llvm-project/llvm/lib/Target/Hexagon/HexagonBitSimplify.cpp

3239 lines
103 KiB
C++

//===--- HexagonBitSimplify.cpp -------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexbit"
#include "HexagonBitTracker.h"
#include "HexagonTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <limits>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<bool> PreserveTiedOps("hexbit-keep-tied", cl::Hidden,
cl::init(true), cl::desc("Preserve subregisters in tied operands"));
static cl::opt<bool> GenExtract("hexbit-extract", cl::Hidden,
cl::init(true), cl::desc("Generate extract instructions"));
static cl::opt<bool> GenBitSplit("hexbit-bitsplit", cl::Hidden,
cl::init(true), cl::desc("Generate bitsplit instructions"));
static cl::opt<unsigned> MaxExtract("hexbit-max-extract", cl::Hidden,
cl::init(UINT_MAX));
static unsigned CountExtract = 0;
static cl::opt<unsigned> MaxBitSplit("hexbit-max-bitsplit", cl::Hidden,
cl::init(UINT_MAX));
static unsigned CountBitSplit = 0;
namespace llvm {
void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
FunctionPass *createHexagonBitSimplify();
} // end namespace llvm
namespace {
// Set of virtual registers, based on BitVector.
struct RegisterSet : private BitVector {
RegisterSet() = default;
explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
RegisterSet(const RegisterSet &RS) = default;
using BitVector::clear;
using BitVector::count;
unsigned find_first() const {
int First = BitVector::find_first();
if (First < 0)
return 0;
return x2v(First);
}
unsigned find_next(unsigned Prev) const {
int Next = BitVector::find_next(v2x(Prev));
if (Next < 0)
return 0;
return x2v(Next);
}
RegisterSet &insert(unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return static_cast<RegisterSet&>(BitVector::set(Idx));
}
RegisterSet &remove(unsigned R) {
unsigned Idx = v2x(R);
if (Idx >= size())
return *this;
return static_cast<RegisterSet&>(BitVector::reset(Idx));
}
RegisterSet &insert(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
}
RegisterSet &remove(const RegisterSet &Rs) {
return static_cast<RegisterSet&>(BitVector::reset(Rs));
}
reference operator[](unsigned R) {
unsigned Idx = v2x(R);
ensure(Idx);
return BitVector::operator[](Idx);
}
bool operator[](unsigned R) const {
unsigned Idx = v2x(R);
assert(Idx < size());
return BitVector::operator[](Idx);
}
bool has(unsigned R) const {
unsigned Idx = v2x(R);
if (Idx >= size())
return false;
return BitVector::test(Idx);
}
bool empty() const {
return !BitVector::any();
}
bool includes(const RegisterSet &Rs) const {
// A.BitVector::test(B) <=> A-B != {}
return !Rs.BitVector::test(*this);
}
bool intersects(const RegisterSet &Rs) const {
return BitVector::anyCommon(Rs);
}
private:
void ensure(unsigned Idx) {
if (size() <= Idx)
resize(std::max(Idx+1, 32U));
}
static inline unsigned v2x(unsigned v) {
return TargetRegisterInfo::virtReg2Index(v);
}
static inline unsigned x2v(unsigned x) {
return TargetRegisterInfo::index2VirtReg(x);
}
};
struct PrintRegSet {
PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
: RS(S), TRI(RI) {}
friend raw_ostream &operator<< (raw_ostream &OS,
const PrintRegSet &P);
private:
const RegisterSet &RS;
const TargetRegisterInfo *TRI;
};
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
LLVM_ATTRIBUTE_UNUSED;
raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
OS << '{';
for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
OS << ' ' << PrintReg(R, P.TRI);
OS << " }";
return OS;
}
class Transformation;
class HexagonBitSimplify : public MachineFunctionPass {
public:
static char ID;
HexagonBitSimplify() : MachineFunctionPass(ID), MDT(nullptr) {
initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Hexagon bit simplification";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool runOnMachineFunction(MachineFunction &MF) override;
static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
uint16_t W);
static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
uint16_t W, uint64_t &U);
static bool replaceReg(unsigned OldR, unsigned NewR,
MachineRegisterInfo &MRI);
static bool getSubregMask(const BitTracker::RegisterRef &RR,
unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
unsigned NewSR, MachineRegisterInfo &MRI);
static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
static bool parseRegSequence(const MachineInstr &I,
BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
const MachineRegisterInfo &MRI);
static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
uint16_t Begin);
static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
uint16_t Begin, const HexagonInstrInfo &HII);
static const TargetRegisterClass *getFinalVRegClass(
const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
private:
MachineDominatorTree *MDT;
bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
static bool hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
unsigned NewSub = Hexagon::NoSubRegister);
};
char HexagonBitSimplify::ID = 0;
typedef HexagonBitSimplify HBS;
// The purpose of this class is to provide a common facility to traverse
// the function top-down or bottom-up via the dominator tree, and keep
// track of the available registers.
class Transformation {
public:
bool TopDown;
Transformation(bool TD) : TopDown(TD) {}
virtual ~Transformation() = default;
virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
};
} // end anonymous namespace
INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
"Hexagon bit simplification", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
"Hexagon bit simplification", false, false)
bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
RegisterSet &AVs) {
bool Changed = false;
if (T.TopDown)
Changed = T.processBlock(B, AVs);
RegisterSet Defs;
for (auto &I : B)
getInstrDefs(I, Defs);
RegisterSet NewAVs = AVs;
NewAVs.insert(Defs);
for (auto *DTN : children<MachineDomTreeNode*>(MDT->getNode(&B)))
Changed |= visitBlock(*(DTN->getBlock()), T, NewAVs);
if (!T.TopDown)
Changed |= T.processBlock(B, AVs);
return Changed;
}
//
// Utility functions:
//
void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
RegisterSet &Defs) {
for (auto &Op : MI.operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R))
continue;
Defs.insert(R);
}
}
void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
RegisterSet &Uses) {
for (auto &Op : MI.operands()) {
if (!Op.isReg() || !Op.isUse())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R))
continue;
Uses.insert(R);
}
}
// Check if all the bits in range [B, E) in both cells are equal.
bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
uint16_t W) {
for (uint16_t i = 0; i < W; ++i) {
// If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
return false;
// Same for RC2[i].
if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
return false;
if (RC1[B1+i] != RC2[B2+i])
return false;
}
return true;
}
bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
uint16_t B, uint16_t W) {
assert(B < RC.width() && B+W <= RC.width());
for (uint16_t i = B; i < B+W; ++i)
if (!RC[i].is(0))
return false;
return true;
}
bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
uint16_t B, uint16_t W, uint64_t &U) {
assert(B < RC.width() && B+W <= RC.width());
int64_t T = 0;
for (uint16_t i = B+W; i > B; --i) {
const BitTracker::BitValue &BV = RC[i-1];
T <<= 1;
if (BV.is(1))
T |= 1;
else if (!BV.is(0))
return false;
}
U = T;
return true;
}
bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
MachineRegisterInfo &MRI) {
if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
!TargetRegisterInfo::isVirtualRegister(NewR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
I->setReg(NewR);
}
return Begin != End;
}
bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
unsigned NewSR, MachineRegisterInfo &MRI) {
if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
!TargetRegisterInfo::isVirtualRegister(NewR))
return false;
if (hasTiedUse(OldR, MRI, NewSR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
I->setReg(NewR);
I->setSubReg(NewSR);
}
return Begin != End;
}
bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
!TargetRegisterInfo::isVirtualRegister(NewR))
return false;
if (OldSR != NewSR && hasTiedUse(OldR, MRI, NewSR))
return false;
auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
decltype(End) NextI;
for (auto I = Begin; I != End; I = NextI) {
NextI = std::next(I);
if (I->getSubReg() != OldSR)
continue;
I->setReg(NewR);
I->setSubReg(NewSR);
}
return Begin != End;
}
// For a register ref (pair Reg:Sub), set Begin to the position of the LSB
// of Sub in Reg, and set Width to the size of Sub in bits. Return true,
// if this succeeded, otherwise return false.
bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
if (RR.Sub == 0) {
Begin = 0;
Width = RC->getSize()*8;
return true;
}
Begin = 0;
switch (RC->getID()) {
case Hexagon::DoubleRegsRegClassID:
case Hexagon::VecDblRegsRegClassID:
case Hexagon::VecDblRegs128BRegClassID:
Width = RC->getSize()*8 / 2;
if (RR.Sub == Hexagon::isub_hi || RR.Sub == Hexagon::vsub_hi)
Begin = Width;
break;
default:
return false;
}
return true;
}
// For a REG_SEQUENCE, set SL to the low subregister and SH to the high
// subregister.
bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH,
const MachineRegisterInfo &MRI) {
assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
auto *DstRC = MRI.getRegClass(I.getOperand(0).getReg());
auto &HRI = static_cast<const HexagonRegisterInfo&>(
*MRI.getTargetRegisterInfo());
unsigned SubLo = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(DstRC, Hexagon::ps_sub_hi);
assert((Sub1 == SubLo && Sub2 == SubHi) || (Sub1 == SubHi && Sub2 == SubLo));
if (Sub1 == SubLo && Sub2 == SubHi) {
SL = I.getOperand(1);
SH = I.getOperand(3);
return true;
}
if (Sub1 == SubHi && Sub2 == SubLo) {
SH = I.getOperand(1);
SL = I.getOperand(3);
return true;
}
return false;
}
// All stores (except 64-bit stores) take a 32-bit register as the source
// of the value to be stored. If the instruction stores into a location
// that is shorter than 32 bits, some bits of the source register are not
// used. For each store instruction, calculate the set of used bits in
// the source register, and set appropriate bits in Bits. Return true if
// the bits are calculated, false otherwise.
bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
uint16_t Begin) {
using namespace Hexagon;
switch (Opc) {
// Store byte
case S2_storerb_io: // memb(Rs32+#s11:0)=Rt32
case S2_storerbnew_io: // memb(Rs32+#s11:0)=Nt8.new
case S2_pstorerbt_io: // if (Pv4) memb(Rs32+#u6:0)=Rt32
case S2_pstorerbf_io: // if (!Pv4) memb(Rs32+#u6:0)=Rt32
case S4_pstorerbtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
case S4_pstorerbfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
case S2_pstorerbnewt_io: // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
case S2_pstorerbnewf_io: // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
case S4_pstorerbnewtnew_io: // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
case S4_pstorerbnewfnew_io: // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
case S2_storerb_pi: // memb(Rx32++#s4:0)=Rt32
case S2_storerbnew_pi: // memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbt_pi: // if (Pv4) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
case S2_pstorerbnewt_pi: // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewf_pi: // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewtnew_pi: // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
case S2_pstorerbnewfnew_pi: // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
case S4_storerb_ap: // memb(Re32=#U6)=Rt32
case S4_storerbnew_ap: // memb(Re32=#U6)=Nt8.new
case S2_storerb_pr: // memb(Rx32++Mu2)=Rt32
case S2_storerbnew_pr: // memb(Rx32++Mu2)=Nt8.new
case S4_storerb_ur: // memb(Ru32<<#u2+#U6)=Rt32
case S4_storerbnew_ur: // memb(Ru32<<#u2+#U6)=Nt8.new
case S2_storerb_pbr: // memb(Rx32++Mu2:brev)=Rt32
case S2_storerbnew_pbr: // memb(Rx32++Mu2:brev)=Nt8.new
case S2_storerb_pci: // memb(Rx32++#s4:0:circ(Mu2))=Rt32
case S2_storerbnew_pci: // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
case S2_storerb_pcr: // memb(Rx32++I:circ(Mu2))=Rt32
case S2_storerbnew_pcr: // memb(Rx32++I:circ(Mu2))=Nt8.new
case S4_storerb_rr: // memb(Rs32+Ru32<<#u2)=Rt32
case S4_storerbnew_rr: // memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerbnewt_rr: // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewf_rr: // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewtnew_rr: // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerbnewfnew_rr: // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
case S2_storerbgp: // memb(gp+#u16:0)=Rt32
case S2_storerbnewgp: // memb(gp+#u16:0)=Nt8.new
case S4_pstorerbt_abs: // if (Pv4) memb(#u6)=Rt32
case S4_pstorerbf_abs: // if (!Pv4) memb(#u6)=Rt32
case S4_pstorerbtnew_abs: // if (Pv4.new) memb(#u6)=Rt32
case S4_pstorerbfnew_abs: // if (!Pv4.new) memb(#u6)=Rt32
case S4_pstorerbnewt_abs: // if (Pv4) memb(#u6)=Nt8.new
case S4_pstorerbnewf_abs: // if (!Pv4) memb(#u6)=Nt8.new
case S4_pstorerbnewtnew_abs: // if (Pv4.new) memb(#u6)=Nt8.new
case S4_pstorerbnewfnew_abs: // if (!Pv4.new) memb(#u6)=Nt8.new
Bits.set(Begin, Begin+8);
return true;
// Store low half
case S2_storerh_io: // memh(Rs32+#s11:1)=Rt32
case S2_storerhnew_io: // memh(Rs32+#s11:1)=Nt8.new
case S2_pstorerht_io: // if (Pv4) memh(Rs32+#u6:1)=Rt32
case S2_pstorerhf_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt32
case S4_pstorerhtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
case S4_pstorerhfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
case S2_pstorerhnewt_io: // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
case S2_pstorerhnewf_io: // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
case S4_pstorerhnewtnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
case S4_pstorerhnewfnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
case S2_storerh_pi: // memh(Rx32++#s4:1)=Rt32
case S2_storerhnew_pi: // memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerht_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
case S2_pstorerhnewt_pi: // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewf_pi: // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewtnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
case S2_pstorerhnewfnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
case S4_storerh_ap: // memh(Re32=#U6)=Rt32
case S4_storerhnew_ap: // memh(Re32=#U6)=Nt8.new
case S2_storerh_pr: // memh(Rx32++Mu2)=Rt32
case S2_storerhnew_pr: // memh(Rx32++Mu2)=Nt8.new
case S4_storerh_ur: // memh(Ru32<<#u2+#U6)=Rt32
case S4_storerhnew_ur: // memh(Ru32<<#u2+#U6)=Nt8.new
case S2_storerh_pbr: // memh(Rx32++Mu2:brev)=Rt32
case S2_storerhnew_pbr: // memh(Rx32++Mu2:brev)=Nt8.new
case S2_storerh_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt32
case S2_storerhnew_pci: // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
case S2_storerh_pcr: // memh(Rx32++I:circ(Mu2))=Rt32
case S2_storerhnew_pcr: // memh(Rx32++I:circ(Mu2))=Nt8.new
case S4_storerh_rr: // memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerht_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
case S4_pstorerhfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
case S4_storerhnew_rr: // memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewt_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewf_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewtnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
case S4_pstorerhnewfnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
case S2_storerhgp: // memh(gp+#u16:1)=Rt32
case S2_storerhnewgp: // memh(gp+#u16:1)=Nt8.new
case S4_pstorerht_abs: // if (Pv4) memh(#u6)=Rt32
case S4_pstorerhf_abs: // if (!Pv4) memh(#u6)=Rt32
case S4_pstorerhtnew_abs: // if (Pv4.new) memh(#u6)=Rt32
case S4_pstorerhfnew_abs: // if (!Pv4.new) memh(#u6)=Rt32
case S4_pstorerhnewt_abs: // if (Pv4) memh(#u6)=Nt8.new
case S4_pstorerhnewf_abs: // if (!Pv4) memh(#u6)=Nt8.new
case S4_pstorerhnewtnew_abs: // if (Pv4.new) memh(#u6)=Nt8.new
case S4_pstorerhnewfnew_abs: // if (!Pv4.new) memh(#u6)=Nt8.new
Bits.set(Begin, Begin+16);
return true;
// Store high half
case S2_storerf_io: // memh(Rs32+#s11:1)=Rt.H32
case S2_pstorerft_io: // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
case S2_pstorerff_io: // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
case S4_pstorerftnew_io: // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
case S4_pstorerffnew_io: // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
case S2_storerf_pi: // memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerft_pi: // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerff_pi: // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerftnew_pi: // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
case S2_pstorerffnew_pi: // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
case S4_storerf_ap: // memh(Re32=#U6)=Rt.H32
case S2_storerf_pr: // memh(Rx32++Mu2)=Rt.H32
case S4_storerf_ur: // memh(Ru32<<#u2+#U6)=Rt.H32
case S2_storerf_pbr: // memh(Rx32++Mu2:brev)=Rt.H32
case S2_storerf_pci: // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
case S2_storerf_pcr: // memh(Rx32++I:circ(Mu2))=Rt.H32
case S4_storerf_rr: // memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerft_rr: // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerff_rr: // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerftnew_rr: // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
case S4_pstorerffnew_rr: // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
case S2_storerfgp: // memh(gp+#u16:1)=Rt.H32
case S4_pstorerft_abs: // if (Pv4) memh(#u6)=Rt.H32
case S4_pstorerff_abs: // if (!Pv4) memh(#u6)=Rt.H32
case S4_pstorerftnew_abs: // if (Pv4.new) memh(#u6)=Rt.H32
case S4_pstorerffnew_abs: // if (!Pv4.new) memh(#u6)=Rt.H32
Bits.set(Begin+16, Begin+32);
return true;
}
return false;
}
// For an instruction with opcode Opc, calculate the set of bits that it
// uses in a register in operand OpN. This only calculates the set of used
// bits for cases where it does not depend on any operands (as is the case
// in shifts, for example). For concrete instructions from a program, the
// operand may be a subregister of a larger register, while Bits would
// correspond to the larger register in its entirety. Because of that,
// the parameter Begin can be used to indicate which bit of Bits should be
// considered the LSB of of the operand.
bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
using namespace Hexagon;
const MCInstrDesc &D = HII.get(Opc);
if (D.mayStore()) {
if (OpN == D.getNumOperands()-1)
return getUsedBitsInStore(Opc, Bits, Begin);
return false;
}
switch (Opc) {
// One register source. Used bits: R1[0-7].
case A2_sxtb:
case A2_zxtb:
case A4_cmpbeqi:
case A4_cmpbgti:
case A4_cmpbgtui:
if (OpN == 1) {
Bits.set(Begin, Begin+8);
return true;
}
break;
// One register source. Used bits: R1[0-15].
case A2_aslh:
case A2_sxth:
case A2_zxth:
case A4_cmpheqi:
case A4_cmphgti:
case A4_cmphgtui:
if (OpN == 1) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// One register source. Used bits: R1[16-31].
case A2_asrh:
if (OpN == 1) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
// Two register sources. Used bits: R1[0-7], R2[0-7].
case A4_cmpbeq:
case A4_cmpbgt:
case A4_cmpbgtu:
if (OpN == 1) {
Bits.set(Begin, Begin+8);
return true;
}
break;
// Two register sources. Used bits: R1[0-15], R2[0-15].
case A4_cmpheq:
case A4_cmphgt:
case A4_cmphgtu:
case A2_addh_h16_ll:
case A2_addh_h16_sat_ll:
case A2_addh_l16_ll:
case A2_addh_l16_sat_ll:
case A2_combine_ll:
case A2_subh_h16_ll:
case A2_subh_h16_sat_ll:
case A2_subh_l16_ll:
case A2_subh_l16_sat_ll:
case M2_mpy_acc_ll_s0:
case M2_mpy_acc_ll_s1:
case M2_mpy_acc_sat_ll_s0:
case M2_mpy_acc_sat_ll_s1:
case M2_mpy_ll_s0:
case M2_mpy_ll_s1:
case M2_mpy_nac_ll_s0:
case M2_mpy_nac_ll_s1:
case M2_mpy_nac_sat_ll_s0:
case M2_mpy_nac_sat_ll_s1:
case M2_mpy_rnd_ll_s0:
case M2_mpy_rnd_ll_s1:
case M2_mpy_sat_ll_s0:
case M2_mpy_sat_ll_s1:
case M2_mpy_sat_rnd_ll_s0:
case M2_mpy_sat_rnd_ll_s1:
case M2_mpyd_acc_ll_s0:
case M2_mpyd_acc_ll_s1:
case M2_mpyd_ll_s0:
case M2_mpyd_ll_s1:
case M2_mpyd_nac_ll_s0:
case M2_mpyd_nac_ll_s1:
case M2_mpyd_rnd_ll_s0:
case M2_mpyd_rnd_ll_s1:
case M2_mpyu_acc_ll_s0:
case M2_mpyu_acc_ll_s1:
case M2_mpyu_ll_s0:
case M2_mpyu_ll_s1:
case M2_mpyu_nac_ll_s0:
case M2_mpyu_nac_ll_s1:
case M2_mpyud_acc_ll_s0:
case M2_mpyud_acc_ll_s1:
case M2_mpyud_ll_s0:
case M2_mpyud_ll_s1:
case M2_mpyud_nac_ll_s0:
case M2_mpyud_nac_ll_s1:
if (OpN == 1 || OpN == 2) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// Two register sources. Used bits: R1[0-15], R2[16-31].
case A2_addh_h16_lh:
case A2_addh_h16_sat_lh:
case A2_combine_lh:
case A2_subh_h16_lh:
case A2_subh_h16_sat_lh:
case M2_mpy_acc_lh_s0:
case M2_mpy_acc_lh_s1:
case M2_mpy_acc_sat_lh_s0:
case M2_mpy_acc_sat_lh_s1:
case M2_mpy_lh_s0:
case M2_mpy_lh_s1:
case M2_mpy_nac_lh_s0:
case M2_mpy_nac_lh_s1:
case M2_mpy_nac_sat_lh_s0:
case M2_mpy_nac_sat_lh_s1:
case M2_mpy_rnd_lh_s0:
case M2_mpy_rnd_lh_s1:
case M2_mpy_sat_lh_s0:
case M2_mpy_sat_lh_s1:
case M2_mpy_sat_rnd_lh_s0:
case M2_mpy_sat_rnd_lh_s1:
case M2_mpyd_acc_lh_s0:
case M2_mpyd_acc_lh_s1:
case M2_mpyd_lh_s0:
case M2_mpyd_lh_s1:
case M2_mpyd_nac_lh_s0:
case M2_mpyd_nac_lh_s1:
case M2_mpyd_rnd_lh_s0:
case M2_mpyd_rnd_lh_s1:
case M2_mpyu_acc_lh_s0:
case M2_mpyu_acc_lh_s1:
case M2_mpyu_lh_s0:
case M2_mpyu_lh_s1:
case M2_mpyu_nac_lh_s0:
case M2_mpyu_nac_lh_s1:
case M2_mpyud_acc_lh_s0:
case M2_mpyud_acc_lh_s1:
case M2_mpyud_lh_s0:
case M2_mpyud_lh_s1:
case M2_mpyud_nac_lh_s0:
case M2_mpyud_nac_lh_s1:
// These four are actually LH.
case A2_addh_l16_hl:
case A2_addh_l16_sat_hl:
case A2_subh_l16_hl:
case A2_subh_l16_sat_hl:
if (OpN == 1) {
Bits.set(Begin, Begin+16);
return true;
}
if (OpN == 2) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
// Two register sources, used bits: R1[16-31], R2[0-15].
case A2_addh_h16_hl:
case A2_addh_h16_sat_hl:
case A2_combine_hl:
case A2_subh_h16_hl:
case A2_subh_h16_sat_hl:
case M2_mpy_acc_hl_s0:
case M2_mpy_acc_hl_s1:
case M2_mpy_acc_sat_hl_s0:
case M2_mpy_acc_sat_hl_s1:
case M2_mpy_hl_s0:
case M2_mpy_hl_s1:
case M2_mpy_nac_hl_s0:
case M2_mpy_nac_hl_s1:
case M2_mpy_nac_sat_hl_s0:
case M2_mpy_nac_sat_hl_s1:
case M2_mpy_rnd_hl_s0:
case M2_mpy_rnd_hl_s1:
case M2_mpy_sat_hl_s0:
case M2_mpy_sat_hl_s1:
case M2_mpy_sat_rnd_hl_s0:
case M2_mpy_sat_rnd_hl_s1:
case M2_mpyd_acc_hl_s0:
case M2_mpyd_acc_hl_s1:
case M2_mpyd_hl_s0:
case M2_mpyd_hl_s1:
case M2_mpyd_nac_hl_s0:
case M2_mpyd_nac_hl_s1:
case M2_mpyd_rnd_hl_s0:
case M2_mpyd_rnd_hl_s1:
case M2_mpyu_acc_hl_s0:
case M2_mpyu_acc_hl_s1:
case M2_mpyu_hl_s0:
case M2_mpyu_hl_s1:
case M2_mpyu_nac_hl_s0:
case M2_mpyu_nac_hl_s1:
case M2_mpyud_acc_hl_s0:
case M2_mpyud_acc_hl_s1:
case M2_mpyud_hl_s0:
case M2_mpyud_hl_s1:
case M2_mpyud_nac_hl_s0:
case M2_mpyud_nac_hl_s1:
if (OpN == 1) {
Bits.set(Begin+16, Begin+32);
return true;
}
if (OpN == 2) {
Bits.set(Begin, Begin+16);
return true;
}
break;
// Two register sources, used bits: R1[16-31], R2[16-31].
case A2_addh_h16_hh:
case A2_addh_h16_sat_hh:
case A2_combine_hh:
case A2_subh_h16_hh:
case A2_subh_h16_sat_hh:
case M2_mpy_acc_hh_s0:
case M2_mpy_acc_hh_s1:
case M2_mpy_acc_sat_hh_s0:
case M2_mpy_acc_sat_hh_s1:
case M2_mpy_hh_s0:
case M2_mpy_hh_s1:
case M2_mpy_nac_hh_s0:
case M2_mpy_nac_hh_s1:
case M2_mpy_nac_sat_hh_s0:
case M2_mpy_nac_sat_hh_s1:
case M2_mpy_rnd_hh_s0:
case M2_mpy_rnd_hh_s1:
case M2_mpy_sat_hh_s0:
case M2_mpy_sat_hh_s1:
case M2_mpy_sat_rnd_hh_s0:
case M2_mpy_sat_rnd_hh_s1:
case M2_mpyd_acc_hh_s0:
case M2_mpyd_acc_hh_s1:
case M2_mpyd_hh_s0:
case M2_mpyd_hh_s1:
case M2_mpyd_nac_hh_s0:
case M2_mpyd_nac_hh_s1:
case M2_mpyd_rnd_hh_s0:
case M2_mpyd_rnd_hh_s1:
case M2_mpyu_acc_hh_s0:
case M2_mpyu_acc_hh_s1:
case M2_mpyu_hh_s0:
case M2_mpyu_hh_s1:
case M2_mpyu_nac_hh_s0:
case M2_mpyu_nac_hh_s1:
case M2_mpyud_acc_hh_s0:
case M2_mpyud_acc_hh_s1:
case M2_mpyud_hh_s0:
case M2_mpyud_hh_s1:
case M2_mpyud_nac_hh_s0:
case M2_mpyud_nac_hh_s1:
if (OpN == 1 || OpN == 2) {
Bits.set(Begin+16, Begin+32);
return true;
}
break;
}
return false;
}
// Calculate the register class that matches Reg:Sub. For example, if
// vreg1 is a double register, then vreg1:isub_hi would match the "int"
// register class.
const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
return nullptr;
auto *RC = MRI.getRegClass(RR.Reg);
if (RR.Sub == 0)
return RC;
auto &HRI = static_cast<const HexagonRegisterInfo&>(
*MRI.getTargetRegisterInfo());
auto VerifySR = [&HRI] (const TargetRegisterClass *RC, unsigned Sub) -> void {
(void)HRI;
assert(Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo) ||
Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi));
};
switch (RC->getID()) {
case Hexagon::DoubleRegsRegClassID:
VerifySR(RC, RR.Sub);
return &Hexagon::IntRegsRegClass;
case Hexagon::VecDblRegsRegClassID:
VerifySR(RC, RR.Sub);
return &Hexagon::VectorRegsRegClass;
case Hexagon::VecDblRegs128BRegClassID:
VerifySR(RC, RR.Sub);
return &Hexagon::VectorRegs128BRegClass;
}
return nullptr;
}
// Check if RD could be replaced with RS at any possible use of RD.
// For example a predicate register cannot be replaced with a integer
// register, but a 64-bit register with a subregister can be replaced
// with a 32-bit register.
bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
!TargetRegisterInfo::isVirtualRegister(RS.Reg))
return false;
// Return false if one (or both) classes are nullptr.
auto *DRC = getFinalVRegClass(RD, MRI);
if (!DRC)
return false;
return DRC == getFinalVRegClass(RS, MRI);
}
bool HexagonBitSimplify::hasTiedUse(unsigned Reg, MachineRegisterInfo &MRI,
unsigned NewSub) {
if (!PreserveTiedOps)
return false;
return llvm::any_of(MRI.use_operands(Reg),
[NewSub] (const MachineOperand &Op) -> bool {
return Op.getSubReg() != NewSub && Op.isTied();
});
}
namespace {
class DeadCodeElimination {
public:
DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
: MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
MDT(mdt), MRI(mf.getRegInfo()) {}
bool run() {
return runOnNode(MDT.getRootNode());
}
private:
bool isDead(unsigned R) const;
bool runOnNode(MachineDomTreeNode *N);
MachineFunction &MF;
const HexagonInstrInfo &HII;
MachineDominatorTree &MDT;
MachineRegisterInfo &MRI;
};
} // end anonymous namespace
bool DeadCodeElimination::isDead(unsigned R) const {
for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
MachineInstr *UseI = I->getParent();
if (UseI->isDebugValue())
continue;
if (UseI->isPHI()) {
assert(!UseI->getOperand(0).getSubReg());
unsigned DR = UseI->getOperand(0).getReg();
if (DR == R)
continue;
}
return false;
}
return true;
}
bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
bool Changed = false;
for (auto *DTN : children<MachineDomTreeNode*>(N))
Changed |= runOnNode(DTN);
MachineBasicBlock *B = N->getBlock();
std::vector<MachineInstr*> Instrs;
for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
Instrs.push_back(&*I);
for (auto MI : Instrs) {
unsigned Opc = MI->getOpcode();
// Do not touch lifetime markers. This is why the target-independent DCE
// cannot be used.
if (Opc == TargetOpcode::LIFETIME_START ||
Opc == TargetOpcode::LIFETIME_END)
continue;
bool Store = false;
if (MI->isInlineAsm())
continue;
// Delete PHIs if possible.
if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
continue;
bool AllDead = true;
SmallVector<unsigned,2> Regs;
for (auto &Op : MI->operands()) {
if (!Op.isReg() || !Op.isDef())
continue;
unsigned R = Op.getReg();
if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
AllDead = false;
break;
}
Regs.push_back(R);
}
if (!AllDead)
continue;
B->erase(MI);
for (unsigned i = 0, n = Regs.size(); i != n; ++i)
MRI.markUsesInDebugValueAsUndef(Regs[i]);
Changed = true;
}
return Changed;
}
namespace {
// Eliminate redundant instructions
//
// This transformation will identify instructions where the output register
// is the same as one of its input registers. This only works on instructions
// that define a single register (unlike post-increment loads, for example).
// The equality check is actually more detailed: the code calculates which
// bits of the output are used, and only compares these bits with the input
// registers.
// If the output matches an input, the instruction is replaced with COPY.
// The copies will be removed by another transformation.
class RedundantInstrElimination : public Transformation {
public:
RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
MachineRegisterInfo &mri)
: Transformation(true), HII(hii), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
unsigned &LostB, unsigned &LostE);
bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
unsigned &LostB, unsigned &LostE);
bool computeUsedBits(unsigned Reg, BitVector &Bits);
bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
uint16_t Begin);
bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
const HexagonInstrInfo &HII;
MachineRegisterInfo &MRI;
BitTracker &BT;
};
} // end anonymous namespace
// Check if the instruction is a lossy shift left, where the input being
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
// of bit indices that are lost.
bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
unsigned OpN, unsigned &LostB, unsigned &LostE) {
using namespace Hexagon;
unsigned Opc = MI.getOpcode();
unsigned ImN, RegN, Width;
switch (Opc) {
case S2_asl_i_p:
ImN = 2;
RegN = 1;
Width = 64;
break;
case S2_asl_i_p_acc:
case S2_asl_i_p_and:
case S2_asl_i_p_nac:
case S2_asl_i_p_or:
case S2_asl_i_p_xacc:
ImN = 3;
RegN = 2;
Width = 64;
break;
case S2_asl_i_r:
ImN = 2;
RegN = 1;
Width = 32;
break;
case S2_addasl_rrri:
case S4_andi_asl_ri:
case S4_ori_asl_ri:
case S4_addi_asl_ri:
case S4_subi_asl_ri:
case S2_asl_i_r_acc:
case S2_asl_i_r_and:
case S2_asl_i_r_nac:
case S2_asl_i_r_or:
case S2_asl_i_r_sat:
case S2_asl_i_r_xacc:
ImN = 3;
RegN = 2;
Width = 32;
break;
default:
return false;
}
if (RegN != OpN)
return false;
assert(MI.getOperand(ImN).isImm());
unsigned S = MI.getOperand(ImN).getImm();
if (S == 0)
return false;
LostB = Width-S;
LostE = Width;
return true;
}
// Check if the instruction is a lossy shift right, where the input being
// shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
// of bit indices that are lost.
bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
unsigned OpN, unsigned &LostB, unsigned &LostE) {
using namespace Hexagon;
unsigned Opc = MI.getOpcode();
unsigned ImN, RegN;
switch (Opc) {
case S2_asr_i_p:
case S2_lsr_i_p:
ImN = 2;
RegN = 1;
break;
case S2_asr_i_p_acc:
case S2_asr_i_p_and:
case S2_asr_i_p_nac:
case S2_asr_i_p_or:
case S2_lsr_i_p_acc:
case S2_lsr_i_p_and:
case S2_lsr_i_p_nac:
case S2_lsr_i_p_or:
case S2_lsr_i_p_xacc:
ImN = 3;
RegN = 2;
break;
case S2_asr_i_r:
case S2_lsr_i_r:
ImN = 2;
RegN = 1;
break;
case S4_andi_lsr_ri:
case S4_ori_lsr_ri:
case S4_addi_lsr_ri:
case S4_subi_lsr_ri:
case S2_asr_i_r_acc:
case S2_asr_i_r_and:
case S2_asr_i_r_nac:
case S2_asr_i_r_or:
case S2_lsr_i_r_acc:
case S2_lsr_i_r_and:
case S2_lsr_i_r_nac:
case S2_lsr_i_r_or:
case S2_lsr_i_r_xacc:
ImN = 3;
RegN = 2;
break;
default:
return false;
}
if (RegN != OpN)
return false;
assert(MI.getOperand(ImN).isImm());
unsigned S = MI.getOperand(ImN).getImm();
LostB = 0;
LostE = S;
return true;
}
// Calculate the bit vector that corresponds to the used bits of register Reg.
// The vector Bits has the same size, as the size of Reg in bits. If the cal-
// culation fails (i.e. the used bits are unknown), it returns false. Other-
// wise, it returns true and sets the corresponding bits in Bits.
bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
BitVector Used(Bits.size());
RegisterSet Visited;
std::vector<unsigned> Pending;
Pending.push_back(Reg);
for (unsigned i = 0; i < Pending.size(); ++i) {
unsigned R = Pending[i];
if (Visited.has(R))
continue;
Visited.insert(R);
for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
BitTracker::RegisterRef UR = *I;
unsigned B, W;
if (!HBS::getSubregMask(UR, B, W, MRI))
return false;
MachineInstr &UseI = *I->getParent();
if (UseI.isPHI() || UseI.isCopy()) {
unsigned DefR = UseI.getOperand(0).getReg();
if (!TargetRegisterInfo::isVirtualRegister(DefR))
return false;
Pending.push_back(DefR);
} else {
if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
return false;
}
}
}
Bits |= Used;
return true;
}
// Calculate the bits used by instruction MI in a register in operand OpN.
// Return true/false if the calculation succeeds/fails. If is succeeds, set
// used bits in Bits. This function does not reset any bits in Bits, so
// subsequent calls over different instructions will result in the union
// of the used bits in all these instructions.
// The register in question may be used with a sub-register, whereas Bits
// holds the bits for the entire register. To keep track of that, the
// argument Begin indicates where in Bits is the lowest-significant bit
// of the register used in operand OpN. For example, in instruction:
// vreg1 = S2_lsr_i_r vreg2:isub_hi, 10
// the operand 1 is a 32-bit register, which happens to be a subregister
// of the 64-bit register vreg2, and that subregister starts at position 32.
// In this case Begin=32, since Bits[32] would be the lowest-significant bit
// of vreg2:isub_hi.
bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
unsigned OpN, BitVector &Bits, uint16_t Begin) {
unsigned Opc = MI.getOpcode();
BitVector T(Bits.size());
bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
// Even if we don't have bits yet, we could still provide some information
// if the instruction is a lossy shift: the lost bits will be marked as
// not used.
unsigned LB, LE;
if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
assert(MI.getOperand(OpN).isReg());
BitTracker::RegisterRef RR = MI.getOperand(OpN);
const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
uint16_t Width = RC->getSize()*8;
if (!GotBits)
T.set(Begin, Begin+Width);
assert(LB <= LE && LB < Width && LE <= Width);
T.reset(Begin+LB, Begin+LE);
GotBits = true;
}
if (GotBits)
Bits |= T;
return GotBits;
}
// Calculates the used bits in RD ("defined register"), and checks if these
// bits in RS ("used register") and RD are identical.
bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
BitTracker::RegisterRef RS) {
const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
unsigned DB, DW;
if (!HBS::getSubregMask(RD, DB, DW, MRI))
return false;
unsigned SB, SW;
if (!HBS::getSubregMask(RS, SB, SW, MRI))
return false;
if (SW != DW)
return false;
BitVector Used(DC.width());
if (!computeUsedBits(RD.Reg, Used))
return false;
for (unsigned i = 0; i != DW; ++i)
if (Used[i+DB] && DC[DB+i] != SC[SB+i])
return false;
return true;
}
bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
const RegisterSet&) {
if (!BT.reached(&B))
return false;
bool Changed = false;
for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
NextI = std::next(I);
MachineInstr *MI = &*I;
if (MI->getOpcode() == TargetOpcode::COPY)
continue;
if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
continue;
unsigned NumD = MI->getDesc().getNumDefs();
if (NumD != 1)
continue;
BitTracker::RegisterRef RD = MI->getOperand(0);
if (!BT.has(RD.Reg))
continue;
const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
// Find a source operand that is equal to the result.
for (auto &Op : MI->uses()) {
if (!Op.isReg())
continue;
BitTracker::RegisterRef RS = Op;
if (!BT.has(RS.Reg))
continue;
if (!HBS::isTransparentCopy(RD, RS, MRI))
continue;
unsigned BN, BW;
if (!HBS::getSubregMask(RS, BN, BW, MRI))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
continue;
// If found, replace the instruction with a COPY.
const DebugLoc &DL = MI->getDebugLoc();
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
unsigned NewR = MRI.createVirtualRegister(FRC);
MachineInstr *CopyI =
BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
.addReg(RS.Reg, 0, RS.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
// This pass can create copies between registers that don't have the
// exact same values. Updating the tracker has to involve updating
// all dependent cells. Example:
// vreg1 = inst vreg2 ; vreg1 != vreg2, but used bits are equal
//
// vreg3 = copy vreg2 ; <- inserted
// ... = vreg3 ; <- replaced from vreg2
// Indirectly, we can create a "copy" between vreg1 and vreg2 even
// though their exact values do not match.
BT.visit(*CopyI);
Changed = true;
break;
}
}
return Changed;
}
namespace {
// Recognize instructions that produce constant values known at compile-time.
// Replace them with register definitions that load these constants directly.
class ConstGeneration : public Transformation {
public:
ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
MachineRegisterInfo &mri)
: Transformation(true), HII(hii), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
static bool isTfrConst(const MachineInstr &MI);
private:
unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
const HexagonInstrInfo &HII;
MachineRegisterInfo &MRI;
BitTracker &BT;
};
} // end anonymous namespace
bool ConstGeneration::isTfrConst(const MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
case Hexagon::A2_tfrsi:
case Hexagon::A2_tfrpi:
case Hexagon::PS_true:
case Hexagon::PS_false:
case Hexagon::CONST32:
case Hexagon::CONST64:
return true;
}
return false;
}
// Generate a transfer-immediate instruction that is appropriate for the
// register class and the actual value being transferred.
unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
unsigned Reg = MRI.createVirtualRegister(RC);
if (RC == &Hexagon::IntRegsRegClass) {
BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
.addImm(int32_t(C));
return Reg;
}
if (RC == &Hexagon::DoubleRegsRegClass) {
if (isInt<8>(C)) {
BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
.addImm(C);
return Reg;
}
unsigned Lo = Lo_32(C), Hi = Hi_32(C);
if (isInt<8>(Lo) || isInt<8>(Hi)) {
unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
: Hexagon::A4_combineii;
BuildMI(B, At, DL, HII.get(Opc), Reg)
.addImm(int32_t(Hi))
.addImm(int32_t(Lo));
return Reg;
}
BuildMI(B, At, DL, HII.get(Hexagon::CONST64), Reg)
.addImm(C);
return Reg;
}
if (RC == &Hexagon::PredRegsRegClass) {
unsigned Opc;
if (C == 0)
Opc = Hexagon::PS_false;
else if ((C & 0xFF) == 0xFF)
Opc = Hexagon::PS_true;
else
return 0;
BuildMI(B, At, DL, HII.get(Opc), Reg);
return Reg;
}
return 0;
}
bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
if (!BT.reached(&B))
return false;
bool Changed = false;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(); I != E; ++I) {
if (isTfrConst(*I))
continue;
Defs.clear();
HBS::getInstrDefs(*I, Defs);
if (Defs.count() != 1)
continue;
unsigned DR = Defs.find_first();
if (!TargetRegisterInfo::isVirtualRegister(DR))
continue;
uint64_t U;
const BitTracker::RegisterCell &DRC = BT.lookup(DR);
if (HBS::getConst(DRC, 0, DRC.width(), U)) {
int64_t C = U;
DebugLoc DL = I->getDebugLoc();
auto At = I->isPHI() ? B.getFirstNonPHI() : I;
unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
if (ImmReg) {
HBS::replaceReg(DR, ImmReg, MRI);
BT.put(ImmReg, DRC);
Changed = true;
}
}
}
return Changed;
}
namespace {
// Identify pairs of available registers which hold identical values.
// In such cases, only one of them needs to be calculated, the other one
// will be defined as a copy of the first.
class CopyGeneration : public Transformation {
public:
CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
: Transformation(true), HII(hii), HRI(hri), MRI(mri), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
bool findMatch(const BitTracker::RegisterRef &Inp,
BitTracker::RegisterRef &Out, const RegisterSet &AVs);
const HexagonInstrInfo &HII;
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
BitTracker &BT;
RegisterSet Forbidden;
};
// Eliminate register copies RD = RS, by replacing the uses of RD with
// with uses of RS.
class CopyPropagation : public Transformation {
public:
CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
: Transformation(false), HRI(hri), MRI(mri) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
static bool isCopyReg(unsigned Opc, bool NoConv);
private:
bool propagateRegCopy(MachineInstr &MI);
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
};
} // end anonymous namespace
/// Check if there is a register in AVs that is identical to Inp. If so,
/// set Out to the found register. The output may be a pair Reg:Sub.
bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
if (!BT.has(Inp.Reg))
return false;
const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
auto *FRC = HBS::getFinalVRegClass(Inp, MRI);
unsigned B, W;
if (!HBS::getSubregMask(Inp, B, W, MRI))
return false;
for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
if (!BT.has(R) || Forbidden[R])
continue;
const BitTracker::RegisterCell &RC = BT.lookup(R);
unsigned RW = RC.width();
if (W == RW) {
if (FRC != MRI.getRegClass(R))
continue;
if (!HBS::isTransparentCopy(R, Inp, MRI))
continue;
if (!HBS::isEqual(InpRC, B, RC, 0, W))
continue;
Out.Reg = R;
Out.Sub = 0;
return true;
}
// Check if there is a super-register, whose part (with a subregister)
// is equal to the input.
// Only do double registers for now.
if (W*2 != RW)
continue;
if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
continue;
if (HBS::isEqual(InpRC, B, RC, 0, W))
Out.Sub = Hexagon::isub_lo;
else if (HBS::isEqual(InpRC, B, RC, W, W))
Out.Sub = Hexagon::isub_hi;
else
continue;
Out.Reg = R;
if (HBS::isTransparentCopy(Out, Inp, MRI))
return true;
}
return false;
}
bool CopyGeneration::processBlock(MachineBasicBlock &B,
const RegisterSet &AVs) {
if (!BT.reached(&B))
return false;
RegisterSet AVB(AVs);
bool Changed = false;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
++I, AVB.insert(Defs)) {
NextI = std::next(I);
Defs.clear();
HBS::getInstrDefs(*I, Defs);
unsigned Opc = I->getOpcode();
if (CopyPropagation::isCopyReg(Opc, false) ||
ConstGeneration::isTfrConst(*I))
continue;
DebugLoc DL = I->getDebugLoc();
auto At = I->isPHI() ? B.getFirstNonPHI() : I;
for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
BitTracker::RegisterRef MR;
auto *FRC = HBS::getFinalVRegClass(R, MRI);
if (findMatch(R, MR, AVB)) {
unsigned NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
.addReg(MR.Reg, 0, MR.Sub);
BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
HBS::replaceReg(R, NewR, MRI);
Forbidden.insert(R);
continue;
}
if (FRC == &Hexagon::DoubleRegsRegClass ||
FRC == &Hexagon::VecDblRegsRegClass ||
FRC == &Hexagon::VecDblRegs128BRegClass) {
// Try to generate REG_SEQUENCE.
unsigned SubLo = HRI.getHexagonSubRegIndex(FRC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(FRC, Hexagon::ps_sub_hi);
BitTracker::RegisterRef TL = { R, SubLo };
BitTracker::RegisterRef TH = { R, SubHi };
BitTracker::RegisterRef ML, MH;
if (findMatch(TL, ML, AVB) && findMatch(TH, MH, AVB)) {
auto *FRC = HBS::getFinalVRegClass(R, MRI);
unsigned NewR = MRI.createVirtualRegister(FRC);
BuildMI(B, At, DL, HII.get(TargetOpcode::REG_SEQUENCE), NewR)
.addReg(ML.Reg, 0, ML.Sub)
.addImm(SubLo)
.addReg(MH.Reg, 0, MH.Sub)
.addImm(SubHi);
BT.put(BitTracker::RegisterRef(NewR), BT.get(R));
HBS::replaceReg(R, NewR, MRI);
Forbidden.insert(R);
}
}
}
}
return Changed;
}
bool CopyPropagation::isCopyReg(unsigned Opc, bool NoConv) {
switch (Opc) {
case TargetOpcode::COPY:
case TargetOpcode::REG_SEQUENCE:
case Hexagon::A4_combineir:
case Hexagon::A4_combineri:
return true;
case Hexagon::A2_tfr:
case Hexagon::A2_tfrp:
case Hexagon::A2_combinew:
case Hexagon::V6_vcombine:
case Hexagon::V6_vcombine_128B:
return NoConv;
default:
break;
}
return false;
}
bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
bool Changed = false;
unsigned Opc = MI.getOpcode();
BitTracker::RegisterRef RD = MI.getOperand(0);
assert(MI.getOperand(0).getSubReg() == 0);
switch (Opc) {
case TargetOpcode::COPY:
case Hexagon::A2_tfr:
case Hexagon::A2_tfrp: {
BitTracker::RegisterRef RS = MI.getOperand(1);
if (!HBS::isTransparentCopy(RD, RS, MRI))
break;
if (RS.Sub != 0)
Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
else
Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
break;
}
case TargetOpcode::REG_SEQUENCE: {
BitTracker::RegisterRef SL, SH;
if (HBS::parseRegSequence(MI, SL, SH, MRI)) {
const TargetRegisterClass *RC = MRI.getRegClass(RD.Reg);
unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, SL.Reg, SL.Sub, MRI);
Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, SH.Reg, SH.Sub, MRI);
}
break;
}
case Hexagon::A2_combinew:
case Hexagon::V6_vcombine:
case Hexagon::V6_vcombine_128B: {
const TargetRegisterClass *RC = MRI.getRegClass(RD.Reg);
unsigned SubLo = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo);
unsigned SubHi = HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi);
BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
Changed = HBS::replaceSubWithSub(RD.Reg, SubLo, RL.Reg, RL.Sub, MRI);
Changed |= HBS::replaceSubWithSub(RD.Reg, SubHi, RH.Reg, RH.Sub, MRI);
break;
}
case Hexagon::A4_combineir:
case Hexagon::A4_combineri: {
unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::isub_lo
: Hexagon::isub_hi;
BitTracker::RegisterRef RS = MI.getOperand(SrcX);
Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
break;
}
}
return Changed;
}
bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
std::vector<MachineInstr*> Instrs;
for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
Instrs.push_back(&*I);
bool Changed = false;
for (auto I : Instrs) {
unsigned Opc = I->getOpcode();
if (!CopyPropagation::isCopyReg(Opc, true))
continue;
Changed |= propagateRegCopy(*I);
}
return Changed;
}
namespace {
// Recognize patterns that can be simplified and replace them with the
// simpler forms.
// This is by no means complete
class BitSimplification : public Transformation {
public:
BitSimplification(BitTracker &bt, const MachineDominatorTree &mdt,
const HexagonInstrInfo &hii, const HexagonRegisterInfo &hri,
MachineRegisterInfo &mri, MachineFunction &mf)
: Transformation(true), MDT(mdt), HII(hii), HRI(hri), MRI(mri),
MF(mf), BT(bt) {}
bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
private:
struct RegHalf : public BitTracker::RegisterRef {
bool Low; // Low/High halfword.
};
bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
unsigned B, RegHalf &RH);
bool validateReg(BitTracker::RegisterRef R, unsigned Opc, unsigned OpNum);
bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
unsigned getCombineOpcode(bool HLow, bool LLow);
bool genStoreUpperHalf(MachineInstr *MI);
bool genStoreImmediate(MachineInstr *MI);
bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool genBitSplit(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC);
bool simplifyExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
const BitTracker::RegisterCell &RC, const RegisterSet &AVs);
// Cache of created instructions to avoid creating duplicates.
// XXX Currently only used by genBitSplit.
std::vector<MachineInstr*> NewMIs;
const MachineDominatorTree &MDT;
const HexagonInstrInfo &HII;
const HexagonRegisterInfo &HRI;
MachineRegisterInfo &MRI;
MachineFunction &MF;
BitTracker &BT;
};
} // end anonymous namespace
// Check if the bits [B..B+16) in register cell RC form a valid halfword,
// i.e. [0..16), [16..32), etc. of some register. If so, return true and
// set the information about the found register in RH.
bool BitSimplification::matchHalf(unsigned SelfR,
const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
// XXX This could be searching in the set of available registers, in case
// the match is not exact.
// Match 16-bit chunks, where the RC[B..B+15] references exactly one
// register and all the bits B..B+15 match between RC and the register.
// This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
// and RC = { [0]:0 [1-15]:v1[1-15]... }.
bool Low = false;
unsigned I = B;
while (I < B+16 && RC[I].num())
I++;
if (I == B+16)
return false;
unsigned Reg = RC[I].RefI.Reg;
unsigned P = RC[I].RefI.Pos; // The RefI.Pos will be advanced by I-B.
if (P < I-B)
return false;
unsigned Pos = P - (I-B);
if (Reg == 0 || Reg == SelfR) // Don't match "self".
return false;
if (!TargetRegisterInfo::isVirtualRegister(Reg))
return false;
if (!BT.has(Reg))
return false;
const BitTracker::RegisterCell &SC = BT.lookup(Reg);
if (Pos+16 > SC.width())
return false;
for (unsigned i = 0; i < 16; ++i) {
const BitTracker::BitValue &RV = RC[i+B];
if (RV.Type == BitTracker::BitValue::Ref) {
if (RV.RefI.Reg != Reg)
return false;
if (RV.RefI.Pos != i+Pos)
return false;
continue;
}
if (RC[i+B] != SC[i+Pos])
return false;
}
unsigned Sub = 0;
switch (Pos) {
case 0:
Sub = Hexagon::isub_lo;
Low = true;
break;
case 16:
Sub = Hexagon::isub_lo;
Low = false;
break;
case 32:
Sub = Hexagon::isub_hi;
Low = true;
break;
case 48:
Sub = Hexagon::isub_hi;
Low = false;
break;
default:
return false;
}
RH.Reg = Reg;
RH.Sub = Sub;
RH.Low = Low;
// If the subregister is not valid with the register, set it to 0.
if (!HBS::getFinalVRegClass(RH, MRI))
RH.Sub = 0;
return true;
}
bool BitSimplification::validateReg(BitTracker::RegisterRef R, unsigned Opc,
unsigned OpNum) {
auto *OpRC = HII.getRegClass(HII.get(Opc), OpNum, &HRI, MF);
auto *RRC = HBS::getFinalVRegClass(R, MRI);
return OpRC->hasSubClassEq(RRC);
}
// Check if RC matches the pattern of a S2_packhl. If so, return true and
// set the inputs Rs and Rt.
bool BitSimplification::matchPackhl(unsigned SelfR,
const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
BitTracker::RegisterRef &Rt) {
RegHalf L1, H1, L2, H2;
if (!matchHalf(SelfR, RC, 0, L2) || !matchHalf(SelfR, RC, 16, L1))
return false;
if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
return false;
// Rs = H1.L1, Rt = H2.L2
if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
return false;
if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
return false;
Rs = H1;
Rt = H2;
return true;
}
unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
return HLow ? LLow ? Hexagon::A2_combine_ll
: Hexagon::A2_combine_lh
: LLow ? Hexagon::A2_combine_hl
: Hexagon::A2_combine_hh;
}
// If MI stores the upper halfword of a register (potentially obtained via
// shifts or extracts), replace it with a storerf instruction. This could
// cause the "extraction" code to become dead.
bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
if (Opc != Hexagon::S2_storerh_io)
return false;
MachineOperand &ValOp = MI->getOperand(2);
BitTracker::RegisterRef RS = ValOp;
if (!BT.has(RS.Reg))
return false;
const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
RegHalf H;
if (!matchHalf(0, RC, 0, H))
return false;
if (H.Low)
return false;
MI->setDesc(HII.get(Hexagon::S2_storerf_io));
ValOp.setReg(H.Reg);
ValOp.setSubReg(H.Sub);
return true;
}
// If MI stores a value known at compile-time, and the value is within a range
// that avoids using constant-extenders, replace it with a store-immediate.
bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
unsigned Opc = MI->getOpcode();
unsigned Align = 0;
switch (Opc) {
case Hexagon::S2_storeri_io:
Align++;
case Hexagon::S2_storerh_io:
Align++;
case Hexagon::S2_storerb_io:
break;
default:
return false;
}
// Avoid stores to frame-indices (due to an unknown offset).
if (!MI->getOperand(0).isReg())
return false;
MachineOperand &OffOp = MI->getOperand(1);
if (!OffOp.isImm())
return false;
int64_t Off = OffOp.getImm();
// Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
return false;
// Source register:
BitTracker::RegisterRef RS = MI->getOperand(2);
if (!BT.has(RS.Reg))
return false;
const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
uint64_t U;
if (!HBS::getConst(RC, 0, RC.width(), U))
return false;
// Only consider 8-bit values to avoid constant-extenders.
int V;
switch (Opc) {
case Hexagon::S2_storerb_io:
V = int8_t(U);
break;
case Hexagon::S2_storerh_io:
V = int16_t(U);
break;
case Hexagon::S2_storeri_io:
V = int32_t(U);
break;
}
if (!isInt<8>(V))
return false;
MI->RemoveOperand(2);
switch (Opc) {
case Hexagon::S2_storerb_io:
MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
break;
case Hexagon::S2_storerh_io:
MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
break;
case Hexagon::S2_storeri_io:
MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
break;
}
MI->addOperand(MachineOperand::CreateImm(V));
return true;
}
// If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
// last instruction in a sequence that results in something equivalent to
// the pack-halfwords. The intent is to cause the entire sequence to become
// dead.
bool BitSimplification::genPackhl(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
if (Opc == Hexagon::S2_packhl)
return false;
BitTracker::RegisterRef Rs, Rt;
if (!matchPackhl(RD.Reg, RC, Rs, Rt))
return false;
if (!validateReg(Rs, Hexagon::S2_packhl, 1) ||
!validateReg(Rt, Hexagon::S2_packhl, 2))
return false;
MachineBasicBlock &B = *MI->getParent();
unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
DebugLoc DL = MI->getDebugLoc();
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
BuildMI(B, At, DL, HII.get(Hexagon::S2_packhl), NewR)
.addReg(Rs.Reg, 0, Rs.Sub)
.addReg(Rt.Reg, 0, Rt.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI produces halfword of the input in the low half of the output,
// replace it with zero-extend or extractu.
bool BitSimplification::genExtractHalf(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
RegHalf L;
// Check for halfword in low 16 bits, zeros elsewhere.
if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
return false;
unsigned Opc = MI->getOpcode();
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
// Prefer zxth, since zxth can go in any slot, while extractu only in
// slots 2 and 3.
unsigned NewR = 0;
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
if (L.Low && Opc != Hexagon::A2_zxth) {
if (validateReg(L, Hexagon::A2_zxth, 1)) {
NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(B, At, DL, HII.get(Hexagon::A2_zxth), NewR)
.addReg(L.Reg, 0, L.Sub);
}
} else if (!L.Low && Opc != Hexagon::S2_lsr_i_r) {
if (validateReg(L, Hexagon::S2_lsr_i_r, 1)) {
NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(B, MI, DL, HII.get(Hexagon::S2_lsr_i_r), NewR)
.addReg(L.Reg, 0, L.Sub)
.addImm(16);
}
}
if (NewR == 0)
return false;
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
// combine.
bool BitSimplification::genCombineHalf(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
RegHalf L, H;
// Check for combine h/l
if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
return false;
// Do nothing if this is just a reg copy.
if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
return false;
unsigned Opc = MI->getOpcode();
unsigned COpc = getCombineOpcode(H.Low, L.Low);
if (COpc == Opc)
return false;
if (!validateReg(H, COpc, 1) || !validateReg(L, COpc, 2))
return false;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
BuildMI(B, At, DL, HII.get(COpc), NewR)
.addReg(H.Reg, 0, H.Sub)
.addReg(L.Reg, 0, L.Sub);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
// If MI resets high bits of a register and keeps the lower ones, replace it
// with zero-extend byte/half, and-immediate, or extractu, as appropriate.
bool BitSimplification::genExtractLow(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
case Hexagon::S2_extractu:
return false;
}
if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
int32_t Imm = MI->getOperand(2).getImm();
if (isInt<10>(Imm))
return false;
}
if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
return false;
unsigned W = RC.width();
while (W > 0 && RC[W-1].is(0))
W--;
if (W == 0 || W == RC.width())
return false;
unsigned NewOpc = (W == 8) ? Hexagon::A2_zxtb
: (W == 16) ? Hexagon::A2_zxth
: (W < 10) ? Hexagon::A2_andir
: Hexagon::S2_extractu;
MachineBasicBlock &B = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
for (auto &Op : MI->uses()) {
if (!Op.isReg())
continue;
BitTracker::RegisterRef RS = Op;
if (!BT.has(RS.Reg))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
unsigned BN, BW;
if (!HBS::getSubregMask(RS, BN, BW, MRI))
continue;
if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
continue;
if (!validateReg(RS, NewOpc, 1))
continue;
unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
auto MIB = BuildMI(B, At, DL, HII.get(NewOpc), NewR)
.addReg(RS.Reg, 0, RS.Sub);
if (NewOpc == Hexagon::A2_andir)
MIB.addImm((1 << W) - 1);
else if (NewOpc == Hexagon::S2_extractu)
MIB.addImm(W).addImm(0);
HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
return true;
}
return false;
}
bool BitSimplification::genBitSplit(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
const RegisterSet &AVs) {
if (!GenBitSplit)
return false;
if (CountBitSplit >= MaxBitSplit)
return false;
unsigned Opc = MI->getOpcode();
switch (Opc) {
case Hexagon::A4_bitsplit:
case Hexagon::A4_bitspliti:
return false;
}
unsigned W = RC.width();
if (W != 32)
return false;
auto ctlz = [] (const BitTracker::RegisterCell &C) -> unsigned {
unsigned Z = C.width();
while (Z > 0 && C[Z-1].is(0))
--Z;
return C.width() - Z;
};
// Count the number of leading zeros in the target RC.
unsigned Z = ctlz(RC);
if (Z == 0 || Z == W)
return false;
// A simplistic analysis: assume the source register (the one being split)
// is fully unknown, and that all its bits are self-references.
const BitTracker::BitValue &B0 = RC[0];
if (B0.Type != BitTracker::BitValue::Ref)
return false;
unsigned SrcR = B0.RefI.Reg;
unsigned SrcSR = 0;
unsigned Pos = B0.RefI.Pos;
// All the non-zero bits should be consecutive bits from the same register.
for (unsigned i = 1; i < W-Z; ++i) {
const BitTracker::BitValue &V = RC[i];
if (V.Type != BitTracker::BitValue::Ref)
return false;
if (V.RefI.Reg != SrcR || V.RefI.Pos != Pos+i)
return false;
}
// Now, find the other bitfield among AVs.
for (unsigned S = AVs.find_first(); S; S = AVs.find_next(S)) {
// The number of leading zeros here should be the number of trailing
// non-zeros in RC.
if (!BT.has(S))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(S);
if (SC.width() != W || ctlz(SC) != W-Z)
continue;
// The Z lower bits should now match SrcR.
const BitTracker::BitValue &S0 = SC[0];
if (S0.Type != BitTracker::BitValue::Ref || S0.RefI.Reg != SrcR)
continue;
unsigned P = S0.RefI.Pos;
if (Pos <= P && (Pos + W-Z) != P)
continue;
if (P < Pos && (P + Z) != Pos)
continue;
// The starting bitfield position must be at a subregister boundary.
if (std::min(P, Pos) != 0 && std::min(P, Pos) != 32)
continue;
unsigned I;
for (I = 1; I < Z; ++I) {
const BitTracker::BitValue &V = SC[I];
if (V.Type != BitTracker::BitValue::Ref)
break;
if (V.RefI.Reg != SrcR || V.RefI.Pos != P+I)
break;
}
if (I != Z)
continue;
// Generate bitsplit where S is defined.
CountBitSplit++;
MachineInstr *DefS = MRI.getVRegDef(S);
assert(DefS != nullptr);
DebugLoc DL = DefS->getDebugLoc();
MachineBasicBlock &B = *DefS->getParent();
auto At = DefS->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(DefS);
if (MRI.getRegClass(SrcR)->getID() == Hexagon::DoubleRegsRegClassID)
SrcSR = (std::min(Pos, P) == 32) ? Hexagon::isub_hi : Hexagon::isub_lo;
if (!validateReg({SrcR,SrcSR}, Hexagon::A4_bitspliti, 1))
continue;
unsigned ImmOp = Pos <= P ? W-Z : Z;
// Find an existing bitsplit instruction if one already exists.
unsigned NewR = 0;
for (MachineInstr *In : NewMIs) {
if (In->getOpcode() != Hexagon::A4_bitspliti)
continue;
MachineOperand &Op1 = In->getOperand(1);
if (Op1.getReg() != SrcR || Op1.getSubReg() != SrcSR)
continue;
if (In->getOperand(2).getImm() != ImmOp)
continue;
// Check if the target register is available here.
MachineOperand &Op0 = In->getOperand(0);
MachineInstr *DefI = MRI.getVRegDef(Op0.getReg());
assert(DefI != nullptr);
if (!MDT.dominates(DefI, &*At))
continue;
// Found one that can be reused.
assert(Op0.getSubReg() == 0);
NewR = Op0.getReg();
break;
}
if (!NewR) {
NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
auto NewBS = BuildMI(B, At, DL, HII.get(Hexagon::A4_bitspliti), NewR)
.addReg(SrcR, 0, SrcSR)
.addImm(ImmOp);
NewMIs.push_back(NewBS);
}
if (Pos <= P) {
HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_lo, MRI);
HBS::replaceRegWithSub(S, NewR, Hexagon::isub_hi, MRI);
} else {
HBS::replaceRegWithSub(S, NewR, Hexagon::isub_lo, MRI);
HBS::replaceRegWithSub(RD.Reg, NewR, Hexagon::isub_hi, MRI);
}
return true;
}
return false;
}
// Check for tstbit simplification opportunity, where the bit being checked
// can be tracked back to another register. For example:
// vreg2 = S2_lsr_i_r vreg1, 5
// vreg3 = S2_tstbit_i vreg2, 0
// =>
// vreg3 = S2_tstbit_i vreg1, 5
bool BitSimplification::simplifyTstbit(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
unsigned Opc = MI->getOpcode();
if (Opc != Hexagon::S2_tstbit_i)
return false;
unsigned BN = MI->getOperand(2).getImm();
BitTracker::RegisterRef RS = MI->getOperand(1);
unsigned F, W;
DebugLoc DL = MI->getDebugLoc();
if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
return false;
MachineBasicBlock &B = *MI->getParent();
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
const BitTracker::BitValue &V = SC[F+BN];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
// Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
// a double register, need to use a subregister and adjust bit
// number.
unsigned P = std::numeric_limits<unsigned>::max();
BitTracker::RegisterRef RR(V.RefI.Reg, 0);
if (TC == &Hexagon::DoubleRegsRegClass) {
P = V.RefI.Pos;
RR.Sub = Hexagon::isub_lo;
if (P >= 32) {
P -= 32;
RR.Sub = Hexagon::isub_hi;
}
} else if (TC == &Hexagon::IntRegsRegClass) {
P = V.RefI.Pos;
}
if (P != std::numeric_limits<unsigned>::max()) {
unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
BuildMI(B, At, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
.addReg(RR.Reg, 0, RR.Sub)
.addImm(P);
HBS::replaceReg(RD.Reg, NewR, MRI);
BT.put(NewR, RC);
return true;
}
} else if (V.is(0) || V.is(1)) {
unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
unsigned NewOpc = V.is(0) ? Hexagon::PS_false : Hexagon::PS_true;
BuildMI(B, At, DL, HII.get(NewOpc), NewR);
HBS::replaceReg(RD.Reg, NewR, MRI);
return true;
}
return false;
}
// Detect whether RD is a bitfield extract (sign- or zero-extended) of
// some register from the AVs set. Create a new corresponding instruction
// at the location of MI. The intent is to recognize situations where
// a sequence of instructions performs an operation that is equivalent to
// an extract operation, such as a shift left followed by a shift right.
bool BitSimplification::simplifyExtractLow(MachineInstr *MI,
BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC,
const RegisterSet &AVs) {
if (!GenExtract)
return false;
if (CountExtract >= MaxExtract)
return false;
CountExtract++;
unsigned W = RC.width();
unsigned RW = W;
unsigned Len;
bool Signed;
// The code is mostly class-independent, except for the part that generates
// the extract instruction, and establishes the source register (in case it
// needs to use a subregister).
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
if (FRC != &Hexagon::IntRegsRegClass && FRC != &Hexagon::DoubleRegsRegClass)
return false;
assert(RD.Sub == 0);
// Observation:
// If the cell has a form of 00..0xx..x with k zeros and n remaining
// bits, this could be an extractu of the n bits, but it could also be
// an extractu of a longer field which happens to have 0s in the top
// bit positions.
// The same logic applies to sign-extended fields.
//
// Do not check for the extended extracts, since it would expand the
// search space quite a bit. The search may be expensive as it is.
const BitTracker::BitValue &TopV = RC[W-1];
// Eliminate candidates that have self-referential bits, since they
// cannot be extracts from other registers. Also, skip registers that
// have compile-time constant values.
bool IsConst = true;
for (unsigned I = 0; I != W; ++I) {
const BitTracker::BitValue &V = RC[I];
if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg == RD.Reg)
return false;
IsConst = IsConst && (V.is(0) || V.is(1));
}
if (IsConst)
return false;
if (TopV.is(0) || TopV.is(1)) {
bool S = TopV.is(1);
for (--W; W > 0 && RC[W-1].is(S); --W)
;
Len = W;
Signed = S;
// The sign bit must be a part of the field being extended.
if (Signed)
++Len;
} else {
// This could still be a sign-extended extract.
assert(TopV.Type == BitTracker::BitValue::Ref);
if (TopV.RefI.Reg == RD.Reg || TopV.RefI.Pos == W-1)
return false;
for (--W; W > 0 && RC[W-1] == TopV; --W)
;
// The top bits of RC are copies of TopV. One occurrence of TopV will
// be a part of the field.
Len = W + 1;
Signed = true;
}
// This would be just a copy. It should be handled elsewhere.
if (Len == RW)
return false;
DEBUG({
dbgs() << __func__ << " on reg: " << PrintReg(RD.Reg, &HRI, RD.Sub)
<< ", MI: " << *MI;
dbgs() << "Cell: " << RC << '\n';
dbgs() << "Expected bitfield size: " << Len << " bits, "
<< (Signed ? "sign" : "zero") << "-extended\n";
});
bool Changed = false;
for (unsigned R = AVs.find_first(); R != 0; R = AVs.find_next(R)) {
if (!BT.has(R))
continue;
const BitTracker::RegisterCell &SC = BT.lookup(R);
unsigned SW = SC.width();
// The source can be longer than the destination, as long as its size is
// a multiple of the size of the destination. Also, we would need to be
// able to refer to the subregister in the source that would be of the
// same size as the destination, but only check the sizes here.
if (SW < RW || (SW % RW) != 0)
continue;
// The field can start at any offset in SC as long as it contains Len
// bits and does not cross subregister boundary (if the source register
// is longer than the destination).
unsigned Off = 0;
while (Off <= SW-Len) {
unsigned OE = (Off+Len)/RW;
if (OE != Off/RW) {
// The assumption here is that if the source (R) is longer than the
// destination, then the destination is a sequence of words of
// size RW, and each such word in R can be accessed via a subregister.
//
// If the beginning and the end of the field cross the subregister
// boundary, advance to the next subregister.
Off = OE*RW;
continue;
}
if (HBS::isEqual(RC, 0, SC, Off, Len))
break;
++Off;
}
if (Off > SW-Len)
continue;
// Found match.
unsigned ExtOpc = 0;
if (Off == 0) {
if (Len == 8)
ExtOpc = Signed ? Hexagon::A2_sxtb : Hexagon::A2_zxtb;
else if (Len == 16)
ExtOpc = Signed ? Hexagon::A2_sxth : Hexagon::A2_zxth;
else if (Len < 10 && !Signed)
ExtOpc = Hexagon::A2_andir;
}
if (ExtOpc == 0) {
ExtOpc =
Signed ? (RW == 32 ? Hexagon::S4_extract : Hexagon::S4_extractp)
: (RW == 32 ? Hexagon::S2_extractu : Hexagon::S2_extractup);
}
unsigned SR = 0;
// This only recognizes isub_lo and isub_hi.
if (RW != SW && RW*2 != SW)
continue;
if (RW != SW)
SR = (Off/RW == 0) ? Hexagon::isub_lo : Hexagon::isub_hi;
Off = Off % RW;
if (!validateReg({R,SR}, ExtOpc, 1))
continue;
// Don't generate the same instruction as the one being optimized.
if (MI->getOpcode() == ExtOpc) {
// All possible ExtOpc's have the source in operand(1).
const MachineOperand &SrcOp = MI->getOperand(1);
if (SrcOp.getReg() == R)
continue;
}
DebugLoc DL = MI->getDebugLoc();
MachineBasicBlock &B = *MI->getParent();
unsigned NewR = MRI.createVirtualRegister(FRC);
auto At = MI->isPHI() ? B.getFirstNonPHI()
: MachineBasicBlock::iterator(MI);
auto MIB = BuildMI(B, At, DL, HII.get(ExtOpc), NewR)
.addReg(R, 0, SR);
switch (ExtOpc) {
case Hexagon::A2_sxtb:
case Hexagon::A2_zxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxth:
break;
case Hexagon::A2_andir:
MIB.addImm((1u << Len) - 1);
break;
case Hexagon::S4_extract:
case Hexagon::S2_extractu:
case Hexagon::S4_extractp:
case Hexagon::S2_extractup:
MIB.addImm(Len)
.addImm(Off);
break;
default:
llvm_unreachable("Unexpected opcode");
}
HBS::replaceReg(RD.Reg, NewR, MRI);
BT.put(BitTracker::RegisterRef(NewR), RC);
Changed = true;
break;
}
return Changed;
}
bool BitSimplification::processBlock(MachineBasicBlock &B,
const RegisterSet &AVs) {
if (!BT.reached(&B))
return false;
bool Changed = false;
RegisterSet AVB = AVs;
RegisterSet Defs;
for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
MachineInstr *MI = &*I;
Defs.clear();
HBS::getInstrDefs(*MI, Defs);
unsigned Opc = MI->getOpcode();
if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
continue;
if (MI->mayStore()) {
bool T = genStoreUpperHalf(MI);
T = T || genStoreImmediate(MI);
Changed |= T;
continue;
}
if (Defs.count() != 1)
continue;
const MachineOperand &Op0 = MI->getOperand(0);
if (!Op0.isReg() || !Op0.isDef())
continue;
BitTracker::RegisterRef RD = Op0;
if (!BT.has(RD.Reg))
continue;
const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
bool T = genPackhl(MI, RD, RC);
T = T || simplifyExtractLow(MI, RD, RC, AVB);
Changed |= T;
continue;
}
if (FRC->getID() == Hexagon::IntRegsRegClassID) {
bool T = genBitSplit(MI, RD, RC, AVB);
T = T || simplifyExtractLow(MI, RD, RC, AVB);
T = T || genExtractHalf(MI, RD, RC);
T = T || genCombineHalf(MI, RD, RC);
T = T || genExtractLow(MI, RD, RC);
Changed |= T;
continue;
}
if (FRC->getID() == Hexagon::PredRegsRegClassID) {
bool T = simplifyTstbit(MI, RD, RC);
Changed |= T;
continue;
}
}
return Changed;
}
bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
auto &HRI = *HST.getRegisterInfo();
auto &HII = *HST.getInstrInfo();
MDT = &getAnalysis<MachineDominatorTree>();
MachineRegisterInfo &MRI = MF.getRegInfo();
bool Changed;
Changed = DeadCodeElimination(MF, *MDT).run();
const HexagonEvaluator HE(HRI, MRI, HII, MF);
BitTracker BT(HE, MF);
DEBUG(BT.trace(true));
BT.run();
MachineBasicBlock &Entry = MF.front();
RegisterSet AIG; // Available registers for IG.
ConstGeneration ImmG(BT, HII, MRI);
Changed |= visitBlock(Entry, ImmG, AIG);
RegisterSet ARE; // Available registers for RIE.
RedundantInstrElimination RIE(BT, HII, MRI);
bool Ried = visitBlock(Entry, RIE, ARE);
if (Ried) {
Changed = true;
BT.run();
}
RegisterSet ACG; // Available registers for CG.
CopyGeneration CopyG(BT, HII, HRI, MRI);
Changed |= visitBlock(Entry, CopyG, ACG);
RegisterSet ACP; // Available registers for CP.
CopyPropagation CopyP(HRI, MRI);
Changed |= visitBlock(Entry, CopyP, ACP);
Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
BT.run();
RegisterSet ABS; // Available registers for BS.
BitSimplification BitS(BT, *MDT, HII, HRI, MRI, MF);
Changed |= visitBlock(Entry, BitS, ABS);
Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
if (Changed) {
for (auto &B : MF)
for (auto &I : B)
I.clearKillInfo();
DeadCodeElimination(MF, *MDT).run();
}
return Changed;
}
// Recognize loops where the code at the end of the loop matches the code
// before the entry of the loop, and the matching code is such that is can
// be simplified. This pass relies on the bit simplification above and only
// prepares code in a way that can be handled by the bit simplifcation.
//
// This is the motivating testcase (and explanation):
//
// {
// loop0(.LBB0_2, r1) // %for.body.preheader
// r5:4 = memd(r0++#8)
// }
// {
// r3 = lsr(r4, #16)
// r7:6 = combine(r5, r5)
// }
// {
// r3 = insert(r5, #16, #16)
// r7:6 = vlsrw(r7:6, #16)
// }
// .LBB0_2:
// {
// memh(r2+#4) = r5
// memh(r2+#6) = r6 # R6 is really R5.H
// }
// {
// r2 = add(r2, #8)
// memh(r2+#0) = r4
// memh(r2+#2) = r3 # R3 is really R4.H
// }
// {
// r5:4 = memd(r0++#8)
// }
// { # "Shuffling" code that sets up R3 and R6
// r3 = lsr(r4, #16) # so that their halves can be stored in the
// r7:6 = combine(r5, r5) # next iteration. This could be folded into
// } # the stores if the code was at the beginning
// { # of the loop iteration. Since the same code
// r3 = insert(r5, #16, #16) # precedes the loop, it can actually be moved
// r7:6 = vlsrw(r7:6, #16) # there.
// }:endloop0
//
//
// The outcome:
//
// {
// loop0(.LBB0_2, r1)
// r5:4 = memd(r0++#8)
// }
// .LBB0_2:
// {
// memh(r2+#4) = r5
// memh(r2+#6) = r5.h
// }
// {
// r2 = add(r2, #8)
// memh(r2+#0) = r4
// memh(r2+#2) = r4.h
// }
// {
// r5:4 = memd(r0++#8)
// }:endloop0
namespace llvm {
FunctionPass *createHexagonLoopRescheduling();
void initializeHexagonLoopReschedulingPass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonLoopRescheduling : public MachineFunctionPass {
public:
static char ID;
HexagonLoopRescheduling() : MachineFunctionPass(ID),
HII(nullptr), HRI(nullptr), MRI(nullptr), BTP(nullptr) {
initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
private:
const HexagonInstrInfo *HII;
const HexagonRegisterInfo *HRI;
MachineRegisterInfo *MRI;
BitTracker *BTP;
struct LoopCand {
LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
MachineBasicBlock *LB, *PB, *EB;
};
typedef std::vector<MachineInstr*> InstrList;
struct InstrGroup {
BitTracker::RegisterRef Inp, Out;
InstrList Ins;
};
struct PhiInfo {
PhiInfo(MachineInstr &P, MachineBasicBlock &B);
unsigned DefR;
BitTracker::RegisterRef LR, PR; // Loop Register, Preheader Register
MachineBasicBlock *LB, *PB; // Loop Block, Preheader Block
};
static unsigned getDefReg(const MachineInstr *MI);
bool isConst(unsigned Reg) const;
bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
bool isShuffleOf(unsigned OutR, unsigned InpR) const;
bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
unsigned &InpR2) const;
void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
bool processLoop(LoopCand &C);
};
} // end anonymous namespace
char HexagonLoopRescheduling::ID = 0;
INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
"Hexagon Loop Rescheduling", false, false)
HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
MachineBasicBlock &B) {
DefR = HexagonLoopRescheduling::getDefReg(&P);
LB = &B;
PB = nullptr;
for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
const MachineOperand &OpB = P.getOperand(i+1);
if (OpB.getMBB() == &B) {
LR = P.getOperand(i);
continue;
}
PB = OpB.getMBB();
PR = P.getOperand(i);
}
}
unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
RegisterSet Defs;
HBS::getInstrDefs(*MI, Defs);
if (Defs.count() != 1)
return 0;
return Defs.find_first();
}
bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
if (!BTP->has(Reg))
return false;
const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
for (unsigned i = 0, w = RC.width(); i < w; ++i) {
const BitTracker::BitValue &V = RC[i];
if (!V.is(0) && !V.is(1))
return false;
}
return true;
}
bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
unsigned DefR) const {
unsigned Opc = MI->getOpcode();
switch (Opc) {
case TargetOpcode::COPY:
case Hexagon::S2_lsr_i_r:
case Hexagon::S2_asr_i_r:
case Hexagon::S2_asl_i_r:
case Hexagon::S2_lsr_i_p:
case Hexagon::S2_asr_i_p:
case Hexagon::S2_asl_i_p:
case Hexagon::S2_insert:
case Hexagon::A2_or:
case Hexagon::A2_orp:
case Hexagon::A2_and:
case Hexagon::A2_andp:
case Hexagon::A2_combinew:
case Hexagon::A4_combineri:
case Hexagon::A4_combineir:
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
case Hexagon::A2_combine_ll:
case Hexagon::A2_combine_lh:
case Hexagon::A2_combine_hl:
case Hexagon::A2_combine_hh:
return true;
}
return false;
}
bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
unsigned InpR) const {
for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
const MachineOperand &Op = MI->getOperand(i);
if (!Op.isReg())
continue;
if (Op.getReg() == InpR)
return i == n-1;
}
return false;
}
bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
if (!BTP->has(OutR) || !BTP->has(InpR))
return false;
const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
const BitTracker::BitValue &V = OutC[i];
if (V.Type != BitTracker::BitValue::Ref)
continue;
if (V.RefI.Reg != InpR)
return false;
}
return true;
}
bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
unsigned OutR2, unsigned &InpR2) const {
if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
return false;
const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
unsigned W = OutC1.width();
unsigned MatchR = 0;
if (W != OutC2.width())
return false;
for (unsigned i = 0; i < W; ++i) {
const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
return false;
if (V1.Type != BitTracker::BitValue::Ref)
continue;
if (V1.RefI.Pos != V2.RefI.Pos)
return false;
if (V1.RefI.Reg != InpR1)
return false;
if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
return false;
if (!MatchR)
MatchR = V2.RefI.Reg;
else if (V2.RefI.Reg != MatchR)
return false;
}
InpR2 = MatchR;
return true;
}
void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
unsigned NewPredR) {
DenseMap<unsigned,unsigned> RegMap;
const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
unsigned PhiR = MRI->createVirtualRegister(PhiRC);
BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
.addReg(NewPredR)
.addMBB(&PB)
.addReg(G.Inp.Reg)
.addMBB(&LB);
RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
for (unsigned i = G.Ins.size(); i > 0; --i) {
const MachineInstr *SI = G.Ins[i-1];
unsigned DR = getDefReg(SI);
const TargetRegisterClass *RC = MRI->getRegClass(DR);
unsigned NewDR = MRI->createVirtualRegister(RC);
DebugLoc DL = SI->getDebugLoc();
auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
const MachineOperand &Op = SI->getOperand(j);
if (!Op.isReg()) {
MIB.add(Op);
continue;
}
if (!Op.isUse())
continue;
unsigned UseR = RegMap[Op.getReg()];
MIB.addReg(UseR, 0, Op.getSubReg());
}
RegMap.insert(std::make_pair(DR, NewDR));
}
HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
}
bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
std::vector<PhiInfo> Phis;
for (auto &I : *C.LB) {
if (!I.isPHI())
break;
unsigned PR = getDefReg(&I);
if (isConst(PR))
continue;
bool BadUse = false, GoodUse = false;
for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseI = UI->getParent();
if (UseI->getParent() != C.LB) {
BadUse = true;
break;
}
if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
GoodUse = true;
}
if (BadUse || !GoodUse)
continue;
Phis.push_back(PhiInfo(I, *C.LB));
}
DEBUG({
dbgs() << "Phis: {";
for (auto &I : Phis) {
dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
<< PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
<< ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
<< I.LB->getNumber() << ')';
}
dbgs() << " }\n";
});
if (Phis.empty())
return false;
bool Changed = false;
InstrList ShufIns;
// Go backwards in the block: for each bit shuffling instruction, check
// if that instruction could potentially be moved to the front of the loop:
// the output of the loop cannot be used in a non-shuffling instruction
// in this loop.
for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
if (I->isTerminator())
continue;
if (I->isPHI())
break;
RegisterSet Defs;
HBS::getInstrDefs(*I, Defs);
if (Defs.count() != 1)
continue;
unsigned DefR = Defs.find_first();
if (!TargetRegisterInfo::isVirtualRegister(DefR))
continue;
if (!isBitShuffle(&*I, DefR))
continue;
bool BadUse = false;
for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseI = UI->getParent();
if (UseI->getParent() == C.LB) {
if (UseI->isPHI()) {
// If the use is in a phi node in this loop, then it should be
// the value corresponding to the back edge.
unsigned Idx = UI.getOperandNo();
if (UseI->getOperand(Idx+1).getMBB() != C.LB)
BadUse = true;
} else {
auto F = find(ShufIns, UseI);
if (F == ShufIns.end())
BadUse = true;
}
} else {
// There is a use outside of the loop, but there is no epilog block
// suitable for a copy-out.
if (C.EB == nullptr)
BadUse = true;
}
if (BadUse)
break;
}
if (BadUse)
continue;
ShufIns.push_back(&*I);
}
// Partition the list of shuffling instructions into instruction groups,
// where each group has to be moved as a whole (i.e. a group is a chain of
// dependent instructions). A group produces a single live output register,
// which is meant to be the input of the loop phi node (although this is
// not checked here yet). It also uses a single register as its input,
// which is some value produced in the loop body. After moving the group
// to the beginning of the loop, that input register would need to be
// the loop-carried register (through a phi node) instead of the (currently
// loop-carried) output register.
typedef std::vector<InstrGroup> InstrGroupList;
InstrGroupList Groups;
for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
MachineInstr *SI = ShufIns[i];
if (SI == nullptr)
continue;
InstrGroup G;
G.Ins.push_back(SI);
G.Out.Reg = getDefReg(SI);
RegisterSet Inputs;
HBS::getInstrUses(*SI, Inputs);
for (unsigned j = i+1; j < n; ++j) {
MachineInstr *MI = ShufIns[j];
if (MI == nullptr)
continue;
RegisterSet Defs;
HBS::getInstrDefs(*MI, Defs);
// If this instruction does not define any pending inputs, skip it.
if (!Defs.intersects(Inputs))
continue;
// Otherwise, add it to the current group and remove the inputs that
// are defined by MI.
G.Ins.push_back(MI);
Inputs.remove(Defs);
// Then add all registers used by MI.
HBS::getInstrUses(*MI, Inputs);
ShufIns[j] = nullptr;
}
// Only add a group if it requires at most one register.
if (Inputs.count() > 1)
continue;
auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
return G.Out.Reg == P.LR.Reg;
};
if (llvm::find_if(Phis, LoopInpEq) == Phis.end())
continue;
G.Inp.Reg = Inputs.find_first();
Groups.push_back(G);
}
DEBUG({
for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
InstrGroup &G = Groups[i];
dbgs() << "Group[" << i << "] inp: "
<< PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
<< " out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
dbgs() << " " << *G.Ins[j];
}
});
for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
InstrGroup &G = Groups[i];
if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
continue;
auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
return G.Out.Reg == P.LR.Reg;
};
auto F = llvm::find_if(Phis, LoopInpEq);
if (F == Phis.end())
continue;
unsigned PrehR = 0;
if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PrehR)) {
const MachineInstr *DefPrehR = MRI->getVRegDef(F->PR.Reg);
unsigned Opc = DefPrehR->getOpcode();
if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
continue;
if (!DefPrehR->getOperand(1).isImm())
continue;
if (DefPrehR->getOperand(1).getImm() != 0)
continue;
const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
if (RC != MRI->getRegClass(F->PR.Reg)) {
PrehR = MRI->createVirtualRegister(RC);
unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
: Hexagon::A2_tfrpi;
auto T = C.PB->getFirstTerminator();
DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
BuildMI(*C.PB, T, DL, HII->get(TfrI), PrehR)
.addImm(0);
} else {
PrehR = F->PR.Reg;
}
}
// isSameShuffle could match with PrehR being of a wider class than
// G.Inp.Reg, for example if G shuffles the low 32 bits of its input,
// it would match for the input being a 32-bit register, and PrehR
// being a 64-bit register (where the low 32 bits match). This could
// be handled, but for now skip these cases.
if (MRI->getRegClass(PrehR) != MRI->getRegClass(G.Inp.Reg))
continue;
moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PrehR);
Changed = true;
}
return Changed;
}
bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(*MF.getFunction()))
return false;
auto &HST = MF.getSubtarget<HexagonSubtarget>();
HII = HST.getInstrInfo();
HRI = HST.getRegisterInfo();
MRI = &MF.getRegInfo();
const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
BitTracker BT(HE, MF);
DEBUG(BT.trace(true));
BT.run();
BTP = &BT;
std::vector<LoopCand> Cand;
for (auto &B : MF) {
if (B.pred_size() != 2 || B.succ_size() != 2)
continue;
MachineBasicBlock *PB = nullptr;
bool IsLoop = false;
for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
if (*PI != &B)
PB = *PI;
else
IsLoop = true;
}
if (!IsLoop)
continue;
MachineBasicBlock *EB = nullptr;
for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
if (*SI == &B)
continue;
// Set EP to the epilog block, if it has only 1 predecessor (i.e. the
// edge from B to EP is non-critical.
if ((*SI)->pred_size() == 1)
EB = *SI;
break;
}
Cand.push_back(LoopCand(&B, PB, EB));
}
bool Changed = false;
for (auto &C : Cand)
Changed |= processLoop(C);
return Changed;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
FunctionPass *llvm::createHexagonLoopRescheduling() {
return new HexagonLoopRescheduling();
}
FunctionPass *llvm::createHexagonBitSimplify() {
return new HexagonBitSimplify();
}