llvm-project/llvm/unittests/IR/IRBuilderTest.cpp

933 lines
33 KiB
C++

//===- llvm/unittest/IR/IRBuilderTest.cpp - IRBuilder tests ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Verifier.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class IRBuilderTest : public testing::Test {
protected:
void SetUp() override {
M.reset(new Module("MyModule", Ctx));
FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
BB = BasicBlock::Create(Ctx, "", F);
GV = new GlobalVariable(*M, Type::getFloatTy(Ctx), true,
GlobalValue::ExternalLinkage, nullptr);
}
void TearDown() override {
BB = nullptr;
M.reset();
}
LLVMContext Ctx;
std::unique_ptr<Module> M;
Function *F;
BasicBlock *BB;
GlobalVariable *GV;
};
TEST_F(IRBuilderTest, Intrinsics) {
IRBuilder<> Builder(BB);
Value *V;
Instruction *I;
CallInst *Call;
IntrinsicInst *II;
V = Builder.CreateLoad(GV->getValueType(), GV);
I = cast<Instruction>(Builder.CreateFAdd(V, V));
I->setHasNoInfs(true);
I->setHasNoNaNs(false);
Call = Builder.CreateMinNum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minnum);
Call = Builder.CreateMaxNum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maxnum);
Call = Builder.CreateMinimum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::minimum);
Call = Builder.CreateMaximum(V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::maximum);
Call = Builder.CreateIntrinsic(Intrinsic::readcyclecounter, {}, {});
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::readcyclecounter);
Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, V, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fabs);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateBinaryIntrinsic(Intrinsic::pow, V, V, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::pow);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V});
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_FALSE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
Call = Builder.CreateIntrinsic(Intrinsic::fma, {V->getType()}, {V, V, V}, I);
II = cast<IntrinsicInst>(Call);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::fma);
EXPECT_TRUE(II->hasNoInfs());
EXPECT_FALSE(II->hasNoNaNs());
}
TEST_F(IRBuilderTest, IntrinsicsWithScalableVectors) {
IRBuilder<> Builder(BB);
CallInst *Call;
FunctionType *FTy;
// Test scalable flag isn't dropped for intrinsic that is explicitly defined
// with scalable vectors, e.g. LLVMType<nxv4i32>.
Type *SrcVecTy = VectorType::get(Builder.getHalfTy(), 8, true);
Type *DstVecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
Type *PredTy = VectorType::get(Builder.getInt1Ty(), 16, true);
SmallVector<Value*, 3> ArgTys;
ArgTys.push_back(UndefValue::get(DstVecTy));
ArgTys.push_back(UndefValue::get(PredTy));
ArgTys.push_back(UndefValue::get(SrcVecTy));
Call = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_fcvtzs_i32f16, {},
ArgTys, nullptr, "aarch64.sve.fcvtzs.i32f16");
FTy = Call->getFunctionType();
EXPECT_EQ(FTy->getReturnType(), DstVecTy);
for (unsigned i = 0; i != ArgTys.size(); ++i)
EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
// Test scalable flag isn't dropped for intrinsic defined with
// LLVMScalarOrSameVectorWidth.
Type *VecTy = VectorType::get(Builder.getInt32Ty(), 4, true);
Type *PtrToVecTy = VecTy->getPointerTo();
PredTy = VectorType::get(Builder.getInt1Ty(), 4, true);
ArgTys.clear();
ArgTys.push_back(UndefValue::get(PtrToVecTy));
ArgTys.push_back(UndefValue::get(Builder.getInt32Ty()));
ArgTys.push_back(UndefValue::get(PredTy));
ArgTys.push_back(UndefValue::get(VecTy));
Call = Builder.CreateIntrinsic(Intrinsic::masked_load,
{VecTy, PtrToVecTy}, ArgTys,
nullptr, "masked.load");
FTy = Call->getFunctionType();
EXPECT_EQ(FTy->getReturnType(), VecTy);
for (unsigned i = 0; i != ArgTys.size(); ++i)
EXPECT_EQ(FTy->getParamType(i), ArgTys[i]->getType());
}
TEST_F(IRBuilderTest, ConstrainedFP) {
IRBuilder<> Builder(BB);
Value *V;
Value *VDouble;
Value *VInt;
CallInst *Call;
IntrinsicInst *II;
GlobalVariable *GVDouble = new GlobalVariable(*M, Type::getDoubleTy(Ctx),
true, GlobalValue::ExternalLinkage, nullptr);
V = Builder.CreateLoad(GV->getValueType(), GV);
VDouble = Builder.CreateLoad(GVDouble->getValueType(), GVDouble);
// See if we get constrained intrinsics instead of non-constrained
// instructions.
Builder.setIsFPConstrained(true);
auto Parent = BB->getParent();
Parent->addFnAttr(Attribute::StrictFP);
V = Builder.CreateFAdd(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
V = Builder.CreateFSub(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fsub);
V = Builder.CreateFMul(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fmul);
V = Builder.CreateFDiv(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fdiv);
V = Builder.CreateFRem(V, V);
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_frem);
VInt = Builder.CreateFPToUI(VDouble, Builder.getInt32Ty());
ASSERT_TRUE(isa<IntrinsicInst>(VInt));
II = cast<IntrinsicInst>(VInt);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptoui);
VInt = Builder.CreateFPToSI(VDouble, Builder.getInt32Ty());
ASSERT_TRUE(isa<IntrinsicInst>(VInt));
II = cast<IntrinsicInst>(VInt);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptosi);
VDouble = Builder.CreateUIToFP(VInt, Builder.getDoubleTy());
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_uitofp);
VDouble = Builder.CreateSIToFP(VInt, Builder.getDoubleTy());
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_sitofp);
V = Builder.CreateFPTrunc(VDouble, Type::getFloatTy(Ctx));
ASSERT_TRUE(isa<IntrinsicInst>(V));
II = cast<IntrinsicInst>(V);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fptrunc);
VDouble = Builder.CreateFPExt(V, Type::getDoubleTy(Ctx));
ASSERT_TRUE(isa<IntrinsicInst>(VDouble));
II = cast<IntrinsicInst>(VDouble);
EXPECT_EQ(II->getIntrinsicID(), Intrinsic::experimental_constrained_fpext);
// Verify attributes on the call are created automatically.
AttributeSet CallAttrs = II->getAttributes().getFnAttributes();
EXPECT_EQ(CallAttrs.hasAttribute(Attribute::StrictFP), true);
// Verify attributes on the containing function are created when requested.
Builder.setConstrainedFPFunctionAttr();
AttributeList Attrs = BB->getParent()->getAttributes();
AttributeSet FnAttrs = Attrs.getFnAttributes();
EXPECT_EQ(FnAttrs.hasAttribute(Attribute::StrictFP), true);
// Verify the codepaths for setting and overriding the default metadata.
V = Builder.CreateFAdd(V, V);
ASSERT_TRUE(isa<ConstrainedFPIntrinsic>(V));
auto *CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmDynamic, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(fp::rmUpward);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(CII->getRoundingMode(), fp::rmUpward);
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(fp::rmToNearest);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmToNearest, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebMayTrap);
Builder.setDefaultConstrainedRounding(fp::rmDownward);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmDownward, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebStrict);
Builder.setDefaultConstrainedRounding(fp::rmTowardZero);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebStrict, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmTowardZero, CII->getRoundingMode());
Builder.setDefaultConstrainedExcept(fp::ebIgnore);
Builder.setDefaultConstrainedRounding(fp::rmDynamic);
V = Builder.CreateFAdd(V, V);
CII = cast<ConstrainedFPIntrinsic>(V);
EXPECT_EQ(fp::ebIgnore, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmDynamic, CII->getRoundingMode());
// Now override the defaults.
Call = Builder.CreateConstrainedFPBinOp(
Intrinsic::experimental_constrained_fadd, V, V, nullptr, "", nullptr,
fp::rmDownward, fp::ebMayTrap);
CII = cast<ConstrainedFPIntrinsic>(Call);
EXPECT_EQ(CII->getIntrinsicID(), Intrinsic::experimental_constrained_fadd);
EXPECT_EQ(fp::ebMayTrap, CII->getExceptionBehavior());
EXPECT_EQ(fp::rmDownward, CII->getRoundingMode());
Builder.CreateRetVoid();
EXPECT_FALSE(verifyModule(*M));
}
TEST_F(IRBuilderTest, Lifetime) {
IRBuilder<> Builder(BB);
AllocaInst *Var1 = Builder.CreateAlloca(Builder.getInt8Ty());
AllocaInst *Var2 = Builder.CreateAlloca(Builder.getInt32Ty());
AllocaInst *Var3 = Builder.CreateAlloca(Builder.getInt8Ty(),
Builder.getInt32(123));
CallInst *Start1 = Builder.CreateLifetimeStart(Var1);
CallInst *Start2 = Builder.CreateLifetimeStart(Var2);
CallInst *Start3 = Builder.CreateLifetimeStart(Var3, Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start2->getArgOperand(0), Builder.getInt64(-1));
EXPECT_EQ(Start3->getArgOperand(0), Builder.getInt64(100));
EXPECT_EQ(Start1->getArgOperand(1), Var1);
EXPECT_NE(Start2->getArgOperand(1), Var2);
EXPECT_EQ(Start3->getArgOperand(1), Var3);
Value *End1 = Builder.CreateLifetimeEnd(Var1);
Builder.CreateLifetimeEnd(Var2);
Builder.CreateLifetimeEnd(Var3);
IntrinsicInst *II_Start1 = dyn_cast<IntrinsicInst>(Start1);
IntrinsicInst *II_End1 = dyn_cast<IntrinsicInst>(End1);
ASSERT_TRUE(II_Start1 != nullptr);
EXPECT_EQ(II_Start1->getIntrinsicID(), Intrinsic::lifetime_start);
ASSERT_TRUE(II_End1 != nullptr);
EXPECT_EQ(II_End1->getIntrinsicID(), Intrinsic::lifetime_end);
}
TEST_F(IRBuilderTest, CreateCondBr) {
IRBuilder<> Builder(BB);
BasicBlock *TBB = BasicBlock::Create(Ctx, "", F);
BasicBlock *FBB = BasicBlock::Create(Ctx, "", F);
BranchInst *BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB);
Instruction *TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
BI->eraseFromParent();
MDNode *Weights = MDBuilder(Ctx).createBranchWeights(42, 13);
BI = Builder.CreateCondBr(Builder.getTrue(), TBB, FBB, Weights);
TI = BB->getTerminator();
EXPECT_EQ(BI, TI);
EXPECT_EQ(2u, TI->getNumSuccessors());
EXPECT_EQ(TBB, TI->getSuccessor(0));
EXPECT_EQ(FBB, TI->getSuccessor(1));
EXPECT_EQ(Weights, TI->getMetadata(LLVMContext::MD_prof));
}
TEST_F(IRBuilderTest, LandingPadName) {
IRBuilder<> Builder(BB);
LandingPadInst *LP = Builder.CreateLandingPad(Builder.getInt32Ty(), 0, "LP");
EXPECT_EQ(LP->getName(), "LP");
}
TEST_F(IRBuilderTest, DataLayout) {
std::unique_ptr<Module> M(new Module("test", Ctx));
M->setDataLayout("e-n32");
EXPECT_TRUE(M->getDataLayout().isLegalInteger(32));
M->setDataLayout("e");
EXPECT_FALSE(M->getDataLayout().isLegalInteger(32));
}
TEST_F(IRBuilderTest, GetIntTy) {
IRBuilder<> Builder(BB);
IntegerType *Ty1 = Builder.getInt1Ty();
EXPECT_EQ(Ty1, IntegerType::get(Ctx, 1));
DataLayout* DL = new DataLayout(M.get());
IntegerType *IntPtrTy = Builder.getIntPtrTy(*DL);
unsigned IntPtrBitSize = DL->getPointerSizeInBits(0);
EXPECT_EQ(IntPtrTy, IntegerType::get(Ctx, IntPtrBitSize));
delete DL;
}
TEST_F(IRBuilderTest, UnaryOperators) {
IRBuilder<NoFolder> Builder(BB);
Value *V = Builder.CreateLoad(GV->getValueType(), GV);
// Test CreateUnOp(X)
Value *U = Builder.CreateUnOp(Instruction::FNeg, V);
ASSERT_TRUE(isa<Instruction>(U));
ASSERT_TRUE(isa<FPMathOperator>(U));
ASSERT_TRUE(isa<UnaryOperator>(U));
ASSERT_FALSE(isa<BinaryOperator>(U));
// Test CreateFNegFMF(X)
Instruction *I = cast<Instruction>(U);
I->setHasNoSignedZeros(true);
I->setHasNoNaNs(true);
Value *VFMF = Builder.CreateFNegFMF(V, I);
Instruction *IFMF = cast<Instruction>(VFMF);
EXPECT_TRUE(IFMF->hasNoSignedZeros());
EXPECT_TRUE(IFMF->hasNoNaNs());
EXPECT_FALSE(IFMF->hasAllowReassoc());
}
TEST_F(IRBuilderTest, FastMathFlags) {
IRBuilder<> Builder(BB);
Value *F, *FC;
Instruction *FDiv, *FAdd, *FCmp, *FCall;
F = Builder.CreateLoad(GV->getValueType(), GV);
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_FALSE(FAdd->hasNoNaNs());
FastMathFlags FMF;
Builder.setFastMathFlags(FMF);
// By default, no flags are set.
F = Builder.CreateFAdd(F, F);
EXPECT_FALSE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_FALSE(FAdd->hasNoNaNs());
EXPECT_FALSE(FAdd->hasNoInfs());
EXPECT_FALSE(FAdd->hasNoSignedZeros());
EXPECT_FALSE(FAdd->hasAllowReciprocal());
EXPECT_FALSE(FAdd->hasAllowContract());
EXPECT_FALSE(FAdd->hasAllowReassoc());
EXPECT_FALSE(FAdd->hasApproxFunc());
// Set all flags in the instruction.
FAdd->setFast(true);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->hasNoInfs());
EXPECT_TRUE(FAdd->hasNoSignedZeros());
EXPECT_TRUE(FAdd->hasAllowReciprocal());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_TRUE(FAdd->hasAllowReassoc());
EXPECT_TRUE(FAdd->hasApproxFunc());
// All flags are set in the builder.
FMF.setFast();
Builder.setFastMathFlags(FMF);
F = Builder.CreateFAdd(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().all());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->isFast());
// Now, try it with CreateBinOp
F = Builder.CreateBinOp(Instruction::FAdd, F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
ASSERT_TRUE(isa<Instruction>(F));
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasNoNaNs());
EXPECT_TRUE(FAdd->isFast());
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().all());
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
// Clear all FMF in the builder.
Builder.clearFastMathFlags();
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->hasAllowReciprocal());
// Try individual flags.
FMF.clear();
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
F = Builder.CreateFDiv(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_TRUE(FDiv->hasAllowReciprocal());
Builder.clearFastMathFlags();
FC = Builder.CreateFCmpOEQ(F, F);
ASSERT_TRUE(isa<Instruction>(FC));
FCmp = cast<Instruction>(FC);
EXPECT_FALSE(FCmp->hasAllowReciprocal());
FMF.clear();
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
FC = Builder.CreateFCmpOEQ(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowReciprocal);
ASSERT_TRUE(isa<Instruction>(FC));
FCmp = cast<Instruction>(FC);
EXPECT_TRUE(FCmp->hasAllowReciprocal());
Builder.clearFastMathFlags();
// Test FP-contract
FC = Builder.CreateFAdd(F, F);
ASSERT_TRUE(isa<Instruction>(FC));
FAdd = cast<Instruction>(FC);
EXPECT_FALSE(FAdd->hasAllowContract());
FMF.clear();
FMF.setAllowContract(true);
Builder.setFastMathFlags(FMF);
FC = Builder.CreateFAdd(F, F);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().AllowContract);
ASSERT_TRUE(isa<Instruction>(FC));
FAdd = cast<Instruction>(FC);
EXPECT_TRUE(FAdd->hasAllowContract());
FMF.setApproxFunc();
Builder.clearFastMathFlags();
Builder.setFastMathFlags(FMF);
// Now 'aml' and 'contract' are set.
F = Builder.CreateFMul(F, F);
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasApproxFunc());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_FALSE(FAdd->hasAllowReassoc());
FMF.setAllowReassoc();
Builder.clearFastMathFlags();
Builder.setFastMathFlags(FMF);
// Now 'aml' and 'contract' and 'reassoc' are set.
F = Builder.CreateFMul(F, F);
FAdd = cast<Instruction>(F);
EXPECT_TRUE(FAdd->hasApproxFunc());
EXPECT_TRUE(FAdd->hasAllowContract());
EXPECT_TRUE(FAdd->hasAllowReassoc());
// Test a call with FMF.
auto CalleeTy = FunctionType::get(Type::getFloatTy(Ctx),
/*isVarArg=*/false);
auto Callee =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
FCall = Builder.CreateCall(Callee, None);
EXPECT_FALSE(FCall->hasNoNaNs());
Function *V =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
FCall = Builder.CreateCall(V, None);
EXPECT_FALSE(FCall->hasNoNaNs());
FMF.clear();
FMF.setNoNaNs();
Builder.setFastMathFlags(FMF);
FCall = Builder.CreateCall(Callee, None);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
EXPECT_TRUE(FCall->hasNoNaNs());
FCall = Builder.CreateCall(V, None);
EXPECT_TRUE(Builder.getFastMathFlags().any());
EXPECT_TRUE(Builder.getFastMathFlags().NoNaNs);
EXPECT_TRUE(FCall->hasNoNaNs());
Builder.clearFastMathFlags();
// To test a copy, make sure that a '0' and a '1' change state.
F = Builder.CreateFDiv(F, F);
ASSERT_TRUE(isa<Instruction>(F));
FDiv = cast<Instruction>(F);
EXPECT_FALSE(FDiv->getFastMathFlags().any());
FDiv->setHasAllowReciprocal(true);
FAdd->setHasAllowReciprocal(false);
FAdd->setHasNoNaNs(true);
FDiv->copyFastMathFlags(FAdd);
EXPECT_TRUE(FDiv->hasNoNaNs());
EXPECT_FALSE(FDiv->hasAllowReciprocal());
}
TEST_F(IRBuilderTest, WrapFlags) {
IRBuilder<NoFolder> Builder(BB);
// Test instructions.
GlobalVariable *G = new GlobalVariable(*M, Builder.getInt32Ty(), true,
GlobalValue::ExternalLinkage, nullptr);
Value *V = Builder.CreateLoad(G->getValueType(), G);
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWAdd(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWMul(V, V))->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNSWSub(V, V))->hasNoSignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWAdd(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWMul(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(
cast<BinaryOperator>(Builder.CreateNUWSub(V, V))->hasNoUnsignedWrap());
EXPECT_TRUE(cast<BinaryOperator>(
Builder.CreateShl(V, V, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
// Test operators created with constants.
Constant *C = Builder.getInt32(42);
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWAdd(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWSub(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNSWMul(C, C))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ false, /* NSW */ true))
->hasNoSignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWAdd(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWSub(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(Builder.CreateNUWMul(C, C))
->hasNoUnsignedWrap());
EXPECT_TRUE(cast<OverflowingBinaryOperator>(
Builder.CreateShl(C, C, "", /* NUW */ true, /* NSW */ false))
->hasNoUnsignedWrap());
}
TEST_F(IRBuilderTest, RAIIHelpersTest) {
IRBuilder<> Builder(BB);
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
MDBuilder MDB(M->getContext());
MDNode *FPMathA = MDB.createFPMath(0.01f);
MDNode *FPMathB = MDB.createFPMath(0.1f);
Builder.setDefaultFPMathTag(FPMathA);
{
IRBuilder<>::FastMathFlagGuard Guard(Builder);
FastMathFlags FMF;
FMF.setAllowReciprocal();
Builder.setFastMathFlags(FMF);
Builder.setDefaultFPMathTag(FPMathB);
EXPECT_TRUE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathB, Builder.getDefaultFPMathTag());
}
EXPECT_FALSE(Builder.getFastMathFlags().allowReciprocal());
EXPECT_EQ(FPMathA, Builder.getDefaultFPMathTag());
Value *F = Builder.CreateLoad(GV->getValueType(), GV);
{
IRBuilder<>::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(cast<Instruction>(F));
EXPECT_EQ(F, &*Builder.GetInsertPoint());
}
EXPECT_EQ(BB->end(), Builder.GetInsertPoint());
EXPECT_EQ(BB, Builder.GetInsertBlock());
}
TEST_F(IRBuilderTest, createFunction) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("error.swift", "/");
auto CU =
DIB.createCompileUnit(dwarf::DW_LANG_Swift, File, "swiftc", true, "", 0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto NoErr = DIB.createFunction(
CU, "noerr", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
EXPECT_TRUE(!NoErr->getThrownTypes());
auto Int = DIB.createBasicType("Int", 64, dwarf::DW_ATE_signed);
auto Error = DIB.getOrCreateArray({Int});
auto Err = DIB.createFunction(
CU, "err", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized, nullptr,
nullptr, Error.get());
EXPECT_TRUE(Err->getThrownTypes().get() == Error.get());
DIB.finalize();
}
TEST_F(IRBuilderTest, DIBuilder) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("F.CBL", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
DIB.createFile("F.CBL", "/"), "llvm-cobol74",
true, "", 0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP = DIB.createFunction(
CU, "foo", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
F->setSubprogram(SP);
AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
auto BarSP = DIB.createFunction(
CU, "bar", "", File, 1, Type, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
auto BadScope = DIB.createLexicalBlockFile(BarSP, File, 0);
I->setDebugLoc(DebugLoc::get(2, 0, BadScope));
DIB.finalize();
EXPECT_TRUE(verifyModule(*M));
}
TEST_F(IRBuilderTest, createArtificialSubprogram) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File = DIB.createFile("main.c", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C, File, "clang",
/*isOptimized=*/true, /*Flags=*/"",
/*Runtime Version=*/0);
auto Type = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP = DIB.createFunction(
CU, "foo", /*LinkageName=*/"", File,
/*LineNo=*/1, Type, /*ScopeLine=*/2, DINode::FlagZero,
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
EXPECT_TRUE(SP->isDistinct());
F->setSubprogram(SP);
AllocaInst *I = Builder.CreateAlloca(Builder.getInt8Ty());
ReturnInst *R = Builder.CreateRetVoid();
I->setDebugLoc(DebugLoc::get(3, 2, SP));
R->setDebugLoc(DebugLoc::get(4, 2, SP));
DIB.finalize();
EXPECT_FALSE(verifyModule(*M));
Function *G = Function::Create(F->getFunctionType(),
Function::ExternalLinkage, "", M.get());
BasicBlock *GBB = BasicBlock::Create(Ctx, "", G);
Builder.SetInsertPoint(GBB);
I->removeFromParent();
Builder.Insert(I);
Builder.CreateRetVoid();
EXPECT_FALSE(verifyModule(*M));
DISubprogram *GSP = DIBuilder::createArtificialSubprogram(F->getSubprogram());
EXPECT_EQ(SP->getFile(), GSP->getFile());
EXPECT_EQ(SP->getType(), GSP->getType());
EXPECT_EQ(SP->getLine(), GSP->getLine());
EXPECT_EQ(SP->getScopeLine(), GSP->getScopeLine());
EXPECT_TRUE(GSP->isDistinct());
G->setSubprogram(GSP);
EXPECT_TRUE(verifyModule(*M));
auto *InlinedAtNode =
DILocation::getDistinct(Ctx, GSP->getScopeLine(), 0, GSP);
DebugLoc DL = I->getDebugLoc();
DenseMap<const MDNode *, MDNode *> IANodes;
auto IA = DebugLoc::appendInlinedAt(DL, InlinedAtNode, Ctx, IANodes);
auto NewDL = DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(), IA);
I->setDebugLoc(NewDL);
EXPECT_FALSE(verifyModule(*M));
EXPECT_EQ("foo", SP->getName());
EXPECT_EQ("foo", GSP->getName());
EXPECT_FALSE(SP->isArtificial());
EXPECT_TRUE(GSP->isArtificial());
}
TEST_F(IRBuilderTest, InsertExtractElement) {
IRBuilder<> Builder(BB);
auto VecTy = VectorType::get(Builder.getInt64Ty(), 4);
auto Elt1 = Builder.getInt64(-1);
auto Elt2 = Builder.getInt64(-2);
Value *Vec = UndefValue::get(VecTy);
Vec = Builder.CreateInsertElement(Vec, Elt1, Builder.getInt8(1));
Vec = Builder.CreateInsertElement(Vec, Elt2, 2);
auto X1 = Builder.CreateExtractElement(Vec, 1);
auto X2 = Builder.CreateExtractElement(Vec, Builder.getInt32(2));
EXPECT_EQ(Elt1, X1);
EXPECT_EQ(Elt2, X2);
}
TEST_F(IRBuilderTest, CreateGlobalStringPtr) {
IRBuilder<> Builder(BB);
auto String1a = Builder.CreateGlobalStringPtr("TestString", "String1a");
auto String1b = Builder.CreateGlobalStringPtr("TestString", "String1b", 0);
auto String2 = Builder.CreateGlobalStringPtr("TestString", "String2", 1);
auto String3 = Builder.CreateGlobalString("TestString", "String3", 2);
EXPECT_TRUE(String1a->getType()->getPointerAddressSpace() == 0);
EXPECT_TRUE(String1b->getType()->getPointerAddressSpace() == 0);
EXPECT_TRUE(String2->getType()->getPointerAddressSpace() == 1);
EXPECT_TRUE(String3->getType()->getPointerAddressSpace() == 2);
}
TEST_F(IRBuilderTest, DebugLoc) {
auto CalleeTy = FunctionType::get(Type::getVoidTy(Ctx),
/*isVarArg=*/false);
auto Callee =
Function::Create(CalleeTy, Function::ExternalLinkage, "", M.get());
DIBuilder DIB(*M);
auto File = DIB.createFile("tmp.cpp", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_C_plus_plus_11,
DIB.createFile("tmp.cpp", "/"), "", true, "",
0);
auto SPType = DIB.createSubroutineType(DIB.getOrCreateTypeArray(None));
auto SP =
DIB.createFunction(CU, "foo", "foo", File, 1, SPType, 1, DINode::FlagZero,
DISubprogram::SPFlagDefinition);
DebugLoc DL1 = DILocation::get(Ctx, 2, 0, SP);
DebugLoc DL2 = DILocation::get(Ctx, 3, 0, SP);
auto BB2 = BasicBlock::Create(Ctx, "bb2", F);
auto Br = BranchInst::Create(BB2, BB);
Br->setDebugLoc(DL1);
IRBuilder<> Builder(Ctx);
Builder.SetInsertPoint(Br);
EXPECT_EQ(DL1, Builder.getCurrentDebugLocation());
auto Call1 = Builder.CreateCall(Callee, None);
EXPECT_EQ(DL1, Call1->getDebugLoc());
Call1->setDebugLoc(DL2);
Builder.SetInsertPoint(Call1->getParent(), Call1->getIterator());
EXPECT_EQ(DL2, Builder.getCurrentDebugLocation());
auto Call2 = Builder.CreateCall(Callee, None);
EXPECT_EQ(DL2, Call2->getDebugLoc());
DIB.finalize();
}
TEST_F(IRBuilderTest, DIImportedEntity) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto F = DIB.createFile("F.CBL", "/");
auto CU = DIB.createCompileUnit(dwarf::DW_LANG_Cobol74,
F, "llvm-cobol74",
true, "", 0);
DIB.createImportedDeclaration(CU, nullptr, F, 1);
DIB.createImportedDeclaration(CU, nullptr, F, 1);
DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
DIB.createImportedModule(CU, (DIImportedEntity *)nullptr, F, 2);
DIB.finalize();
EXPECT_TRUE(verifyModule(*M));
EXPECT_TRUE(CU->getImportedEntities().size() == 2);
}
// 0: #define M0 V0 <-- command line definition
// 0: main.c <-- main file
// 3: #define M1 V1 <-- M1 definition in main.c
// 5: #include "file.h" <-- inclusion of file.h from main.c
// 1: #define M2 <-- M2 definition in file.h with no value
// 7: #undef M1 V1 <-- M1 un-definition in main.c
TEST_F(IRBuilderTest, DIBuilderMacro) {
IRBuilder<> Builder(BB);
DIBuilder DIB(*M);
auto File1 = DIB.createFile("main.c", "/");
auto File2 = DIB.createFile("file.h", "/");
auto CU = DIB.createCompileUnit(
dwarf::DW_LANG_C, DIB.createFile("main.c", "/"), "llvm-c", true, "", 0);
auto MDef0 =
DIB.createMacro(nullptr, 0, dwarf::DW_MACINFO_define, "M0", "V0");
auto TMF1 = DIB.createTempMacroFile(nullptr, 0, File1);
auto MDef1 = DIB.createMacro(TMF1, 3, dwarf::DW_MACINFO_define, "M1", "V1");
auto TMF2 = DIB.createTempMacroFile(TMF1, 5, File2);
auto MDef2 = DIB.createMacro(TMF2, 1, dwarf::DW_MACINFO_define, "M2");
auto MUndef1 = DIB.createMacro(TMF1, 7, dwarf::DW_MACINFO_undef, "M1");
EXPECT_EQ(dwarf::DW_MACINFO_define, MDef1->getMacinfoType());
EXPECT_EQ(3u, MDef1->getLine());
EXPECT_EQ("M1", MDef1->getName());
EXPECT_EQ("V1", MDef1->getValue());
EXPECT_EQ(dwarf::DW_MACINFO_undef, MUndef1->getMacinfoType());
EXPECT_EQ(7u, MUndef1->getLine());
EXPECT_EQ("M1", MUndef1->getName());
EXPECT_EQ("", MUndef1->getValue());
EXPECT_EQ(dwarf::DW_MACINFO_start_file, TMF2->getMacinfoType());
EXPECT_EQ(5u, TMF2->getLine());
EXPECT_EQ(File2, TMF2->getFile());
DIB.finalize();
SmallVector<Metadata *, 4> Elements;
Elements.push_back(MDef2);
auto MF2 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 5, File2,
DIB.getOrCreateMacroArray(Elements));
Elements.clear();
Elements.push_back(MDef1);
Elements.push_back(MF2);
Elements.push_back(MUndef1);
auto MF1 = DIMacroFile::get(Ctx, dwarf::DW_MACINFO_start_file, 0, File1,
DIB.getOrCreateMacroArray(Elements));
Elements.clear();
Elements.push_back(MDef0);
Elements.push_back(MF1);
auto MN0 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN0, CU->getRawMacros());
Elements.clear();
Elements.push_back(MDef1);
Elements.push_back(MF2);
Elements.push_back(MUndef1);
auto MN1 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN1, MF1->getRawElements());
Elements.clear();
Elements.push_back(MDef2);
auto MN2 = MDTuple::get(Ctx, Elements);
EXPECT_EQ(MN2, MF2->getRawElements());
EXPECT_TRUE(verifyModule(*M));
}
}