVarArg() &&
|
|
cast<FunctionType>(APTy->getElementType())->isVarArg() &&
|
|
FT->getNumParams() !=
|
|
cast<FunctionType>(APTy->getElementType())->getNumParams())
|
|
return false;
|
|
}
|
|
|
|
if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
|
|
!CallerPAL.isEmpty()) {
|
|
// In this case we have more arguments than the new function type, but we
|
|
// won't be dropping them. Check that these extra arguments have attributes
|
|
// that are compatible with being a vararg call argument.
|
|
unsigned SRetIdx;
|
|
if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
|
|
SRetIdx > FT->getNumParams())
|
|
return false;
|
|
}
|
|
|
|
// Okay, we decided that this is a safe thing to do: go ahead and start
|
|
// inserting cast instructions as necessary.
|
|
SmallVector<Value *, 8> Args;
|
|
SmallVector<AttributeSet, 8> ArgAttrs;
|
|
Args.reserve(NumActualArgs);
|
|
ArgAttrs.reserve(NumActualArgs);
|
|
|
|
// Get any return attributes.
|
|
AttrBuilder RAttrs(CallerPAL, AttributeList::ReturnIndex);
|
|
|
|
// If the return value is not being used, the type may not be compatible
|
|
// with the existing attributes. Wipe out any problematic attributes.
|
|
RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
|
|
|
|
LLVMContext &Ctx = Call.getContext();
|
|
AI = Call.arg_begin();
|
|
for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
|
|
Type *ParamTy = FT->getParamType(i);
|
|
|
|
Value *NewArg = *AI;
|
|
if ((*AI)->getType() != ParamTy)
|
|
NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
|
|
Args.push_back(NewArg);
|
|
|
|
// Add any parameter attributes.
|
|
if (CallerPAL.hasParamAttribute(i, Attribute::ByVal)) {
|
|
AttrBuilder AB(CallerPAL.getParamAttributes(i));
|
|
AB.addByValAttr(NewArg->getType()->getPointerElementType());
|
|
ArgAttrs.push_back(AttributeSet::get(Ctx, AB));
|
|
} else
|
|
ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
|
|
}
|
|
|
|
// If the function takes more arguments than the call was taking, add them
|
|
// now.
|
|
for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
|
|
Args.push_back(Constant::getNullValue(FT->getParamType(i)));
|
|
ArgAttrs.push_back(AttributeSet());
|
|
}
|
|
|
|
// If we are removing arguments to the function, emit an obnoxious warning.
|
|
if (FT->getNumParams() < NumActualArgs) {
|
|
// TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
|
|
if (FT->isVarArg()) {
|
|
// Add all of the arguments in their promoted form to the arg list.
|
|
for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
|
|
Type *PTy = getPromotedType((*AI)->getType());
|
|
Value *NewArg = *AI;
|
|
if (PTy != (*AI)->getType()) {
|
|
// Must promote to pass through va_arg area!
|
|
Instruction::CastOps opcode =
|
|
CastInst::getCastOpcode(*AI, false, PTy, false);
|
|
NewArg = Builder.CreateCast(opcode, *AI, PTy);
|
|
}
|
|
Args.push_back(NewArg);
|
|
|
|
// Add any parameter attributes.
|
|
ArgAttrs.push_back(CallerPAL.getParamAttributes(i));
|
|
}
|
|
}
|
|
}
|
|
|
|
AttributeSet FnAttrs = CallerPAL.getFnAttributes();
|
|
|
|
if (NewRetTy->isVoidTy())
|
|
Caller->setName(""); // Void type should not have a name.
|
|
|
|
assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
|
|
"missing argument attributes");
|
|
AttributeList NewCallerPAL = AttributeList::get(
|
|
Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
Call.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCall;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
|
|
NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
|
|
II->getUnwindDest(), Args, OpBundles);
|
|
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
|
|
NewCall = Builder.CreateCallBr(Callee, CBI->getDefaultDest(),
|
|
CBI->getIndirectDests(), Args, OpBundles);
|
|
} else {
|
|
NewCall = Builder.CreateCall(Callee, Args, OpBundles);
|
|
cast<CallInst>(NewCall)->setTailCallKind(
|
|
cast<CallInst>(Caller)->getTailCallKind());
|
|
}
|
|
NewCall->takeName(Caller);
|
|
NewCall->setCallingConv(Call.getCallingConv());
|
|
NewCall->setAttributes(NewCallerPAL);
|
|
|
|
// Preserve the weight metadata for the new call instruction. The metadata
|
|
// is used by SamplePGO to check callsite's hotness.
|
|
uint64_t W;
|
|
if (Caller->extractProfTotalWeight(W))
|
|
NewCall->setProfWeight(W);
|
|
|
|
// Insert a cast of the return type as necessary.
|
|
Instruction *NC = NewCall;
|
|
Value *NV = NC;
|
|
if (OldRetTy != NV->getType() && !Caller->use_empty()) {
|
|
if (!NV->getType()->isVoidTy()) {
|
|
NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
|
|
NC->setDebugLoc(Caller->getDebugLoc());
|
|
|
|
// If this is an invoke/callbr instruction, we should insert it after the
|
|
// first non-phi instruction in the normal successor block.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
|
|
BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
|
|
InsertNewInstBefore(NC, *I);
|
|
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Caller)) {
|
|
BasicBlock::iterator I = CBI->getDefaultDest()->getFirstInsertionPt();
|
|
InsertNewInstBefore(NC, *I);
|
|
} else {
|
|
// Otherwise, it's a call, just insert cast right after the call.
|
|
InsertNewInstBefore(NC, *Caller);
|
|
}
|
|
Worklist.AddUsersToWorkList(*Caller);
|
|
} else {
|
|
NV = UndefValue::get(Caller->getType());
|
|
}
|
|
}
|
|
|
|
if (!Caller->use_empty())
|
|
replaceInstUsesWith(*Caller, NV);
|
|
else if (Caller->hasValueHandle()) {
|
|
if (OldRetTy == NV->getType())
|
|
ValueHandleBase::ValueIsRAUWd(Caller, NV);
|
|
else
|
|
// We cannot call ValueIsRAUWd with a different type, and the
|
|
// actual tracked value will disappear.
|
|
ValueHandleBase::ValueIsDeleted(Caller);
|
|
}
|
|
|
|
eraseInstFromFunction(*Caller);
|
|
return true;
|
|
}
|
|
|
|
/// Turn a call to a function created by init_trampoline / adjust_trampoline
|
|
/// intrinsic pair into a direct call to the underlying function.
|
|
Instruction *
|
|
InstCombiner::transformCallThroughTrampoline(CallBase &Call,
|
|
IntrinsicInst &Tramp) {
|
|
Value *Callee = Call.getCalledValue();
|
|
Type *CalleeTy = Callee->getType();
|
|
FunctionType *FTy = Call.getFunctionType();
|
|
AttributeList Attrs = Call.getAttributes();
|
|
|
|
// If the call already has the 'nest' attribute somewhere then give up -
|
|
// otherwise 'nest' would occur twice after splicing in the chain.
|
|
if (Attrs.hasAttrSomewhere(Attribute::Nest))
|
|
return nullptr;
|
|
|
|
Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
|
|
FunctionType *NestFTy = NestF->getFunctionType();
|
|
|
|
AttributeList NestAttrs = NestF->getAttributes();
|
|
if (!NestAttrs.isEmpty()) {
|
|
unsigned NestArgNo = 0;
|
|
Type *NestTy = nullptr;
|
|
AttributeSet NestAttr;
|
|
|
|
// Look for a parameter marked with the 'nest' attribute.
|
|
for (FunctionType::param_iterator I = NestFTy->param_begin(),
|
|
E = NestFTy->param_end();
|
|
I != E; ++NestArgNo, ++I) {
|
|
AttributeSet AS = NestAttrs.getParamAttributes(NestArgNo);
|
|
if (AS.hasAttribute(Attribute::Nest)) {
|
|
// Record the parameter type and any other attributes.
|
|
NestTy = *I;
|
|
NestAttr = AS;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (NestTy) {
|
|
std::vector<Value*> NewArgs;
|
|
std::vector<AttributeSet> NewArgAttrs;
|
|
NewArgs.reserve(Call.arg_size() + 1);
|
|
NewArgAttrs.reserve(Call.arg_size());
|
|
|
|
// Insert the nest argument into the call argument list, which may
|
|
// mean appending it. Likewise for attributes.
|
|
|
|
{
|
|
unsigned ArgNo = 0;
|
|
auto I = Call.arg_begin(), E = Call.arg_end();
|
|
do {
|
|
if (ArgNo == NestArgNo) {
|
|
// Add the chain argument and attributes.
|
|
Value *NestVal = Tramp.getArgOperand(2);
|
|
if (NestVal->getType() != NestTy)
|
|
NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
|
|
NewArgs.push_back(NestVal);
|
|
NewArgAttrs.push_back(NestAttr);
|
|
}
|
|
|
|
if (I == E)
|
|
break;
|
|
|
|
// Add the original argument and attributes.
|
|
NewArgs.push_back(*I);
|
|
NewArgAttrs.push_back(Attrs.getParamAttributes(ArgNo));
|
|
|
|
++ArgNo;
|
|
++I;
|
|
} while (true);
|
|
}
|
|
|
|
// The trampoline may have been bitcast to a bogus type (FTy).
|
|
// Handle this by synthesizing a new function type, equal to FTy
|
|
// with the chain parameter inserted.
|
|
|
|
std::vector<Type*> NewTypes;
|
|
NewTypes.reserve(FTy->getNumParams()+1);
|
|
|
|
// Insert the chain's type into the list of parameter types, which may
|
|
// mean appending it.
|
|
{
|
|
unsigned ArgNo = 0;
|
|
FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end();
|
|
|
|
do {
|
|
if (ArgNo == NestArgNo)
|
|
// Add the chain's type.
|
|
NewTypes.push_back(NestTy);
|
|
|
|
if (I == E)
|
|
break;
|
|
|
|
// Add the original type.
|
|
NewTypes.push_back(*I);
|
|
|
|
++ArgNo;
|
|
++I;
|
|
} while (true);
|
|
}
|
|
|
|
// Replace the trampoline call with a direct call. Let the generic
|
|
// code sort out any function type mismatches.
|
|
FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
|
|
FTy->isVarArg());
|
|
Constant *NewCallee =
|
|
NestF->getType() == PointerType::getUnqual(NewFTy) ?
|
|
NestF : ConstantExpr::getBitCast(NestF,
|
|
PointerType::getUnqual(NewFTy));
|
|
AttributeList NewPAL =
|
|
AttributeList::get(FTy->getContext(), Attrs.getFnAttributes(),
|
|
Attrs.getRetAttributes(), NewArgAttrs);
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
Call.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
Instruction *NewCaller;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
|
|
NewCaller = InvokeInst::Create(NewFTy, NewCallee,
|
|
II->getNormalDest(), II->getUnwindDest(),
|
|
NewArgs, OpBundles);
|
|
cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
|
|
cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
|
|
} else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
|
|
NewCaller =
|
|
CallBrInst::Create(NewFTy, NewCallee, CBI->getDefaultDest(),
|
|
CBI->getIndirectDests(), NewArgs, OpBundles);
|
|
cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
|
|
cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
|
|
} else {
|
|
NewCaller = CallInst::Create(NewFTy, NewCallee, NewArgs, OpBundles);
|
|
cast<CallInst>(NewCaller)->setTailCallKind(
|
|
cast<CallInst>(Call).getTailCallKind());
|
|
cast<CallInst>(NewCaller)->setCallingConv(
|
|
cast<CallInst>(Call).getCallingConv());
|
|
cast<CallInst>(NewCaller)->setAttributes(NewPAL);
|
|
}
|
|
NewCaller->setDebugLoc(Call.getDebugLoc());
|
|
|
|
return NewCaller;
|
|
}
|
|
}
|
|
|
|
// Replace the trampoline call with a direct call. Since there is no 'nest'
|
|
// parameter, there is no need to adjust the argument list. Let the generic
|
|
// code sort out any function type mismatches.
|
|
Constant *NewCallee = ConstantExpr::getBitCast(NestF, CalleeTy);
|
|
Call.setCalledFunction(FTy, NewCallee);
|
|
return &Call;
|
|
}
|