forked from OSchip/llvm-project
427 lines
12 KiB
C++
427 lines
12 KiB
C++
//===--Graph.cpp--- implements Graph class ---------------- ------*- C++ -*--=//
|
|
//
|
|
// This implements Graph for helping in trace generation
|
|
// This graph gets used by "ProfilePaths" class
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Graph.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include <algorithm>
|
|
#include <iostream>
|
|
|
|
using std::list;
|
|
using std::set;
|
|
using std::map;
|
|
using std::vector;
|
|
using std::cerr;
|
|
|
|
static const graphListElement *findNodeInList(const Graph::nodeList &NL,
|
|
Node *N) {
|
|
for(Graph::nodeList::const_iterator NI = NL.begin(), NE=NL.end(); NI != NE;
|
|
++NI)
|
|
if (*NI->element== *N)
|
|
return &*NI;
|
|
return 0;
|
|
}
|
|
|
|
static graphListElement *findNodeInList(Graph::nodeList &NL, Node *N) {
|
|
for(Graph::nodeList::iterator NI = NL.begin(), NE=NL.end(); NI != NE; ++NI)
|
|
if (*NI->element== *N)
|
|
return &*NI;
|
|
return 0;
|
|
}
|
|
|
|
//graph constructor with root and exit specified
|
|
Graph::Graph(std::set<Node*> n, std::set<Edge> e,
|
|
Node *rt, Node *lt){
|
|
strt=rt;
|
|
ext=lt;
|
|
for(set<Node* >::iterator x=n.begin(), en=n.end(); x!=en; ++x)
|
|
nodes[*x] = list<graphListElement>();
|
|
|
|
for(set<Edge >::iterator x=e.begin(), en=e.end(); x!=en; ++x){
|
|
Edge ee=*x;
|
|
int w=ee.getWeight();
|
|
nodes[ee.getFirst()].push_front(graphListElement(ee.getSecond(),w));
|
|
}
|
|
|
|
}
|
|
|
|
//check whether graph has an edge
|
|
//having an edge simply means that there is an edge in the graph
|
|
//which has same endpoints as the given edge
|
|
bool Graph::hasEdge(Edge ed) const{
|
|
if(ed.isNull())
|
|
return false;
|
|
|
|
nodeList nli=getNodeList(ed.getFirst());
|
|
Node *nd2=ed.getSecond();
|
|
|
|
return (findNodeInList(nli,nd2)!=NULL);
|
|
|
|
}
|
|
|
|
|
|
//check whether graph has an edge, with a given wt
|
|
//having an edge simply means that there is an edge in the graph
|
|
//which has same endpoints as the given edge
|
|
//This function checks, moreover, that the wt of edge matches too
|
|
bool Graph::hasEdgeAndWt(Edge ed) const{
|
|
if(ed.isNull())
|
|
return false;
|
|
|
|
Node *nd2=ed.getSecond();
|
|
nodeList nli=getNodeList(ed.getFirst());
|
|
|
|
for(nodeList::iterator NI=nli.begin(), NE=nli.end(); NI!=NE; ++NI)
|
|
if(*NI->element == *nd2 && ed.getWeight()==NI->weight)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//add a node
|
|
void Graph::addNode(Node *nd){
|
|
list<Node *> lt=getAllNodes();
|
|
|
|
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE;++LI){
|
|
if(**LI==*nd)
|
|
return;
|
|
}
|
|
|
|
nodes[nd] = list<graphListElement>();
|
|
}
|
|
|
|
//add an edge
|
|
//this adds an edge ONLY when
|
|
//the edge to be added doesn not already exist
|
|
//we "equate" two edges here only with their
|
|
//end points
|
|
void Graph::addEdge(Edge ed, int w){
|
|
nodeList &ndList = nodes[ed.getFirst()];
|
|
Node *nd2=ed.getSecond();
|
|
|
|
if(findNodeInList(nodes[ed.getFirst()], nd2))
|
|
return;
|
|
|
|
ndList.push_front(graphListElement(nd2,w));
|
|
}
|
|
|
|
//add an edge EVEN IF such an edge already exists
|
|
//this may make a multi-graph
|
|
//which does happen when we add dummy edges
|
|
//to the graph, for compensating for back-edges
|
|
void Graph::addEdgeForce(Edge ed){
|
|
nodes[ed.getFirst()].push_front(graphListElement(ed.getSecond(),
|
|
ed.getWeight()));
|
|
}
|
|
|
|
//remove an edge
|
|
//Note that it removes just one edge,
|
|
//the first edge that is encountered
|
|
void Graph::removeEdge(Edge ed){
|
|
nodeList &ndList = nodes[ed.getFirst()];
|
|
Node &nd2 = *ed.getSecond();
|
|
|
|
for(nodeList::iterator NI=ndList.begin(), NE=ndList.end(); NI!=NE ;++NI) {
|
|
if(*NI->element == nd2) {
|
|
ndList.erase(NI);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//set the weight of an edge
|
|
void Graph::setWeight(Edge ed){
|
|
graphListElement *El = findNodeInList(nodes[ed.getFirst()], ed.getSecond());
|
|
if (El)
|
|
El->weight=ed.getWeight();
|
|
}
|
|
|
|
|
|
|
|
//get the list of successor nodes
|
|
list<Node *> Graph::getSuccNodes(Node *nd) const {
|
|
nodeMapTy::const_iterator nli = nodes.find(nd);
|
|
assert(nli != nodes.end() && "Node must be in nodes map");
|
|
const nodeList &nl = nli->second;
|
|
|
|
list<Node *> lt;
|
|
for(nodeList::const_iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI)
|
|
lt.push_back(NI->element);
|
|
|
|
return lt;
|
|
}
|
|
|
|
//get the list of predecessor nodes
|
|
list<Node *> Graph::getPredNodes(Node *nd) const{
|
|
list<Node *> lt;
|
|
for(nodeMapTy::const_iterator EI=nodes.begin(), EE=nodes.end(); EI!=EE ;++EI){
|
|
Node *lnode=EI->first;
|
|
const nodeList &nl = getNodeList(lnode);
|
|
|
|
const graphListElement *N = findNodeInList(nl, nd);
|
|
if (N) lt.push_back(lnode);
|
|
}
|
|
return lt;
|
|
}
|
|
|
|
//get the list of all the vertices in graph
|
|
list<Node *> Graph::getAllNodes() const{
|
|
list<Node *> lt;
|
|
for(nodeMapTy::const_iterator x=nodes.begin(), en=nodes.end(); x != en; ++x)
|
|
lt.push_back(x->first);
|
|
|
|
return lt;
|
|
}
|
|
|
|
|
|
//class to compare two nodes in graph
|
|
//based on their wt: this is used in
|
|
//finding the maximal spanning tree
|
|
struct compare_nodes {
|
|
bool operator()(Node *n1, Node *n2){
|
|
return n1->getWeight() < n2->getWeight();
|
|
}
|
|
};
|
|
|
|
|
|
static void printNode(Node *nd){
|
|
cerr<<"Node:"<<nd->getElement()->getName()<<"\n";
|
|
}
|
|
|
|
//Get the Maximal spanning tree (also a graph)
|
|
//of the graph
|
|
Graph* Graph::getMaxSpanningTree(){
|
|
//assume connected graph
|
|
|
|
Graph *st=new Graph();//max spanning tree, undirected edges
|
|
int inf=9999999;//largest key
|
|
list<Node *> lt = getAllNodes();
|
|
|
|
//initially put all vertices in vector vt
|
|
//assign wt(root)=0
|
|
//wt(others)=infinity
|
|
//
|
|
//now:
|
|
//pull out u: a vertex frm vt of min wt
|
|
//for all vertices w in vt,
|
|
//if wt(w) greater than
|
|
//the wt(u->w), then assign
|
|
//wt(w) to be wt(u->w).
|
|
//
|
|
//make parent(u)=w in the spanning tree
|
|
//keep pulling out vertices from vt till it is empty
|
|
|
|
vector<Node *> vt;
|
|
|
|
map<Node*, Node* > parent;
|
|
map<Node*, int > ed_weight;
|
|
|
|
//initialize: wt(root)=0, wt(others)=infinity
|
|
//parent(root)=NULL, parent(others) not defined (but not null)
|
|
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
|
|
Node *thisNode=*LI;
|
|
if(*thisNode == *getRoot()){
|
|
thisNode->setWeight(0);
|
|
parent[thisNode]=NULL;
|
|
ed_weight[thisNode]=0;
|
|
}
|
|
else{
|
|
thisNode->setWeight(inf);
|
|
}
|
|
st->addNode(thisNode);//add all nodes to spanning tree
|
|
//we later need to assign edges in the tree
|
|
vt.push_back(thisNode); //pushed all nodes in vt
|
|
}
|
|
|
|
//keep pulling out vertex of min wt from vt
|
|
while(!vt.empty()){
|
|
Node *u=*(min_element(vt.begin(), vt.end(), compare_nodes()));
|
|
DEBUG(cerr<<"popped wt"<<(u)->getWeight()<<"\n";
|
|
printNode(u));
|
|
|
|
if(parent[u]!=NULL){ //so not root
|
|
Edge edge(parent[u],u, ed_weight[u]); //assign edge in spanning tree
|
|
st->addEdge(edge,ed_weight[u]);
|
|
|
|
DEBUG(cerr<<"added:\n";
|
|
printEdge(edge));
|
|
}
|
|
|
|
//vt.erase(u);
|
|
|
|
//remove u frm vt
|
|
for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
|
|
if(**VI==*u){
|
|
vt.erase(VI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//assign wt(v) to all adjacent vertices v of u
|
|
//only if v is in vt
|
|
Graph::nodeList nl=getNodeList(u);
|
|
for(nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
|
|
Node *v=NI->element;
|
|
int weight=-NI->weight;
|
|
//check if v is in vt
|
|
bool contains=false;
|
|
for(vector<Node *>::iterator VI=vt.begin(), VE=vt.end(); VI!=VE; ++VI){
|
|
if(**VI==*v){
|
|
contains=true;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(cerr<<"wt:v->wt"<<weight<<":"<<v->getWeight()<<"\n";
|
|
printNode(v);cerr<<"node wt:"<<(*v).weight<<"\n");
|
|
|
|
//so if v in in vt, change wt(v) to wt(u->v)
|
|
//only if wt(u->v)<wt(v)
|
|
if(contains && weight<v->getWeight()){
|
|
parent[v]=u;
|
|
ed_weight[v]=weight;
|
|
v->setWeight(weight);
|
|
|
|
DEBUG(cerr<<v->getWeight()<<":Set weight------\n";
|
|
printGraph();
|
|
printEdge(Edge(u,v,weight)));
|
|
}
|
|
}
|
|
}
|
|
return st;
|
|
}
|
|
|
|
//print the graph (for debugging)
|
|
void Graph::printGraph(){
|
|
list<Node *> lt=getAllNodes();
|
|
cerr<<"Graph---------------------\n";
|
|
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
|
|
cerr<<((*LI)->getElement())->getName()<<"->";
|
|
Graph::nodeList nl=getNodeList(*LI);
|
|
for(Graph::nodeList::iterator NI=nl.begin(), NE=nl.end(); NI!=NE; ++NI){
|
|
cerr<<":"<<"("<<(NI->element->getElement())
|
|
->getName()<<":"<<NI->element->getWeight()<<","<<NI->weight<<")";
|
|
}
|
|
cerr<<"--------\n";
|
|
}
|
|
}
|
|
|
|
|
|
//get a list of nodes in the graph
|
|
//in r-topological sorted order
|
|
//note that we assumed graph to be connected
|
|
list<Node *> Graph::reverseTopologicalSort() const{
|
|
list <Node *> toReturn;
|
|
list<Node *> lt=getAllNodes();
|
|
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
|
|
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
|
|
DFS_Visit(*LI, toReturn);
|
|
}
|
|
return toReturn;
|
|
}
|
|
|
|
//a private method for doing DFS traversal of graph
|
|
//this is used in determining the reverse topological sort
|
|
//of the graph
|
|
void Graph::DFS_Visit(Node *nd, list<Node *> &toReturn) const {
|
|
nd->setWeight(GREY);
|
|
list<Node *> lt=getSuccNodes(nd);
|
|
for(list<Node *>::iterator LI=lt.begin(), LE=lt.end(); LI!=LE; ++LI){
|
|
if((*LI)->getWeight()!=GREY && (*LI)->getWeight()!=BLACK)
|
|
DFS_Visit(*LI, toReturn);
|
|
}
|
|
toReturn.push_back(nd);
|
|
}
|
|
|
|
//Ordinarily, the graph is directional
|
|
//this converts the graph into an
|
|
//undirectional graph
|
|
//This is done by adding an edge
|
|
//v->u for all existing edges u->v
|
|
void Graph::makeUnDirectional(){
|
|
list<Node* > allNodes=getAllNodes();
|
|
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI) {
|
|
nodeList nl=getNodeList(*NI);
|
|
for(nodeList::iterator NLI=nl.begin(), NLE=nl.end(); NLI!=NLE; ++NLI){
|
|
Edge ed(NLI->element, *NI, NLI->weight);
|
|
if(!hasEdgeAndWt(ed)){
|
|
DEBUG(cerr<<"######doesn't hv\n";
|
|
printEdge(ed));
|
|
addEdgeForce(ed);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//reverse the sign of weights on edges
|
|
//this way, max-spanning tree could be obtained
|
|
//usin min-spanning tree, and vice versa
|
|
void Graph::reverseWts(){
|
|
list<Node *> allNodes=getAllNodes();
|
|
for(list<Node *>::iterator NI=allNodes.begin(), NE=allNodes.end(); NI!=NE;
|
|
++NI) {
|
|
nodeList node_list=getNodeList(*NI);
|
|
for(nodeList::iterator NLI=nodes[*NI].begin(), NLE=nodes[*NI].end();
|
|
NLI!=NLE; ++NLI)
|
|
NLI->weight=-NLI->weight;
|
|
}
|
|
}
|
|
|
|
|
|
//getting the backedges in a graph
|
|
//Its a variation of DFS to get the backedges in the graph
|
|
//We get back edges by associating a time
|
|
//and a color with each vertex.
|
|
//The time of a vertex is the time when it was first visited
|
|
//The color of a vertex is initially WHITE,
|
|
//Changes to GREY when it is first visited,
|
|
//and changes to BLACK when ALL its neighbors
|
|
//have been visited
|
|
//So we have a back edge when we meet a successor of
|
|
//a node with smaller time, and GREY color
|
|
void Graph::getBackEdges(vector<Edge > &be) const{
|
|
map<Node *, Color > color;
|
|
map<Node *, int > d;
|
|
list<Node *> allNodes=getAllNodes();
|
|
int time=0;
|
|
for(list<Node *>::const_iterator NI=allNodes.begin(), NE=allNodes.end();
|
|
NI!=NE; ++NI){
|
|
if(color[*NI]!=GREY && color[*NI]!=BLACK)
|
|
getBackEdgesVisit(*NI, be, color, d, time);
|
|
}
|
|
}
|
|
|
|
//helper function to get back edges: it is called by
|
|
//the "getBackEdges" function above
|
|
void Graph::getBackEdgesVisit(Node *u, vector<Edge > &be,
|
|
map<Node *, Color > &color,
|
|
map<Node *, int > &d, int &time) const{
|
|
color[u]=GREY;
|
|
time++;
|
|
d[u]=time;
|
|
list<Node *> succ_list=getSuccNodes(u);
|
|
|
|
for(list<Node *>::const_iterator v=succ_list.begin(), ve=succ_list.end();
|
|
v!=ve; ++v){
|
|
if(color[*v]!=GREY && color[*v]!=BLACK){
|
|
getBackEdgesVisit(*v, be, color, d, time);
|
|
}
|
|
|
|
//now checking for d and f vals
|
|
if(color[*v]==GREY){
|
|
//so v is ancestor of u if time of u > time of v
|
|
if(d[u] >= d[*v]){
|
|
Edge *ed=new Edge(u, *v);
|
|
if (!(*u == *getExit() && **v == *getRoot()))
|
|
be.push_back(*ed); // choose the forward edges
|
|
}
|
|
}
|
|
}
|
|
color[u]=BLACK;//done with visiting the node and its neighbors
|
|
}
|
|
|
|
|