llvm-project/llvm/lib/MC/XCOFFObjectWriter.cpp

487 lines
17 KiB
C++

//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include <deque>
using namespace llvm;
// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {
constexpr unsigned DefaultSectionAlign = 4;
// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);
// Wrapper around an MCSymbolXCOFF.
struct Symbol {
const MCSymbolXCOFF *const MCSym;
uint32_t SymbolTableIndex;
XCOFF::StorageClass getStorageClass() const {
return MCSym->getStorageClass();
}
StringRef getName() const { return MCSym->getName(); }
bool nameInStringTable() const {
return MCSym->getName().size() > XCOFF::NameSize;
}
Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};
// Wrapper for an MCSectionXCOFF.
struct ControlSection {
const MCSectionXCOFF *const MCCsect;
uint32_t SymbolTableIndex;
uint32_t Address;
uint32_t Size;
SmallVector<Symbol, 1> Syms;
ControlSection(const MCSectionXCOFF *MCSec)
: MCCsect(MCSec), SymbolTableIndex(-1), Address(-1) {}
};
// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct Section {
char Name[XCOFF::NameSize];
// The physical/virtual address of the section. For an object file
// these values are equivalent.
uint32_t Address;
uint32_t Size;
uint32_t FileOffsetToData;
uint32_t FileOffsetToRelocations;
uint32_t RelocationCount;
int32_t Flags;
uint16_t Index;
// Virtual sections do not need storage allocated in the object file.
const bool IsVirtual;
void reset() {
Address = 0;
Size = 0;
FileOffsetToData = 0;
FileOffsetToRelocations = 0;
RelocationCount = 0;
Index = -1;
}
Section(const char *N, XCOFF::SectionTypeFlags Flags, bool IsVirtual)
: Address(0), Size(0), FileOffsetToData(0), FileOffsetToRelocations(0),
RelocationCount(0), Flags(Flags), Index(-1), IsVirtual(IsVirtual) {
strncpy(Name, N, XCOFF::NameSize);
}
};
class XCOFFObjectWriter : public MCObjectWriter {
// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
using ControlSections = std::deque<ControlSection>;
support::endian::Writer W;
std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
StringTableBuilder Strings;
// The non-empty sections, in the order they will appear in the section header
// table.
std::vector<Section *> Sections;
// The Predefined sections.
Section Text;
Section BSS;
// ControlSections. These store the csects which make up different parts of
// the sections. Should have one for each set of csects that get mapped into
// the same section and get handled in a 'similar' way.
ControlSections ProgramCodeCsects;
ControlSections BSSCsects;
uint32_t SymbolTableEntryCount = 0;
uint32_t SymbolTableOffset = 0;
virtual void reset() override;
void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
const MCFixup &, MCValue, uint64_t &) override;
uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
void writeFileHeader();
void writeSectionHeaderTable();
void writeSymbolTable();
// Called after all the csects and symbols have been processed by
// `executePostLayoutBinding`, this function handles building up the majority
// of the structures in the object file representation. Namely:
// *) Calculates physical/virtual addresses, raw-pointer offsets, and section
// sizes.
// *) Assigns symbol table indices.
// *) Builds up the section header table by adding any non-empty sections to
// `Sections`.
void assignAddressesAndIndices(const llvm::MCAsmLayout &);
bool
needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
return false;
}
// Returns the size of the auxiliary header to be written to the object file.
size_t auxiliaryHeaderSize() const {
assert(!needsAuxiliaryHeader() &&
"Auxiliary header support not implemented.");
return 0;
}
public:
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS);
};
XCOFFObjectWriter::XCOFFObjectWriter(
std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
: W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
Strings(StringTableBuilder::XCOFF),
Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false),
BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true) {}
void XCOFFObjectWriter::reset() {
// Reset any sections we have written to, and empty the section header table.
for (auto *Sec : Sections)
Sec->reset();
Sections.clear();
// Clear any csects we have stored.
ProgramCodeCsects.clear();
BSSCsects.clear();
// Reset the symbol table and string table.
SymbolTableEntryCount = 0;
SymbolTableOffset = 0;
Strings.clear();
MCObjectWriter::reset();
}
void XCOFFObjectWriter::executePostLayoutBinding(
llvm::MCAssembler &Asm, const llvm::MCAsmLayout &Layout) {
if (TargetObjectWriter->is64Bit())
report_fatal_error("64-bit XCOFF object files are not supported yet.");
// Maps the MC Section representation to its corresponding ControlSection
// wrapper. Needed for finding the ControlSection to insert an MCSymbol into
// from its containing MCSectionXCOFF.
DenseMap<const MCSectionXCOFF *, ControlSection *> WrapperMap;
for (const auto &S : Asm) {
const MCSectionXCOFF *MCSec = dyn_cast<const MCSectionXCOFF>(&S);
assert(WrapperMap.find(MCSec) == WrapperMap.end() &&
"Cannot add a csect twice.");
switch (MCSec->getMappingClass()) {
case XCOFF::XMC_PR:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain program code.");
// TODO FIXME Handle .text section csects.
break;
case XCOFF::XMC_RW:
if (XCOFF::XTY_CM == MCSec->getCSectType()) {
BSSCsects.emplace_back(MCSec);
WrapperMap[MCSec] = &BSSCsects.back();
break;
}
report_fatal_error("Unhandled mapping of read-write csect to section.");
case XCOFF::XMC_BS:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with bss storage class must be "
"common type.");
BSSCsects.emplace_back(MCSec);
WrapperMap[MCSec] = &BSSCsects.back();
break;
default:
report_fatal_error("Unhandled mapping of csect to section.");
}
}
for (const MCSymbol &S : Asm.symbols()) {
// Nothing to do for temporary symbols.
if (S.isTemporary())
continue;
const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
// Map the symbol into its containing csect.
const MCSectionXCOFF *ContainingCsect = XSym->getContainingCsect();
assert(WrapperMap.find(ContainingCsect) != WrapperMap.end() &&
"Expected containing csect to exist in map");
// Lookup the containing csect and add the symbol to it.
WrapperMap[ContainingCsect]->Syms.emplace_back(XSym);
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
const Symbol &WrapperSym = WrapperMap[ContainingCsect]->Syms.back();
if (WrapperSym.nameInStringTable()) {
Strings.add(WrapperSym.getName());
}
}
Strings.finalize();
assignAddressesAndIndices(Layout);
}
void XCOFFObjectWriter::recordRelocation(MCAssembler &, const MCAsmLayout &,
const MCFragment *, const MCFixup &,
MCValue, uint64_t &) {
report_fatal_error("XCOFF relocations not supported.");
}
uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm, const MCAsmLayout &) {
// We always emit a timestamp of 0 for reproducibility, so ensure incremental
// linking is not enabled, in case, like with Windows COFF, such a timestamp
// is incompatible with incremental linking of XCOFF.
if (Asm.isIncrementalLinkerCompatible())
report_fatal_error("Incremental linking not supported for XCOFF.");
if (TargetObjectWriter->is64Bit())
report_fatal_error("64-bit XCOFF object files are not supported yet.");
uint64_t StartOffset = W.OS.tell();
writeFileHeader();
writeSectionHeaderTable();
// TODO writeSections();
// TODO writeRelocations();
// TODO FIXME Finalize symbols.
writeSymbolTable();
// Write the string table.
Strings.write(W.OS);
return W.OS.tell() - StartOffset;
}
void XCOFFObjectWriter::writeFileHeader() {
// Magic.
W.write<uint16_t>(0x01df);
// Number of sections.
W.write<uint16_t>(Sections.size());
// Timestamp field. For reproducible output we write a 0, which represents no
// timestamp.
W.write<int32_t>(0);
// Byte Offset to the start of the symbol table.
W.write<uint32_t>(SymbolTableOffset);
// Number of entries in the symbol table.
W.write<int32_t>(SymbolTableEntryCount);
// Size of the optional header.
W.write<uint16_t>(0);
// Flags.
W.write<uint16_t>(0);
}
void XCOFFObjectWriter::writeSectionHeaderTable() {
for (const auto *Sec : Sections) {
// Write Name.
ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
W.write(NameRef);
// Write the Physical Address and Virtual Address. In an object file these
// are the same.
W.write<uint32_t>(Sec->Address);
W.write<uint32_t>(Sec->Address);
W.write<uint32_t>(Sec->Size);
W.write<uint32_t>(Sec->FileOffsetToData);
// Relocation pointer and Lineno pointer. Not supported yet.
W.write<uint32_t>(0);
W.write<uint32_t>(0);
// Relocation and line-number counts. Not supported yet.
W.write<uint16_t>(0);
W.write<uint16_t>(0);
W.write<int32_t>(Sec->Flags);
}
}
void XCOFFObjectWriter::writeSymbolTable() {
assert(ProgramCodeCsects.size() == 0 && ".text csects not handled yet.");
// The BSS Section is special in that the csects must contain a single symbol,
// and the contained symbol cannot be represented in the symbol table as a
// label definition.
for (auto &Sec : BSSCsects) {
assert(Sec.Syms.size() == 1 &&
"Uninitialized csect cannot contain more then 1 symbol.");
Symbol &Sym = Sec.Syms.back();
// Write the symbol's name.
if (Sym.nameInStringTable()) {
W.write<int32_t>(0);
W.write<uint32_t>(Strings.getOffset(Sym.getName()));
} else {
char Name[XCOFF::NameSize];
std::strncpy(Name, Sym.getName().data(), XCOFF::NameSize);
ArrayRef<char> NameRef(Name, XCOFF::NameSize);
W.write(NameRef);
}
W.write<uint32_t>(Sec.Address);
W.write<int16_t>(BSS.Index);
// Basic/Derived type. See the description of the n_type field for symbol
// table entries for a detailed description. Since we don't yet support
// visibility, and all other bits are either optionally set or reserved,
// this is always zero.
// TODO FIXME How to assert a symbols visibility is default?
W.write<uint16_t>(0);
W.write<uint8_t>(Sym.getStorageClass());
// Always 1 aux entry for now.
W.write<uint8_t>(1);
W.write<uint32_t>(Sec.Size);
// Parameter typecheck hash. Not supported.
W.write<uint32_t>(0);
// Typecheck section number. Not supported.
W.write<uint16_t>(0);
// Symbol type.
W.write<uint8_t>(getEncodedType(Sec.MCCsect));
// Storage mapping class.
W.write<uint8_t>(Sec.MCCsect->getMappingClass());
// Reserved (x_stab).
W.write<uint32_t>(0);
// Reserved (x_snstab).
W.write<uint16_t>(0);
}
}
void XCOFFObjectWriter::assignAddressesAndIndices(
const llvm::MCAsmLayout &Layout) {
// The address corrresponds to the address of sections and symbols in the
// object file. We place the shared address 0 immediately after the
// section header table.
uint32_t Address = 0;
// Section indices are 1-based in XCOFF.
uint16_t SectionIndex = 1;
// The first symbol table entry is for the file name. We are not emitting it
// yet, so start at index 0.
uint32_t SymbolTableIndex = 0;
// Text section comes first. TODO
// Data section Second. TODO
// BSS Section third.
if (!BSSCsects.empty()) {
Sections.push_back(&BSS);
BSS.Index = SectionIndex++;
assert(alignTo(Address, DefaultSectionAlign) == Address &&
"Improperly aligned address for section.");
uint32_t StartAddress = Address;
for (auto &Csect : BSSCsects) {
const MCSectionXCOFF *MCSec = Csect.MCCsect;
Address = alignTo(Address, MCSec->getAlignment());
Csect.Address = Address;
Address += Layout.getSectionAddressSize(MCSec);
Csect.SymbolTableIndex = SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
Csect.Size = Layout.getSectionAddressSize(MCSec);
assert(Csect.Syms.size() == 1 &&
"csect in the BSS can only contain a single symbol.");
Csect.Syms[0].SymbolTableIndex = Csect.SymbolTableIndex;
}
// Pad out Address to the default alignment. This is to match how the system
// assembler handles the .bss section. Its size is always a multiple of 4.
Address = alignTo(Address, DefaultSectionAlign);
BSS.Size = Address - StartAddress;
}
SymbolTableEntryCount = SymbolTableIndex;
// Calculate the RawPointer value for each section.
uint64_t RawPointer = sizeof(XCOFF::FileHeader32) + auxiliaryHeaderSize() +
Sections.size() * sizeof(XCOFF::SectionHeader32);
for (auto *Sec : Sections) {
if (!Sec->IsVirtual) {
Sec->FileOffsetToData = RawPointer;
RawPointer += Sec->Size;
}
}
// TODO Add in Relocation storage to the RawPointer Calculation.
// TODO What to align the SymbolTable to?
// TODO Error check that the number of symbol table entries fits in 32-bits
// signed ...
if (SymbolTableEntryCount)
SymbolTableOffset = RawPointer;
}
// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
unsigned Align = Sec->getAlignment();
assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
unsigned Log2Align = Log2_32(Align);
// Result is a number in the range [0, 31] which fits in the 5 least
// significant bits. Shift this value into the 5 most significant bits, and
// bitwise-or in the csect type.
uint8_t EncodedAlign = Log2Align << 3;
return EncodedAlign | Sec->getCSectType();
}
} // end anonymous namespace
std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS) {
return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}