forked from OSchip/llvm-project
2861 lines
116 KiB
C++
2861 lines
116 KiB
C++
//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
|
|
// The class in this file generates structures that follow the Microsoft
|
|
// Visual C++ ABI, which is actually not very well documented at all outside
|
|
// of Microsoft.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CGCXXABI.h"
|
|
#include "CGVTables.h"
|
|
#include "CodeGenModule.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/VTableBuilder.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
|
|
namespace {
|
|
|
|
/// Holds all the vbtable globals for a given class.
|
|
struct VBTableGlobals {
|
|
const VPtrInfoVector *VBTables;
|
|
SmallVector<llvm::GlobalVariable *, 2> Globals;
|
|
};
|
|
|
|
class MicrosoftCXXABI : public CGCXXABI {
|
|
public:
|
|
MicrosoftCXXABI(CodeGenModule &CGM)
|
|
: CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
|
|
ClassHierarchyDescriptorType(nullptr),
|
|
CompleteObjectLocatorType(nullptr) {}
|
|
|
|
bool HasThisReturn(GlobalDecl GD) const override;
|
|
|
|
bool classifyReturnType(CGFunctionInfo &FI) const override;
|
|
|
|
RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
|
|
|
|
bool isSRetParameterAfterThis() const override { return true; }
|
|
|
|
StringRef GetPureVirtualCallName() override { return "_purecall"; }
|
|
// No known support for deleted functions in MSVC yet, so this choice is
|
|
// arbitrary.
|
|
StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
|
|
|
|
llvm::Value *adjustToCompleteObject(CodeGenFunction &CGF,
|
|
llvm::Value *ptr,
|
|
QualType type) override;
|
|
|
|
llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
|
|
const VPtrInfo *Info);
|
|
|
|
llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
|
|
|
|
bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
|
|
void EmitBadTypeidCall(CodeGenFunction &CGF) override;
|
|
llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
|
|
llvm::Value *ThisPtr,
|
|
llvm::Type *StdTypeInfoPtrTy) override;
|
|
|
|
bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
|
|
QualType SrcRecordTy) override;
|
|
|
|
llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
|
|
QualType SrcRecordTy, QualType DestTy,
|
|
QualType DestRecordTy,
|
|
llvm::BasicBlock *CastEnd) override;
|
|
|
|
llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
|
|
QualType SrcRecordTy,
|
|
QualType DestTy) override;
|
|
|
|
bool EmitBadCastCall(CodeGenFunction &CGF) override;
|
|
|
|
llvm::Value *
|
|
GetVirtualBaseClassOffset(CodeGenFunction &CGF, llvm::Value *This,
|
|
const CXXRecordDecl *ClassDecl,
|
|
const CXXRecordDecl *BaseClassDecl) override;
|
|
|
|
void BuildConstructorSignature(const CXXConstructorDecl *Ctor,
|
|
CXXCtorType Type, CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) override;
|
|
|
|
llvm::BasicBlock *
|
|
EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *RD) override;
|
|
|
|
void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *RD) override;
|
|
|
|
void EmitCXXConstructors(const CXXConstructorDecl *D) override;
|
|
|
|
// Background on MSVC destructors
|
|
// ==============================
|
|
//
|
|
// Both Itanium and MSVC ABIs have destructor variants. The variant names
|
|
// roughly correspond in the following way:
|
|
// Itanium Microsoft
|
|
// Base -> no name, just ~Class
|
|
// Complete -> vbase destructor
|
|
// Deleting -> scalar deleting destructor
|
|
// vector deleting destructor
|
|
//
|
|
// The base and complete destructors are the same as in Itanium, although the
|
|
// complete destructor does not accept a VTT parameter when there are virtual
|
|
// bases. A separate mechanism involving vtordisps is used to ensure that
|
|
// virtual methods of destroyed subobjects are not called.
|
|
//
|
|
// The deleting destructors accept an i32 bitfield as a second parameter. Bit
|
|
// 1 indicates if the memory should be deleted. Bit 2 indicates if the this
|
|
// pointer points to an array. The scalar deleting destructor assumes that
|
|
// bit 2 is zero, and therefore does not contain a loop.
|
|
//
|
|
// For virtual destructors, only one entry is reserved in the vftable, and it
|
|
// always points to the vector deleting destructor. The vector deleting
|
|
// destructor is the most general, so it can be used to destroy objects in
|
|
// place, delete single heap objects, or delete arrays.
|
|
//
|
|
// A TU defining a non-inline destructor is only guaranteed to emit a base
|
|
// destructor, and all of the other variants are emitted on an as-needed basis
|
|
// in COMDATs. Because a non-base destructor can be emitted in a TU that
|
|
// lacks a definition for the destructor, non-base destructors must always
|
|
// delegate to or alias the base destructor.
|
|
|
|
void BuildDestructorSignature(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType Type,
|
|
CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) override;
|
|
|
|
/// Non-base dtors should be emitted as delegating thunks in this ABI.
|
|
bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DT) const override {
|
|
return DT != Dtor_Base;
|
|
}
|
|
|
|
void EmitCXXDestructors(const CXXDestructorDecl *D) override;
|
|
|
|
const CXXRecordDecl *
|
|
getThisArgumentTypeForMethod(const CXXMethodDecl *MD) override {
|
|
MD = MD->getCanonicalDecl();
|
|
if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD)) {
|
|
MicrosoftVTableContext::MethodVFTableLocation ML =
|
|
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
|
|
// The vbases might be ordered differently in the final overrider object
|
|
// and the complete object, so the "this" argument may sometimes point to
|
|
// memory that has no particular type (e.g. past the complete object).
|
|
// In this case, we just use a generic pointer type.
|
|
// FIXME: might want to have a more precise type in the non-virtual
|
|
// multiple inheritance case.
|
|
if (ML.VBase || !ML.VFPtrOffset.isZero())
|
|
return nullptr;
|
|
}
|
|
return MD->getParent();
|
|
}
|
|
|
|
llvm::Value *
|
|
adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
|
|
llvm::Value *This,
|
|
bool VirtualCall) override;
|
|
|
|
void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
|
|
FunctionArgList &Params) override;
|
|
|
|
llvm::Value *adjustThisParameterInVirtualFunctionPrologue(
|
|
CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) override;
|
|
|
|
void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
|
|
|
|
unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
|
|
const CXXConstructorDecl *D,
|
|
CXXCtorType Type, bool ForVirtualBase,
|
|
bool Delegating,
|
|
CallArgList &Args) override;
|
|
|
|
void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
|
|
CXXDtorType Type, bool ForVirtualBase,
|
|
bool Delegating, llvm::Value *This) override;
|
|
|
|
void emitVTableDefinitions(CodeGenVTables &CGVT,
|
|
const CXXRecordDecl *RD) override;
|
|
|
|
llvm::Value *getVTableAddressPointInStructor(
|
|
CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
|
|
BaseSubobject Base, const CXXRecordDecl *NearestVBase,
|
|
bool &NeedsVirtualOffset) override;
|
|
|
|
llvm::Constant *
|
|
getVTableAddressPointForConstExpr(BaseSubobject Base,
|
|
const CXXRecordDecl *VTableClass) override;
|
|
|
|
llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
|
|
CharUnits VPtrOffset) override;
|
|
|
|
llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
|
|
llvm::Value *This,
|
|
llvm::Type *Ty) override;
|
|
|
|
void EmitVirtualDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DtorType, SourceLocation CallLoc,
|
|
llvm::Value *This) override;
|
|
|
|
void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
|
|
CallArgList &CallArgs) override {
|
|
assert(GD.getDtorType() == Dtor_Deleting &&
|
|
"Only deleting destructor thunks are available in this ABI");
|
|
CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
|
|
CGM.getContext().IntTy);
|
|
}
|
|
|
|
void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
|
|
|
|
llvm::GlobalVariable *
|
|
getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
|
|
llvm::GlobalVariable::LinkageTypes Linkage);
|
|
|
|
void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
|
|
llvm::GlobalVariable *GV) const;
|
|
|
|
void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
|
|
GlobalDecl GD, bool ReturnAdjustment) override {
|
|
// Never dllimport/dllexport thunks.
|
|
Thunk->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
|
|
|
|
GVALinkage Linkage =
|
|
getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
|
|
|
|
if (Linkage == GVA_Internal)
|
|
Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
|
|
else if (ReturnAdjustment)
|
|
Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
|
|
else
|
|
Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
|
|
}
|
|
|
|
llvm::Value *performThisAdjustment(CodeGenFunction &CGF, llvm::Value *This,
|
|
const ThisAdjustment &TA) override;
|
|
|
|
llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
|
|
const ReturnAdjustment &RA) override;
|
|
|
|
void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
|
|
llvm::GlobalVariable *DeclPtr,
|
|
bool PerformInit) override;
|
|
|
|
// ==== Notes on array cookies =========
|
|
//
|
|
// MSVC seems to only use cookies when the class has a destructor; a
|
|
// two-argument usual array deallocation function isn't sufficient.
|
|
//
|
|
// For example, this code prints "100" and "1":
|
|
// struct A {
|
|
// char x;
|
|
// void *operator new[](size_t sz) {
|
|
// printf("%u\n", sz);
|
|
// return malloc(sz);
|
|
// }
|
|
// void operator delete[](void *p, size_t sz) {
|
|
// printf("%u\n", sz);
|
|
// free(p);
|
|
// }
|
|
// };
|
|
// int main() {
|
|
// A *p = new A[100];
|
|
// delete[] p;
|
|
// }
|
|
// Whereas it prints "104" and "104" if you give A a destructor.
|
|
|
|
bool requiresArrayCookie(const CXXDeleteExpr *expr,
|
|
QualType elementType) override;
|
|
bool requiresArrayCookie(const CXXNewExpr *expr) override;
|
|
CharUnits getArrayCookieSizeImpl(QualType type) override;
|
|
llvm::Value *InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *NewPtr,
|
|
llvm::Value *NumElements,
|
|
const CXXNewExpr *expr,
|
|
QualType ElementType) override;
|
|
llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
|
|
llvm::Value *allocPtr,
|
|
CharUnits cookieSize) override;
|
|
|
|
friend struct MSRTTIBuilder;
|
|
|
|
bool isImageRelative() const {
|
|
return CGM.getTarget().getPointerWidth(/*AddressSpace=*/0) == 64;
|
|
}
|
|
|
|
// 5 routines for constructing the llvm types for MS RTTI structs.
|
|
llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
|
|
llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
|
|
TDTypeName += llvm::utostr(TypeInfoString.size());
|
|
llvm::StructType *&TypeDescriptorType =
|
|
TypeDescriptorTypeMap[TypeInfoString.size()];
|
|
if (TypeDescriptorType)
|
|
return TypeDescriptorType;
|
|
llvm::Type *FieldTypes[] = {
|
|
CGM.Int8PtrPtrTy,
|
|
CGM.Int8PtrTy,
|
|
llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
|
|
TypeDescriptorType =
|
|
llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
|
|
return TypeDescriptorType;
|
|
}
|
|
|
|
llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
|
|
if (!isImageRelative())
|
|
return PtrType;
|
|
return CGM.IntTy;
|
|
}
|
|
|
|
llvm::StructType *getBaseClassDescriptorType() {
|
|
if (BaseClassDescriptorType)
|
|
return BaseClassDescriptorType;
|
|
llvm::Type *FieldTypes[] = {
|
|
getImageRelativeType(CGM.Int8PtrTy),
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
|
|
};
|
|
BaseClassDescriptorType = llvm::StructType::create(
|
|
CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
|
|
return BaseClassDescriptorType;
|
|
}
|
|
|
|
llvm::StructType *getClassHierarchyDescriptorType() {
|
|
if (ClassHierarchyDescriptorType)
|
|
return ClassHierarchyDescriptorType;
|
|
// Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
|
|
ClassHierarchyDescriptorType = llvm::StructType::create(
|
|
CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
|
|
llvm::Type *FieldTypes[] = {
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
getImageRelativeType(
|
|
getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
|
|
};
|
|
ClassHierarchyDescriptorType->setBody(FieldTypes);
|
|
return ClassHierarchyDescriptorType;
|
|
}
|
|
|
|
llvm::StructType *getCompleteObjectLocatorType() {
|
|
if (CompleteObjectLocatorType)
|
|
return CompleteObjectLocatorType;
|
|
CompleteObjectLocatorType = llvm::StructType::create(
|
|
CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
|
|
llvm::Type *FieldTypes[] = {
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
CGM.IntTy,
|
|
getImageRelativeType(CGM.Int8PtrTy),
|
|
getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
|
|
getImageRelativeType(CompleteObjectLocatorType),
|
|
};
|
|
llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
|
|
if (!isImageRelative())
|
|
FieldTypesRef = FieldTypesRef.drop_back();
|
|
CompleteObjectLocatorType->setBody(FieldTypesRef);
|
|
return CompleteObjectLocatorType;
|
|
}
|
|
|
|
llvm::GlobalVariable *getImageBase() {
|
|
StringRef Name = "__ImageBase";
|
|
if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
|
|
return GV;
|
|
|
|
return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
|
|
/*isConstant=*/true,
|
|
llvm::GlobalValue::ExternalLinkage,
|
|
/*Initializer=*/nullptr, Name);
|
|
}
|
|
|
|
llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
|
|
if (!isImageRelative())
|
|
return PtrVal;
|
|
|
|
llvm::Constant *ImageBaseAsInt =
|
|
llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
|
|
llvm::Constant *PtrValAsInt =
|
|
llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
|
|
llvm::Constant *Diff =
|
|
llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
|
|
/*HasNUW=*/true, /*HasNSW=*/true);
|
|
return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
|
|
}
|
|
|
|
private:
|
|
MicrosoftMangleContext &getMangleContext() {
|
|
return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
|
|
}
|
|
|
|
llvm::Constant *getZeroInt() {
|
|
return llvm::ConstantInt::get(CGM.IntTy, 0);
|
|
}
|
|
|
|
llvm::Constant *getAllOnesInt() {
|
|
return llvm::Constant::getAllOnesValue(CGM.IntTy);
|
|
}
|
|
|
|
llvm::Constant *getConstantOrZeroInt(llvm::Constant *C) {
|
|
return C ? C : getZeroInt();
|
|
}
|
|
|
|
llvm::Value *getValueOrZeroInt(llvm::Value *C) {
|
|
return C ? C : getZeroInt();
|
|
}
|
|
|
|
CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD);
|
|
|
|
void
|
|
GetNullMemberPointerFields(const MemberPointerType *MPT,
|
|
llvm::SmallVectorImpl<llvm::Constant *> &fields);
|
|
|
|
/// \brief Shared code for virtual base adjustment. Returns the offset from
|
|
/// the vbptr to the virtual base. Optionally returns the address of the
|
|
/// vbptr itself.
|
|
llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
|
|
llvm::Value *Base,
|
|
llvm::Value *VBPtrOffset,
|
|
llvm::Value *VBTableOffset,
|
|
llvm::Value **VBPtr = nullptr);
|
|
|
|
llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
|
|
llvm::Value *Base,
|
|
int32_t VBPtrOffset,
|
|
int32_t VBTableOffset,
|
|
llvm::Value **VBPtr = nullptr) {
|
|
llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
|
|
*VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
|
|
return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
|
|
}
|
|
|
|
/// \brief Performs a full virtual base adjustment. Used to dereference
|
|
/// pointers to members of virtual bases.
|
|
llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
|
|
const CXXRecordDecl *RD, llvm::Value *Base,
|
|
llvm::Value *VirtualBaseAdjustmentOffset,
|
|
llvm::Value *VBPtrOffset /* optional */);
|
|
|
|
/// \brief Emits a full member pointer with the fields common to data and
|
|
/// function member pointers.
|
|
llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
|
|
bool IsMemberFunction,
|
|
const CXXRecordDecl *RD,
|
|
CharUnits NonVirtualBaseAdjustment);
|
|
|
|
llvm::Constant *BuildMemberPointer(const CXXRecordDecl *RD,
|
|
const CXXMethodDecl *MD,
|
|
CharUnits NonVirtualBaseAdjustment);
|
|
|
|
bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
|
|
llvm::Constant *MP);
|
|
|
|
/// \brief - Initialize all vbptrs of 'this' with RD as the complete type.
|
|
void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
|
|
|
|
/// \brief Caching wrapper around VBTableBuilder::enumerateVBTables().
|
|
const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
|
|
|
|
/// \brief Generate a thunk for calling a virtual member function MD.
|
|
llvm::Function *EmitVirtualMemPtrThunk(
|
|
const CXXMethodDecl *MD,
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML);
|
|
|
|
public:
|
|
llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
|
|
|
|
bool isZeroInitializable(const MemberPointerType *MPT) override;
|
|
|
|
bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
return RD->getAttr<MSInheritanceAttr>() != nullptr;
|
|
}
|
|
|
|
llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
|
|
|
|
llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
|
|
CharUnits offset) override;
|
|
llvm::Constant *EmitMemberPointer(const CXXMethodDecl *MD) override;
|
|
llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
|
|
|
|
llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
|
|
llvm::Value *L,
|
|
llvm::Value *R,
|
|
const MemberPointerType *MPT,
|
|
bool Inequality) override;
|
|
|
|
llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
|
|
llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *
|
|
EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
|
|
llvm::Value *Base, llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
|
|
const CastExpr *E,
|
|
llvm::Value *Src) override;
|
|
|
|
llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
|
|
llvm::Constant *Src) override;
|
|
|
|
llvm::Value *
|
|
EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
|
|
llvm::Value *&This, llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) override;
|
|
|
|
private:
|
|
typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
|
|
typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
|
|
typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
|
|
/// \brief All the vftables that have been referenced.
|
|
VFTablesMapTy VFTablesMap;
|
|
VTablesMapTy VTablesMap;
|
|
|
|
/// \brief This set holds the record decls we've deferred vtable emission for.
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
|
|
|
|
|
|
/// \brief All the vbtables which have been referenced.
|
|
llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
|
|
|
|
/// Info on the global variable used to guard initialization of static locals.
|
|
/// The BitIndex field is only used for externally invisible declarations.
|
|
struct GuardInfo {
|
|
GuardInfo() : Guard(nullptr), BitIndex(0) {}
|
|
llvm::GlobalVariable *Guard;
|
|
unsigned BitIndex;
|
|
};
|
|
|
|
/// Map from DeclContext to the current guard variable. We assume that the
|
|
/// AST is visited in source code order.
|
|
llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
|
|
|
|
llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
|
|
llvm::StructType *BaseClassDescriptorType;
|
|
llvm::StructType *ClassHierarchyDescriptorType;
|
|
llvm::StructType *CompleteObjectLocatorType;
|
|
};
|
|
|
|
}
|
|
|
|
CGCXXABI::RecordArgABI
|
|
MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
|
|
switch (CGM.getTarget().getTriple().getArch()) {
|
|
default:
|
|
// FIXME: Implement for other architectures.
|
|
return RAA_Default;
|
|
|
|
case llvm::Triple::x86:
|
|
// All record arguments are passed in memory on x86. Decide whether to
|
|
// construct the object directly in argument memory, or to construct the
|
|
// argument elsewhere and copy the bytes during the call.
|
|
|
|
// If C++ prohibits us from making a copy, construct the arguments directly
|
|
// into argument memory.
|
|
if (!canCopyArgument(RD))
|
|
return RAA_DirectInMemory;
|
|
|
|
// Otherwise, construct the argument into a temporary and copy the bytes
|
|
// into the outgoing argument memory.
|
|
return RAA_Default;
|
|
|
|
case llvm::Triple::x86_64:
|
|
// Win64 passes objects with non-trivial copy ctors indirectly.
|
|
if (RD->hasNonTrivialCopyConstructor())
|
|
return RAA_Indirect;
|
|
|
|
// Win64 passes objects larger than 8 bytes indirectly.
|
|
if (getContext().getTypeSize(RD->getTypeForDecl()) > 64)
|
|
return RAA_Indirect;
|
|
|
|
// We have a trivial copy constructor or no copy constructors, but we have
|
|
// to make sure it isn't deleted.
|
|
bool CopyDeleted = false;
|
|
for (const CXXConstructorDecl *CD : RD->ctors()) {
|
|
if (CD->isCopyConstructor()) {
|
|
assert(CD->isTrivial());
|
|
// We had at least one undeleted trivial copy ctor. Return directly.
|
|
if (!CD->isDeleted())
|
|
return RAA_Default;
|
|
CopyDeleted = true;
|
|
}
|
|
}
|
|
|
|
// The trivial copy constructor was deleted. Return indirectly.
|
|
if (CopyDeleted)
|
|
return RAA_Indirect;
|
|
|
|
// There were no copy ctors. Return in RAX.
|
|
return RAA_Default;
|
|
}
|
|
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::adjustToCompleteObject(CodeGenFunction &CGF,
|
|
llvm::Value *ptr,
|
|
QualType type) {
|
|
// FIXME: implement
|
|
return ptr;
|
|
}
|
|
|
|
/// \brief Gets the offset to the virtual base that contains the vfptr for
|
|
/// MS-ABI polymorphic types.
|
|
static llvm::Value *getPolymorphicOffset(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *RD,
|
|
llvm::Value *Value) {
|
|
const ASTContext &Context = RD->getASTContext();
|
|
for (const CXXBaseSpecifier &Base : RD->vbases())
|
|
if (Context.getASTRecordLayout(Base.getType()->getAsCXXRecordDecl())
|
|
.hasExtendableVFPtr())
|
|
return CGF.CGM.getCXXABI().GetVirtualBaseClassOffset(
|
|
CGF, Value, RD, Base.getType()->getAsCXXRecordDecl());
|
|
llvm_unreachable("One of our vbases should be polymorphic.");
|
|
}
|
|
|
|
static std::pair<llvm::Value *, llvm::Value *>
|
|
performBaseAdjustment(CodeGenFunction &CGF, llvm::Value *Value,
|
|
QualType SrcRecordTy) {
|
|
Value = CGF.Builder.CreateBitCast(Value, CGF.Int8PtrTy);
|
|
const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
|
|
|
|
if (CGF.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
|
|
return std::make_pair(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0));
|
|
|
|
// Perform a base adjustment.
|
|
llvm::Value *Offset = getPolymorphicOffset(CGF, SrcDecl, Value);
|
|
Value = CGF.Builder.CreateInBoundsGEP(Value, Offset);
|
|
Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
|
|
return std::make_pair(Value, Offset);
|
|
}
|
|
|
|
bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
|
|
QualType SrcRecordTy) {
|
|
const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
|
|
return IsDeref &&
|
|
!CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
|
|
}
|
|
|
|
static llvm::CallSite emitRTtypeidCall(CodeGenFunction &CGF,
|
|
llvm::Value *Argument) {
|
|
llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
|
|
llvm::FunctionType *FTy =
|
|
llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
|
|
llvm::Value *Args[] = {Argument};
|
|
llvm::Constant *Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
|
|
return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
|
|
llvm::CallSite Call =
|
|
emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
|
|
Call.setDoesNotReturn();
|
|
CGF.Builder.CreateUnreachable();
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
|
|
QualType SrcRecordTy,
|
|
llvm::Value *ThisPtr,
|
|
llvm::Type *StdTypeInfoPtrTy) {
|
|
llvm::Value *Offset;
|
|
std::tie(ThisPtr, Offset) = performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
|
|
return CGF.Builder.CreateBitCast(
|
|
emitRTtypeidCall(CGF, ThisPtr).getInstruction(), StdTypeInfoPtrTy);
|
|
}
|
|
|
|
bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
|
|
QualType SrcRecordTy) {
|
|
const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
|
|
return SrcIsPtr &&
|
|
!CGM.getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::EmitDynamicCastCall(
|
|
CodeGenFunction &CGF, llvm::Value *Value, QualType SrcRecordTy,
|
|
QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
|
|
llvm::Type *DestLTy = CGF.ConvertType(DestTy);
|
|
|
|
llvm::Value *SrcRTTI =
|
|
CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
|
|
llvm::Value *DestRTTI =
|
|
CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
|
|
|
|
llvm::Value *Offset;
|
|
std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
|
|
|
|
// PVOID __RTDynamicCast(
|
|
// PVOID inptr,
|
|
// LONG VfDelta,
|
|
// PVOID SrcType,
|
|
// PVOID TargetType,
|
|
// BOOL isReference)
|
|
llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
|
|
CGF.Int8PtrTy, CGF.Int32Ty};
|
|
llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
|
|
"__RTDynamicCast");
|
|
llvm::Value *Args[] = {
|
|
Value, Offset, SrcRTTI, DestRTTI,
|
|
llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
|
|
Value = CGF.EmitRuntimeCallOrInvoke(Function, Args).getInstruction();
|
|
return CGF.Builder.CreateBitCast(Value, DestLTy);
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, llvm::Value *Value,
|
|
QualType SrcRecordTy,
|
|
QualType DestTy) {
|
|
llvm::Value *Offset;
|
|
std::tie(Value, Offset) = performBaseAdjustment(CGF, Value, SrcRecordTy);
|
|
|
|
// PVOID __RTCastToVoid(
|
|
// PVOID inptr)
|
|
llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
|
|
llvm::Constant *Function = CGF.CGM.CreateRuntimeFunction(
|
|
llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
|
|
"__RTCastToVoid");
|
|
llvm::Value *Args[] = {Value};
|
|
return CGF.EmitRuntimeCall(Function, Args);
|
|
}
|
|
|
|
bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
|
|
return false;
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
|
|
llvm::Value *This,
|
|
const CXXRecordDecl *ClassDecl,
|
|
const CXXRecordDecl *BaseClassDecl) {
|
|
int64_t VBPtrChars =
|
|
getContext().getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
|
|
llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
|
|
CharUnits IntSize = getContext().getTypeSizeInChars(getContext().IntTy);
|
|
CharUnits VBTableChars =
|
|
IntSize *
|
|
CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
|
|
llvm::Value *VBTableOffset =
|
|
llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
|
|
|
|
llvm::Value *VBPtrToNewBase =
|
|
GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
|
|
VBPtrToNewBase =
|
|
CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
|
|
return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
|
|
}
|
|
|
|
bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
|
|
return isa<CXXConstructorDecl>(GD.getDecl());
|
|
}
|
|
|
|
bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
|
|
const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
|
|
if (!RD)
|
|
return false;
|
|
|
|
if (FI.isInstanceMethod()) {
|
|
// If it's an instance method, aggregates are always returned indirectly via
|
|
// the second parameter.
|
|
FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
|
|
return true;
|
|
} else if (!RD->isPOD()) {
|
|
// If it's a free function, non-POD types are returned indirectly.
|
|
FI.getReturnInfo() = ABIArgInfo::getIndirect(0, /*ByVal=*/false);
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, use the C ABI rules.
|
|
return false;
|
|
}
|
|
|
|
void MicrosoftCXXABI::BuildConstructorSignature(
|
|
const CXXConstructorDecl *Ctor, CXXCtorType Type, CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) {
|
|
|
|
// All parameters are already in place except is_most_derived, which goes
|
|
// after 'this' if it's variadic and last if it's not.
|
|
|
|
const CXXRecordDecl *Class = Ctor->getParent();
|
|
const FunctionProtoType *FPT = Ctor->getType()->castAs<FunctionProtoType>();
|
|
if (Class->getNumVBases()) {
|
|
if (FPT->isVariadic())
|
|
ArgTys.insert(ArgTys.begin() + 1, CGM.getContext().IntTy);
|
|
else
|
|
ArgTys.push_back(CGM.getContext().IntTy);
|
|
}
|
|
}
|
|
|
|
llvm::BasicBlock *
|
|
MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *RD) {
|
|
llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
|
|
assert(IsMostDerivedClass &&
|
|
"ctor for a class with virtual bases must have an implicit parameter");
|
|
llvm::Value *IsCompleteObject =
|
|
CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
|
|
|
|
llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
|
|
llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
|
|
CGF.Builder.CreateCondBr(IsCompleteObject,
|
|
CallVbaseCtorsBB, SkipVbaseCtorsBB);
|
|
|
|
CGF.EmitBlock(CallVbaseCtorsBB);
|
|
|
|
// Fill in the vbtable pointers here.
|
|
EmitVBPtrStores(CGF, RD);
|
|
|
|
// CGF will put the base ctor calls in this basic block for us later.
|
|
|
|
return SkipVbaseCtorsBB;
|
|
}
|
|
|
|
void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
|
|
CodeGenFunction &CGF, const CXXRecordDecl *RD) {
|
|
// In most cases, an override for a vbase virtual method can adjust
|
|
// the "this" parameter by applying a constant offset.
|
|
// However, this is not enough while a constructor or a destructor of some
|
|
// class X is being executed if all the following conditions are met:
|
|
// - X has virtual bases, (1)
|
|
// - X overrides a virtual method M of a vbase Y, (2)
|
|
// - X itself is a vbase of the most derived class.
|
|
//
|
|
// If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
|
|
// which holds the extra amount of "this" adjustment we must do when we use
|
|
// the X vftables (i.e. during X ctor or dtor).
|
|
// Outside the ctors and dtors, the values of vtorDisps are zero.
|
|
|
|
const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
|
|
typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
|
|
const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
unsigned AS =
|
|
cast<llvm::PointerType>(getThisValue(CGF)->getType())->getAddressSpace();
|
|
llvm::Value *Int8This = nullptr; // Initialize lazily.
|
|
|
|
for (VBOffsets::const_iterator I = VBaseMap.begin(), E = VBaseMap.end();
|
|
I != E; ++I) {
|
|
if (!I->second.hasVtorDisp())
|
|
continue;
|
|
|
|
llvm::Value *VBaseOffset =
|
|
GetVirtualBaseClassOffset(CGF, getThisValue(CGF), RD, I->first);
|
|
// FIXME: it doesn't look right that we SExt in GetVirtualBaseClassOffset()
|
|
// just to Trunc back immediately.
|
|
VBaseOffset = Builder.CreateTruncOrBitCast(VBaseOffset, CGF.Int32Ty);
|
|
uint64_t ConstantVBaseOffset =
|
|
Layout.getVBaseClassOffset(I->first).getQuantity();
|
|
|
|
// vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
|
|
llvm::Value *VtorDispValue = Builder.CreateSub(
|
|
VBaseOffset, llvm::ConstantInt::get(CGM.Int32Ty, ConstantVBaseOffset),
|
|
"vtordisp.value");
|
|
|
|
if (!Int8This)
|
|
Int8This = Builder.CreateBitCast(getThisValue(CGF),
|
|
CGF.Int8Ty->getPointerTo(AS));
|
|
llvm::Value *VtorDispPtr = Builder.CreateInBoundsGEP(Int8This, VBaseOffset);
|
|
// vtorDisp is always the 32-bits before the vbase in the class layout.
|
|
VtorDispPtr = Builder.CreateConstGEP1_32(VtorDispPtr, -4);
|
|
VtorDispPtr = Builder.CreateBitCast(
|
|
VtorDispPtr, CGF.Int32Ty->getPointerTo(AS), "vtordisp.ptr");
|
|
|
|
Builder.CreateStore(VtorDispValue, VtorDispPtr);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
|
|
// There's only one constructor type in this ABI.
|
|
CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
|
|
const CXXRecordDecl *RD) {
|
|
llvm::Value *ThisInt8Ptr =
|
|
CGF.Builder.CreateBitCast(getThisValue(CGF), CGM.Int8PtrTy, "this.int8");
|
|
const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
|
|
|
|
const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
|
|
for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
|
|
const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
|
|
llvm::GlobalVariable *GV = VBGlobals.Globals[I];
|
|
const ASTRecordLayout &SubobjectLayout =
|
|
CGM.getContext().getASTRecordLayout(VBT->BaseWithVPtr);
|
|
CharUnits Offs = VBT->NonVirtualOffset;
|
|
Offs += SubobjectLayout.getVBPtrOffset();
|
|
if (VBT->getVBaseWithVPtr())
|
|
Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
|
|
llvm::Value *VBPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(ThisInt8Ptr, Offs.getQuantity());
|
|
VBPtr = CGF.Builder.CreateBitCast(VBPtr, GV->getType()->getPointerTo(0),
|
|
"vbptr." + VBT->ReusingBase->getName());
|
|
CGF.Builder.CreateStore(GV, VBPtr);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXABI::BuildDestructorSignature(const CXXDestructorDecl *Dtor,
|
|
CXXDtorType Type,
|
|
CanQualType &ResTy,
|
|
SmallVectorImpl<CanQualType> &ArgTys) {
|
|
// 'this' is already in place
|
|
|
|
// TODO: 'for base' flag
|
|
|
|
if (Type == Dtor_Deleting) {
|
|
// The scalar deleting destructor takes an implicit int parameter.
|
|
ArgTys.push_back(CGM.getContext().IntTy);
|
|
}
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
|
|
// The TU defining a dtor is only guaranteed to emit a base destructor. All
|
|
// other destructor variants are delegating thunks.
|
|
CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
|
|
}
|
|
|
|
CharUnits
|
|
MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
|
|
GD = GD.getCanonicalDecl();
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
|
|
|
|
GlobalDecl LookupGD = GD;
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
// Complete destructors take a pointer to the complete object as a
|
|
// parameter, thus don't need this adjustment.
|
|
if (GD.getDtorType() == Dtor_Complete)
|
|
return CharUnits();
|
|
|
|
// There's no Dtor_Base in vftable but it shares the this adjustment with
|
|
// the deleting one, so look it up instead.
|
|
LookupGD = GlobalDecl(DD, Dtor_Deleting);
|
|
}
|
|
|
|
MicrosoftVTableContext::MethodVFTableLocation ML =
|
|
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
|
|
CharUnits Adjustment = ML.VFPtrOffset;
|
|
|
|
// Normal virtual instance methods need to adjust from the vfptr that first
|
|
// defined the virtual method to the virtual base subobject, but destructors
|
|
// do not. The vector deleting destructor thunk applies this adjustment for
|
|
// us if necessary.
|
|
if (isa<CXXDestructorDecl>(MD))
|
|
Adjustment = CharUnits::Zero();
|
|
|
|
if (ML.VBase) {
|
|
const ASTRecordLayout &DerivedLayout =
|
|
CGM.getContext().getASTRecordLayout(MD->getParent());
|
|
Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
|
|
}
|
|
|
|
return Adjustment;
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
|
|
CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This, bool VirtualCall) {
|
|
if (!VirtualCall) {
|
|
// If the call of a virtual function is not virtual, we just have to
|
|
// compensate for the adjustment the virtual function does in its prologue.
|
|
CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
|
|
if (Adjustment.isZero())
|
|
return This;
|
|
|
|
unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
|
|
llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
|
|
This = CGF.Builder.CreateBitCast(This, charPtrTy);
|
|
assert(Adjustment.isPositive());
|
|
return CGF.Builder.CreateConstGEP1_32(This, Adjustment.getQuantity());
|
|
}
|
|
|
|
GD = GD.getCanonicalDecl();
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
|
|
|
|
GlobalDecl LookupGD = GD;
|
|
if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
|
|
// Complete dtors take a pointer to the complete object,
|
|
// thus don't need adjustment.
|
|
if (GD.getDtorType() == Dtor_Complete)
|
|
return This;
|
|
|
|
// There's only Dtor_Deleting in vftable but it shares the this adjustment
|
|
// with the base one, so look up the deleting one instead.
|
|
LookupGD = GlobalDecl(DD, Dtor_Deleting);
|
|
}
|
|
MicrosoftVTableContext::MethodVFTableLocation ML =
|
|
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
|
|
|
|
unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
|
|
llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS);
|
|
CharUnits StaticOffset = ML.VFPtrOffset;
|
|
|
|
// Base destructors expect 'this' to point to the beginning of the base
|
|
// subobject, not the first vfptr that happens to contain the virtual dtor.
|
|
// However, we still need to apply the virtual base adjustment.
|
|
if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
|
|
StaticOffset = CharUnits::Zero();
|
|
|
|
if (ML.VBase) {
|
|
This = CGF.Builder.CreateBitCast(This, charPtrTy);
|
|
llvm::Value *VBaseOffset =
|
|
GetVirtualBaseClassOffset(CGF, This, MD->getParent(), ML.VBase);
|
|
This = CGF.Builder.CreateInBoundsGEP(This, VBaseOffset);
|
|
}
|
|
if (!StaticOffset.isZero()) {
|
|
assert(StaticOffset.isPositive());
|
|
This = CGF.Builder.CreateBitCast(This, charPtrTy);
|
|
if (ML.VBase) {
|
|
// Non-virtual adjustment might result in a pointer outside the allocated
|
|
// object, e.g. if the final overrider class is laid out after the virtual
|
|
// base that declares a method in the most derived class.
|
|
// FIXME: Update the code that emits this adjustment in thunks prologues.
|
|
This = CGF.Builder.CreateConstGEP1_32(This, StaticOffset.getQuantity());
|
|
} else {
|
|
This = CGF.Builder.CreateConstInBoundsGEP1_32(This,
|
|
StaticOffset.getQuantity());
|
|
}
|
|
}
|
|
return This;
|
|
}
|
|
|
|
static bool IsDeletingDtor(GlobalDecl GD) {
|
|
const CXXMethodDecl* MD = cast<CXXMethodDecl>(GD.getDecl());
|
|
if (isa<CXXDestructorDecl>(MD)) {
|
|
return GD.getDtorType() == Dtor_Deleting;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
|
|
QualType &ResTy,
|
|
FunctionArgList &Params) {
|
|
ASTContext &Context = getContext();
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
|
|
assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
|
|
if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
|
|
ImplicitParamDecl *IsMostDerived
|
|
= ImplicitParamDecl::Create(Context, nullptr,
|
|
CGF.CurGD.getDecl()->getLocation(),
|
|
&Context.Idents.get("is_most_derived"),
|
|
Context.IntTy);
|
|
// The 'most_derived' parameter goes second if the ctor is variadic and last
|
|
// if it's not. Dtors can't be variadic.
|
|
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
|
if (FPT->isVariadic())
|
|
Params.insert(Params.begin() + 1, IsMostDerived);
|
|
else
|
|
Params.push_back(IsMostDerived);
|
|
getStructorImplicitParamDecl(CGF) = IsMostDerived;
|
|
} else if (IsDeletingDtor(CGF.CurGD)) {
|
|
ImplicitParamDecl *ShouldDelete
|
|
= ImplicitParamDecl::Create(Context, nullptr,
|
|
CGF.CurGD.getDecl()->getLocation(),
|
|
&Context.Idents.get("should_call_delete"),
|
|
Context.IntTy);
|
|
Params.push_back(ShouldDelete);
|
|
getStructorImplicitParamDecl(CGF) = ShouldDelete;
|
|
}
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::adjustThisParameterInVirtualFunctionPrologue(
|
|
CodeGenFunction &CGF, GlobalDecl GD, llvm::Value *This) {
|
|
// In this ABI, every virtual function takes a pointer to one of the
|
|
// subobjects that first defines it as the 'this' parameter, rather than a
|
|
// pointer to the final overrider subobject. Thus, we need to adjust it back
|
|
// to the final overrider subobject before use.
|
|
// See comments in the MicrosoftVFTableContext implementation for the details.
|
|
CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
|
|
if (Adjustment.isZero())
|
|
return This;
|
|
|
|
unsigned AS = cast<llvm::PointerType>(This->getType())->getAddressSpace();
|
|
llvm::Type *charPtrTy = CGF.Int8Ty->getPointerTo(AS),
|
|
*thisTy = This->getType();
|
|
|
|
This = CGF.Builder.CreateBitCast(This, charPtrTy);
|
|
assert(Adjustment.isPositive());
|
|
This =
|
|
CGF.Builder.CreateConstInBoundsGEP1_32(This, -Adjustment.getQuantity());
|
|
return CGF.Builder.CreateBitCast(This, thisTy);
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
|
|
EmitThisParam(CGF);
|
|
|
|
/// If this is a function that the ABI specifies returns 'this', initialize
|
|
/// the return slot to 'this' at the start of the function.
|
|
///
|
|
/// Unlike the setting of return types, this is done within the ABI
|
|
/// implementation instead of by clients of CGCXXABI because:
|
|
/// 1) getThisValue is currently protected
|
|
/// 2) in theory, an ABI could implement 'this' returns some other way;
|
|
/// HasThisReturn only specifies a contract, not the implementation
|
|
if (HasThisReturn(CGF.CurGD))
|
|
CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
|
|
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
|
|
if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
|
|
assert(getStructorImplicitParamDecl(CGF) &&
|
|
"no implicit parameter for a constructor with virtual bases?");
|
|
getStructorImplicitParamValue(CGF)
|
|
= CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
|
|
"is_most_derived");
|
|
}
|
|
|
|
if (IsDeletingDtor(CGF.CurGD)) {
|
|
assert(getStructorImplicitParamDecl(CGF) &&
|
|
"no implicit parameter for a deleting destructor?");
|
|
getStructorImplicitParamValue(CGF)
|
|
= CGF.Builder.CreateLoad(
|
|
CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
|
|
"should_call_delete");
|
|
}
|
|
}
|
|
|
|
unsigned MicrosoftCXXABI::addImplicitConstructorArgs(
|
|
CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
|
|
bool ForVirtualBase, bool Delegating, CallArgList &Args) {
|
|
assert(Type == Ctor_Complete || Type == Ctor_Base);
|
|
|
|
// Check if we need a 'most_derived' parameter.
|
|
if (!D->getParent()->getNumVBases())
|
|
return 0;
|
|
|
|
// Add the 'most_derived' argument second if we are variadic or last if not.
|
|
const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
|
|
llvm::Value *MostDerivedArg =
|
|
llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
|
|
RValue RV = RValue::get(MostDerivedArg);
|
|
if (MostDerivedArg) {
|
|
if (FPT->isVariadic())
|
|
Args.insert(Args.begin() + 1,
|
|
CallArg(RV, getContext().IntTy, /*needscopy=*/false));
|
|
else
|
|
Args.add(RV, getContext().IntTy);
|
|
}
|
|
|
|
return 1; // Added one arg.
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *DD,
|
|
CXXDtorType Type, bool ForVirtualBase,
|
|
bool Delegating, llvm::Value *This) {
|
|
llvm::Value *Callee = CGM.GetAddrOfCXXDestructor(DD, Type);
|
|
|
|
if (DD->isVirtual()) {
|
|
assert(Type != CXXDtorType::Dtor_Deleting &&
|
|
"The deleting destructor should only be called via a virtual call");
|
|
This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
|
|
This, false);
|
|
}
|
|
|
|
// FIXME: Provide a source location here.
|
|
CGF.EmitCXXMemberCall(DD, SourceLocation(), Callee, ReturnValueSlot(), This,
|
|
/*ImplicitParam=*/nullptr,
|
|
/*ImplicitParamTy=*/QualType(), nullptr, nullptr);
|
|
}
|
|
|
|
void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
|
|
const CXXRecordDecl *RD) {
|
|
MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
|
|
VPtrInfoVector VFPtrs = VFTContext.getVFPtrOffsets(RD);
|
|
|
|
for (VPtrInfo *Info : VFPtrs) {
|
|
llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
|
|
if (VTable->hasInitializer())
|
|
continue;
|
|
|
|
llvm::Constant *RTTI = getContext().getLangOpts().RTTIData
|
|
? getMSCompleteObjectLocator(RD, Info)
|
|
: nullptr;
|
|
|
|
const VTableLayout &VTLayout =
|
|
VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
|
|
llvm::Constant *Init = CGVT.CreateVTableInitializer(
|
|
RD, VTLayout.vtable_component_begin(),
|
|
VTLayout.getNumVTableComponents(), VTLayout.vtable_thunk_begin(),
|
|
VTLayout.getNumVTableThunks(), RTTI);
|
|
|
|
VTable->setInitializer(Init);
|
|
}
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
|
|
CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
|
|
const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
|
|
NeedsVirtualOffset = (NearestVBase != nullptr);
|
|
|
|
(void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
|
|
VFTableIdTy ID(VTableClass, Base.getBaseOffset());
|
|
llvm::GlobalValue *VTableAddressPoint = VFTablesMap[ID];
|
|
if (!VTableAddressPoint) {
|
|
assert(Base.getBase()->getNumVBases() &&
|
|
!CGM.getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
|
|
}
|
|
return VTableAddressPoint;
|
|
}
|
|
|
|
static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
|
|
const CXXRecordDecl *RD, const VPtrInfo *VFPtr,
|
|
SmallString<256> &Name) {
|
|
llvm::raw_svector_ostream Out(Name);
|
|
MangleContext.mangleCXXVFTable(RD, VFPtr->MangledPath, Out);
|
|
}
|
|
|
|
llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
|
|
BaseSubobject Base, const CXXRecordDecl *VTableClass) {
|
|
(void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
|
|
VFTableIdTy ID(VTableClass, Base.getBaseOffset());
|
|
llvm::GlobalValue *VFTable = VFTablesMap[ID];
|
|
assert(VFTable && "Couldn't find a vftable for the given base?");
|
|
return VFTable;
|
|
}
|
|
|
|
llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
|
|
CharUnits VPtrOffset) {
|
|
// getAddrOfVTable may return 0 if asked to get an address of a vtable which
|
|
// shouldn't be used in the given record type. We want to cache this result in
|
|
// VFTablesMap, thus a simple zero check is not sufficient.
|
|
VFTableIdTy ID(RD, VPtrOffset);
|
|
VTablesMapTy::iterator I;
|
|
bool Inserted;
|
|
std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
|
|
if (!Inserted)
|
|
return I->second;
|
|
|
|
llvm::GlobalVariable *&VTable = I->second;
|
|
|
|
MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
|
|
const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
|
|
|
|
if (DeferredVFTables.insert(RD)) {
|
|
// We haven't processed this record type before.
|
|
// Queue up this v-table for possible deferred emission.
|
|
CGM.addDeferredVTable(RD);
|
|
|
|
#ifndef NDEBUG
|
|
// Create all the vftables at once in order to make sure each vftable has
|
|
// a unique mangled name.
|
|
llvm::StringSet<> ObservedMangledNames;
|
|
for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
|
|
SmallString<256> Name;
|
|
mangleVFTableName(getMangleContext(), RD, VFPtrs[J], Name);
|
|
if (!ObservedMangledNames.insert(Name.str()))
|
|
llvm_unreachable("Already saw this mangling before?");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
|
|
if (VFPtrs[J]->FullOffsetInMDC != VPtrOffset)
|
|
continue;
|
|
SmallString<256> VFTableName;
|
|
mangleVFTableName(getMangleContext(), RD, VFPtrs[J], VFTableName);
|
|
StringRef VTableName = VFTableName;
|
|
|
|
uint64_t NumVTableSlots =
|
|
VTContext.getVFTableLayout(RD, VFPtrs[J]->FullOffsetInMDC)
|
|
.getNumVTableComponents();
|
|
llvm::GlobalValue::LinkageTypes VTableLinkage =
|
|
llvm::GlobalValue::ExternalLinkage;
|
|
llvm::ArrayType *VTableType =
|
|
llvm::ArrayType::get(CGM.Int8PtrTy, NumVTableSlots);
|
|
if (getContext().getLangOpts().RTTIData) {
|
|
VTableLinkage = llvm::GlobalValue::PrivateLinkage;
|
|
VTableName = "";
|
|
}
|
|
|
|
VTable = CGM.getModule().getNamedGlobal(VFTableName);
|
|
if (!VTable) {
|
|
// Create a backing variable for the contents of VTable. The VTable may
|
|
// or may not include space for a pointer to RTTI data.
|
|
llvm::GlobalValue *VFTable = VTable = new llvm::GlobalVariable(
|
|
CGM.getModule(), VTableType, /*isConstant=*/true, VTableLinkage,
|
|
/*Initializer=*/nullptr, VTableName);
|
|
VTable->setUnnamedAddr(true);
|
|
|
|
// Only insert a pointer into the VFTable for RTTI data if we are not
|
|
// importing it. We never reference the RTTI data directly so there is no
|
|
// need to make room for it.
|
|
if (getContext().getLangOpts().RTTIData &&
|
|
!RD->hasAttr<DLLImportAttr>()) {
|
|
llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
|
|
llvm::ConstantInt::get(CGM.IntTy, 1)};
|
|
// Create a GEP which points just after the first entry in the VFTable,
|
|
// this should be the location of the first virtual method.
|
|
llvm::Constant *VTableGEP =
|
|
llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, GEPIndices);
|
|
// The symbol for the VFTable is an alias to the GEP. It is
|
|
// transparent, to other modules, what the nature of this symbol is; all
|
|
// that matters is that the alias be the address of the first virtual
|
|
// method.
|
|
VFTable = llvm::GlobalAlias::create(
|
|
cast<llvm::SequentialType>(VTableGEP->getType())->getElementType(),
|
|
/*AddressSpace=*/0, llvm::GlobalValue::ExternalLinkage,
|
|
VFTableName.str(), VTableGEP, &CGM.getModule());
|
|
} else {
|
|
// We don't need a GlobalAlias to be a symbol for the VTable if we won't
|
|
// be referencing any RTTI data. The GlobalVariable will end up being
|
|
// an appropriate definition of the VFTable.
|
|
VTable->setName(VFTableName.str());
|
|
}
|
|
|
|
VFTable->setUnnamedAddr(true);
|
|
if (RD->hasAttr<DLLImportAttr>())
|
|
VFTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
|
|
else if (RD->hasAttr<DLLExportAttr>())
|
|
VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
|
|
llvm::GlobalValue::LinkageTypes VFTableLinkage = CGM.getVTableLinkage(RD);
|
|
if (VFTable != VTable) {
|
|
if (llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage)) {
|
|
// AvailableExternally implies that we grabbed the data from another
|
|
// executable. No need to stick the alias in a Comdat.
|
|
} else if (llvm::GlobalValue::isInternalLinkage(VFTableLinkage) ||
|
|
llvm::GlobalValue::isWeakODRLinkage(VFTableLinkage) ||
|
|
llvm::GlobalValue::isLinkOnceODRLinkage(VFTableLinkage)) {
|
|
// The alias is going to be dropped into a Comdat, no need to make it
|
|
// weak.
|
|
if (!llvm::GlobalValue::isInternalLinkage(VFTableLinkage))
|
|
VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
|
|
llvm::Comdat *C =
|
|
CGM.getModule().getOrInsertComdat(VFTable->getName());
|
|
// We must indicate which VFTable is larger to support linking between
|
|
// translation units which do and do not have RTTI data. The largest
|
|
// VFTable contains the RTTI data; translation units which reference
|
|
// the smaller VFTable always reference it relative to the first
|
|
// virtual method.
|
|
C->setSelectionKind(llvm::Comdat::Largest);
|
|
VTable->setComdat(C);
|
|
} else {
|
|
llvm_unreachable("unexpected linkage for vftable!");
|
|
}
|
|
}
|
|
VFTable->setLinkage(VFTableLinkage);
|
|
CGM.setGlobalVisibility(VFTable, RD);
|
|
VFTablesMap[ID] = VFTable;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return VTable;
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
|
|
GlobalDecl GD,
|
|
llvm::Value *This,
|
|
llvm::Type *Ty) {
|
|
GD = GD.getCanonicalDecl();
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
Ty = Ty->getPointerTo()->getPointerTo();
|
|
llvm::Value *VPtr =
|
|
adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
|
|
llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty);
|
|
|
|
MicrosoftVTableContext::MethodVFTableLocation ML =
|
|
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
|
|
llvm::Value *VFuncPtr =
|
|
Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
|
|
return Builder.CreateLoad(VFuncPtr);
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitVirtualDestructorCall(CodeGenFunction &CGF,
|
|
const CXXDestructorDecl *Dtor,
|
|
CXXDtorType DtorType,
|
|
SourceLocation CallLoc,
|
|
llvm::Value *This) {
|
|
assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
|
|
|
|
// We have only one destructor in the vftable but can get both behaviors
|
|
// by passing an implicit int parameter.
|
|
GlobalDecl GD(Dtor, Dtor_Deleting);
|
|
const CGFunctionInfo *FInfo =
|
|
&CGM.getTypes().arrangeCXXDestructor(Dtor, Dtor_Deleting);
|
|
llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
|
|
llvm::Value *Callee = getVirtualFunctionPointer(CGF, GD, This, Ty);
|
|
|
|
ASTContext &Context = CGF.getContext();
|
|
llvm::Value *ImplicitParam =
|
|
llvm::ConstantInt::get(llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
|
|
DtorType == Dtor_Deleting);
|
|
|
|
This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
|
|
CGF.EmitCXXMemberCall(Dtor, CallLoc, Callee, ReturnValueSlot(), This,
|
|
ImplicitParam, Context.IntTy, nullptr, nullptr);
|
|
}
|
|
|
|
const VBTableGlobals &
|
|
MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
|
|
// At this layer, we can key the cache off of a single class, which is much
|
|
// easier than caching each vbtable individually.
|
|
llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
|
|
bool Added;
|
|
std::tie(Entry, Added) =
|
|
VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
|
|
VBTableGlobals &VBGlobals = Entry->second;
|
|
if (!Added)
|
|
return VBGlobals;
|
|
|
|
MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
|
|
VBGlobals.VBTables = &Context.enumerateVBTables(RD);
|
|
|
|
// Cache the globals for all vbtables so we don't have to recompute the
|
|
// mangled names.
|
|
llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
|
|
for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
|
|
E = VBGlobals.VBTables->end();
|
|
I != E; ++I) {
|
|
VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
|
|
}
|
|
|
|
return VBGlobals;
|
|
}
|
|
|
|
llvm::Function *MicrosoftCXXABI::EmitVirtualMemPtrThunk(
|
|
const CXXMethodDecl *MD,
|
|
const MicrosoftVTableContext::MethodVFTableLocation &ML) {
|
|
// Calculate the mangled name.
|
|
SmallString<256> ThunkName;
|
|
llvm::raw_svector_ostream Out(ThunkName);
|
|
getMangleContext().mangleVirtualMemPtrThunk(MD, Out);
|
|
Out.flush();
|
|
|
|
// If the thunk has been generated previously, just return it.
|
|
if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
|
|
return cast<llvm::Function>(GV);
|
|
|
|
// Create the llvm::Function.
|
|
const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeGlobalDeclaration(MD);
|
|
llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
|
|
llvm::Function *ThunkFn =
|
|
llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
|
|
ThunkName.str(), &CGM.getModule());
|
|
assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
|
|
|
|
ThunkFn->setLinkage(MD->isExternallyVisible()
|
|
? llvm::GlobalValue::LinkOnceODRLinkage
|
|
: llvm::GlobalValue::InternalLinkage);
|
|
|
|
CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
|
|
CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
|
|
|
|
// Start codegen.
|
|
CodeGenFunction CGF(CGM);
|
|
CGF.StartThunk(ThunkFn, MD, FnInfo);
|
|
|
|
// Load the vfptr and then callee from the vftable. The callee should have
|
|
// adjusted 'this' so that the vfptr is at offset zero.
|
|
llvm::Value *This = CGF.LoadCXXThis();
|
|
llvm::Value *VTable =
|
|
CGF.GetVTablePtr(This, ThunkTy->getPointerTo()->getPointerTo());
|
|
llvm::Value *VFuncPtr =
|
|
CGF.Builder.CreateConstInBoundsGEP1_64(VTable, ML.Index, "vfn");
|
|
llvm::Value *Callee = CGF.Builder.CreateLoad(VFuncPtr);
|
|
|
|
CGF.EmitCallAndReturnForThunk(Callee, 0);
|
|
|
|
return ThunkFn;
|
|
}
|
|
|
|
void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
|
|
const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
|
|
for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
|
|
const VPtrInfo *VBT = (*VBGlobals.VBTables)[I];
|
|
llvm::GlobalVariable *GV = VBGlobals.Globals[I];
|
|
emitVBTableDefinition(*VBT, RD, GV);
|
|
}
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
|
|
llvm::GlobalVariable::LinkageTypes Linkage) {
|
|
SmallString<256> OutName;
|
|
llvm::raw_svector_ostream Out(OutName);
|
|
getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
|
|
Out.flush();
|
|
StringRef Name = OutName.str();
|
|
|
|
llvm::ArrayType *VBTableType =
|
|
llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ReusingBase->getNumVBases());
|
|
|
|
assert(!CGM.getModule().getNamedGlobal(Name) &&
|
|
"vbtable with this name already exists: mangling bug?");
|
|
llvm::GlobalVariable *GV =
|
|
CGM.CreateOrReplaceCXXRuntimeVariable(Name, VBTableType, Linkage);
|
|
GV->setUnnamedAddr(true);
|
|
|
|
if (RD->hasAttr<DLLImportAttr>())
|
|
GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
|
|
else if (RD->hasAttr<DLLExportAttr>())
|
|
GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
|
|
|
|
return GV;
|
|
}
|
|
|
|
void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
|
|
const CXXRecordDecl *RD,
|
|
llvm::GlobalVariable *GV) const {
|
|
const CXXRecordDecl *ReusingBase = VBT.ReusingBase;
|
|
|
|
assert(RD->getNumVBases() && ReusingBase->getNumVBases() &&
|
|
"should only emit vbtables for classes with vbtables");
|
|
|
|
const ASTRecordLayout &BaseLayout =
|
|
CGM.getContext().getASTRecordLayout(VBT.BaseWithVPtr);
|
|
const ASTRecordLayout &DerivedLayout =
|
|
CGM.getContext().getASTRecordLayout(RD);
|
|
|
|
SmallVector<llvm::Constant *, 4> Offsets(1 + ReusingBase->getNumVBases(),
|
|
nullptr);
|
|
|
|
// The offset from ReusingBase's vbptr to itself always leads.
|
|
CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
|
|
Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
|
|
|
|
MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
|
|
for (const auto &I : ReusingBase->vbases()) {
|
|
const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
|
|
CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
|
|
assert(!Offset.isNegative());
|
|
|
|
// Make it relative to the subobject vbptr.
|
|
CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
|
|
if (VBT.getVBaseWithVPtr())
|
|
CompleteVBPtrOffset +=
|
|
DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
|
|
Offset -= CompleteVBPtrOffset;
|
|
|
|
unsigned VBIndex = Context.getVBTableIndex(ReusingBase, VBase);
|
|
assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
|
|
Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
|
|
}
|
|
|
|
assert(Offsets.size() ==
|
|
cast<llvm::ArrayType>(cast<llvm::PointerType>(GV->getType())
|
|
->getElementType())->getNumElements());
|
|
llvm::ArrayType *VBTableType =
|
|
llvm::ArrayType::get(CGM.IntTy, Offsets.size());
|
|
llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
|
|
GV->setInitializer(Init);
|
|
|
|
// Set the right visibility.
|
|
CGM.setGlobalVisibility(GV, RD);
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
|
|
llvm::Value *This,
|
|
const ThisAdjustment &TA) {
|
|
if (TA.isEmpty())
|
|
return This;
|
|
|
|
llvm::Value *V = CGF.Builder.CreateBitCast(This, CGF.Int8PtrTy);
|
|
|
|
if (!TA.Virtual.isEmpty()) {
|
|
assert(TA.Virtual.Microsoft.VtordispOffset < 0);
|
|
// Adjust the this argument based on the vtordisp value.
|
|
llvm::Value *VtorDispPtr =
|
|
CGF.Builder.CreateConstGEP1_32(V, TA.Virtual.Microsoft.VtordispOffset);
|
|
VtorDispPtr =
|
|
CGF.Builder.CreateBitCast(VtorDispPtr, CGF.Int32Ty->getPointerTo());
|
|
llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
|
|
V = CGF.Builder.CreateGEP(V, CGF.Builder.CreateNeg(VtorDisp));
|
|
|
|
if (TA.Virtual.Microsoft.VBPtrOffset) {
|
|
// If the final overrider is defined in a virtual base other than the one
|
|
// that holds the vfptr, we have to use a vtordispex thunk which looks up
|
|
// the vbtable of the derived class.
|
|
assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
|
|
assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
|
|
llvm::Value *VBPtr;
|
|
llvm::Value *VBaseOffset =
|
|
GetVBaseOffsetFromVBPtr(CGF, V, -TA.Virtual.Microsoft.VBPtrOffset,
|
|
TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
|
|
V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
|
|
}
|
|
}
|
|
|
|
if (TA.NonVirtual) {
|
|
// Non-virtual adjustment might result in a pointer outside the allocated
|
|
// object, e.g. if the final overrider class is laid out after the virtual
|
|
// base that declares a method in the most derived class.
|
|
V = CGF.Builder.CreateConstGEP1_32(V, TA.NonVirtual);
|
|
}
|
|
|
|
// Don't need to bitcast back, the call CodeGen will handle this.
|
|
return V;
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, llvm::Value *Ret,
|
|
const ReturnAdjustment &RA) {
|
|
if (RA.isEmpty())
|
|
return Ret;
|
|
|
|
llvm::Value *V = CGF.Builder.CreateBitCast(Ret, CGF.Int8PtrTy);
|
|
|
|
if (RA.Virtual.Microsoft.VBIndex) {
|
|
assert(RA.Virtual.Microsoft.VBIndex > 0);
|
|
int32_t IntSize =
|
|
getContext().getTypeSizeInChars(getContext().IntTy).getQuantity();
|
|
llvm::Value *VBPtr;
|
|
llvm::Value *VBaseOffset =
|
|
GetVBaseOffsetFromVBPtr(CGF, V, RA.Virtual.Microsoft.VBPtrOffset,
|
|
IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
|
|
V = CGF.Builder.CreateInBoundsGEP(VBPtr, VBaseOffset);
|
|
}
|
|
|
|
if (RA.NonVirtual)
|
|
V = CGF.Builder.CreateConstInBoundsGEP1_32(V, RA.NonVirtual);
|
|
|
|
// Cast back to the original type.
|
|
return CGF.Builder.CreateBitCast(V, Ret->getType());
|
|
}
|
|
|
|
bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
|
|
QualType elementType) {
|
|
// Microsoft seems to completely ignore the possibility of a
|
|
// two-argument usual deallocation function.
|
|
return elementType.isDestructedType();
|
|
}
|
|
|
|
bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
|
|
// Microsoft seems to completely ignore the possibility of a
|
|
// two-argument usual deallocation function.
|
|
return expr->getAllocatedType().isDestructedType();
|
|
}
|
|
|
|
CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
|
|
// The array cookie is always a size_t; we then pad that out to the
|
|
// alignment of the element type.
|
|
ASTContext &Ctx = getContext();
|
|
return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
|
|
Ctx.getTypeAlignInChars(type));
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
|
|
llvm::Value *allocPtr,
|
|
CharUnits cookieSize) {
|
|
unsigned AS = allocPtr->getType()->getPointerAddressSpace();
|
|
llvm::Value *numElementsPtr =
|
|
CGF.Builder.CreateBitCast(allocPtr, CGF.SizeTy->getPointerTo(AS));
|
|
return CGF.Builder.CreateLoad(numElementsPtr);
|
|
}
|
|
|
|
llvm::Value* MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
|
|
llvm::Value *newPtr,
|
|
llvm::Value *numElements,
|
|
const CXXNewExpr *expr,
|
|
QualType elementType) {
|
|
assert(requiresArrayCookie(expr));
|
|
|
|
// The size of the cookie.
|
|
CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
|
|
|
|
// Compute an offset to the cookie.
|
|
llvm::Value *cookiePtr = newPtr;
|
|
|
|
// Write the number of elements into the appropriate slot.
|
|
unsigned AS = newPtr->getType()->getPointerAddressSpace();
|
|
llvm::Value *numElementsPtr
|
|
= CGF.Builder.CreateBitCast(cookiePtr, CGF.SizeTy->getPointerTo(AS));
|
|
CGF.Builder.CreateStore(numElements, numElementsPtr);
|
|
|
|
// Finally, compute a pointer to the actual data buffer by skipping
|
|
// over the cookie completely.
|
|
return CGF.Builder.CreateConstInBoundsGEP1_64(newPtr,
|
|
cookieSize.getQuantity());
|
|
}
|
|
|
|
void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
|
|
llvm::GlobalVariable *GV,
|
|
bool PerformInit) {
|
|
// MSVC only uses guards for static locals.
|
|
if (!D.isStaticLocal()) {
|
|
assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
|
|
// GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
|
|
CGF.CurFn->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
|
|
CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
|
|
return;
|
|
}
|
|
|
|
// MSVC always uses an i32 bitfield to guard initialization, which is *not*
|
|
// threadsafe. Since the user may be linking in inline functions compiled by
|
|
// cl.exe, there's no reason to provide a false sense of security by using
|
|
// critical sections here.
|
|
|
|
if (D.getTLSKind())
|
|
CGM.ErrorUnsupported(&D, "dynamic TLS initialization");
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::IntegerType *GuardTy = CGF.Int32Ty;
|
|
llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
|
|
|
|
// Get the guard variable for this function if we have one already.
|
|
GuardInfo *GI = &GuardVariableMap[D.getDeclContext()];
|
|
|
|
unsigned BitIndex;
|
|
if (D.isStaticLocal() && D.isExternallyVisible()) {
|
|
// Externally visible variables have to be numbered in Sema to properly
|
|
// handle unreachable VarDecls.
|
|
BitIndex = getContext().getStaticLocalNumber(&D);
|
|
assert(BitIndex > 0);
|
|
BitIndex--;
|
|
} else {
|
|
// Non-externally visible variables are numbered here in CodeGen.
|
|
BitIndex = GI->BitIndex++;
|
|
}
|
|
|
|
if (BitIndex >= 32) {
|
|
if (D.isExternallyVisible())
|
|
ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
|
|
BitIndex %= 32;
|
|
GI->Guard = nullptr;
|
|
}
|
|
|
|
// Lazily create the i32 bitfield for this function.
|
|
if (!GI->Guard) {
|
|
// Mangle the name for the guard.
|
|
SmallString<256> GuardName;
|
|
{
|
|
llvm::raw_svector_ostream Out(GuardName);
|
|
getMangleContext().mangleStaticGuardVariable(&D, Out);
|
|
Out.flush();
|
|
}
|
|
|
|
// Create the guard variable with a zero-initializer. Just absorb linkage,
|
|
// visibility and dll storage class from the guarded variable.
|
|
GI->Guard =
|
|
new llvm::GlobalVariable(CGM.getModule(), GuardTy, false,
|
|
GV->getLinkage(), Zero, GuardName.str());
|
|
GI->Guard->setVisibility(GV->getVisibility());
|
|
GI->Guard->setDLLStorageClass(GV->getDLLStorageClass());
|
|
} else {
|
|
assert(GI->Guard->getLinkage() == GV->getLinkage() &&
|
|
"static local from the same function had different linkage");
|
|
}
|
|
|
|
// Pseudo code for the test:
|
|
// if (!(GuardVar & MyGuardBit)) {
|
|
// GuardVar |= MyGuardBit;
|
|
// ... initialize the object ...;
|
|
// }
|
|
|
|
// Test our bit from the guard variable.
|
|
llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1U << BitIndex);
|
|
llvm::LoadInst *LI = Builder.CreateLoad(GI->Guard);
|
|
llvm::Value *IsInitialized =
|
|
Builder.CreateICmpNE(Builder.CreateAnd(LI, Bit), Zero);
|
|
llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
|
|
llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
|
|
Builder.CreateCondBr(IsInitialized, EndBlock, InitBlock);
|
|
|
|
// Set our bit in the guard variable and emit the initializer and add a global
|
|
// destructor if appropriate.
|
|
CGF.EmitBlock(InitBlock);
|
|
Builder.CreateStore(Builder.CreateOr(LI, Bit), GI->Guard);
|
|
CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
|
|
Builder.CreateBr(EndBlock);
|
|
|
|
// Continue.
|
|
CGF.EmitBlock(EndBlock);
|
|
}
|
|
|
|
bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
|
|
// Null-ness for function memptrs only depends on the first field, which is
|
|
// the function pointer. The rest don't matter, so we can zero initialize.
|
|
if (MPT->isMemberFunctionPointer())
|
|
return true;
|
|
|
|
// The virtual base adjustment field is always -1 for null, so if we have one
|
|
// we can't zero initialize. The field offset is sometimes also -1 if 0 is a
|
|
// valid field offset.
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
return (!MSInheritanceAttr::hasVBTableOffsetField(Inheritance) &&
|
|
RD->nullFieldOffsetIsZero());
|
|
}
|
|
|
|
llvm::Type *
|
|
MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
llvm::SmallVector<llvm::Type *, 4> fields;
|
|
if (MPT->isMemberFunctionPointer())
|
|
fields.push_back(CGM.VoidPtrTy); // FunctionPointerOrVirtualThunk
|
|
else
|
|
fields.push_back(CGM.IntTy); // FieldOffset
|
|
|
|
if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
|
|
Inheritance))
|
|
fields.push_back(CGM.IntTy);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
|
|
fields.push_back(CGM.IntTy);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
|
|
fields.push_back(CGM.IntTy); // VirtualBaseAdjustmentOffset
|
|
|
|
if (fields.size() == 1)
|
|
return fields[0];
|
|
return llvm::StructType::get(CGM.getLLVMContext(), fields);
|
|
}
|
|
|
|
void MicrosoftCXXABI::
|
|
GetNullMemberPointerFields(const MemberPointerType *MPT,
|
|
llvm::SmallVectorImpl<llvm::Constant *> &fields) {
|
|
assert(fields.empty());
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
if (MPT->isMemberFunctionPointer()) {
|
|
// FunctionPointerOrVirtualThunk
|
|
fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
|
|
} else {
|
|
if (RD->nullFieldOffsetIsZero())
|
|
fields.push_back(getZeroInt()); // FieldOffset
|
|
else
|
|
fields.push_back(getAllOnesInt()); // FieldOffset
|
|
}
|
|
|
|
if (MSInheritanceAttr::hasNVOffsetField(MPT->isMemberFunctionPointer(),
|
|
Inheritance))
|
|
fields.push_back(getZeroInt());
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
|
|
fields.push_back(getZeroInt());
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
|
|
fields.push_back(getAllOnesInt());
|
|
}
|
|
|
|
llvm::Constant *
|
|
MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
|
|
llvm::SmallVector<llvm::Constant *, 4> fields;
|
|
GetNullMemberPointerFields(MPT, fields);
|
|
if (fields.size() == 1)
|
|
return fields[0];
|
|
llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
|
|
assert(Res->getType() == ConvertMemberPointerType(MPT));
|
|
return Res;
|
|
}
|
|
|
|
llvm::Constant *
|
|
MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
|
|
bool IsMemberFunction,
|
|
const CXXRecordDecl *RD,
|
|
CharUnits NonVirtualBaseAdjustment)
|
|
{
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
|
|
// Single inheritance class member pointer are represented as scalars instead
|
|
// of aggregates.
|
|
if (MSInheritanceAttr::hasOnlyOneField(IsMemberFunction, Inheritance))
|
|
return FirstField;
|
|
|
|
llvm::SmallVector<llvm::Constant *, 4> fields;
|
|
fields.push_back(FirstField);
|
|
|
|
if (MSInheritanceAttr::hasNVOffsetField(IsMemberFunction, Inheritance))
|
|
fields.push_back(llvm::ConstantInt::get(
|
|
CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
|
|
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance)) {
|
|
CharUnits Offs = CharUnits::Zero();
|
|
if (RD->getNumVBases())
|
|
Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
|
|
fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
|
|
}
|
|
|
|
// The rest of the fields are adjusted by conversions to a more derived class.
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
|
|
fields.push_back(getZeroInt());
|
|
|
|
return llvm::ConstantStruct::getAnon(fields);
|
|
}
|
|
|
|
llvm::Constant *
|
|
MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
|
|
CharUnits offset) {
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
llvm::Constant *FirstField =
|
|
llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
|
|
return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
|
|
CharUnits::Zero());
|
|
}
|
|
|
|
llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const CXXMethodDecl *MD) {
|
|
return BuildMemberPointer(MD->getParent(), MD, CharUnits::Zero());
|
|
}
|
|
|
|
llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
|
|
QualType MPType) {
|
|
const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
|
|
const ValueDecl *MPD = MP.getMemberPointerDecl();
|
|
if (!MPD)
|
|
return EmitNullMemberPointer(MPT);
|
|
|
|
CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
|
|
|
|
// FIXME PR15713: Support virtual inheritance paths.
|
|
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
|
|
return BuildMemberPointer(MPT->getMostRecentCXXRecordDecl(), MD,
|
|
ThisAdjustment);
|
|
|
|
CharUnits FieldOffset =
|
|
getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
|
|
return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
|
|
}
|
|
|
|
llvm::Constant *
|
|
MicrosoftCXXABI::BuildMemberPointer(const CXXRecordDecl *RD,
|
|
const CXXMethodDecl *MD,
|
|
CharUnits NonVirtualBaseAdjustment) {
|
|
assert(MD->isInstance() && "Member function must not be static!");
|
|
MD = MD->getCanonicalDecl();
|
|
RD = RD->getMostRecentDecl();
|
|
CodeGenTypes &Types = CGM.getTypes();
|
|
|
|
llvm::Constant *FirstField;
|
|
if (!MD->isVirtual()) {
|
|
const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
|
|
llvm::Type *Ty;
|
|
// Check whether the function has a computable LLVM signature.
|
|
if (Types.isFuncTypeConvertible(FPT)) {
|
|
// The function has a computable LLVM signature; use the correct type.
|
|
Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
|
|
} else {
|
|
// Use an arbitrary non-function type to tell GetAddrOfFunction that the
|
|
// function type is incomplete.
|
|
Ty = CGM.PtrDiffTy;
|
|
}
|
|
FirstField = CGM.GetAddrOfFunction(MD, Ty);
|
|
FirstField = llvm::ConstantExpr::getBitCast(FirstField, CGM.VoidPtrTy);
|
|
} else {
|
|
MicrosoftVTableContext::MethodVFTableLocation ML =
|
|
CGM.getMicrosoftVTableContext().getMethodVFTableLocation(MD);
|
|
if (MD->isVariadic()) {
|
|
CGM.ErrorUnsupported(MD, "pointer to variadic virtual member function");
|
|
FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
|
|
} else if (!CGM.getTypes().isFuncTypeConvertible(
|
|
MD->getType()->castAs<FunctionType>())) {
|
|
CGM.ErrorUnsupported(MD, "pointer to virtual member function with "
|
|
"incomplete return or parameter type");
|
|
FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
|
|
} else if (ML.VBase) {
|
|
CGM.ErrorUnsupported(MD, "pointer to virtual member function overriding "
|
|
"member function in virtual base class");
|
|
FirstField = llvm::Constant::getNullValue(CGM.VoidPtrTy);
|
|
} else {
|
|
llvm::Function *Thunk = EmitVirtualMemPtrThunk(MD, ML);
|
|
FirstField = llvm::ConstantExpr::getBitCast(Thunk, CGM.VoidPtrTy);
|
|
// Include the vfptr adjustment if the method is in a non-primary vftable.
|
|
NonVirtualBaseAdjustment += ML.VFPtrOffset;
|
|
}
|
|
}
|
|
|
|
// The rest of the fields are common with data member pointers.
|
|
return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
|
|
NonVirtualBaseAdjustment);
|
|
}
|
|
|
|
/// Member pointers are the same if they're either bitwise identical *or* both
|
|
/// null. Null-ness for function members is determined by the first field,
|
|
/// while for data member pointers we must compare all fields.
|
|
llvm::Value *
|
|
MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
|
|
llvm::Value *L,
|
|
llvm::Value *R,
|
|
const MemberPointerType *MPT,
|
|
bool Inequality) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// Handle != comparisons by switching the sense of all boolean operations.
|
|
llvm::ICmpInst::Predicate Eq;
|
|
llvm::Instruction::BinaryOps And, Or;
|
|
if (Inequality) {
|
|
Eq = llvm::ICmpInst::ICMP_NE;
|
|
And = llvm::Instruction::Or;
|
|
Or = llvm::Instruction::And;
|
|
} else {
|
|
Eq = llvm::ICmpInst::ICMP_EQ;
|
|
And = llvm::Instruction::And;
|
|
Or = llvm::Instruction::Or;
|
|
}
|
|
|
|
// If this is a single field member pointer (single inheritance), this is a
|
|
// single icmp.
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
if (MSInheritanceAttr::hasOnlyOneField(MPT->isMemberFunctionPointer(),
|
|
Inheritance))
|
|
return Builder.CreateICmp(Eq, L, R);
|
|
|
|
// Compare the first field.
|
|
llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
|
|
llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
|
|
llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
|
|
|
|
// Compare everything other than the first field.
|
|
llvm::Value *Res = nullptr;
|
|
llvm::StructType *LType = cast<llvm::StructType>(L->getType());
|
|
for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
|
|
llvm::Value *LF = Builder.CreateExtractValue(L, I);
|
|
llvm::Value *RF = Builder.CreateExtractValue(R, I);
|
|
llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
|
|
if (Res)
|
|
Res = Builder.CreateBinOp(And, Res, Cmp);
|
|
else
|
|
Res = Cmp;
|
|
}
|
|
|
|
// Check if the first field is 0 if this is a function pointer.
|
|
if (MPT->isMemberFunctionPointer()) {
|
|
// (l1 == r1 && ...) || l0 == 0
|
|
llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
|
|
llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
|
|
Res = Builder.CreateBinOp(Or, Res, IsZero);
|
|
}
|
|
|
|
// Combine the comparison of the first field, which must always be true for
|
|
// this comparison to succeeed.
|
|
return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
|
|
llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
llvm::SmallVector<llvm::Constant *, 4> fields;
|
|
// We only need one field for member functions.
|
|
if (MPT->isMemberFunctionPointer())
|
|
fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
|
|
else
|
|
GetNullMemberPointerFields(MPT, fields);
|
|
assert(!fields.empty());
|
|
llvm::Value *FirstField = MemPtr;
|
|
if (MemPtr->getType()->isStructTy())
|
|
FirstField = Builder.CreateExtractValue(MemPtr, 0);
|
|
llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
|
|
|
|
// For function member pointers, we only need to test the function pointer
|
|
// field. The other fields if any can be garbage.
|
|
if (MPT->isMemberFunctionPointer())
|
|
return Res;
|
|
|
|
// Otherwise, emit a series of compares and combine the results.
|
|
for (int I = 1, E = fields.size(); I < E; ++I) {
|
|
llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
|
|
llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
|
|
Res = Builder.CreateOr(Res, Next, "memptr.tobool");
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
|
|
llvm::Constant *Val) {
|
|
// Function pointers are null if the pointer in the first field is null.
|
|
if (MPT->isMemberFunctionPointer()) {
|
|
llvm::Constant *FirstField = Val->getType()->isStructTy() ?
|
|
Val->getAggregateElement(0U) : Val;
|
|
return FirstField->isNullValue();
|
|
}
|
|
|
|
// If it's not a function pointer and it's zero initializable, we can easily
|
|
// check zero.
|
|
if (isZeroInitializable(MPT) && Val->isNullValue())
|
|
return true;
|
|
|
|
// Otherwise, break down all the fields for comparison. Hopefully these
|
|
// little Constants are reused, while a big null struct might not be.
|
|
llvm::SmallVector<llvm::Constant *, 4> Fields;
|
|
GetNullMemberPointerFields(MPT, Fields);
|
|
if (Fields.size() == 1) {
|
|
assert(Val->getType()->isIntegerTy());
|
|
return Val == Fields[0];
|
|
}
|
|
|
|
unsigned I, E;
|
|
for (I = 0, E = Fields.size(); I != E; ++I) {
|
|
if (Val->getAggregateElement(I) != Fields[I])
|
|
break;
|
|
}
|
|
return I == E;
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
|
|
llvm::Value *This,
|
|
llvm::Value *VBPtrOffset,
|
|
llvm::Value *VBTableOffset,
|
|
llvm::Value **VBPtrOut) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
// Load the vbtable pointer from the vbptr in the instance.
|
|
This = Builder.CreateBitCast(This, CGM.Int8PtrTy);
|
|
llvm::Value *VBPtr =
|
|
Builder.CreateInBoundsGEP(This, VBPtrOffset, "vbptr");
|
|
if (VBPtrOut) *VBPtrOut = VBPtr;
|
|
VBPtr = Builder.CreateBitCast(VBPtr, CGM.Int8PtrTy->getPointerTo(0));
|
|
llvm::Value *VBTable = Builder.CreateLoad(VBPtr, "vbtable");
|
|
|
|
// Load an i32 offset from the vb-table.
|
|
llvm::Value *VBaseOffs = Builder.CreateInBoundsGEP(VBTable, VBTableOffset);
|
|
VBaseOffs = Builder.CreateBitCast(VBaseOffs, CGM.Int32Ty->getPointerTo(0));
|
|
return Builder.CreateLoad(VBaseOffs, "vbase_offs");
|
|
}
|
|
|
|
// Returns an adjusted base cast to i8*, since we do more address arithmetic on
|
|
// it.
|
|
llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
|
|
CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
|
|
llvm::Value *Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
Base = Builder.CreateBitCast(Base, CGM.Int8PtrTy);
|
|
llvm::BasicBlock *OriginalBB = nullptr;
|
|
llvm::BasicBlock *SkipAdjustBB = nullptr;
|
|
llvm::BasicBlock *VBaseAdjustBB = nullptr;
|
|
|
|
// In the unspecified inheritance model, there might not be a vbtable at all,
|
|
// in which case we need to skip the virtual base lookup. If there is a
|
|
// vbtable, the first entry is a no-op entry that gives back the original
|
|
// base, so look for a virtual base adjustment offset of zero.
|
|
if (VBPtrOffset) {
|
|
OriginalBB = Builder.GetInsertBlock();
|
|
VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
|
|
SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
|
|
llvm::Value *IsVirtual =
|
|
Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
|
|
"memptr.is_vbase");
|
|
Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
|
|
CGF.EmitBlock(VBaseAdjustBB);
|
|
}
|
|
|
|
// If we weren't given a dynamic vbptr offset, RD should be complete and we'll
|
|
// know the vbptr offset.
|
|
if (!VBPtrOffset) {
|
|
CharUnits offs = CharUnits::Zero();
|
|
if (!RD->hasDefinition()) {
|
|
DiagnosticsEngine &Diags = CGF.CGM.getDiags();
|
|
unsigned DiagID = Diags.getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"member pointer representation requires a "
|
|
"complete class type for %0 to perform this expression");
|
|
Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
|
|
} else if (RD->getNumVBases())
|
|
offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
|
|
VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
|
|
}
|
|
llvm::Value *VBPtr = nullptr;
|
|
llvm::Value *VBaseOffs =
|
|
GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
|
|
llvm::Value *AdjustedBase = Builder.CreateInBoundsGEP(VBPtr, VBaseOffs);
|
|
|
|
// Merge control flow with the case where we didn't have to adjust.
|
|
if (VBaseAdjustBB) {
|
|
Builder.CreateBr(SkipAdjustBB);
|
|
CGF.EmitBlock(SkipAdjustBB);
|
|
llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
|
|
Phi->addIncoming(Base, OriginalBB);
|
|
Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
|
|
return Phi;
|
|
}
|
|
return AdjustedBase;
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
|
|
CodeGenFunction &CGF, const Expr *E, llvm::Value *Base, llvm::Value *MemPtr,
|
|
const MemberPointerType *MPT) {
|
|
assert(MPT->isMemberDataPointer());
|
|
unsigned AS = Base->getType()->getPointerAddressSpace();
|
|
llvm::Type *PType =
|
|
CGF.ConvertTypeForMem(MPT->getPointeeType())->getPointerTo(AS);
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
|
|
// Extract the fields we need, regardless of model. We'll apply them if we
|
|
// have them.
|
|
llvm::Value *FieldOffset = MemPtr;
|
|
llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
|
|
llvm::Value *VBPtrOffset = nullptr;
|
|
if (MemPtr->getType()->isStructTy()) {
|
|
// We need to extract values.
|
|
unsigned I = 0;
|
|
FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
|
|
VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
|
|
VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
|
|
}
|
|
|
|
if (VirtualBaseAdjustmentOffset) {
|
|
Base = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
|
|
VBPtrOffset);
|
|
}
|
|
|
|
// Cast to char*.
|
|
Base = Builder.CreateBitCast(Base, Builder.getInt8Ty()->getPointerTo(AS));
|
|
|
|
// Apply the offset, which we assume is non-null.
|
|
llvm::Value *Addr =
|
|
Builder.CreateInBoundsGEP(Base, FieldOffset, "memptr.offset");
|
|
|
|
// Cast the address to the appropriate pointer type, adopting the address
|
|
// space of the base pointer.
|
|
return Builder.CreateBitCast(Addr, PType);
|
|
}
|
|
|
|
static MSInheritanceAttr::Spelling
|
|
getInheritanceFromMemptr(const MemberPointerType *MPT) {
|
|
return MPT->getMostRecentCXXRecordDecl()->getMSInheritanceModel();
|
|
}
|
|
|
|
llvm::Value *
|
|
MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
|
|
const CastExpr *E,
|
|
llvm::Value *Src) {
|
|
assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
|
|
E->getCastKind() == CK_BaseToDerivedMemberPointer ||
|
|
E->getCastKind() == CK_ReinterpretMemberPointer);
|
|
|
|
// Use constant emission if we can.
|
|
if (isa<llvm::Constant>(Src))
|
|
return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
|
|
|
|
// We may be adding or dropping fields from the member pointer, so we need
|
|
// both types and the inheritance models of both records.
|
|
const MemberPointerType *SrcTy =
|
|
E->getSubExpr()->getType()->castAs<MemberPointerType>();
|
|
const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
|
|
bool IsFunc = SrcTy->isMemberFunctionPointer();
|
|
|
|
// If the classes use the same null representation, reinterpret_cast is a nop.
|
|
bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
|
|
if (IsReinterpret && IsFunc)
|
|
return Src;
|
|
|
|
CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
|
|
CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
|
|
if (IsReinterpret &&
|
|
SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
|
|
return Src;
|
|
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
// Branch past the conversion if Src is null.
|
|
llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
|
|
llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
|
|
|
|
// C++ 5.2.10p9: The null member pointer value is converted to the null member
|
|
// pointer value of the destination type.
|
|
if (IsReinterpret) {
|
|
// For reinterpret casts, sema ensures that src and dst are both functions
|
|
// or data and have the same size, which means the LLVM types should match.
|
|
assert(Src->getType() == DstNull->getType());
|
|
return Builder.CreateSelect(IsNotNull, Src, DstNull);
|
|
}
|
|
|
|
llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
|
|
llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
|
|
llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
|
|
Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
|
|
CGF.EmitBlock(ConvertBB);
|
|
|
|
// Decompose src.
|
|
llvm::Value *FirstField = Src;
|
|
llvm::Value *NonVirtualBaseAdjustment = nullptr;
|
|
llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
|
|
llvm::Value *VBPtrOffset = nullptr;
|
|
MSInheritanceAttr::Spelling SrcInheritance = SrcRD->getMSInheritanceModel();
|
|
if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
|
|
// We need to extract values.
|
|
unsigned I = 0;
|
|
FirstField = Builder.CreateExtractValue(Src, I++);
|
|
if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
|
|
NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
|
|
VBPtrOffset = Builder.CreateExtractValue(Src, I++);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
|
|
VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
|
|
}
|
|
|
|
// For data pointers, we adjust the field offset directly. For functions, we
|
|
// have a separate field.
|
|
llvm::Constant *Adj = getMemberPointerAdjustment(E);
|
|
if (Adj) {
|
|
Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
|
|
llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
|
|
bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
|
|
if (!NVAdjustField) // If this field didn't exist in src, it's zero.
|
|
NVAdjustField = getZeroInt();
|
|
if (isDerivedToBase)
|
|
NVAdjustField = Builder.CreateNSWSub(NVAdjustField, Adj, "adj");
|
|
else
|
|
NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, Adj, "adj");
|
|
}
|
|
|
|
// FIXME PR15713: Support conversions through virtually derived classes.
|
|
|
|
// Recompose dst from the null struct and the adjusted fields from src.
|
|
MSInheritanceAttr::Spelling DstInheritance = DstRD->getMSInheritanceModel();
|
|
llvm::Value *Dst;
|
|
if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance)) {
|
|
Dst = FirstField;
|
|
} else {
|
|
Dst = llvm::UndefValue::get(DstNull->getType());
|
|
unsigned Idx = 0;
|
|
Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
|
|
if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
|
|
Dst = Builder.CreateInsertValue(
|
|
Dst, getValueOrZeroInt(NonVirtualBaseAdjustment), Idx++);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
|
|
Dst = Builder.CreateInsertValue(
|
|
Dst, getValueOrZeroInt(VBPtrOffset), Idx++);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
|
|
Dst = Builder.CreateInsertValue(
|
|
Dst, getValueOrZeroInt(VirtualBaseAdjustmentOffset), Idx++);
|
|
}
|
|
Builder.CreateBr(ContinueBB);
|
|
|
|
// In the continuation, choose between DstNull and Dst.
|
|
CGF.EmitBlock(ContinueBB);
|
|
llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
|
|
Phi->addIncoming(DstNull, OriginalBB);
|
|
Phi->addIncoming(Dst, ConvertBB);
|
|
return Phi;
|
|
}
|
|
|
|
llvm::Constant *
|
|
MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
|
|
llvm::Constant *Src) {
|
|
const MemberPointerType *SrcTy =
|
|
E->getSubExpr()->getType()->castAs<MemberPointerType>();
|
|
const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
|
|
|
|
// If src is null, emit a new null for dst. We can't return src because dst
|
|
// might have a new representation.
|
|
if (MemberPointerConstantIsNull(SrcTy, Src))
|
|
return EmitNullMemberPointer(DstTy);
|
|
|
|
// We don't need to do anything for reinterpret_casts of non-null member
|
|
// pointers. We should only get here when the two type representations have
|
|
// the same size.
|
|
if (E->getCastKind() == CK_ReinterpretMemberPointer)
|
|
return Src;
|
|
|
|
MSInheritanceAttr::Spelling SrcInheritance = getInheritanceFromMemptr(SrcTy);
|
|
MSInheritanceAttr::Spelling DstInheritance = getInheritanceFromMemptr(DstTy);
|
|
|
|
// Decompose src.
|
|
llvm::Constant *FirstField = Src;
|
|
llvm::Constant *NonVirtualBaseAdjustment = nullptr;
|
|
llvm::Constant *VirtualBaseAdjustmentOffset = nullptr;
|
|
llvm::Constant *VBPtrOffset = nullptr;
|
|
bool IsFunc = SrcTy->isMemberFunctionPointer();
|
|
if (!MSInheritanceAttr::hasOnlyOneField(IsFunc, SrcInheritance)) {
|
|
// We need to extract values.
|
|
unsigned I = 0;
|
|
FirstField = Src->getAggregateElement(I++);
|
|
if (MSInheritanceAttr::hasNVOffsetField(IsFunc, SrcInheritance))
|
|
NonVirtualBaseAdjustment = Src->getAggregateElement(I++);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(SrcInheritance))
|
|
VBPtrOffset = Src->getAggregateElement(I++);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(SrcInheritance))
|
|
VirtualBaseAdjustmentOffset = Src->getAggregateElement(I++);
|
|
}
|
|
|
|
// For data pointers, we adjust the field offset directly. For functions, we
|
|
// have a separate field.
|
|
llvm::Constant *Adj = getMemberPointerAdjustment(E);
|
|
if (Adj) {
|
|
Adj = llvm::ConstantExpr::getTruncOrBitCast(Adj, CGM.IntTy);
|
|
llvm::Constant *&NVAdjustField =
|
|
IsFunc ? NonVirtualBaseAdjustment : FirstField;
|
|
bool IsDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
|
|
if (!NVAdjustField) // If this field didn't exist in src, it's zero.
|
|
NVAdjustField = getZeroInt();
|
|
if (IsDerivedToBase)
|
|
NVAdjustField = llvm::ConstantExpr::getNSWSub(NVAdjustField, Adj);
|
|
else
|
|
NVAdjustField = llvm::ConstantExpr::getNSWAdd(NVAdjustField, Adj);
|
|
}
|
|
|
|
// FIXME PR15713: Support conversions through virtually derived classes.
|
|
|
|
// Recompose dst from the null struct and the adjusted fields from src.
|
|
if (MSInheritanceAttr::hasOnlyOneField(IsFunc, DstInheritance))
|
|
return FirstField;
|
|
|
|
llvm::SmallVector<llvm::Constant *, 4> Fields;
|
|
Fields.push_back(FirstField);
|
|
if (MSInheritanceAttr::hasNVOffsetField(IsFunc, DstInheritance))
|
|
Fields.push_back(getConstantOrZeroInt(NonVirtualBaseAdjustment));
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(DstInheritance))
|
|
Fields.push_back(getConstantOrZeroInt(VBPtrOffset));
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(DstInheritance))
|
|
Fields.push_back(getConstantOrZeroInt(VirtualBaseAdjustmentOffset));
|
|
return llvm::ConstantStruct::getAnon(Fields);
|
|
}
|
|
|
|
llvm::Value *MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
|
|
CodeGenFunction &CGF, const Expr *E, llvm::Value *&This,
|
|
llvm::Value *MemPtr, const MemberPointerType *MPT) {
|
|
assert(MPT->isMemberFunctionPointer());
|
|
const FunctionProtoType *FPT =
|
|
MPT->getPointeeType()->castAs<FunctionProtoType>();
|
|
const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
|
|
llvm::FunctionType *FTy =
|
|
CGM.getTypes().GetFunctionType(
|
|
CGM.getTypes().arrangeCXXMethodType(RD, FPT));
|
|
CGBuilderTy &Builder = CGF.Builder;
|
|
|
|
MSInheritanceAttr::Spelling Inheritance = RD->getMSInheritanceModel();
|
|
|
|
// Extract the fields we need, regardless of model. We'll apply them if we
|
|
// have them.
|
|
llvm::Value *FunctionPointer = MemPtr;
|
|
llvm::Value *NonVirtualBaseAdjustment = nullptr;
|
|
llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
|
|
llvm::Value *VBPtrOffset = nullptr;
|
|
if (MemPtr->getType()->isStructTy()) {
|
|
// We need to extract values.
|
|
unsigned I = 0;
|
|
FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
|
|
if (MSInheritanceAttr::hasNVOffsetField(MPT, Inheritance))
|
|
NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
|
|
if (MSInheritanceAttr::hasVBPtrOffsetField(Inheritance))
|
|
VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
|
|
if (MSInheritanceAttr::hasVBTableOffsetField(Inheritance))
|
|
VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
|
|
}
|
|
|
|
if (VirtualBaseAdjustmentOffset) {
|
|
This = AdjustVirtualBase(CGF, E, RD, This, VirtualBaseAdjustmentOffset,
|
|
VBPtrOffset);
|
|
}
|
|
|
|
if (NonVirtualBaseAdjustment) {
|
|
// Apply the adjustment and cast back to the original struct type.
|
|
llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
|
|
Ptr = Builder.CreateInBoundsGEP(Ptr, NonVirtualBaseAdjustment);
|
|
This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
|
|
}
|
|
|
|
return Builder.CreateBitCast(FunctionPointer, FTy->getPointerTo());
|
|
}
|
|
|
|
CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
|
|
return new MicrosoftCXXABI(CGM);
|
|
}
|
|
|
|
// MS RTTI Overview:
|
|
// The run time type information emitted by cl.exe contains 5 distinct types of
|
|
// structures. Many of them reference each other.
|
|
//
|
|
// TypeInfo: Static classes that are returned by typeid.
|
|
//
|
|
// CompleteObjectLocator: Referenced by vftables. They contain information
|
|
// required for dynamic casting, including OffsetFromTop. They also contain
|
|
// a reference to the TypeInfo for the type and a reference to the
|
|
// CompleteHierarchyDescriptor for the type.
|
|
//
|
|
// ClassHieararchyDescriptor: Contains information about a class hierarchy.
|
|
// Used during dynamic_cast to walk a class hierarchy. References a base
|
|
// class array and the size of said array.
|
|
//
|
|
// BaseClassArray: Contains a list of classes in a hierarchy. BaseClassArray is
|
|
// somewhat of a misnomer because the most derived class is also in the list
|
|
// as well as multiple copies of virtual bases (if they occur multiple times
|
|
// in the hiearchy.) The BaseClassArray contains one BaseClassDescriptor for
|
|
// every path in the hierarchy, in pre-order depth first order. Note, we do
|
|
// not declare a specific llvm type for BaseClassArray, it's merely an array
|
|
// of BaseClassDescriptor pointers.
|
|
//
|
|
// BaseClassDescriptor: Contains information about a class in a class hierarchy.
|
|
// BaseClassDescriptor is also somewhat of a misnomer for the same reason that
|
|
// BaseClassArray is. It contains information about a class within a
|
|
// hierarchy such as: is this base is ambiguous and what is its offset in the
|
|
// vbtable. The names of the BaseClassDescriptors have all of their fields
|
|
// mangled into them so they can be aggressively deduplicated by the linker.
|
|
|
|
static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
|
|
StringRef MangledName("\01??_7type_info@@6B@");
|
|
if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
|
|
return VTable;
|
|
return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
|
|
/*Constant=*/true,
|
|
llvm::GlobalVariable::ExternalLinkage,
|
|
/*Initializer=*/nullptr, MangledName);
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// \brief A Helper struct that stores information about a class in a class
|
|
/// hierarchy. The information stored in these structs struct is used during
|
|
/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
|
|
// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
|
|
// implicit depth first pre-order tree connectivity. getFirstChild and
|
|
// getNextSibling allow us to walk the tree efficiently.
|
|
struct MSRTTIClass {
|
|
enum {
|
|
IsPrivateOnPath = 1 | 8,
|
|
IsAmbiguous = 2,
|
|
IsPrivate = 4,
|
|
IsVirtual = 16,
|
|
HasHierarchyDescriptor = 64
|
|
};
|
|
MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
|
|
uint32_t initialize(const MSRTTIClass *Parent,
|
|
const CXXBaseSpecifier *Specifier);
|
|
|
|
MSRTTIClass *getFirstChild() { return this + 1; }
|
|
static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
|
|
return Child + 1 + Child->NumBases;
|
|
}
|
|
|
|
const CXXRecordDecl *RD, *VirtualRoot;
|
|
uint32_t Flags, NumBases, OffsetInVBase;
|
|
};
|
|
|
|
/// \brief Recursively initialize the base class array.
|
|
uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
|
|
const CXXBaseSpecifier *Specifier) {
|
|
Flags = HasHierarchyDescriptor;
|
|
if (!Parent) {
|
|
VirtualRoot = nullptr;
|
|
OffsetInVBase = 0;
|
|
} else {
|
|
if (Specifier->getAccessSpecifier() != AS_public)
|
|
Flags |= IsPrivate | IsPrivateOnPath;
|
|
if (Specifier->isVirtual()) {
|
|
Flags |= IsVirtual;
|
|
VirtualRoot = RD;
|
|
OffsetInVBase = 0;
|
|
} else {
|
|
if (Parent->Flags & IsPrivateOnPath)
|
|
Flags |= IsPrivateOnPath;
|
|
VirtualRoot = Parent->VirtualRoot;
|
|
OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
|
|
.getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
|
|
}
|
|
}
|
|
NumBases = 0;
|
|
MSRTTIClass *Child = getFirstChild();
|
|
for (const CXXBaseSpecifier &Base : RD->bases()) {
|
|
NumBases += Child->initialize(this, &Base) + 1;
|
|
Child = getNextChild(Child);
|
|
}
|
|
return NumBases;
|
|
}
|
|
|
|
static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
|
|
switch (Ty->getLinkage()) {
|
|
case NoLinkage:
|
|
case InternalLinkage:
|
|
case UniqueExternalLinkage:
|
|
return llvm::GlobalValue::InternalLinkage;
|
|
|
|
case VisibleNoLinkage:
|
|
case ExternalLinkage:
|
|
return llvm::GlobalValue::LinkOnceODRLinkage;
|
|
}
|
|
llvm_unreachable("Invalid linkage!");
|
|
}
|
|
|
|
/// \brief An ephemeral helper class for building MS RTTI types. It caches some
|
|
/// calls to the module and information about the most derived class in a
|
|
/// hierarchy.
|
|
struct MSRTTIBuilder {
|
|
enum {
|
|
HasBranchingHierarchy = 1,
|
|
HasVirtualBranchingHierarchy = 2,
|
|
HasAmbiguousBases = 4
|
|
};
|
|
|
|
MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
|
|
: CGM(ABI.CGM), Context(CGM.getContext()),
|
|
VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
|
|
Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
|
|
ABI(ABI) {}
|
|
|
|
llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
|
|
llvm::GlobalVariable *
|
|
getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
|
|
llvm::GlobalVariable *getClassHierarchyDescriptor();
|
|
llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo *Info);
|
|
|
|
CodeGenModule &CGM;
|
|
ASTContext &Context;
|
|
llvm::LLVMContext &VMContext;
|
|
llvm::Module &Module;
|
|
const CXXRecordDecl *RD;
|
|
llvm::GlobalVariable::LinkageTypes Linkage;
|
|
MicrosoftCXXABI &ABI;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// \brief Recursively serializes a class hierarchy in pre-order depth first
|
|
/// order.
|
|
static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
|
|
const CXXRecordDecl *RD) {
|
|
Classes.push_back(MSRTTIClass(RD));
|
|
for (const CXXBaseSpecifier &Base : RD->bases())
|
|
serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
|
|
}
|
|
|
|
/// \brief Find ambiguity among base classes.
|
|
static void
|
|
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
|
|
llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
|
|
for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
|
|
if ((Class->Flags & MSRTTIClass::IsVirtual) &&
|
|
!VirtualBases.insert(Class->RD)) {
|
|
Class = MSRTTIClass::getNextChild(Class);
|
|
continue;
|
|
}
|
|
if (!UniqueBases.insert(Class->RD))
|
|
AmbiguousBases.insert(Class->RD);
|
|
Class++;
|
|
}
|
|
if (AmbiguousBases.empty())
|
|
return;
|
|
for (MSRTTIClass &Class : Classes)
|
|
if (AmbiguousBases.count(Class.RD))
|
|
Class.Flags |= MSRTTIClass::IsAmbiguous;
|
|
}
|
|
|
|
llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
|
|
SmallString<256> MangledName;
|
|
{
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
|
|
}
|
|
|
|
// Check to see if we've already declared this ClassHierarchyDescriptor.
|
|
if (auto CHD = Module.getNamedGlobal(MangledName))
|
|
return CHD;
|
|
|
|
// Serialize the class hierarchy and initialize the CHD Fields.
|
|
SmallVector<MSRTTIClass, 8> Classes;
|
|
serializeClassHierarchy(Classes, RD);
|
|
Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
|
|
detectAmbiguousBases(Classes);
|
|
int Flags = 0;
|
|
for (auto Class : Classes) {
|
|
if (Class.RD->getNumBases() > 1)
|
|
Flags |= HasBranchingHierarchy;
|
|
// Note: cl.exe does not calculate "HasAmbiguousBases" correctly. We
|
|
// believe the field isn't actually used.
|
|
if (Class.Flags & MSRTTIClass::IsAmbiguous)
|
|
Flags |= HasAmbiguousBases;
|
|
}
|
|
if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
|
|
Flags |= HasVirtualBranchingHierarchy;
|
|
// These gep indices are used to get the address of the first element of the
|
|
// base class array.
|
|
llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
|
|
llvm::ConstantInt::get(CGM.IntTy, 0)};
|
|
|
|
// Forward-declare the class hierarchy descriptor
|
|
auto Type = ABI.getClassHierarchyDescriptorType();
|
|
auto CHD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
|
|
/*Initializer=*/nullptr,
|
|
MangledName.c_str());
|
|
|
|
// Initialize the base class ClassHierarchyDescriptor.
|
|
llvm::Constant *Fields[] = {
|
|
llvm::ConstantInt::get(CGM.IntTy, 0), // Unknown
|
|
llvm::ConstantInt::get(CGM.IntTy, Flags),
|
|
llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
|
|
ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
|
|
getBaseClassArray(Classes),
|
|
llvm::ArrayRef<llvm::Value *>(GEPIndices))),
|
|
};
|
|
CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
|
|
return CHD;
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
|
|
SmallString<256> MangledName;
|
|
{
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
|
|
}
|
|
|
|
// Forward-declare the base class array.
|
|
// cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
|
|
// mode) bytes of padding. We provide a pointer sized amount of padding by
|
|
// adding +1 to Classes.size(). The sections have pointer alignment and are
|
|
// marked pick-any so it shouldn't matter.
|
|
llvm::Type *PtrType = ABI.getImageRelativeType(
|
|
ABI.getBaseClassDescriptorType()->getPointerTo());
|
|
auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
|
|
auto *BCA = new llvm::GlobalVariable(
|
|
Module, ArrType,
|
|
/*Constant=*/true, Linkage, /*Initializer=*/nullptr, MangledName.c_str());
|
|
|
|
// Initialize the BaseClassArray.
|
|
SmallVector<llvm::Constant *, 8> BaseClassArrayData;
|
|
for (MSRTTIClass &Class : Classes)
|
|
BaseClassArrayData.push_back(
|
|
ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
|
|
BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
|
|
BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
|
|
return BCA;
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
|
|
// Compute the fields for the BaseClassDescriptor. They are computed up front
|
|
// because they are mangled into the name of the object.
|
|
uint32_t OffsetInVBTable = 0;
|
|
int32_t VBPtrOffset = -1;
|
|
if (Class.VirtualRoot) {
|
|
auto &VTableContext = CGM.getMicrosoftVTableContext();
|
|
OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
|
|
VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
|
|
}
|
|
|
|
SmallString<256> MangledName;
|
|
{
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
|
|
Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
|
|
Class.Flags, Out);
|
|
}
|
|
|
|
// Check to see if we've already declared this object.
|
|
if (auto BCD = Module.getNamedGlobal(MangledName))
|
|
return BCD;
|
|
|
|
// Forward-declare the base class descriptor.
|
|
auto Type = ABI.getBaseClassDescriptorType();
|
|
auto BCD = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
|
|
/*Initializer=*/nullptr,
|
|
MangledName.c_str());
|
|
|
|
// Initialize the BaseClassDescriptor.
|
|
llvm::Constant *Fields[] = {
|
|
ABI.getImageRelativeConstant(
|
|
ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
|
|
llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
|
|
llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
|
|
llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
|
|
llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
|
|
llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
|
|
ABI.getImageRelativeConstant(
|
|
MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
|
|
};
|
|
BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
|
|
return BCD;
|
|
}
|
|
|
|
llvm::GlobalVariable *
|
|
MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo *Info) {
|
|
SmallString<256> MangledName;
|
|
{
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info->MangledPath, Out);
|
|
}
|
|
|
|
// Check to see if we've already computed this complete object locator.
|
|
if (auto COL = Module.getNamedGlobal(MangledName))
|
|
return COL;
|
|
|
|
// Compute the fields of the complete object locator.
|
|
int OffsetToTop = Info->FullOffsetInMDC.getQuantity();
|
|
int VFPtrOffset = 0;
|
|
// The offset includes the vtordisp if one exists.
|
|
if (const CXXRecordDecl *VBase = Info->getVBaseWithVPtr())
|
|
if (Context.getASTRecordLayout(RD)
|
|
.getVBaseOffsetsMap()
|
|
.find(VBase)
|
|
->second.hasVtorDisp())
|
|
VFPtrOffset = Info->NonVirtualOffset.getQuantity() + 4;
|
|
|
|
// Forward-declare the complete object locator.
|
|
llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
|
|
auto COL = new llvm::GlobalVariable(Module, Type, /*Constant=*/true, Linkage,
|
|
/*Initializer=*/nullptr, MangledName.c_str());
|
|
|
|
// Initialize the CompleteObjectLocator.
|
|
llvm::Constant *Fields[] = {
|
|
llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
|
|
llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
|
|
llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
|
|
ABI.getImageRelativeConstant(
|
|
CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
|
|
ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
|
|
ABI.getImageRelativeConstant(COL),
|
|
};
|
|
llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
|
|
if (!ABI.isImageRelative())
|
|
FieldsRef = FieldsRef.drop_back();
|
|
COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
|
|
return COL;
|
|
}
|
|
|
|
/// \brief Gets a TypeDescriptor. Returns a llvm::Constant * rather than a
|
|
/// llvm::GlobalVariable * because different type descriptors have different
|
|
/// types, and need to be abstracted. They are abstracting by casting the
|
|
/// address to an Int8PtrTy.
|
|
llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
|
|
SmallString<256> MangledName, TypeInfoString;
|
|
{
|
|
llvm::raw_svector_ostream Out(MangledName);
|
|
getMangleContext().mangleCXXRTTI(Type, Out);
|
|
}
|
|
|
|
// Check to see if we've already declared this TypeDescriptor.
|
|
if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
|
|
return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
|
|
|
|
// Compute the fields for the TypeDescriptor.
|
|
{
|
|
llvm::raw_svector_ostream Out(TypeInfoString);
|
|
getMangleContext().mangleCXXRTTIName(Type, Out);
|
|
}
|
|
|
|
// Declare and initialize the TypeDescriptor.
|
|
llvm::Constant *Fields[] = {
|
|
getTypeInfoVTable(CGM), // VFPtr
|
|
llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
|
|
llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
|
|
llvm::StructType *TypeDescriptorType =
|
|
getTypeDescriptorType(TypeInfoString);
|
|
return llvm::ConstantExpr::getBitCast(
|
|
new llvm::GlobalVariable(
|
|
CGM.getModule(), TypeDescriptorType, /*Constant=*/false,
|
|
getLinkageForRTTI(Type),
|
|
llvm::ConstantStruct::get(TypeDescriptorType, Fields),
|
|
MangledName.c_str()),
|
|
CGM.Int8PtrTy);
|
|
}
|
|
|
|
/// \brief Gets or a creates a Microsoft CompleteObjectLocator.
|
|
llvm::GlobalVariable *
|
|
MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
|
|
const VPtrInfo *Info) {
|
|
return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
|
|
}
|