forked from OSchip/llvm-project
374 lines
15 KiB
C++
374 lines
15 KiB
C++
//===- HexagonTargetTransformInfo.cpp - Hexagon specific TTI pass ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// Hexagon target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonTargetTransformInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/Utils/LoopPeel.h"
|
|
#include "llvm/Transforms/Utils/UnrollLoop.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagontti"
|
|
|
|
static cl::opt<bool> HexagonAutoHVX("hexagon-autohvx", cl::init(false),
|
|
cl::Hidden, cl::desc("Enable loop vectorizer for HVX"));
|
|
|
|
static cl::opt<bool> EmitLookupTables("hexagon-emit-lookup-tables",
|
|
cl::init(true), cl::Hidden,
|
|
cl::desc("Control lookup table emission on Hexagon target"));
|
|
|
|
static cl::opt<bool> HexagonMaskedVMem("hexagon-masked-vmem", cl::init(true),
|
|
cl::Hidden, cl::desc("Enable masked loads/stores for HVX"));
|
|
|
|
// Constant "cost factor" to make floating point operations more expensive
|
|
// in terms of vectorization cost. This isn't the best way, but it should
|
|
// do. Ultimately, the cost should use cycles.
|
|
static const unsigned FloatFactor = 4;
|
|
|
|
bool HexagonTTIImpl::useHVX() const {
|
|
return ST.useHVXOps() && HexagonAutoHVX;
|
|
}
|
|
|
|
unsigned HexagonTTIImpl::getTypeNumElements(Type *Ty) const {
|
|
if (auto *VTy = dyn_cast<FixedVectorType>(Ty))
|
|
return VTy->getNumElements();
|
|
assert((Ty->isIntegerTy() || Ty->isFloatingPointTy()) &&
|
|
"Expecting scalar type");
|
|
return 1;
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
HexagonTTIImpl::getPopcntSupport(unsigned IntTyWidthInBit) const {
|
|
// Return fast hardware support as every input < 64 bits will be promoted
|
|
// to 64 bits.
|
|
return TargetTransformInfo::PSK_FastHardware;
|
|
}
|
|
|
|
// The Hexagon target can unroll loops with run-time trip counts.
|
|
void HexagonTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP,
|
|
OptimizationRemarkEmitter *ORE) {
|
|
UP.Runtime = UP.Partial = true;
|
|
}
|
|
|
|
void HexagonTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
BaseT::getPeelingPreferences(L, SE, PP);
|
|
// Only try to peel innermost loops with small runtime trip counts.
|
|
if (L && L->isInnermost() && canPeel(L) &&
|
|
SE.getSmallConstantTripCount(L) == 0 &&
|
|
SE.getSmallConstantMaxTripCount(L) > 0 &&
|
|
SE.getSmallConstantMaxTripCount(L) <= 5) {
|
|
PP.PeelCount = 2;
|
|
}
|
|
}
|
|
|
|
TTI::AddressingModeKind
|
|
HexagonTTIImpl::getPreferredAddressingMode(const Loop *L,
|
|
ScalarEvolution *SE) const {
|
|
return TTI::AMK_PostIndexed;
|
|
}
|
|
|
|
/// --- Vector TTI begin ---
|
|
|
|
unsigned HexagonTTIImpl::getNumberOfRegisters(bool Vector) const {
|
|
if (Vector)
|
|
return useHVX() ? 32 : 0;
|
|
return 32;
|
|
}
|
|
|
|
unsigned HexagonTTIImpl::getMaxInterleaveFactor(unsigned VF) {
|
|
return useHVX() ? 2 : 1;
|
|
}
|
|
|
|
TypeSize
|
|
HexagonTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
switch (K) {
|
|
case TargetTransformInfo::RGK_Scalar:
|
|
return TypeSize::getFixed(32);
|
|
case TargetTransformInfo::RGK_FixedWidthVector:
|
|
return TypeSize::getFixed(getMinVectorRegisterBitWidth());
|
|
case TargetTransformInfo::RGK_ScalableVector:
|
|
return TypeSize::getScalable(0);
|
|
}
|
|
|
|
llvm_unreachable("Unsupported register kind");
|
|
}
|
|
|
|
unsigned HexagonTTIImpl::getMinVectorRegisterBitWidth() const {
|
|
return useHVX() ? ST.getVectorLength()*8 : 32;
|
|
}
|
|
|
|
ElementCount HexagonTTIImpl::getMinimumVF(unsigned ElemWidth,
|
|
bool IsScalable) const {
|
|
assert(!IsScalable && "Scalable VFs are not supported for Hexagon");
|
|
return ElementCount::getFixed((8 * ST.getVectorLength()) / ElemWidth);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getScalarizationOverhead(
|
|
VectorType *Ty, const APInt &DemandedElts, bool Insert, bool Extract) {
|
|
return BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
|
|
}
|
|
|
|
InstructionCost
|
|
HexagonTTIImpl::getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
ArrayRef<Type *> Tys) {
|
|
return BaseT::getOperandsScalarizationOverhead(Args, Tys);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getCallInstrCost(Function *F, Type *RetTy,
|
|
ArrayRef<Type *> Tys,
|
|
TTI::TargetCostKind CostKind) {
|
|
return BaseT::getCallInstrCost(F, RetTy, Tys, CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
HexagonTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (ICA.getID() == Intrinsic::bswap) {
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI.getTypeLegalizationCost(DL, ICA.getReturnType());
|
|
return LT.first + 2;
|
|
}
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getAddressComputationCost(Type *Tp,
|
|
ScalarEvolution *SE,
|
|
const SCEV *S) {
|
|
return 0;
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
assert(Opcode == Instruction::Load || Opcode == Instruction::Store);
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return 1;
|
|
|
|
if (Opcode == Instruction::Store)
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, I);
|
|
|
|
if (Src->isVectorTy()) {
|
|
VectorType *VecTy = cast<VectorType>(Src);
|
|
unsigned VecWidth = VecTy->getPrimitiveSizeInBits().getFixedSize();
|
|
if (useHVX() && ST.isTypeForHVX(VecTy)) {
|
|
unsigned RegWidth =
|
|
getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
|
|
.getFixedSize();
|
|
assert(RegWidth && "Non-zero vector register width expected");
|
|
// Cost of HVX loads.
|
|
if (VecWidth % RegWidth == 0)
|
|
return VecWidth / RegWidth;
|
|
// Cost of constructing HVX vector from scalar loads
|
|
const Align RegAlign(RegWidth / 8);
|
|
if (!Alignment || *Alignment > RegAlign)
|
|
Alignment = RegAlign;
|
|
assert(Alignment);
|
|
unsigned AlignWidth = 8 * Alignment->value();
|
|
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
|
|
return 3 * NumLoads;
|
|
}
|
|
|
|
// Non-HVX vectors.
|
|
// Add extra cost for floating point types.
|
|
unsigned Cost =
|
|
VecTy->getElementType()->isFloatingPointTy() ? FloatFactor : 1;
|
|
|
|
// At this point unspecified alignment is considered as Align(1).
|
|
const Align BoundAlignment = std::min(Alignment.valueOrOne(), Align(8));
|
|
unsigned AlignWidth = 8 * BoundAlignment.value();
|
|
unsigned NumLoads = alignTo(VecWidth, AlignWidth) / AlignWidth;
|
|
if (Alignment == Align(4) || Alignment == Align(8))
|
|
return Cost * NumLoads;
|
|
// Loads of less than 32 bits will need extra inserts to compose a vector.
|
|
assert(BoundAlignment <= Align(8));
|
|
unsigned LogA = Log2(BoundAlignment);
|
|
return (3 - LogA) * Cost * NumLoads;
|
|
}
|
|
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind, I);
|
|
}
|
|
|
|
InstructionCost
|
|
HexagonTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp,
|
|
ArrayRef<int> Mask, int Index,
|
|
Type *SubTp) {
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
|
|
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
if (Indices.size() != Factor || UseMaskForCond || UseMaskForGaps)
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace,
|
|
CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
return getMemoryOpCost(Opcode, VecTy, MaybeAlign(Alignment), AddressSpace,
|
|
CostKind);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (ValTy->isVectorTy() && CostKind == TTI::TCK_RecipThroughput) {
|
|
std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, ValTy);
|
|
if (Opcode == Instruction::FCmp)
|
|
return LT.first + FloatFactor * getTypeNumElements(ValTy);
|
|
}
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueKind Opd1Info, TTI::OperandValueKind Opd2Info,
|
|
TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
// TODO: Handle more cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
|
|
Opd2Info, Opd1PropInfo,
|
|
Opd2PropInfo, Args, CxtI);
|
|
|
|
if (Ty->isVectorTy()) {
|
|
std::pair<InstructionCost, MVT> LT = TLI.getTypeLegalizationCost(DL, Ty);
|
|
if (LT.second.isFloatingPoint())
|
|
return LT.first + FloatFactor * getTypeNumElements(Ty);
|
|
}
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getCastInstrCost(unsigned Opcode, Type *DstTy,
|
|
Type *SrcTy,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (SrcTy->isFPOrFPVectorTy() || DstTy->isFPOrFPVectorTy()) {
|
|
unsigned SrcN = SrcTy->isFPOrFPVectorTy() ? getTypeNumElements(SrcTy) : 0;
|
|
unsigned DstN = DstTy->isFPOrFPVectorTy() ? getTypeNumElements(DstTy) : 0;
|
|
|
|
std::pair<InstructionCost, MVT> SrcLT =
|
|
TLI.getTypeLegalizationCost(DL, SrcTy);
|
|
std::pair<InstructionCost, MVT> DstLT =
|
|
TLI.getTypeLegalizationCost(DL, DstTy);
|
|
InstructionCost Cost =
|
|
std::max(SrcLT.first, DstLT.first) + FloatFactor * (SrcN + DstN);
|
|
// TODO: Allow non-throughput costs that aren't binary.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost == 0 ? 0 : 1;
|
|
return Cost;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) {
|
|
Type *ElemTy = Val->isVectorTy() ? cast<VectorType>(Val)->getElementType()
|
|
: Val;
|
|
if (Opcode == Instruction::InsertElement) {
|
|
// Need two rotations for non-zero index.
|
|
unsigned Cost = (Index != 0) ? 2 : 0;
|
|
if (ElemTy->isIntegerTy(32))
|
|
return Cost;
|
|
// If it's not a 32-bit value, there will need to be an extract.
|
|
return Cost + getVectorInstrCost(Instruction::ExtractElement, Val, Index);
|
|
}
|
|
|
|
if (Opcode == Instruction::ExtractElement)
|
|
return 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool HexagonTTIImpl::isLegalMaskedStore(Type *DataType, Align /*Alignment*/) {
|
|
return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
|
|
}
|
|
|
|
bool HexagonTTIImpl::isLegalMaskedLoad(Type *DataType, Align /*Alignment*/) {
|
|
return HexagonMaskedVMem && ST.isTypeForHVX(DataType);
|
|
}
|
|
|
|
/// --- Vector TTI end ---
|
|
|
|
unsigned HexagonTTIImpl::getPrefetchDistance() const {
|
|
return ST.getL1PrefetchDistance();
|
|
}
|
|
|
|
unsigned HexagonTTIImpl::getCacheLineSize() const {
|
|
return ST.getL1CacheLineSize();
|
|
}
|
|
|
|
InstructionCost HexagonTTIImpl::getUserCost(const User *U,
|
|
ArrayRef<const Value *> Operands,
|
|
TTI::TargetCostKind CostKind) {
|
|
auto isCastFoldedIntoLoad = [this](const CastInst *CI) -> bool {
|
|
if (!CI->isIntegerCast())
|
|
return false;
|
|
// Only extensions from an integer type shorter than 32-bit to i32
|
|
// can be folded into the load.
|
|
const DataLayout &DL = getDataLayout();
|
|
unsigned SBW = DL.getTypeSizeInBits(CI->getSrcTy());
|
|
unsigned DBW = DL.getTypeSizeInBits(CI->getDestTy());
|
|
if (DBW != 32 || SBW >= DBW)
|
|
return false;
|
|
|
|
const LoadInst *LI = dyn_cast<const LoadInst>(CI->getOperand(0));
|
|
// Technically, this code could allow multiple uses of the load, and
|
|
// check if all the uses are the same extension operation, but this
|
|
// should be sufficient for most cases.
|
|
return LI && LI->hasOneUse();
|
|
};
|
|
|
|
if (const CastInst *CI = dyn_cast<const CastInst>(U))
|
|
if (isCastFoldedIntoLoad(CI))
|
|
return TargetTransformInfo::TCC_Free;
|
|
return BaseT::getUserCost(U, Operands, CostKind);
|
|
}
|
|
|
|
bool HexagonTTIImpl::shouldBuildLookupTables() const {
|
|
return EmitLookupTables;
|
|
}
|