llvm-project/llvm/lib/Demangle/ItaniumDemangle.cpp

4894 lines
134 KiB
C++

//===------------------------- ItaniumDemangle.cpp ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// FIXME: (possibly) incomplete list of features that clang mangles that this
// file does not yet support:
// - enable_if attribute
// - C++ modules TS
// - All C++14 and C++17 features
#include "llvm/Demangle/Demangle.h"
#include "llvm/Demangle/Compiler.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <numeric>
#include <vector>
#ifdef _MSC_VER
// snprintf is implemented in VS 2015
#if _MSC_VER < 1900
#define snprintf _snprintf_s
#endif
#endif
namespace {
class StringView {
const char *First;
const char *Last;
public:
template <size_t N>
StringView(const char (&Str)[N]) : First(Str), Last(Str + N - 1) {}
StringView(const char *First_, const char *Last_) : First(First_), Last(Last_) {}
StringView() : First(nullptr), Last(nullptr) {}
StringView substr(size_t From, size_t To) {
if (To >= size())
To = size() - 1;
if (From >= size())
From = size() - 1;
return StringView(First + From, First + To);
}
StringView dropFront(size_t N) const {
if (N >= size())
N = size() - 1;
return StringView(First + N, Last);
}
bool startsWith(StringView Str) const {
if (Str.size() > size())
return false;
return std::equal(Str.begin(), Str.end(), begin());
}
const char &operator[](size_t Idx) const { return *(begin() + Idx); }
const char *begin() const { return First; }
const char *end() const { return Last; }
size_t size() const { return static_cast<size_t>(Last - First); }
bool empty() const { return First == Last; }
};
bool operator==(const StringView &LHS, const StringView &RHS) {
return LHS.size() == RHS.size() &&
std::equal(LHS.begin(), LHS.end(), RHS.begin());
}
// Stream that AST nodes write their string representation into after the AST
// has been parsed.
class OutputStream {
char *Buffer;
size_t CurrentPosition;
size_t BufferCapacity;
// Ensure there is at least n more positions in buffer.
void grow(size_t N) {
if (N + CurrentPosition >= BufferCapacity) {
BufferCapacity *= 2;
if (BufferCapacity < N + CurrentPosition)
BufferCapacity = N + CurrentPosition;
Buffer = static_cast<char *>(std::realloc(Buffer, BufferCapacity));
}
}
public:
OutputStream(char *StartBuf, size_t Size)
: Buffer(StartBuf), CurrentPosition(0), BufferCapacity(Size) {}
/// If a ParameterPackExpansion (or similar type) is encountered, the offset
/// into the pack that we're currently printing.
unsigned CurrentPackIndex = std::numeric_limits<unsigned>::max();
OutputStream &operator+=(StringView R) {
size_t Size = R.size();
if (Size == 0)
return *this;
grow(Size);
memmove(Buffer + CurrentPosition, R.begin(), Size);
CurrentPosition += Size;
return *this;
}
OutputStream &operator+=(char C) {
grow(1);
Buffer[CurrentPosition++] = C;
return *this;
}
size_t getCurrentPosition() const { return CurrentPosition; };
char back() const {
return CurrentPosition ? Buffer[CurrentPosition - 1] : '\0';
}
bool empty() const { return CurrentPosition == 0; }
char *getBuffer() { return Buffer; }
char *getBufferEnd() { return Buffer + CurrentPosition - 1; }
size_t getBufferCapacity() { return BufferCapacity; }
};
template <class T>
class SwapAndRestore {
T &Restore;
T OriginalValue;
public:
SwapAndRestore(T& Restore_, T NewVal)
: Restore(Restore_), OriginalValue(Restore) {
Restore = std::move(NewVal);
}
~SwapAndRestore() { Restore = std::move(OriginalValue); }
SwapAndRestore(const SwapAndRestore &) = delete;
SwapAndRestore &operator=(const SwapAndRestore &) = delete;
};
// Base class of all AST nodes. The AST is built by the parser, then is
// traversed by the printLeft/Right functions to produce a demangled string.
class Node {
public:
enum Kind : unsigned char {
KDotSuffix,
KVendorExtQualType,
KQualType,
KConversionOperatorType,
KPostfixQualifiedType,
KElaboratedTypeSpefType,
KNameType,
KAbiTagAttr,
KObjCProtoName,
KPointerType,
KLValueReferenceType,
KRValueReferenceType,
KPointerToMemberType,
KArrayType,
KFunctionType,
KNoexceptSpec,
KDynamicExceptionSpec,
KFunctionEncoding,
KLiteralOperator,
KSpecialName,
KCtorVtableSpecialName,
KQualifiedName,
KEmptyName,
KVectorType,
KParameterPack,
KTemplateArgumentPack,
KParameterPackExpansion,
KTemplateArgs,
KNameWithTemplateArgs,
KGlobalQualifiedName,
KStdQualifiedName,
KExpandedSpecialSubstitution,
KSpecialSubstitution,
KCtorDtorName,
KDtorName,
KUnnamedTypeName,
KClosureTypeName,
KStructuredBindingName,
KExpr,
KBracedExpr,
KBracedRangeExpr,
};
static constexpr unsigned NoParameterPack =
std::numeric_limits<unsigned>::max();
unsigned ParameterPackSize = NoParameterPack;
Kind K;
/// Three-way bool to track a cached value. Unknown is possible if this node
/// has an unexpanded parameter pack below it that may affect this cache.
enum class Cache : unsigned char { Yes, No, Unknown, };
/// Tracks if this node has a component on its right side, in which case we
/// need to call printRight.
Cache RHSComponentCache;
/// Track if this node is a (possibly qualified) array type. This can affect
/// how we format the output string.
Cache ArrayCache;
/// Track if this node is a (possibly qualified) function type. This can
/// affect how we format the output string.
Cache FunctionCache;
Node(Kind K_, unsigned ParameterPackSize_ = NoParameterPack,
Cache RHSComponentCache_ = Cache::No, Cache ArrayCache_ = Cache::No,
Cache FunctionCache_ = Cache::No)
: ParameterPackSize(ParameterPackSize_), K(K_),
RHSComponentCache(RHSComponentCache_), ArrayCache(ArrayCache_),
FunctionCache(FunctionCache_) {}
bool containsUnexpandedParameterPack() const {
return ParameterPackSize != NoParameterPack;
}
bool hasRHSComponent(OutputStream &S) const {
if (RHSComponentCache != Cache::Unknown)
return RHSComponentCache == Cache::Yes;
return hasRHSComponentSlow(S);
}
bool hasArray(OutputStream &S) const {
if (ArrayCache != Cache::Unknown)
return ArrayCache == Cache::Yes;
return hasArraySlow(S);
}
bool hasFunction(OutputStream &S) const {
if (FunctionCache != Cache::Unknown)
return FunctionCache == Cache::Yes;
return hasFunctionSlow(S);
}
Kind getKind() const { return K; }
virtual bool hasRHSComponentSlow(OutputStream &) const { return false; }
virtual bool hasArraySlow(OutputStream &) const { return false; }
virtual bool hasFunctionSlow(OutputStream &) const { return false; }
/// If this node is a pack expansion that expands to 0 elements. This can have
/// an effect on how we should format the output.
bool isEmptyPackExpansion() const;
void print(OutputStream &S) const {
printLeft(S);
if (RHSComponentCache != Cache::No)
printRight(S);
}
// Print the "left" side of this Node into OutputStream.
virtual void printLeft(OutputStream &) const = 0;
// Print the "right". This distinction is necessary to represent C++ types
// that appear on the RHS of their subtype, such as arrays or functions.
// Since most types don't have such a component, provide a default
// implemenation.
virtual void printRight(OutputStream &) const {}
virtual StringView getBaseName() const { return StringView(); }
// Silence compiler warnings, this dtor will never be called.
virtual ~Node() = default;
#ifndef NDEBUG
LLVM_DUMP_METHOD void dump() const {
char *Buffer = static_cast<char*>(std::malloc(1024));
OutputStream S(Buffer, 1024);
print(S);
S += '\0';
printf("Symbol dump for %p: %s\n", (const void*)this, S.getBuffer());
std::free(S.getBuffer());
}
#endif
};
class NodeArray {
Node **Elements;
size_t NumElements;
public:
NodeArray() : Elements(nullptr), NumElements(0) {}
NodeArray(Node **Elements_, size_t NumElements_)
: Elements(Elements_), NumElements(NumElements_) {}
bool empty() const { return NumElements == 0; }
size_t size() const { return NumElements; }
Node **begin() const { return Elements; }
Node **end() const { return Elements + NumElements; }
Node *operator[](size_t Idx) const { return Elements[Idx]; }
void printWithComma(OutputStream &S) const {
bool FirstElement = true;
for (size_t Idx = 0; Idx != NumElements; ++Idx) {
if (Elements[Idx]->isEmptyPackExpansion())
continue;
if (!FirstElement)
S += ", ";
FirstElement = false;
Elements[Idx]->print(S);
}
}
};
class DotSuffix final : public Node {
const Node *Prefix;
const StringView Suffix;
public:
DotSuffix(Node *Prefix_, StringView Suffix_)
: Node(KDotSuffix), Prefix(Prefix_), Suffix(Suffix_) {}
void printLeft(OutputStream &s) const override {
Prefix->print(s);
s += " (";
s += Suffix;
s += ")";
}
};
class VendorExtQualType final : public Node {
const Node *Ty;
StringView Ext;
public:
VendorExtQualType(Node *Ty_, StringView Ext_)
: Node(KVendorExtQualType, Ty_->ParameterPackSize),
Ty(Ty_), Ext(Ext_) {}
void printLeft(OutputStream &S) const override {
Ty->print(S);
S += " ";
S += Ext;
}
};
enum FunctionRefQual : unsigned char {
FrefQualNone,
FrefQualLValue,
FrefQualRValue,
};
enum Qualifiers {
QualNone = 0,
QualConst = 0x1,
QualVolatile = 0x2,
QualRestrict = 0x4,
};
void addQualifiers(Qualifiers &Q1, Qualifiers Q2) {
Q1 = static_cast<Qualifiers>(Q1 | Q2);
}
class QualType : public Node {
protected:
const Qualifiers Quals;
const Node *Child;
void printQuals(OutputStream &S) const {
if (Quals & QualConst)
S += " const";
if (Quals & QualVolatile)
S += " volatile";
if (Quals & QualRestrict)
S += " restrict";
}
public:
QualType(Node *Child_, Qualifiers Quals_)
: Node(KQualType, Child_->ParameterPackSize, Child_->RHSComponentCache,
Child_->ArrayCache, Child_->FunctionCache),
Quals(Quals_), Child(Child_) {}
bool hasRHSComponentSlow(OutputStream &S) const override {
return Child->hasRHSComponent(S);
}
bool hasArraySlow(OutputStream &S) const override {
return Child->hasArray(S);
}
bool hasFunctionSlow(OutputStream &S) const override {
return Child->hasFunction(S);
}
void printLeft(OutputStream &S) const override {
Child->printLeft(S);
printQuals(S);
}
void printRight(OutputStream &S) const override { Child->printRight(S); }
};
class ConversionOperatorType final : public Node {
const Node *Ty;
public:
ConversionOperatorType(Node *Ty_)
: Node(KConversionOperatorType, Ty_->ParameterPackSize), Ty(Ty_) {}
void printLeft(OutputStream &S) const override {
S += "operator ";
Ty->print(S);
}
};
class PostfixQualifiedType final : public Node {
const Node *Ty;
const StringView Postfix;
public:
PostfixQualifiedType(Node *Ty_, StringView Postfix_)
: Node(KPostfixQualifiedType, Ty_->ParameterPackSize),
Ty(Ty_), Postfix(Postfix_) {}
void printLeft(OutputStream &s) const override {
Ty->printLeft(s);
s += Postfix;
}
};
class NameType final : public Node {
const StringView Name;
public:
NameType(StringView Name_) : Node(KNameType), Name(Name_) {}
StringView getName() const { return Name; }
StringView getBaseName() const override { return Name; }
void printLeft(OutputStream &s) const override { s += Name; }
};
class ElaboratedTypeSpefType : public Node {
StringView Kind;
Node *Child;
public:
ElaboratedTypeSpefType(StringView Kind_, Node *Child_)
: Node(KElaboratedTypeSpefType), Kind(Kind_), Child(Child_) {
ParameterPackSize = Child->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += Kind;
S += ' ';
Child->print(S);
}
};
class AbiTagAttr final : public Node {
const Node* Base;
StringView Tag;
public:
AbiTagAttr(const Node* Base_, StringView Tag_)
: Node(KAbiTagAttr, Base_->ParameterPackSize, Base_->RHSComponentCache,
Base_->ArrayCache, Base_->FunctionCache),
Base(Base_), Tag(Tag_) {}
void printLeft(OutputStream &S) const override {
Base->printLeft(S);
S += "[abi:";
S += Tag;
S += "]";
}
};
class ObjCProtoName : public Node {
Node *Ty;
StringView Protocol;
friend class PointerType;
public:
ObjCProtoName(Node *Ty_, StringView Protocol_)
: Node(KObjCProtoName), Ty(Ty_), Protocol(Protocol_) {}
bool isObjCObject() const {
return Ty->getKind() == KNameType &&
static_cast<NameType *>(Ty)->getName() == "objc_object";
}
void printLeft(OutputStream &S) const override {
Ty->print(S);
S += "<";
S += Protocol;
S += ">";
}
};
class PointerType final : public Node {
const Node *Pointee;
public:
PointerType(Node *Pointee_)
: Node(KPointerType, Pointee_->ParameterPackSize,
Pointee_->RHSComponentCache),
Pointee(Pointee_) {}
bool hasRHSComponentSlow(OutputStream &S) const override {
return Pointee->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
// We rewrite objc_object<SomeProtocol>* into id<SomeProtocol>.
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
Pointee->printLeft(s);
if (Pointee->hasArray(s))
s += " ";
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += "(";
s += "*";
} else {
const auto *objcProto = static_cast<const ObjCProtoName *>(Pointee);
s += "id<";
s += objcProto->Protocol;
s += ">";
}
}
void printRight(OutputStream &s) const override {
if (Pointee->getKind() != KObjCProtoName ||
!static_cast<const ObjCProtoName *>(Pointee)->isObjCObject()) {
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += ")";
Pointee->printRight(s);
}
}
};
class LValueReferenceType final : public Node {
const Node *Pointee;
public:
LValueReferenceType(Node *Pointee_)
: Node(KLValueReferenceType, Pointee_->ParameterPackSize,
Pointee_->RHSComponentCache),
Pointee(Pointee_) {}
bool hasRHSComponentSlow(OutputStream &S) const override {
return Pointee->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
Pointee->printLeft(s);
if (Pointee->hasArray(s))
s += " ";
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += "(&";
else
s += "&";
}
void printRight(OutputStream &s) const override {
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += ")";
Pointee->printRight(s);
}
};
class RValueReferenceType final : public Node {
const Node *Pointee;
public:
RValueReferenceType(Node *Pointee_)
: Node(KRValueReferenceType, Pointee_->ParameterPackSize,
Pointee_->RHSComponentCache),
Pointee(Pointee_) {}
bool hasRHSComponentSlow(OutputStream &S) const override {
return Pointee->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
Pointee->printLeft(s);
if (Pointee->hasArray(s))
s += " ";
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += "(&&";
else
s += "&&";
}
void printRight(OutputStream &s) const override {
if (Pointee->hasArray(s) || Pointee->hasFunction(s))
s += ")";
Pointee->printRight(s);
}
};
class PointerToMemberType final : public Node {
const Node *ClassType;
const Node *MemberType;
public:
PointerToMemberType(Node *ClassType_, Node *MemberType_)
: Node(KPointerToMemberType,
std::min(MemberType_->ParameterPackSize,
ClassType_->ParameterPackSize),
MemberType_->RHSComponentCache),
ClassType(ClassType_), MemberType(MemberType_) {}
bool hasRHSComponentSlow(OutputStream &S) const override {
return MemberType->hasRHSComponent(S);
}
void printLeft(OutputStream &s) const override {
MemberType->printLeft(s);
if (MemberType->hasArray(s) || MemberType->hasFunction(s))
s += "(";
else
s += " ";
ClassType->print(s);
s += "::*";
}
void printRight(OutputStream &s) const override {
if (MemberType->hasArray(s) || MemberType->hasFunction(s))
s += ")";
MemberType->printRight(s);
}
};
class NodeOrString {
const void *First;
const void *Second;
public:
/* implicit */ NodeOrString(StringView Str) {
const char *FirstChar = Str.begin();
const char *SecondChar = Str.end();
if (SecondChar == nullptr) {
assert(FirstChar == SecondChar);
++FirstChar, ++SecondChar;
}
First = static_cast<const void *>(FirstChar);
Second = static_cast<const void *>(SecondChar);
}
/* implicit */ NodeOrString(Node *N)
: First(static_cast<const void *>(N)), Second(nullptr) {}
NodeOrString() : First(nullptr), Second(nullptr) {}
bool isString() const { return Second && First; }
bool isNode() const { return First && !Second; }
bool isEmpty() const { return !First && !Second; }
StringView asString() const {
assert(isString());
return StringView(static_cast<const char *>(First),
static_cast<const char *>(Second));
}
const Node *asNode() const {
assert(isNode());
return static_cast<const Node *>(First);
}
};
class ArrayType final : public Node {
Node *Base;
NodeOrString Dimension;
public:
ArrayType(Node *Base_, NodeOrString Dimension_)
: Node(KArrayType, Base_->ParameterPackSize,
/*RHSComponentCache=*/Cache::Yes,
/*ArrayCache=*/Cache::Yes),
Base(Base_), Dimension(Dimension_) {
if (Dimension.isNode())
ParameterPackSize =
std::min(ParameterPackSize, Dimension.asNode()->ParameterPackSize);
}
// Incomplete array type.
ArrayType(Node *Base_)
: Node(KArrayType, Base_->ParameterPackSize,
/*RHSComponentCache=*/Cache::Yes,
/*ArrayCache=*/Cache::Yes),
Base(Base_) {}
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasArraySlow(OutputStream &) const override { return true; }
void printLeft(OutputStream &S) const override { Base->printLeft(S); }
void printRight(OutputStream &S) const override {
if (S.back() != ']')
S += " ";
S += "[";
if (Dimension.isString())
S += Dimension.asString();
else if (Dimension.isNode())
Dimension.asNode()->print(S);
S += "]";
Base->printRight(S);
}
};
class FunctionType final : public Node {
Node *Ret;
NodeArray Params;
Qualifiers CVQuals;
FunctionRefQual RefQual;
Node *ExceptionSpec;
public:
FunctionType(Node *Ret_, NodeArray Params_, Qualifiers CVQuals_,
FunctionRefQual RefQual_, Node *ExceptionSpec_)
: Node(KFunctionType, Ret_->ParameterPackSize,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Params(Params_), CVQuals(CVQuals_), RefQual(RefQual_),
ExceptionSpec(ExceptionSpec_) {
for (Node *P : Params)
ParameterPackSize = std::min(ParameterPackSize, P->ParameterPackSize);
if (ExceptionSpec != nullptr)
ParameterPackSize =
std::min(ParameterPackSize, ExceptionSpec->ParameterPackSize);
}
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasFunctionSlow(OutputStream &) const override { return true; }
// Handle C++'s ... quirky decl grammer by using the left & right
// distinction. Consider:
// int (*f(float))(char) {}
// f is a function that takes a float and returns a pointer to a function
// that takes a char and returns an int. If we're trying to print f, start
// by printing out the return types's left, then print our parameters, then
// finally print right of the return type.
void printLeft(OutputStream &S) const override {
Ret->printLeft(S);
S += " ";
}
void printRight(OutputStream &S) const override {
S += "(";
Params.printWithComma(S);
S += ")";
Ret->printRight(S);
if (CVQuals & QualConst)
S += " const";
if (CVQuals & QualVolatile)
S += " volatile";
if (CVQuals & QualRestrict)
S += " restrict";
if (RefQual == FrefQualLValue)
S += " &";
else if (RefQual == FrefQualRValue)
S += " &&";
if (ExceptionSpec != nullptr) {
S += ' ';
ExceptionSpec->print(S);
}
}
};
class NoexceptSpec : public Node {
Node *E;
public:
NoexceptSpec(Node *E_) : Node(KNoexceptSpec, E_->ParameterPackSize), E(E_) {}
void printLeft(OutputStream &S) const override {
S += "noexcept(";
E->print(S);
S += ")";
}
};
class DynamicExceptionSpec : public Node {
NodeArray Types;
public:
DynamicExceptionSpec(NodeArray Types_)
: Node(KDynamicExceptionSpec), Types(Types_) {
for (Node *T : Types)
ParameterPackSize = std::min(ParameterPackSize, T->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
S += "throw(";
Types.printWithComma(S);
S += ')';
}
};
class FunctionEncoding final : public Node {
const Node *Ret;
const Node *Name;
NodeArray Params;
Qualifiers CVQuals;
FunctionRefQual RefQual;
public:
FunctionEncoding(Node *Ret_, Node *Name_, NodeArray Params_,
Qualifiers CVQuals_, FunctionRefQual RefQual_)
: Node(KFunctionEncoding, NoParameterPack,
/*RHSComponentCache=*/Cache::Yes, /*ArrayCache=*/Cache::No,
/*FunctionCache=*/Cache::Yes),
Ret(Ret_), Name(Name_), Params(Params_), CVQuals(CVQuals_),
RefQual(RefQual_) {
for (Node *P : Params)
ParameterPackSize = std::min(ParameterPackSize, P->ParameterPackSize);
if (Ret)
ParameterPackSize = std::min(ParameterPackSize, Ret->ParameterPackSize);
}
bool hasRHSComponentSlow(OutputStream &) const override { return true; }
bool hasFunctionSlow(OutputStream &) const override { return true; }
Node *getName() { return const_cast<Node *>(Name); }
void printLeft(OutputStream &S) const override {
if (Ret) {
Ret->printLeft(S);
if (!Ret->hasRHSComponent(S))
S += " ";
}
Name->print(S);
}
void printRight(OutputStream &S) const override {
S += "(";
Params.printWithComma(S);
S += ")";
if (Ret)
Ret->printRight(S);
if (CVQuals & QualConst)
S += " const";
if (CVQuals & QualVolatile)
S += " volatile";
if (CVQuals & QualRestrict)
S += " restrict";
if (RefQual == FrefQualLValue)
S += " &";
else if (RefQual == FrefQualRValue)
S += " &&";
}
};
class LiteralOperator : public Node {
const Node *OpName;
public:
LiteralOperator(Node *OpName_)
: Node(KLiteralOperator, OpName_->ParameterPackSize), OpName(OpName_) {}
void printLeft(OutputStream &S) const override {
S += "operator\"\" ";
OpName->print(S);
}
};
class SpecialName final : public Node {
const StringView Special;
const Node *Child;
public:
SpecialName(StringView Special_, Node* Child_)
: Node(KSpecialName, Child_->ParameterPackSize), Special(Special_),
Child(Child_) {}
void printLeft(OutputStream &S) const override {
S += Special;
Child->print(S);
}
};
class CtorVtableSpecialName final : public Node {
const Node *FirstType;
const Node *SecondType;
public:
CtorVtableSpecialName(Node *FirstType_, Node *SecondType_)
: Node(KCtorVtableSpecialName, std::min(FirstType_->ParameterPackSize,
SecondType_->ParameterPackSize)),
FirstType(FirstType_), SecondType(SecondType_) {}
void printLeft(OutputStream &S) const override {
S += "construction vtable for ";
FirstType->print(S);
S += "-in-";
SecondType->print(S);
}
};
class QualifiedName final : public Node {
// qualifier::name
const Node *Qualifier;
const Node *Name;
public:
QualifiedName(Node* Qualifier_, Node* Name_)
: Node(KQualifiedName,
std::min(Qualifier_->ParameterPackSize, Name_->ParameterPackSize)),
Qualifier(Qualifier_), Name(Name_) {}
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputStream &S) const override {
Qualifier->print(S);
S += "::";
Name->print(S);
}
};
class EmptyName : public Node {
public:
EmptyName() : Node(KEmptyName) {}
void printLeft(OutputStream &) const override {}
};
class VectorType final : public Node {
const Node *BaseType;
const NodeOrString Dimension;
const bool IsPixel;
public:
VectorType(NodeOrString Dimension_)
: Node(KVectorType), BaseType(nullptr), Dimension(Dimension_),
IsPixel(true) {
if (Dimension.isNode())
ParameterPackSize = Dimension.asNode()->ParameterPackSize;
}
VectorType(Node *BaseType_, NodeOrString Dimension_)
: Node(KVectorType, BaseType_->ParameterPackSize), BaseType(BaseType_),
Dimension(Dimension_), IsPixel(false) {
if (Dimension.isNode())
ParameterPackSize =
std::min(ParameterPackSize, Dimension.asNode()->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
if (IsPixel) {
S += "pixel vector[";
S += Dimension.asString();
S += "]";
} else {
BaseType->print(S);
S += " vector[";
if (Dimension.isNode())
Dimension.asNode()->print(S);
else if (Dimension.isString())
S += Dimension.asString();
S += "]";
}
}
};
/// An unexpanded parameter pack (either in the expression or type context). If
/// this AST is correct, this node will have a ParameterPackExpansion node above
/// it.
///
/// This node is created when some <template-args> are found that apply to an
/// <encoding>, and is stored in the TemplateParams table. In order for this to
/// appear in the final AST, it has to referenced via a <template-param> (ie,
/// T_).
class ParameterPack final : public Node {
NodeArray Data;
public:
ParameterPack(NodeArray Data_)
: Node(KParameterPack, static_cast<unsigned>(Data_.size())), Data(Data_) {
ArrayCache = FunctionCache = RHSComponentCache = Cache::Unknown;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->ArrayCache == Cache::No;
}))
ArrayCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->FunctionCache == Cache::No;
}))
FunctionCache = Cache::No;
if (std::all_of(Data.begin(), Data.end(), [](Node* P) {
return P->RHSComponentCache == Cache::No;
}))
RHSComponentCache = Cache::No;
}
bool hasRHSComponentSlow(OutputStream &S) const override {
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasRHSComponent(S);
}
bool hasArraySlow(OutputStream &S) const override {
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasArray(S);
}
bool hasFunctionSlow(OutputStream &S) const override {
size_t Idx = S.CurrentPackIndex;
return Idx < Data.size() && Data[Idx]->hasFunction(S);
}
void printLeft(OutputStream &S) const override {
size_t Idx = S.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printLeft(S);
}
void printRight(OutputStream &S) const override {
size_t Idx = S.CurrentPackIndex;
if (Idx < Data.size())
Data[Idx]->printRight(S);
}
};
/// A variadic template argument. This node represents an occurance of
/// J<something>E in some <template-args>. It isn't itself unexpanded, unless
/// one of it's Elements is. The parser inserts a ParameterPack into the
/// TemplateParams table if the <template-args> this pack belongs to apply to an
/// <encoding>.
class TemplateArgumentPack final : public Node {
NodeArray Elements;
public:
TemplateArgumentPack(NodeArray Elements_)
: Node(KTemplateArgumentPack), Elements(Elements_) {
for (Node *E : Elements)
ParameterPackSize = std::min(E->ParameterPackSize, ParameterPackSize);
}
NodeArray getElements() const { return Elements; }
void printLeft(OutputStream &S) const override {
Elements.printWithComma(S);
}
};
/// A pack expansion. Below this node, there are some unexpanded ParameterPacks
/// which each have Child->ParameterPackSize elements.
class ParameterPackExpansion final : public Node {
const Node *Child;
public:
ParameterPackExpansion(Node* Child_)
: Node(KParameterPackExpansion), Child(Child_) {}
const Node *getChild() const { return Child; }
void printLeft(OutputStream &S) const override {
unsigned PackSize = Child->ParameterPackSize;
if (PackSize == NoParameterPack) {
Child->print(S);
S += "...";
return;
}
SwapAndRestore<unsigned> SavePackIndex(S.CurrentPackIndex, 0);
for (unsigned I = 0; I != PackSize; ++I) {
if (I != 0)
S += ", ";
S.CurrentPackIndex = I;
Child->print(S);
}
}
};
inline bool Node::isEmptyPackExpansion() const {
if (getKind() == KParameterPackExpansion) {
auto *AsPack = static_cast<const ParameterPackExpansion *>(this);
return AsPack->getChild()->isEmptyPackExpansion();
}
if (getKind() == KTemplateArgumentPack) {
auto *AsTemplateArg = static_cast<const TemplateArgumentPack *>(this);
for (Node *E : AsTemplateArg->getElements())
if (!E->isEmptyPackExpansion())
return false;
return true;
}
return ParameterPackSize == 0;
}
class TemplateArgs final : public Node {
NodeArray Params;
public:
TemplateArgs(NodeArray Params_) : Node(KTemplateArgs), Params(Params_) {
for (Node *P : Params)
ParameterPackSize = std::min(ParameterPackSize, P->ParameterPackSize);
}
NodeArray getParams() { return Params; }
void printLeft(OutputStream &S) const override {
S += "<";
bool FirstElement = true;
for (size_t Idx = 0, E = Params.size(); Idx != E; ++Idx) {
if (Params[Idx]->isEmptyPackExpansion())
continue;
if (!FirstElement)
S += ", ";
FirstElement = false;
Params[Idx]->print(S);
}
if (S.back() == '>')
S += " ";
S += ">";
}
};
class NameWithTemplateArgs final : public Node {
// name<template_args>
Node *Name;
Node *TemplateArgs;
public:
NameWithTemplateArgs(Node *Name_, Node *TemplateArgs_)
: Node(KNameWithTemplateArgs, std::min(Name_->ParameterPackSize,
TemplateArgs_->ParameterPackSize)),
Name(Name_), TemplateArgs(TemplateArgs_) {}
StringView getBaseName() const override { return Name->getBaseName(); }
void printLeft(OutputStream &S) const override {
Name->print(S);
TemplateArgs->print(S);
}
};
class GlobalQualifiedName final : public Node {
Node *Child;
public:
GlobalQualifiedName(Node* Child_)
: Node(KGlobalQualifiedName, Child_->ParameterPackSize), Child(Child_) {}
StringView getBaseName() const override { return Child->getBaseName(); }
void printLeft(OutputStream &S) const override {
S += "::";
Child->print(S);
}
};
class StdQualifiedName final : public Node {
Node *Child;
public:
StdQualifiedName(Node *Child_)
: Node(KStdQualifiedName, Child_->ParameterPackSize), Child(Child_) {}
StringView getBaseName() const override { return Child->getBaseName(); }
void printLeft(OutputStream &S) const override {
S += "std::";
Child->print(S);
}
};
enum class SpecialSubKind {
allocator,
basic_string,
string,
istream,
ostream,
iostream,
};
class ExpandedSpecialSubstitution final : public Node {
SpecialSubKind SSK;
public:
ExpandedSpecialSubstitution(SpecialSubKind SSK_)
: Node(KExpandedSpecialSubstitution), SSK(SSK_) {}
StringView getBaseName() const override {
switch (SSK) {
case SpecialSubKind::allocator:
return StringView("allocator");
case SpecialSubKind::basic_string:
return StringView("basic_string");
case SpecialSubKind::string:
return StringView("basic_string");
case SpecialSubKind::istream:
return StringView("basic_istream");
case SpecialSubKind::ostream:
return StringView("basic_ostream");
case SpecialSubKind::iostream:
return StringView("basic_iostream");
}
LLVM_BUILTIN_UNREACHABLE;
}
void printLeft(OutputStream &S) const override {
switch (SSK) {
case SpecialSubKind::allocator:
S += "std::basic_string<char, std::char_traits<char>, "
"std::allocator<char> >";
break;
case SpecialSubKind::basic_string:
case SpecialSubKind::string:
S += "std::basic_string<char, std::char_traits<char>, "
"std::allocator<char> >";
break;
case SpecialSubKind::istream:
S += "std::basic_istream<char, std::char_traits<char> >";
break;
case SpecialSubKind::ostream:
S += "std::basic_ostream<char, std::char_traits<char> >";
break;
case SpecialSubKind::iostream:
S += "std::basic_iostream<char, std::char_traits<char> >";
break;
}
}
};
class SpecialSubstitution final : public Node {
public:
SpecialSubKind SSK;
SpecialSubstitution(SpecialSubKind SSK_)
: Node(KSpecialSubstitution), SSK(SSK_) {}
StringView getBaseName() const override {
switch (SSK) {
case SpecialSubKind::allocator:
return StringView("allocator");
case SpecialSubKind::basic_string:
return StringView("basic_string");
case SpecialSubKind::string:
return StringView("string");
case SpecialSubKind::istream:
return StringView("istream");
case SpecialSubKind::ostream:
return StringView("ostream");
case SpecialSubKind::iostream:
return StringView("iostream");
}
LLVM_BUILTIN_UNREACHABLE;
}
void printLeft(OutputStream &S) const override {
switch (SSK) {
case SpecialSubKind::allocator:
S += "std::allocator";
break;
case SpecialSubKind::basic_string:
S += "std::basic_string";
break;
case SpecialSubKind::string:
S += "std::string";
break;
case SpecialSubKind::istream:
S += "std::istream";
break;
case SpecialSubKind::ostream:
S += "std::ostream";
break;
case SpecialSubKind::iostream:
S += "std::iostream";
break;
}
}
};
class CtorDtorName final : public Node {
const Node *Basename;
const bool IsDtor;
public:
CtorDtorName(Node *Basename_, bool IsDtor_)
: Node(KCtorDtorName, Basename_->ParameterPackSize),
Basename(Basename_), IsDtor(IsDtor_) {}
void printLeft(OutputStream &S) const override {
if (IsDtor)
S += "~";
S += Basename->getBaseName();
}
};
class DtorName : public Node {
const Node *Base;
public:
DtorName(Node *Base_) : Node(KDtorName), Base(Base_) {
ParameterPackSize = Base->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += "~";
Base->printLeft(S);
}
};
class UnnamedTypeName : public Node {
const StringView Count;
public:
UnnamedTypeName(StringView Count_) : Node(KUnnamedTypeName), Count(Count_) {}
void printLeft(OutputStream &S) const override {
S += "'unnamed";
S += Count;
S += "\'";
}
};
class ClosureTypeName : public Node {
NodeArray Params;
StringView Count;
public:
ClosureTypeName(NodeArray Params_, StringView Count_)
: Node(KClosureTypeName), Params(Params_), Count(Count_) {
for (Node *P : Params)
ParameterPackSize = std::min(ParameterPackSize, P->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
S += "\'lambda";
S += Count;
S += "\'(";
Params.printWithComma(S);
S += ")";
}
};
class StructuredBindingName : public Node {
NodeArray Bindings;
public:
StructuredBindingName(NodeArray Bindings_)
: Node(KStructuredBindingName), Bindings(Bindings_) {}
void printLeft(OutputStream &S) const override {
S += '[';
Bindings.printWithComma(S);
S += ']';
}
};
// -- Expression Nodes --
struct Expr : public Node {
Expr(Kind K = KExpr) : Node(K) {}
};
class BinaryExpr : public Expr {
const Node *LHS;
const StringView InfixOperator;
const Node *RHS;
public:
BinaryExpr(Node *LHS_, StringView InfixOperator_, Node *RHS_)
: LHS(LHS_), InfixOperator(InfixOperator_), RHS(RHS_) {
ParameterPackSize =
std::min(LHS->ParameterPackSize, RHS->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
// might be a template argument expression, then we need to disambiguate
// with parens.
if (InfixOperator == ">")
S += "(";
S += "(";
LHS->print(S);
S += ") ";
S += InfixOperator;
S += " (";
RHS->print(S);
S += ")";
if (InfixOperator == ">")
S += ")";
}
};
class ArraySubscriptExpr : public Expr {
const Node *Op1;
const Node *Op2;
public:
ArraySubscriptExpr(Node *Op1_, Node *Op2_) : Op1(Op1_), Op2(Op2_) {
ParameterPackSize =
std::min(Op1->ParameterPackSize, Op2->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
S += "(";
Op1->print(S);
S += ")[";
Op2->print(S);
S += "]";
}
};
class PostfixExpr : public Expr {
const Node *Child;
const StringView Operand;
public:
PostfixExpr(Node *Child_, StringView Operand_)
: Child(Child_), Operand(Operand_) {
ParameterPackSize = Child->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += "(";
Child->print(S);
S += ")";
S += Operand;
}
};
class ConditionalExpr : public Expr {
const Node *Cond;
const Node *Then;
const Node *Else;
public:
ConditionalExpr(Node *Cond_, Node *Then_, Node *Else_)
: Cond(Cond_), Then(Then_), Else(Else_) {
ParameterPackSize =
std::min(Cond->ParameterPackSize,
std::min(Then->ParameterPackSize, Else->ParameterPackSize));
}
void printLeft(OutputStream &S) const override {
S += "(";
Cond->print(S);
S += ") ? (";
Then->print(S);
S += ") : (";
Else->print(S);
S += ")";
}
};
class MemberExpr : public Expr {
const Node *LHS;
const StringView Kind;
const Node *RHS;
public:
MemberExpr(Node *LHS_, StringView Kind_, Node *RHS_)
: LHS(LHS_), Kind(Kind_), RHS(RHS_) {
ParameterPackSize =
std::min(LHS->ParameterPackSize, RHS->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
LHS->print(S);
S += Kind;
RHS->print(S);
}
};
class EnclosingExpr : public Expr {
const StringView Prefix;
const Node *Infix;
const StringView Postfix;
public:
EnclosingExpr(StringView Prefix_, Node *Infix_, StringView Postfix_)
: Prefix(Prefix_), Infix(Infix_), Postfix(Postfix_) {
ParameterPackSize = Infix->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += Prefix;
Infix->print(S);
S += Postfix;
}
};
class CastExpr : public Expr {
// cast_kind<to>(from)
const StringView CastKind;
const Node *To;
const Node *From;
public:
CastExpr(StringView CastKind_, Node *To_, Node *From_)
: CastKind(CastKind_), To(To_), From(From_) {
ParameterPackSize =
std::min(To->ParameterPackSize, From->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
S += CastKind;
S += "<";
To->printLeft(S);
S += ">(";
From->printLeft(S);
S += ")";
}
};
class SizeofParamPackExpr : public Expr {
Node *Pack;
public:
SizeofParamPackExpr(Node *Pack_) : Pack(Pack_) {}
void printLeft(OutputStream &S) const override {
S += "sizeof...(";
ParameterPackExpansion PPE(Pack);
PPE.printLeft(S);
S += ")";
}
};
class CallExpr : public Expr {
const Node *Callee;
NodeArray Args;
public:
CallExpr(Node *Callee_, NodeArray Args_) : Callee(Callee_), Args(Args_) {
for (Node *P : Args)
ParameterPackSize = std::min(ParameterPackSize, P->ParameterPackSize);
ParameterPackSize = std::min(ParameterPackSize, Callee->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
Callee->print(S);
S += "(";
Args.printWithComma(S);
S += ")";
}
};
class NewExpr : public Expr {
// new (expr_list) type(init_list)
NodeArray ExprList;
Node *Type;
NodeArray InitList;
bool IsGlobal; // ::operator new ?
bool IsArray; // new[] ?
public:
NewExpr(NodeArray ExprList_, Node *Type_, NodeArray InitList_, bool IsGlobal_,
bool IsArray_)
: ExprList(ExprList_), Type(Type_), InitList(InitList_),
IsGlobal(IsGlobal_), IsArray(IsArray_) {
for (Node *E : ExprList)
ParameterPackSize = std::min(ParameterPackSize, E->ParameterPackSize);
for (Node *I : InitList)
ParameterPackSize = std::min(ParameterPackSize, I->ParameterPackSize);
if (Type)
ParameterPackSize = std::min(ParameterPackSize, Type->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
if (IsGlobal)
S += "::operator ";
S += "new";
if (IsArray)
S += "[]";
S += ' ';
if (!ExprList.empty()) {
S += "(";
ExprList.printWithComma(S);
S += ")";
}
Type->print(S);
if (!InitList.empty()) {
S += "(";
InitList.printWithComma(S);
S += ")";
}
}
};
class DeleteExpr : public Expr {
Node *Op;
bool IsGlobal;
bool IsArray;
public:
DeleteExpr(Node *Op_, bool IsGlobal_, bool IsArray_)
: Op(Op_), IsGlobal(IsGlobal_), IsArray(IsArray_) {
ParameterPackSize = Op->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
if (IsGlobal)
S += "::";
S += "delete";
if (IsArray)
S += "[] ";
Op->print(S);
}
};
class PrefixExpr : public Expr {
StringView Prefix;
Node *Child;
public:
PrefixExpr(StringView Prefix_, Node *Child_) : Prefix(Prefix_), Child(Child_) {
ParameterPackSize = Child->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += Prefix;
S += "(";
Child->print(S);
S += ")";
}
};
class FunctionParam : public Expr {
StringView Number;
public:
FunctionParam(StringView Number_) : Number(Number_) {}
void printLeft(OutputStream &S) const override {
S += "fp";
S += Number;
}
};
class ConversionExpr : public Expr {
const Node *Type;
NodeArray Expressions;
public:
ConversionExpr(const Node *Type_, NodeArray Expressions_)
: Type(Type_), Expressions(Expressions_) {
for (Node *E : Expressions)
ParameterPackSize = std::min(ParameterPackSize, E->ParameterPackSize);
ParameterPackSize = std::min(ParameterPackSize, Type->ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
S += "(";
Type->print(S);
S += ")(";
Expressions.printWithComma(S);
S += ")";
}
};
class InitListExpr : public Expr {
Node *Ty;
NodeArray Inits;
public:
InitListExpr(Node *Ty_, NodeArray Inits_)
: Ty(Ty_), Inits(Inits_) {
if (Ty)
ParameterPackSize = Ty->ParameterPackSize;
for (Node *I : Inits)
ParameterPackSize = std::min(I->ParameterPackSize, ParameterPackSize);
}
void printLeft(OutputStream &S) const override {
if (Ty)
Ty->print(S);
S += '{';
Inits.printWithComma(S);
S += '}';
}
};
class BracedExpr : public Expr {
Node *Elem;
Node *Init;
bool IsArray;
public:
BracedExpr(Node *Elem_, Node *Init_, bool IsArray_)
: Expr(KBracedExpr), Elem(Elem_), Init(Init_), IsArray(IsArray_) {}
void printLeft(OutputStream &S) const override {
if (IsArray) {
S += '[';
Elem->print(S);
S += ']';
} else {
S += '.';
Elem->print(S);
}
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
S += " = ";
Init->print(S);
}
};
class BracedRangeExpr : public Expr {
Node *First;
Node *Last;
Node *Init;
public:
BracedRangeExpr(Node *First_, Node *Last_, Node *Init_)
: Expr(KBracedRangeExpr), First(First_), Last(Last_), Init(Init_) {}
void printLeft(OutputStream &S) const override {
S += '[';
First->print(S);
S += " ... ";
Last->print(S);
S += ']';
if (Init->getKind() != KBracedExpr && Init->getKind() != KBracedRangeExpr)
S += " = ";
Init->print(S);
}
};
class ThrowExpr : public Expr {
const Node *Op;
public:
ThrowExpr(Node *Op_) : Op(Op_) {
ParameterPackSize = Op->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += "throw ";
Op->print(S);
}
};
class BoolExpr : public Expr {
bool Value;
public:
BoolExpr(bool Value_) : Value(Value_) {}
void printLeft(OutputStream &S) const override {
S += Value ? StringView("true") : StringView("false");
}
};
class IntegerCastExpr : public Expr {
// ty(integer)
Node *Ty;
StringView Integer;
public:
IntegerCastExpr(Node *Ty_, StringView Integer_) : Ty(Ty_), Integer(Integer_) {
ParameterPackSize = Ty->ParameterPackSize;
}
void printLeft(OutputStream &S) const override {
S += "(";
Ty->print(S);
S += ")";
S += Integer;
}
};
class IntegerExpr : public Expr {
StringView Type;
StringView Value;
public:
IntegerExpr(StringView Type_, StringView Value_) : Type(Type_), Value(Value_) {}
void printLeft(OutputStream &S) const override {
if (Type.size() > 3) {
S += "(";
S += Type;
S += ")";
}
if (Value[0] == 'n') {
S += "-";
S += Value.dropFront(1);
} else
S += Value;
if (Type.size() <= 3)
S += Type;
}
};
template <class Float> struct FloatData;
template <class Float> class FloatExpr : public Expr {
const StringView Contents;
public:
FloatExpr(StringView Contents_) : Contents(Contents_) {}
void printLeft(OutputStream &s) const override {
const char *first = Contents.begin();
const char *last = Contents.end() + 1;
const size_t N = FloatData<Float>::mangled_size;
if (static_cast<std::size_t>(last - first) > N) {
last = first + N;
union {
Float value;
char buf[sizeof(Float)];
};
const char *t = first;
char *e = buf;
for (; t != last; ++t, ++e) {
unsigned d1 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
++t;
unsigned d0 = isdigit(*t) ? static_cast<unsigned>(*t - '0')
: static_cast<unsigned>(*t - 'a' + 10);
*e = static_cast<char>((d1 << 4) + d0);
}
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
std::reverse(buf, e);
#endif
char num[FloatData<Float>::max_demangled_size] = {0};
int n = snprintf(num, sizeof(num), FloatData<Float>::spec, value);
s += StringView(num, num + n);
}
}
};
class BumpPointerAllocator {
struct BlockMeta {
BlockMeta* Next;
size_t Current;
};
static constexpr size_t AllocSize = 4096;
static constexpr size_t UsableAllocSize = AllocSize - sizeof(BlockMeta);
alignas(16) char InitialBuffer[AllocSize];
BlockMeta* BlockList = nullptr;
void grow() {
char* NewMeta = new char[AllocSize];
BlockList = new (NewMeta) BlockMeta{BlockList, 0};
}
void* allocateMassive(size_t NBytes) {
NBytes += sizeof(BlockMeta);
BlockMeta* NewMeta = reinterpret_cast<BlockMeta*>(new char[NBytes]);
BlockList->Next = new (NewMeta) BlockMeta{BlockList->Next, 0};
return static_cast<void*>(NewMeta + 1);
}
public:
BumpPointerAllocator()
: BlockList(new (InitialBuffer) BlockMeta{nullptr, 0}) {}
void* allocate(size_t N) {
N = (N + 15u) & ~15u;
if (N + BlockList->Current >= UsableAllocSize) {
if (N > UsableAllocSize)
return allocateMassive(N);
grow();
}
BlockList->Current += N;
return static_cast<void*>(reinterpret_cast<char*>(BlockList + 1) +
BlockList->Current - N);
}
~BumpPointerAllocator() {
while (BlockList) {
BlockMeta* Tmp = BlockList;
BlockList = BlockList->Next;
if (reinterpret_cast<char*>(Tmp) != InitialBuffer)
delete[] reinterpret_cast<char*>(Tmp);
}
}
};
template <class T, size_t N>
class PODSmallVector {
static_assert(std::is_pod<T>::value,
"T is required to be a plain old data type");
T* First;
T* Last;
T* Cap;
T Inline[N];
bool isInline() const { return First == Inline; }
void clearInline() {
First = Inline;
Last = Inline;
Cap = Inline + N;
}
void reserve(size_t NewCap) {
size_t S = size();
if (isInline()) {
auto* Tmp = static_cast<T*>(std::malloc(NewCap * sizeof(T)));
std::copy(First, Last, Tmp);
First = Tmp;
} else
First = static_cast<T*>(std::realloc(First, NewCap * sizeof(T)));
Last = First + S;
Cap = First + NewCap;
}
public:
PODSmallVector() : First(Inline), Last(First), Cap(Inline + N) {}
PODSmallVector(const PODSmallVector&) = delete;
PODSmallVector& operator=(const PODSmallVector&) = delete;
PODSmallVector(PODSmallVector&& Other) : PODSmallVector() {
if (Other.isInline()) {
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return;
}
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
}
PODSmallVector& operator=(PODSmallVector&& Other) {
if (Other.isInline()) {
if (!isInline()) {
std::free(First);
clearInline();
}
std::copy(Other.begin(), Other.end(), First);
Last = First + Other.size();
Other.clear();
return *this;
}
if (isInline()) {
First = Other.First;
Last = Other.Last;
Cap = Other.Cap;
Other.clearInline();
return *this;
}
std::swap(First, Other.First);
std::swap(Last, Other.Last);
std::swap(Cap, Other.Cap);
Other.clear();
return *this;
}
void push_back(const T& Elem) {
if (Last == Cap)
reserve(size() * 2);
*Last++ = Elem;
}
void pop_back() {
assert(Last != First && "Popping empty vector!");
--Last;
}
void dropBack(size_t Index) {
assert(Index <= size() && "dropBack() can't expand!");
Last = First + Index;
}
T* begin() { return First; }
T* end() { return Last; }
bool empty() const { return First == Last; }
size_t size() const { return static_cast<size_t>(Last - First); }
T& back() {
assert(Last != First && "Calling back() on empty vector!");
return *(Last - 1);
}
T& operator[](size_t Index) {
assert(Index < size() && "Invalid access!");
return *(begin() + Index);
}
void clear() { Last = First; }
~PODSmallVector() {
if (!isInline())
std::free(First);
}
};
struct Db {
const char *First;
const char *Last;
// Name stack, this is used by the parser to hold temporary names that were
// parsed. The parser colapses multiple names into new nodes to construct
// the AST. Once the parser is finished, names.size() == 1.
PODSmallVector<Node *, 32> Names;
// Substitution table. Itanium supports name substitutions as a means of
// compression. The string "S42_" refers to the 44nd entry (base-36) in this
// table.
PODSmallVector<Node *, 32> Subs;
// Template parameter table. Like the above, but referenced like "T42_".
// This has a smaller size compared to Subs and Names because it can be
// stored on the stack.
PODSmallVector<Node *, 8> TemplateParams;
unsigned EncodingDepth = 0;
bool TagTemplates = true;
bool FixForwardReferences = false;
bool TryToParseTemplateArgs = true;
bool ParsingLambdaParams = false;
BumpPointerAllocator ASTAllocator;
Db(const char *First_, const char *Last_) : First(First_), Last(Last_) {}
template <class T, class... Args> T *make(Args &&... args) {
return new (ASTAllocator.allocate(sizeof(T)))
T(std::forward<Args>(args)...);
}
template <class It> NodeArray makeNodeArray(It begin, It end) {
size_t sz = static_cast<size_t>(end - begin);
void *mem = ASTAllocator.allocate(sizeof(Node *) * sz);
Node **data = new (mem) Node *[sz];
std::copy(begin, end, data);
return NodeArray(data, sz);
}
NodeArray popTrailingNodeArray(size_t FromPosition) {
assert(FromPosition <= Names.size());
NodeArray res =
makeNodeArray(Names.begin() + (long)FromPosition, Names.end());
Names.dropBack(FromPosition);
return res;
}
bool consumeIf(StringView S) {
if (StringView(First, Last).startsWith(S)) {
First += S.size();
return true;
}
return false;
}
bool consumeIf(char C) {
if (First != Last && *First == C) {
++First;
return true;
}
return false;
}
char consume() { return First != Last ? *First++ : '\0'; }
char look(unsigned Lookahead = 0) {
if (static_cast<size_t>(Last - First) <= Lookahead)
return '\0';
return First[Lookahead];
}
size_t numLeft() const { return static_cast<size_t>(Last - First); }
StringView parseNumber(bool AllowNegative = false);
Qualifiers parseCVQualifiers();
bool parsePositiveInteger(size_t *Out);
StringView parseBareSourceName();
bool parseSeqId(size_t *Out);
Node *parseSubstitution();
Node *parseTemplateParam();
Node *parseTemplateArgs();
Node *parseTemplateArg();
/// Parse the <expr> production.
Node *parseExpr();
Node *parsePrefixExpr(StringView Kind);
Node *parseBinaryExpr(StringView Kind);
Node *parseIntegerLiteral(StringView Lit);
Node *parseExprPrimary();
template <class Float> Node *parseFloatingLiteral();
Node *parseFunctionParam();
Node *parseNewExpr();
Node *parseConversionExpr();
Node *parseBracedExpr();
/// Parse the <type> production.
Node *parseType();
Node *parseFunctionType();
Node *parseVectorType();
Node *parseDecltype();
Node *parseArrayType();
Node *parsePointerToMemberType();
Node *parseClassEnumType();
Node *parseQualifiedType();
Node *parseEncoding();
bool parseCallOffset();
Node *parseSpecialName();
/// Holds some extra information about a <name> that is being parsed. This
/// information is only pertinent if the <name> refers to an <encoding>.
struct NameState {
bool CtorDtorConversion = false;
bool EndsWithTemplateArgs = false;
Qualifiers CVQualifiers = QualNone;
FunctionRefQual ReferenceQualifier = FrefQualNone;
};
/// Parse the <name> production>
Node *parseName(NameState *State = nullptr);
Node *parseLocalName(NameState *State);
Node *parseOperatorName(NameState *State);
Node *parseUnqualifiedName(NameState *State);
Node *parseUnnamedTypeName(NameState *State);
Node *parseSourceName(NameState *State);
Node *parseUnscopedName(NameState *State);
Node *parseNestedName(NameState *State);
Node *parseCtorDtorName(Node *&SoFar, NameState *State);
Node *parseAbiTags(Node *N);
/// Parse the <unresolved-name> production.
Node *parseUnresolvedName();
Node *parseSimpleId();
Node *parseBaseUnresolvedName();
Node *parseUnresolvedType();
Node *parseDestructorName();
/// Top-level entry point into the parser.
Node *parse();
};
const char* parse_discriminator(const char* first, const char* last);
// <name> ::= <nested-name> // N
// ::= <local-name> # See Scope Encoding below // Z
// ::= <unscoped-template-name> <template-args>
// ::= <unscoped-name>
//
// <unscoped-template-name> ::= <unscoped-name>
// ::= <substitution>
Node *Db::parseName(NameState *State) {
consumeIf('L'); // extension
if (look() == 'N')
return parseNestedName(State);
if (look() == 'Z')
return parseLocalName(State);
// ::= <unscoped-template-name> <template-args>
if (look() == 'S' && look(1) != 't') {
Node *S = parseSubstitution();
if (S == nullptr)
return nullptr;
if (look() != 'I')
return nullptr;
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
if (State) State->EndsWithTemplateArgs = true;
return make<NameWithTemplateArgs>(S, TA);
}
Node *N = parseUnscopedName(State);
if (N == nullptr)
return nullptr;
// ::= <unscoped-template-name> <template-args>
if (look() == 'I') {
Subs.push_back(N);
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
if (State) State->EndsWithTemplateArgs = true;
return make<NameWithTemplateArgs>(N, TA);
}
// ::= <unscoped-name>
return N;
}
// <local-name> := Z <function encoding> E <entity name> [<discriminator>]
// := Z <function encoding> E s [<discriminator>]
// := Z <function encoding> Ed [ <parameter number> ] _ <entity name>
Node *Db::parseLocalName(NameState *State) {
if (!consumeIf('Z'))
return nullptr;
Node *Encoding = parseEncoding();
if (Encoding == nullptr || !consumeIf('E'))
return nullptr;
if (consumeIf('s')) {
First = parse_discriminator(First, Last);
return make<QualifiedName>(Encoding, make<NameType>("string literal"));
}
if (consumeIf('d')) {
parseNumber(true);
if (!consumeIf('_'))
return nullptr;
Node *N = parseName(State);
if (N == nullptr)
return nullptr;
return make<QualifiedName>(Encoding, N);
}
Node *Entity = parseName(State);
if (Entity == nullptr)
return nullptr;
First = parse_discriminator(First, Last);
return make<QualifiedName>(Encoding, Entity);
}
// <unscoped-name> ::= <unqualified-name>
// ::= St <unqualified-name> # ::std::
// extension ::= StL<unqualified-name>
Node *Db::parseUnscopedName(NameState *State) {
if (consumeIf("StL") || consumeIf("St")) {
Node *R = parseUnqualifiedName(State);
if (R == nullptr)
return nullptr;
return make<StdQualifiedName>(R);
}
return parseUnqualifiedName(State);
}
// <unqualified-name> ::= <operator-name> [abi-tags]
// ::= <ctor-dtor-name>
// ::= <source-name>
// ::= <unnamed-type-name>
// ::= DC <source-name>+ E # structured binding declaration
Node *Db::parseUnqualifiedName(NameState *State) {
// <ctor-dtor-name>s are special-cased in parseNestedName().
Node *Result;
if (look() == 'U')
Result = parseUnnamedTypeName(State);
else if (look() >= '1' && look() <= '9')
Result = parseSourceName(State);
else if (consumeIf("DC")) {
size_t BindingsBegin = Names.size();
do {
Node *Binding = parseSourceName(State);
if (Binding == nullptr)
return nullptr;
Names.push_back(Binding);
} while (!consumeIf('E'));
Result = make<StructuredBindingName>(popTrailingNodeArray(BindingsBegin));
} else
Result = parseOperatorName(State);
if (Result != nullptr)
Result = parseAbiTags(Result);
return Result;
}
// <unnamed-type-name> ::= Ut [<nonnegative number>] _
// ::= <closure-type-name>
//
// <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
//
// <lambda-sig> ::= <parameter type>+ # Parameter types or "v" if the lambda has no parameters
Node *Db::parseUnnamedTypeName(NameState *) {
if (consumeIf("Ut")) {
StringView Count = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<UnnamedTypeName>(Count);
}
if (consumeIf("Ul")) {
NodeArray Params;
SwapAndRestore<bool> SwapParams(ParsingLambdaParams, true);
if (!consumeIf("vE")) {
size_t ParamsBegin = Names.size();
do {
Node *P = parseType();
if (P == nullptr)
return nullptr;
Names.push_back(P);
} while (!consumeIf('E'));
Params = popTrailingNodeArray(ParamsBegin);
}
StringView Count = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<ClosureTypeName>(Params, Count);
}
return nullptr;
}
// <source-name> ::= <positive length number> <identifier>
Node *Db::parseSourceName(NameState *) {
size_t Length = 0;
if (parsePositiveInteger(&Length))
return nullptr;
if (numLeft() < Length || Length == 0)
return nullptr;
StringView Name(First, First + Length);
First += Length;
if (Name.startsWith("_GLOBAL__N"))
return make<NameType>("(anonymous namespace)");
return make<NameType>(Name);
}
// <operator-name> ::= aa # &&
// ::= ad # & (unary)
// ::= an # &
// ::= aN # &=
// ::= aS # =
// ::= cl # ()
// ::= cm # ,
// ::= co # ~
// ::= cv <type> # (cast)
// ::= da # delete[]
// ::= de # * (unary)
// ::= dl # delete
// ::= dv # /
// ::= dV # /=
// ::= eo # ^
// ::= eO # ^=
// ::= eq # ==
// ::= ge # >=
// ::= gt # >
// ::= ix # []
// ::= le # <=
// ::= li <source-name> # operator ""
// ::= ls # <<
// ::= lS # <<=
// ::= lt # <
// ::= mi # -
// ::= mI # -=
// ::= ml # *
// ::= mL # *=
// ::= mm # -- (postfix in <expression> context)
// ::= na # new[]
// ::= ne # !=
// ::= ng # - (unary)
// ::= nt # !
// ::= nw # new
// ::= oo # ||
// ::= or # |
// ::= oR # |=
// ::= pm # ->*
// ::= pl # +
// ::= pL # +=
// ::= pp # ++ (postfix in <expression> context)
// ::= ps # + (unary)
// ::= pt # ->
// ::= qu # ?
// ::= rm # %
// ::= rM # %=
// ::= rs # >>
// ::= rS # >>=
// ::= ss # <=> C++2a
// ::= v <digit> <source-name> # vendor extended operator
Node *Db::parseOperatorName(NameState *State) {
switch (look()) {
case 'a':
switch (look(1)) {
case 'a':
First += 2;
return make<NameType>("operator&&");
case 'd':
case 'n':
First += 2;
return make<NameType>("operator&");
case 'N':
First += 2;
return make<NameType>("operator&=");
case 'S':
First += 2;
return make<NameType>("operator=");
}
return nullptr;
case 'c':
switch (look(1)) {
case 'l':
First += 2;
return make<NameType>("operator()");
case 'm':
First += 2;
return make<NameType>("operator,");
case 'o':
First += 2;
return make<NameType>("operator~");
// ::= cv <type> # (cast)
case 'v': {
SwapAndRestore<bool> SaveTemplate(TryToParseTemplateArgs, false);
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
if (State) State->CtorDtorConversion = true;
return make<ConversionOperatorType>(Ty);
}
}
return nullptr;
case 'd':
switch (look(1)) {
case 'a':
First += 2;
return make<NameType>("operator delete[]");
case 'e':
First += 2;
return make<NameType>("operator*");
case 'l':
First += 2;
return make<NameType>("operator delete");
case 'v':
First += 2;
return make<NameType>("operator/");
case 'V':
First += 2;
return make<NameType>("operator/=");
}
return nullptr;
case 'e':
switch (look(1)) {
case 'o':
First += 2;
return make<NameType>("operator^");
case 'O':
First += 2;
return make<NameType>("operator^=");
case 'q':
First += 2;
return make<NameType>("operator==");
}
return nullptr;
case 'g':
switch (look(1)) {
case 'e':
First += 2;
return make<NameType>("operator>=");
case 't':
First += 2;
return make<NameType>("operator>");
}
return nullptr;
case 'i':
if (look(1) == 'x') {
First += 2;
return make<NameType>("operator[]");
}
return nullptr;
case 'l':
switch (look(1)) {
case 'e':
First += 2;
return make<NameType>("operator<=");
// ::= li <source-name> # operator ""
case 'i': {
First += 2;
Node *SN = parseSourceName(State);
if (SN == nullptr)
return nullptr;
return make<LiteralOperator>(SN);
}
case 's':
First += 2;
return make<NameType>("operator<<");
case 'S':
First += 2;
return make<NameType>("operator<<=");
case 't':
First += 2;
return make<NameType>("operator<");
}
return nullptr;
case 'm':
switch (look(1)) {
case 'i':
First += 2;
return make<NameType>("operator-");
case 'I':
First += 2;
return make<NameType>("operator-=");
case 'l':
First += 2;
return make<NameType>("operator*");
case 'L':
First += 2;
return make<NameType>("operator*=");
case 'm':
First += 2;
return make<NameType>("operator--");
}
return nullptr;
case 'n':
switch (look(1)) {
case 'a':
First += 2;
return make<NameType>("operator new[]");
case 'e':
First += 2;
return make<NameType>("operator!=");
case 'g':
First += 2;
return make<NameType>("operator-");
case 't':
First += 2;
return make<NameType>("operator!");
case 'w':
First += 2;
return make<NameType>("operator new");
}
return nullptr;
case 'o':
switch (look(1)) {
case 'o':
First += 2;
return make<NameType>("operator||");
case 'r':
First += 2;
return make<NameType>("operator|");
case 'R':
First += 2;
return make<NameType>("operator|=");
}
return nullptr;
case 'p':
switch (look(1)) {
case 'm':
First += 2;
return make<NameType>("operator->*");
case 'l':
First += 2;
return make<NameType>("operator+");
case 'L':
First += 2;
return make<NameType>("operator+=");
case 'p':
First += 2;
return make<NameType>("operator++");
case 's':
First += 2;
return make<NameType>("operator+");
case 't':
First += 2;
return make<NameType>("operator->");
}
return nullptr;
case 'q':
if (look(1) == 'u') {
First += 2;
return make<NameType>("operator?");
}
return nullptr;
case 'r':
switch (look(1)) {
case 'm':
First += 2;
return make<NameType>("operator%");
case 'M':
First += 2;
return make<NameType>("operator%=");
case 's':
First += 2;
return make<NameType>("operator>>");
case 'S':
First += 2;
return make<NameType>("operator>>=");
}
return nullptr;
case 's':
if (look(1) == 's') {
First += 2;
return make<NameType>("operator<=>");
}
return nullptr;
// ::= v <digit> <source-name> # vendor extended operator
case 'v':
if (std::isdigit(look(1))) {
First += 2;
Node *SN = parseSourceName(State);
if (SN == nullptr)
return nullptr;
return make<ConversionOperatorType>(SN);
}
return nullptr;
}
return nullptr;
}
// <ctor-dtor-name> ::= C1 # complete object constructor
// ::= C2 # base object constructor
// ::= C3 # complete object allocating constructor
// extension ::= C5 # ?
// ::= D0 # deleting destructor
// ::= D1 # complete object destructor
// ::= D2 # base object destructor
// extension ::= D5 # ?
Node *Db::parseCtorDtorName(Node *&SoFar, NameState *State) {
if (SoFar->K == Node::KSpecialSubstitution) {
auto SSK = static_cast<SpecialSubstitution *>(SoFar)->SSK;
switch (SSK) {
case SpecialSubKind::string:
case SpecialSubKind::istream:
case SpecialSubKind::ostream:
case SpecialSubKind::iostream:
SoFar = make<ExpandedSpecialSubstitution>(SSK);
default:
break;
}
}
if (consumeIf('C')) {
bool IsInherited = consumeIf('I');
if (look() != '1' && look() != '2' && look() != '3' && look() != '5')
return nullptr;
++First;
if (State) State->CtorDtorConversion = true;
if (IsInherited) {
if (parseName() == nullptr)
return nullptr;
}
return make<CtorDtorName>(SoFar, false);
}
if (look() == 'D' &&
(look(1) == '0' || look(1) == '1' || look(1) == '2' || look(1) == '5')) {
First += 2;
if (State) State->CtorDtorConversion = true;
return make<CtorDtorName>(SoFar, true);
}
return nullptr;
}
// <nested-name> ::= N [<CV-Qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
// ::= N [<CV-Qualifiers>] [<ref-qualifier>] <template-prefix> <template-args> E
//
// <prefix> ::= <prefix> <unqualified-name>
// ::= <template-prefix> <template-args>
// ::= <template-param>
// ::= <decltype>
// ::= # empty
// ::= <substitution>
// ::= <prefix> <data-member-prefix>
// extension ::= L
//
// <template-prefix> ::= <prefix> <template unqualified-name>
// ::= <template-param>
// ::= <substitution>
Node *Db::parseNestedName(NameState *State) {
if (!consumeIf('N'))
return nullptr;
Qualifiers CVTmp = parseCVQualifiers();
if (State) State->CVQualifiers = CVTmp;
if (consumeIf('O')) {
if (State) State->ReferenceQualifier = FrefQualRValue;
} else if (consumeIf('R')) {
if (State) State->ReferenceQualifier = FrefQualLValue;
} else
if (State) State->ReferenceQualifier = FrefQualNone;
Node *SoFar = nullptr;
auto PushComponent = [&](Node *Comp) {
if (SoFar) SoFar = make<QualifiedName>(SoFar, Comp);
else SoFar = Comp;
if (State) State->EndsWithTemplateArgs = false;
};
if (consumeIf("St"))
SoFar = make<NameType>("std");
while (!consumeIf('E')) {
consumeIf('L'); // extension
// ::= <template-param>
if (look() == 'T') {
Node *TP = parseTemplateParam();
if (TP == nullptr)
return nullptr;
PushComponent(TP);
Subs.push_back(SoFar);
continue;
}
// ::= <template-prefix> <template-args>
if (look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr || SoFar == nullptr)
return nullptr;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
if (State) State->EndsWithTemplateArgs = true;
Subs.push_back(SoFar);
continue;
}
// ::= <decltype>
if (look() == 'D' && (look(1) == 't' || look(1) == 'T')) {
Node *DT = parseDecltype();
if (DT == nullptr)
return nullptr;
PushComponent(DT);
Subs.push_back(SoFar);
continue;
}
// ::= <substitution>
if (look() == 'S' && look(1) != 't') {
Node *S = parseSubstitution();
if (S == nullptr)
return nullptr;
PushComponent(S);
if (SoFar != S)
Subs.push_back(S);
continue;
}
// Parse an <unqualified-name> thats actually a <ctor-dtor-name>.
if (look() == 'C' || (look() == 'D' && look(1) != 'C')) {
if (SoFar == nullptr)
return nullptr;
Node *CtorDtor = parseCtorDtorName(SoFar, State);
if (CtorDtor == nullptr)
return nullptr;
PushComponent(CtorDtor);
SoFar = parseAbiTags(SoFar);
if (SoFar == nullptr)
return nullptr;
Subs.push_back(SoFar);
continue;
}
// ::= <prefix> <unqualified-name>
Node *N = parseUnqualifiedName(State);
if (N == nullptr)
return nullptr;
PushComponent(N);
Subs.push_back(SoFar);
}
if (SoFar == nullptr || Subs.empty())
return nullptr;
Subs.pop_back();
return SoFar;
}
// <simple-id> ::= <source-name> [ <template-args> ]
Node *Db::parseSimpleId() {
Node *SN = parseSourceName(/*NameState=*/nullptr);
if (SN == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
return make<NameWithTemplateArgs>(SN, TA);
}
return SN;
}
// <destructor-name> ::= <unresolved-type> # e.g., ~T or ~decltype(f())
// ::= <simple-id> # e.g., ~A<2*N>
Node *Db::parseDestructorName() {
Node *Result;
if (std::isdigit(look()))
Result = parseSimpleId();
else
Result = parseUnresolvedType();
if (Result == nullptr)
return nullptr;
return make<DtorName>(Result);
}
// <unresolved-type> ::= <template-param>
// ::= <decltype>
// ::= <substitution>
Node *Db::parseUnresolvedType() {
if (look() == 'T') {
Node *TP = parseTemplateParam();
if (TP == nullptr)
return nullptr;
Subs.push_back(TP);
return TP;
}
if (look() == 'D') {
Node *DT = parseDecltype();
if (DT == nullptr)
return nullptr;
Subs.push_back(DT);
return DT;
}
return parseSubstitution();
}
// <base-unresolved-name> ::= <simple-id> # unresolved name
// extension ::= <operator-name> # unresolved operator-function-id
// extension ::= <operator-name> <template-args> # unresolved operator template-id
// ::= on <operator-name> # unresolved operator-function-id
// ::= on <operator-name> <template-args> # unresolved operator template-id
// ::= dn <destructor-name> # destructor or pseudo-destructor;
// # e.g. ~X or ~X<N-1>
Node *Db::parseBaseUnresolvedName() {
if (std::isdigit(look()))
return parseSimpleId();
if (consumeIf("dn"))
return parseDestructorName();
consumeIf("on");
Node *Oper = parseOperatorName(/*NameState=*/nullptr);
if (Oper == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
return make<NameWithTemplateArgs>(Oper, TA);
}
return Oper;
}
// <unresolved-name>
// extension ::= srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
// ::= [gs] <base-unresolved-name> # x or (with "gs") ::x
// ::= [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
// # A::x, N::y, A<T>::z; "gs" means leading "::"
// ::= sr <unresolved-type> <base-unresolved-name> # T::x / decltype(p)::x
// extension ::= sr <unresolved-type> <template-args> <base-unresolved-name>
// # T::N::x /decltype(p)::N::x
// (ignored) ::= srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
//
// <unresolved-qualifier-level> ::= <simple-id>
Node *Db::parseUnresolvedName() {
Node *SoFar = nullptr;
// srN <unresolved-type> [<template-args>] <unresolved-qualifier-level>* E <base-unresolved-name>
// srN <unresolved-type> <unresolved-qualifier-level>+ E <base-unresolved-name>
if (consumeIf("srN")) {
SoFar = parseUnresolvedType();
if (SoFar == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
}
while (!consumeIf('E')) {
Node *Qual = parseSimpleId();
if (Qual == nullptr)
return nullptr;
SoFar = make<QualifiedName>(SoFar, Qual);
}
Node *Base = parseBaseUnresolvedName();
if (Base == nullptr)
return nullptr;
return make<QualifiedName>(SoFar, Base);
}
bool Global = consumeIf("gs");
// [gs] <base-unresolved-name> # x or (with "gs") ::x
if (!consumeIf("sr")) {
SoFar = parseBaseUnresolvedName();
if (SoFar == nullptr)
return nullptr;
if (Global)
SoFar = make<GlobalQualifiedName>(SoFar);
return SoFar;
}
// [gs] sr <unresolved-qualifier-level>+ E <base-unresolved-name>
if (std::isdigit(look())) {
do {
Node *Qual = parseSimpleId();
if (Qual == nullptr)
return nullptr;
if (SoFar)
SoFar = make<QualifiedName>(SoFar, Qual);
else if (Global)
SoFar = make<GlobalQualifiedName>(Qual);
else
SoFar = Qual;
} while (!consumeIf('E'));
}
// sr <unresolved-type> <base-unresolved-name>
// sr <unresolved-type> <template-args> <base-unresolved-name>
else {
SoFar = parseUnresolvedType();
if (SoFar == nullptr)
return nullptr;
if (look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
SoFar = make<NameWithTemplateArgs>(SoFar, TA);
}
}
assert(SoFar != nullptr);
Node *Base = parseBaseUnresolvedName();
if (Base == nullptr)
return nullptr;
return make<QualifiedName>(SoFar, Base);
}
// <abi-tags> ::= <abi-tag> [<abi-tags>]
// <abi-tag> ::= B <source-name>
Node *Db::parseAbiTags(Node *N) {
while (consumeIf('B')) {
StringView SN = parseBareSourceName();
if (SN.empty())
return nullptr;
N = make<AbiTagAttr>(N, SN);
}
return N;
}
// <number> ::= [n] <non-negative decimal integer>
StringView Db::parseNumber(bool AllowNegative) {
const char *Tmp = First;
if (AllowNegative)
consumeIf('n');
if (numLeft() == 0 || !std::isdigit(*First))
return StringView();
while (numLeft() != 0 && std::isdigit(*First))
++First;
return StringView(Tmp, First);
}
// <positive length number> ::= [0-9]*
bool Db::parsePositiveInteger(size_t *Out) {
*Out = 0;
if (look() < '0' || look() > '9')
return true;
while (look() >= '0' && look() <= '9') {
*Out *= 10;
*Out += static_cast<size_t>(consume() - '0');
}
return false;
}
StringView Db::parseBareSourceName() {
size_t Int = 0;
if (parsePositiveInteger(&Int) || numLeft() < Int)
return StringView();
StringView R(First, First + Int);
First += Int;
return R;
}
// <function-type> ::= [<CV-qualifiers>] [<exception-spec>] [Dx] F [Y] <bare-function-type> [<ref-qualifier>] E
//
// <exception-spec> ::= Do # non-throwing exception-specification (e.g., noexcept, throw())
// ::= DO <expression> E # computed (instantiation-dependent) noexcept
// ::= Dw <type>+ E # dynamic exception specification with instantiation-dependent types
//
// <ref-qualifier> ::= R # & ref-qualifier
// <ref-qualifier> ::= O # && ref-qualifier
Node *Db::parseFunctionType() {
Qualifiers CVQuals = parseCVQualifiers();
Node *ExceptionSpec = nullptr;
if (consumeIf("Do")) {
ExceptionSpec = make<NameType>("noexcept");
} else if (consumeIf("DO")) {
Node *E = parseExpr();
if (E == nullptr || !consumeIf('E'))
return nullptr;
ExceptionSpec = make<NoexceptSpec>(E);
} else if (consumeIf("Dw")) {
size_t SpecsBegin = Names.size();
while (!consumeIf('E')) {
Node *T = parseType();
if (T == nullptr)
return nullptr;
Names.push_back(T);
}
ExceptionSpec =
make<DynamicExceptionSpec>(popTrailingNodeArray(SpecsBegin));
}
consumeIf("Dx"); // transaction safe
if (!consumeIf('F'))
return nullptr;
consumeIf('Y'); // extern "C"
Node *ReturnType = parseType();
if (ReturnType == nullptr)
return nullptr;
FunctionRefQual ReferenceQualifier = FrefQualNone;
size_t ParamsBegin = Names.size();
while (true) {
if (consumeIf('E'))
break;
if (consumeIf('v'))
continue;
if (consumeIf("RE")) {
ReferenceQualifier = FrefQualLValue;
break;
}
if (consumeIf("OE")) {
ReferenceQualifier = FrefQualRValue;
break;
}
Node *T = parseType();
if (T == nullptr)
return nullptr;
Names.push_back(T);
}
NodeArray Params = popTrailingNodeArray(ParamsBegin);
return make<FunctionType>(ReturnType, Params, CVQuals,
ReferenceQualifier, ExceptionSpec);
}
// extension:
// <vector-type> ::= Dv <positive dimension number> _ <extended element type>
// ::= Dv [<dimension expression>] _ <element type>
// <extended element type> ::= <element type>
// ::= p # AltiVec vector pixel
Node *Db::parseVectorType() {
if (!consumeIf("Dv"))
return nullptr;
if (look() >= '1' && look() <= '9') {
StringView DimensionNumber = parseNumber();
if (!consumeIf('_'))
return nullptr;
if (consumeIf('p'))
return make<VectorType>(DimensionNumber);
Node *ElemType = parseType();
if (ElemType == nullptr)
return nullptr;
return make<VectorType>(ElemType, DimensionNumber);
}
if (!consumeIf('_')) {
Node *DimExpr = parseExpr();
if (!DimExpr)
return nullptr;
if (!consumeIf('_'))
return nullptr;
Node *ElemType = parseType();
if (!ElemType)
return nullptr;
return make<VectorType>(ElemType, DimExpr);
}
Node *ElemType = parseType();
if (!ElemType)
return nullptr;
return make<VectorType>(ElemType, StringView());
}
// <decltype> ::= Dt <expression> E # decltype of an id-expression or class member access (C++0x)
// ::= DT <expression> E # decltype of an expression (C++0x)
Node *Db::parseDecltype() {
if (!consumeIf('D'))
return nullptr;
if (!consumeIf('t') && !consumeIf('T'))
return nullptr;
Node *E = parseExpr();
if (E == nullptr)
return nullptr;
if (!consumeIf('E'))
return nullptr;
return make<EnclosingExpr>("decltype(", E, ")");
}
// <array-type> ::= A <positive dimension number> _ <element type>
// ::= A [<dimension expression>] _ <element type>
Node *Db::parseArrayType() {
if (!consumeIf('A'))
return nullptr;
if (std::isdigit(look())) {
StringView Dimension = parseNumber();
if (!consumeIf('_'))
return nullptr;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<ArrayType>(Ty, Dimension);
}
if (!consumeIf('_')) {
Node *DimExpr = parseExpr();
if (DimExpr == nullptr)
return nullptr;
if (!consumeIf('_'))
return nullptr;
Node *ElementType = parseType();
if (ElementType == nullptr)
return nullptr;
return make<ArrayType>(ElementType, DimExpr);
}
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<ArrayType>(Ty);
}
// <pointer-to-member-type> ::= M <class type> <member type>
Node *Db::parsePointerToMemberType() {
if (!consumeIf('M'))
return nullptr;
Node *ClassType = parseType();
if (ClassType == nullptr)
return nullptr;
Node *MemberType = parseType();
if (MemberType == nullptr)
return nullptr;
return make<PointerToMemberType>(ClassType, MemberType);
}
// <class-enum-type> ::= <name> # non-dependent type name, dependent type name, or dependent typename-specifier
// ::= Ts <name> # dependent elaborated type specifier using 'struct' or 'class'
// ::= Tu <name> # dependent elaborated type specifier using 'union'
// ::= Te <name> # dependent elaborated type specifier using 'enum'
Node *Db::parseClassEnumType() {
StringView ElabSpef;
if (consumeIf("Ts"))
ElabSpef = "struct";
else if (consumeIf("Tu"))
ElabSpef = "union";
else if (consumeIf("Te"))
ElabSpef = "enum";
Node *Name = parseName();
if (Name == nullptr)
return nullptr;
if (!ElabSpef.empty())
return make<ElaboratedTypeSpefType>(ElabSpef, Name);
return Name;
}
// <qualified-type> ::= <qualifiers> <type>
// <qualifiers> ::= <extended-qualifier>* <CV-qualifiers>
// <extended-qualifier> ::= U <source-name> [<template-args>] # vendor extended type qualifier
Node *Db::parseQualifiedType() {
if (consumeIf('U')) {
StringView Qual = parseBareSourceName();
if (Qual.empty())
return nullptr;
// FIXME parse the optional <template-args> here!
// extension ::= U <objc-name> <objc-type> # objc-type<identifier>
if (Qual.startsWith("objcproto")) {
StringView ProtoSourceName = Qual.dropFront(std::strlen("objcproto"));
StringView Proto;
{
SwapAndRestore<const char *> SaveFirst(First, ProtoSourceName.begin()),
SaveLast(Last, ProtoSourceName.end());
Proto = parseBareSourceName();
}
if (Proto.empty())
return nullptr;
Node *Child = parseQualifiedType();
if (Child == nullptr)
return nullptr;
return make<ObjCProtoName>(Child, Proto);
}
Node *Child = parseQualifiedType();
if (Child == nullptr)
return nullptr;
return make<VendorExtQualType>(Child, Qual);
}
Qualifiers Quals = parseCVQualifiers();
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
if (Quals != QualNone)
Ty = make<QualType>(Ty, Quals);
return Ty;
}
// <type> ::= <builtin-type>
// ::= <qualified-type>
// ::= <function-type>
// ::= <class-enum-type>
// ::= <array-type>
// ::= <pointer-to-member-type>
// ::= <template-param>
// ::= <template-template-param> <template-args>
// ::= <decltype>
// ::= P <type> # pointer
// ::= R <type> # l-value reference
// ::= O <type> # r-value reference (C++11)
// ::= C <type> # complex pair (C99)
// ::= G <type> # imaginary (C99)
// ::= <substitution> # See Compression below
// extension ::= U <objc-name> <objc-type> # objc-type<identifier>
// extension ::= <vector-type> # <vector-type> starts with Dv
//
// <objc-name> ::= <k0 number> objcproto <k1 number> <identifier> # k0 = 9 + <number of digits in k1> + k1
// <objc-type> ::= <source-name> # PU<11+>objcproto 11objc_object<source-name> 11objc_object -> id<source-name>
Node *Db::parseType() {
Node *Result = nullptr;
switch (look()) {
// ::= <qualified-type>
case 'r':
case 'V':
case 'K': {
unsigned AfterQuals = 0;
if (look(AfterQuals) == 'r') ++AfterQuals;
if (look(AfterQuals) == 'V') ++AfterQuals;
if (look(AfterQuals) == 'K') ++AfterQuals;
if (look(AfterQuals) == 'F' ||
(look(AfterQuals) == 'D' &&
(look(AfterQuals + 1) == 'o' || look(AfterQuals + 1) == 'O' ||
look(AfterQuals + 1) == 'w' || look(AfterQuals + 1) == 'x'))) {
Result = parseFunctionType();
break;
}
LLVM_FALLTHROUGH;
}
case 'U': {
Result = parseQualifiedType();
break;
}
// <builtin-type> ::= v # void
case 'v':
++First;
return make<NameType>("void");
// ::= w # wchar_t
case 'w':
++First;
return make<NameType>("wchar_t");
// ::= b # bool
case 'b':
++First;
return make<NameType>("bool");
// ::= c # char
case 'c':
++First;
return make<NameType>("char");
// ::= a # signed char
case 'a':
++First;
return make<NameType>("signed char");
// ::= h # unsigned char
case 'h':
++First;
return make<NameType>("unsigned char");
// ::= s # short
case 's':
++First;
return make<NameType>("short");
// ::= t # unsigned short
case 't':
++First;
return make<NameType>("unsigned short");
// ::= i # int
case 'i':
++First;
return make<NameType>("int");
// ::= j # unsigned int
case 'j':
++First;
return make<NameType>("unsigned int");
// ::= l # long
case 'l':
++First;
return make<NameType>("long");
// ::= m # unsigned long
case 'm':
++First;
return make<NameType>("unsigned long");
// ::= x # long long, __int64
case 'x':
++First;
return make<NameType>("long long");
// ::= y # unsigned long long, __int64
case 'y':
++First;
return make<NameType>("unsigned long long");
// ::= n # __int128
case 'n':
++First;
return make<NameType>("__int128");
// ::= o # unsigned __int128
case 'o':
++First;
return make<NameType>("unsigned __int128");
// ::= f # float
case 'f':
++First;
return make<NameType>("float");
// ::= d # double
case 'd':
++First;
return make<NameType>("double");
// ::= e # long double, __float80
case 'e':
++First;
return make<NameType>("long double");
// ::= g # __float128
case 'g':
++First;
return make<NameType>("__float128");
// ::= z # ellipsis
case 'z':
++First;
return make<NameType>("...");
// <builtin-type> ::= u <source-name> # vendor extended type
case 'u': {
++First;
StringView Res = parseBareSourceName();
if (Res.empty())
return nullptr;
return make<NameType>(Res);
}
case 'D':
switch (look(1)) {
// ::= Dd # IEEE 754r decimal floating point (64 bits)
case 'd':
First += 2;
return make<NameType>("decimal64");
// ::= De # IEEE 754r decimal floating point (128 bits)
case 'e':
First += 2;
return make<NameType>("decimal128");
// ::= Df # IEEE 754r decimal floating point (32 bits)
case 'f':
First += 2;
return make<NameType>("decimal32");
// ::= Dh # IEEE 754r half-precision floating point (16 bits)
case 'h':
First += 2;
return make<NameType>("decimal16");
// ::= Di # char32_t
case 'i':
First += 2;
return make<NameType>("char32_t");
// ::= Ds # char16_t
case 's':
First += 2;
return make<NameType>("char16_t");
// ::= Da # auto (in dependent new-expressions)
case 'a':
First += 2;
return make<NameType>("auto");
// ::= Dc # decltype(auto)
case 'c':
First += 2;
return make<NameType>("decltype(auto)");
// ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
case 'n':
First += 2;
return make<NameType>("std::nullptr_t");
// ::= <decltype>
case 't':
case 'T': {
Result = parseDecltype();
break;
}
// extension ::= <vector-type> # <vector-type> starts with Dv
case 'v': {
Result = parseVectorType();
break;
}
// ::= Dp <type> # pack expansion (C++0x)
case 'p': {
First += 2;
Node *Child = parseType();
if (!Child)
return nullptr;
Result = make<ParameterPackExpansion>(Child);
break;
}
// Exception specifier on a function type.
case 'o':
case 'O':
case 'w':
// Transaction safe function type.
case 'x':
Result = parseFunctionType();
break;
}
break;
// ::= <function-type>
case 'F': {
Result = parseFunctionType();
break;
}
// ::= <array-type>
case 'A': {
Result = parseArrayType();
break;
}
// ::= <pointer-to-member-type>
case 'M': {
Result = parsePointerToMemberType();
break;
}
// ::= <template-param>
case 'T': {
// This could be an elaborate type specifier on a <class-enum-type>.
if (look(1) == 's' || look(1) == 'u' || look(1) == 'e') {
Result = parseClassEnumType();
break;
}
Result = parseTemplateParam();
if (Result == nullptr)
return nullptr;
// Result could be either of:
// <type> ::= <template-param>
// <type> ::= <template-template-param> <template-args>
//
// <template-template-param> ::= <template-param>
// ::= <substitution>
//
// If this is followed by some <template-args>, and we're permitted to
// parse them, take the second production.
if (TryToParseTemplateArgs && look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
Result = make<NameWithTemplateArgs>(Result, TA);
}
break;
}
// ::= P <type> # pointer
case 'P': {
++First;
Node *Ptr = parseType();
if (Ptr == nullptr)
return nullptr;
Result = make<PointerType>(Ptr);
break;
}
// ::= R <type> # l-value reference
case 'R': {
++First;
Node *Ref = parseType();
if (Ref == nullptr)
return nullptr;
Result = make<LValueReferenceType>(Ref);
break;
}
// ::= O <type> # r-value reference (C++11)
case 'O': {
++First;
Node *Ref = parseType();
if (Ref == nullptr)
return nullptr;
Result = make<RValueReferenceType>(Ref);
break;
}
// ::= C <type> # complex pair (C99)
case 'C': {
++First;
Node *P = parseType();
if (P == nullptr)
return nullptr;
Result = make<PostfixQualifiedType>(P, " complex");
break;
}
// ::= G <type> # imaginary (C99)
case 'G': {
++First;
Node *P = parseType();
if (P == nullptr)
return P;
Result = make<PostfixQualifiedType>(P, " imaginary");
break;
}
// ::= <substitution> # See Compression below
case 'S': {
if (look(1) && look(1) != 't') {
Node *Sub = parseSubstitution();
if (Sub == nullptr)
return nullptr;
// Sub could be either of:
// <type> ::= <substitution>
// <type> ::= <template-template-param> <template-args>
//
// <template-template-param> ::= <template-param>
// ::= <substitution>
//
// If this is followed by some <template-args>, and we're permitted to
// parse them, take the second production.
if (TryToParseTemplateArgs && look() == 'I') {
Node *TA = parseTemplateArgs();
if (TA == nullptr)
return nullptr;
Result = make<NameWithTemplateArgs>(Sub, TA);
break;
}
// If all we parsed was a substitution, don't re-insert into the
// substitution table.
return Sub;
}
LLVM_FALLTHROUGH;
}
// ::= <class-enum-type>
default: {
Result = parseClassEnumType();
break;
}
}
// If we parsed a type, insert it into the substitution table. Note that all
// <builtin-type>s and <substitution>s have already bailed out, because they
// don't get substitutions.
if (Result != nullptr)
Subs.push_back(Result);
return Result;
}
Node *Db::parsePrefixExpr(StringView Kind) {
Node *E = parseExpr();
if (E == nullptr)
return nullptr;
return make<PrefixExpr>(Kind, E);
}
Node *Db::parseBinaryExpr(StringView Kind) {
Node *LHS = parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = parseExpr();
if (RHS == nullptr)
return nullptr;
return make<BinaryExpr>(LHS, Kind, RHS);
}
Node *Db::parseIntegerLiteral(StringView Lit) {
StringView Tmp = parseNumber(true);
if (!Tmp.empty() && consumeIf('E'))
return make<IntegerExpr>(Lit, Tmp);
return nullptr;
}
// <CV-Qualifiers> ::= [r] [V] [K]
Qualifiers Db::parseCVQualifiers() {
Qualifiers CVR = QualNone;
if (consumeIf('r'))
addQualifiers(CVR, QualRestrict);
if (consumeIf('V'))
addQualifiers(CVR, QualVolatile);
if (consumeIf('K'))
addQualifiers(CVR, QualConst);
return CVR;
}
// <function-param> ::= fp <top-level CV-Qualifiers> _ # L == 0, first parameter
// ::= fp <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L == 0, second and later parameters
// ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> _ # L > 0, first parameter
// ::= fL <L-1 non-negative number> p <top-level CV-Qualifiers> <parameter-2 non-negative number> _ # L > 0, second and later parameters
Node *Db::parseFunctionParam() {
if (consumeIf("fp")) {
parseCVQualifiers();
StringView Num = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<FunctionParam>(Num);
}
if (consumeIf("fL")) {
if (parseNumber().empty())
return nullptr;
if (!consumeIf('p'))
return nullptr;
parseCVQualifiers();
StringView Num = parseNumber();
if (!consumeIf('_'))
return nullptr;
return make<FunctionParam>(Num);
}
return nullptr;
}
// [gs] nw <expression>* _ <type> E # new (expr-list) type
// [gs] nw <expression>* _ <type> <initializer> # new (expr-list) type (init)
// [gs] na <expression>* _ <type> E # new[] (expr-list) type
// [gs] na <expression>* _ <type> <initializer> # new[] (expr-list) type (init)
// <initializer> ::= pi <expression>* E # parenthesized initialization
Node *Db::parseNewExpr() {
bool Global = consumeIf("gs");
bool IsArray = look(1) == 'a';
if (!consumeIf("nw") && !consumeIf("na"))
return nullptr;
size_t Exprs = Names.size();
while (!consumeIf('_')) {
Node *Ex = parseExpr();
if (Ex == nullptr)
return nullptr;
Names.push_back(Ex);
}
NodeArray ExprList = popTrailingNodeArray(Exprs);
Node *Ty = parseType();
if (Ty == nullptr)
return Ty;
if (consumeIf("pi")) {
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
Node *Init = parseExpr();
if (Init == nullptr)
return Init;
Names.push_back(Init);
}
NodeArray Inits = popTrailingNodeArray(InitsBegin);
return make<NewExpr>(ExprList, Ty, Inits, Global, IsArray);
} else if (!consumeIf('E'))
return nullptr;
return make<NewExpr>(ExprList, Ty, NodeArray(), Global, IsArray);
}
// cv <type> <expression> # conversion with one argument
// cv <type> _ <expression>* E # conversion with a different number of arguments
Node *Db::parseConversionExpr() {
if (!consumeIf("cv"))
return nullptr;
Node *Ty;
{
SwapAndRestore<bool> SaveTemp(TryToParseTemplateArgs, false);
Ty = parseType();
}
if (Ty == nullptr)
return nullptr;
if (consumeIf('_')) {
size_t ExprsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = parseExpr();
if (E == nullptr)
return E;
Names.push_back(E);
}
NodeArray Exprs = popTrailingNodeArray(ExprsBegin);
return make<ConversionExpr>(Ty, Exprs);
}
Node *E[1] = {parseExpr()};
if (E[0] == nullptr)
return nullptr;
return make<ConversionExpr>(Ty, makeNodeArray(E, E + 1));
}
// <expr-primary> ::= L <type> <value number> E # integer literal
// ::= L <type> <value float> E # floating literal
// ::= L <string type> E # string literal
// ::= L <nullptr type> E # nullptr literal (i.e., "LDnE")
// FIXME: ::= L <type> <real-part float> _ <imag-part float> E # complex floating point literal (C 2000)
// ::= L <mangled-name> E # external name
Node *Db::parseExprPrimary() {
if (!consumeIf('L'))
return nullptr;
switch (look()) {
case 'w':
++First;
return parseIntegerLiteral("wchar_t");
case 'b':
if (consumeIf("b0E"))
return make<BoolExpr>(0);
if (consumeIf("b1E"))
return make<BoolExpr>(1);
return nullptr;
case 'c':
++First;
return parseIntegerLiteral("char");
case 'a':
++First;
return parseIntegerLiteral("signed char");
case 'h':
++First;
return parseIntegerLiteral("unsigned char");
case 's':
++First;
return parseIntegerLiteral("short");
case 't':
++First;
return parseIntegerLiteral("unsigned short");
case 'i':
++First;
return parseIntegerLiteral("");
case 'j':
++First;
return parseIntegerLiteral("u");
case 'l':
++First;
return parseIntegerLiteral("l");
case 'm':
++First;
return parseIntegerLiteral("ul");
case 'x':
++First;
return parseIntegerLiteral("ll");
case 'y':
++First;
return parseIntegerLiteral("ull");
case 'n':
++First;
return parseIntegerLiteral("__int128");
case 'o':
++First;
return parseIntegerLiteral("unsigned __int128");
case 'f':
++First;
return parseFloatingLiteral<float>();
case 'd':
++First;
return parseFloatingLiteral<double>();
case 'e':
++First;
return parseFloatingLiteral<long double>();
case '_':
if (consumeIf("_Z")) {
Node *R = parseEncoding();
if (R != nullptr && consumeIf('E'))
return R;
}
return nullptr;
case 'T':
// Invalid mangled name per
// http://sourcerytools.com/pipermail/cxx-abi-dev/2011-August/002422.html
return nullptr;
default: {
// might be named type
Node *T = parseType();
if (T == nullptr)
return nullptr;
StringView N = parseNumber();
if (!N.empty()) {
if (!consumeIf('E'))
return nullptr;
return make<IntegerCastExpr>(T, N);
}
if (consumeIf('E'))
return T;
return nullptr;
}
}
}
// <braced-expression> ::= <expression>
// ::= di <field source-name> <braced-expression> # .name = expr
// ::= dx <index expression> <braced-expression> # [expr] = expr
// ::= dX <range begin expression> <range end expression> <braced-expression>
Node *Db::parseBracedExpr() {
if (look() == 'd') {
switch (look(1)) {
case 'i': {
First += 2;
Node *Field = parseSourceName(/*NameState=*/nullptr);
if (Field == nullptr)
return nullptr;
Node *Init = parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedExpr>(Field, Init, /*isArray=*/false);
}
case 'x': {
First += 2;
Node *Index = parseExpr();
if (Index == nullptr)
return nullptr;
Node *Init = parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedExpr>(Index, Init, /*isArray=*/true);
}
case 'X': {
First += 2;
Node *RangeBegin = parseExpr();
if (RangeBegin == nullptr)
return nullptr;
Node *RangeEnd = parseExpr();
if (RangeEnd == nullptr)
return nullptr;
Node *Init = parseBracedExpr();
if (Init == nullptr)
return nullptr;
return make<BracedRangeExpr>(RangeBegin, RangeEnd, Init);
}
}
}
return parseExpr();
}
// <expression> ::= <unary operator-name> <expression>
// ::= <binary operator-name> <expression> <expression>
// ::= <ternary operator-name> <expression> <expression> <expression>
// ::= cl <expression>+ E # call
// ::= cv <type> <expression> # conversion with one argument
// ::= cv <type> _ <expression>* E # conversion with a different number of arguments
// ::= [gs] nw <expression>* _ <type> E # new (expr-list) type
// ::= [gs] nw <expression>* _ <type> <initializer> # new (expr-list) type (init)
// ::= [gs] na <expression>* _ <type> E # new[] (expr-list) type
// ::= [gs] na <expression>* _ <type> <initializer> # new[] (expr-list) type (init)
// ::= [gs] dl <expression> # delete expression
// ::= [gs] da <expression> # delete[] expression
// ::= pp_ <expression> # prefix ++
// ::= mm_ <expression> # prefix --
// ::= ti <type> # typeid (type)
// ::= te <expression> # typeid (expression)
// ::= dc <type> <expression> # dynamic_cast<type> (expression)
// ::= sc <type> <expression> # static_cast<type> (expression)
// ::= cc <type> <expression> # const_cast<type> (expression)
// ::= rc <type> <expression> # reinterpret_cast<type> (expression)
// ::= st <type> # sizeof (a type)
// ::= sz <expression> # sizeof (an expression)
// ::= at <type> # alignof (a type)
// ::= az <expression> # alignof (an expression)
// ::= nx <expression> # noexcept (expression)
// ::= <template-param>
// ::= <function-param>
// ::= dt <expression> <unresolved-name> # expr.name
// ::= pt <expression> <unresolved-name> # expr->name
// ::= ds <expression> <expression> # expr.*expr
// ::= sZ <template-param> # size of a parameter pack
// ::= sZ <function-param> # size of a function parameter pack
// ::= sp <expression> # pack expansion
// ::= tw <expression> # throw expression
// ::= tr # throw with no operand (rethrow)
// ::= <unresolved-name> # f(p), N::f(p), ::f(p),
// # freestanding dependent name (e.g., T::x),
// # objectless nonstatic member reference
// ::= fL <binary-operator-name> <expression> <expression>
// ::= fR <binary-operator-name> <expression> <expression>
// ::= fl <binary-operator-name> <expression>
// ::= fr <binary-operator-name> <expression>
// ::= <expr-primary>
Node *Db::parseExpr() {
bool Global = consumeIf("gs");
if (numLeft() < 2)
return nullptr;
switch (*First) {
case 'L':
return parseExprPrimary();
case 'T':
return parseTemplateParam();
case 'f':
return parseFunctionParam();
case 'a':
switch (First[1]) {
case 'a':
First += 2;
return parseBinaryExpr("&&");
case 'd':
First += 2;
return parsePrefixExpr("&");
case 'n':
First += 2;
return parseBinaryExpr("&");
case 'N':
First += 2;
return parseBinaryExpr("&=");
case 'S':
First += 2;
return parseBinaryExpr("=");
case 't': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<EnclosingExpr>("alignof (", Ty, ")");
}
case 'z': {
First += 2;
Node *Ty = parseExpr();
if (Ty == nullptr)
return nullptr;
return make<EnclosingExpr>("alignof (", Ty, ")");
}
}
return nullptr;
case 'c':
switch (First[1]) {
// cc <type> <expression> # const_cast<type>(expression)
case 'c': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return Ty;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<CastExpr>("const_cast", Ty, Ex);
}
// cl <expression>+ E # call
case 'l': {
First += 2;
Node *Callee = parseExpr();
if (Callee == nullptr)
return Callee;
size_t ExprsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = parseExpr();
if (E == nullptr)
return E;
Names.push_back(E);
}
return make<CallExpr>(Callee, popTrailingNodeArray(ExprsBegin));
}
case 'm':
First += 2;
return parseBinaryExpr(",");
case 'o':
First += 2;
return parsePrefixExpr("~");
case 'v':
return parseConversionExpr();
}
return nullptr;
case 'd':
switch (First[1]) {
case 'a': {
First += 2;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<DeleteExpr>(Ex, Global, /*is_array=*/true);
}
case 'c': {
First += 2;
Node *T = parseType();
if (T == nullptr)
return T;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<CastExpr>("dynamic_cast", T, Ex);
}
case 'e':
First += 2;
return parsePrefixExpr("*");
case 'l': {
First += 2;
Node *E = parseExpr();
if (E == nullptr)
return E;
return make<DeleteExpr>(E, Global, /*is_array=*/false);
}
case 'n':
return parseUnresolvedName();
case 's': {
First += 2;
Node *LHS = parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = parseExpr();
if (RHS == nullptr)
return nullptr;
return make<MemberExpr>(LHS, ".*", RHS);
}
case 't': {
First += 2;
Node *LHS = parseExpr();
if (LHS == nullptr)
return LHS;
Node *RHS = parseExpr();
if (RHS == nullptr)
return nullptr;
return make<MemberExpr>(LHS, ".", RHS);
}
case 'v':
First += 2;
return parseBinaryExpr("/");
case 'V':
First += 2;
return parseBinaryExpr("/=");
}
return nullptr;
case 'e':
switch (First[1]) {
case 'o':
First += 2;
return parseBinaryExpr("^");
case 'O':
First += 2;
return parseBinaryExpr("^=");
case 'q':
First += 2;
return parseBinaryExpr("==");
}
return nullptr;
case 'g':
switch (First[1]) {
case 'e':
First += 2;
return parseBinaryExpr(">=");
case 't':
First += 2;
return parseBinaryExpr(">");
}
return nullptr;
case 'i':
switch (First[1]) {
case 'x': {
First += 2;
Node *Base = parseExpr();
if (Base == nullptr)
return nullptr;
Node *Index = parseExpr();
if (Index == nullptr)
return Index;
return make<ArraySubscriptExpr>(Base, Index);
}
case 'l': {
First += 2;
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = parseBracedExpr();
if (E == nullptr)
return nullptr;
Names.push_back(E);
}
return make<InitListExpr>(nullptr, popTrailingNodeArray(InitsBegin));
}
}
return nullptr;
case 'l':
switch (First[1]) {
case 'e':
First += 2;
return parseBinaryExpr("<=");
case 's':
First += 2;
return parseBinaryExpr("<<");
case 'S':
First += 2;
return parseBinaryExpr("<<=");
case 't':
First += 2;
return parseBinaryExpr("<");
}
return nullptr;
case 'm':
switch (First[1]) {
case 'i':
First += 2;
return parseBinaryExpr("-");
case 'I':
First += 2;
return parseBinaryExpr("-=");
case 'l':
First += 2;
return parseBinaryExpr("*");
case 'L':
First += 2;
return parseBinaryExpr("*=");
case 'm':
First += 2;
if (consumeIf('_'))
return parsePrefixExpr("--");
Node *Ex = parseExpr();
if (Ex == nullptr)
return nullptr;
return make<PostfixExpr>(Ex, "--");
}
return nullptr;
case 'n':
switch (First[1]) {
case 'a':
case 'w':
return parseNewExpr();
case 'e':
First += 2;
return parseBinaryExpr("!=");
case 'g':
First += 2;
return parsePrefixExpr("-");
case 't':
First += 2;
return parsePrefixExpr("!");
case 'x':
First += 2;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<EnclosingExpr>("noexcept (", Ex, ")");
}
return nullptr;
case 'o':
switch (First[1]) {
case 'n':
return parseUnresolvedName();
case 'o':
First += 2;
return parseBinaryExpr("||");
case 'r':
First += 2;
return parseBinaryExpr("|");
case 'R':
First += 2;
return parseBinaryExpr("|=");
}
return nullptr;
case 'p':
switch (First[1]) {
case 'm':
First += 2;
return parseBinaryExpr("->*");
case 'l':
First += 2;
return parseBinaryExpr("+");
case 'L':
First += 2;
return parseBinaryExpr("+=");
case 'p': {
First += 2;
if (consumeIf('_'))
return parsePrefixExpr("++");
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<PostfixExpr>(Ex, "++");
}
case 's':
First += 2;
return parsePrefixExpr("+");
case 't': {
First += 2;
Node *L = parseExpr();
if (L == nullptr)
return nullptr;
Node *R = parseExpr();
if (R == nullptr)
return nullptr;
return make<MemberExpr>(L, "->", R);
}
}
return nullptr;
case 'q':
if (First[1] == 'u') {
First += 2;
Node *Cond = parseExpr();
if (Cond == nullptr)
return nullptr;
Node *LHS = parseExpr();
if (LHS == nullptr)
return nullptr;
Node *RHS = parseExpr();
if (RHS == nullptr)
return nullptr;
return make<ConditionalExpr>(Cond, LHS, RHS);
}
return nullptr;
case 'r':
switch (First[1]) {
case 'c': {
First += 2;
Node *T = parseType();
if (T == nullptr)
return T;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<CastExpr>("reinterpret_cast", T, Ex);
}
case 'm':
First += 2;
return parseBinaryExpr("%");
case 'M':
First += 2;
return parseBinaryExpr("%=");
case 's':
First += 2;
return parseBinaryExpr(">>");
case 'S':
First += 2;
return parseBinaryExpr(">>=");
}
return nullptr;
case 's':
switch (First[1]) {
case 'c': {
First += 2;
Node *T = parseType();
if (T == nullptr)
return T;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<CastExpr>("static_cast", T, Ex);
}
case 'p': {
First += 2;
Node *Child = parseExpr();
if (Child == nullptr)
return nullptr;
return make<ParameterPackExpansion>(Child);
}
case 'r':
return parseUnresolvedName();
case 't': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return Ty;
return make<EnclosingExpr>("sizeof (", Ty, ")");
}
case 'z': {
First += 2;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<EnclosingExpr>("sizeof (", Ex, ")");
}
case 'Z':
First += 2;
if (look() == 'T') {
Node *R = parseTemplateParam();
if (R == nullptr)
return nullptr;
return make<SizeofParamPackExpr>(R);
} else if (look() == 'f') {
Node *FP = parseFunctionParam();
if (FP == nullptr)
return nullptr;
return make<EnclosingExpr>("sizeof...", FP, ")");
}
return nullptr;
}
return nullptr;
case 't':
switch (First[1]) {
case 'e': {
First += 2;
Node *Ex = parseExpr();
if (Ex == nullptr)
return Ex;
return make<EnclosingExpr>("typeid (", Ex, ")");
}
case 'i': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return Ty;
return make<EnclosingExpr>("typeid (", Ty, ")");
}
case 'l': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
size_t InitsBegin = Names.size();
while (!consumeIf('E')) {
Node *E = parseBracedExpr();
if (E == nullptr)
return nullptr;
Names.push_back(E);
}
return make<InitListExpr>(Ty, popTrailingNodeArray(InitsBegin));
}
case 'r':
First += 2;
return make<NameType>("throw");
case 'w': {
First += 2;
Node *Ex = parseExpr();
if (Ex == nullptr)
return nullptr;
return make<ThrowExpr>(Ex);
}
}
return nullptr;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return parseUnresolvedName();
}
return nullptr;
}
// <call-offset> ::= h <nv-offset> _
// ::= v <v-offset> _
//
// <nv-offset> ::= <offset number>
// # non-virtual base override
//
// <v-offset> ::= <offset number> _ <virtual offset number>
// # virtual base override, with vcall offset
bool Db::parseCallOffset() {
// Just scan through the call offset, we never add this information into the
// output.
if (consumeIf('h'))
return parseNumber(true).empty() || !consumeIf('_');
if (consumeIf('v'))
return parseNumber(true).empty() || !consumeIf('_') ||
parseNumber(true).empty() || !consumeIf('_');
return true;
}
// <special-name> ::= TV <type> # virtual table
// ::= TT <type> # VTT structure (construction vtable index)
// ::= TI <type> # typeinfo structure
// ::= TS <type> # typeinfo name (null-terminated byte string)
// ::= Tc <call-offset> <call-offset> <base encoding>
// # base is the nominal target function of thunk
// # first call-offset is 'this' adjustment
// # second call-offset is result adjustment
// ::= T <call-offset> <base encoding>
// # base is the nominal target function of thunk
// ::= GV <object name> # Guard variable for one-time initialization
// # No <type>
// ::= TW <object name> # Thread-local wrapper
// ::= TH <object name> # Thread-local initialization
// ::= GR <object name> _ # First temporary
// ::= GR <object name> <seq-id> _ # Subsequent temporaries
// extension ::= TC <first type> <number> _ <second type> # construction vtable for second-in-first
// extension ::= GR <object name> # reference temporary for object
Node *Db::parseSpecialName() {
switch (look()) {
case 'T':
switch (look(1)) {
// TV <type> # virtual table
case 'V': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("vtable for ", Ty);
}
// TT <type> # VTT structure (construction vtable index)
case 'T': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("VTT for ", Ty);
}
// TI <type> # typeinfo structure
case 'I': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("typeinfo for ", Ty);
}
// TS <type> # typeinfo name (null-terminated byte string)
case 'S': {
First += 2;
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
return make<SpecialName>("typeinfo name for ", Ty);
}
// Tc <call-offset> <call-offset> <base encoding>
case 'c': {
First += 2;
if (parseCallOffset() || parseCallOffset())
return nullptr;
Node *Encoding = parseEncoding();
if (Encoding == nullptr)
return nullptr;
return make<SpecialName>("covariant return thunk to ", Encoding);
}
// extension ::= TC <first type> <number> _ <second type>
// # construction vtable for second-in-first
case 'C': {
First += 2;
Node *FirstType = parseType();
if (FirstType == nullptr)
return nullptr;
if (parseNumber(true).empty() || !consumeIf('_'))
return nullptr;
Node *SecondType = parseType();
if (SecondType == nullptr)
return nullptr;
return make<CtorVtableSpecialName>(SecondType, FirstType);
}
// TW <object name> # Thread-local wrapper
case 'W': {
First += 2;
Node *Name = parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("thread-local wrapper routine for ", Name);
}
// TH <object name> # Thread-local initialization
case 'H': {
First += 2;
Node *Name = parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("thread-local initialization routine for ", Name);
}
// T <call-offset> <base encoding>
default: {
++First;
bool IsVirt = look() == 'v';
if (parseCallOffset())
return nullptr;
Node *BaseEncoding = parseEncoding();
if (BaseEncoding == nullptr)
return nullptr;
if (IsVirt)
return make<SpecialName>("virtual thunk to ", BaseEncoding);
else
return make<SpecialName>("non-virtual thunk to ", BaseEncoding);
}
}
case 'G':
switch (look(1)) {
// GV <object name> # Guard variable for one-time initialization
case 'V': {
First += 2;
Node *Name = parseName();
if (Name == nullptr)
return nullptr;
return make<SpecialName>("guard variable for ", Name);
}
// GR <object name> # reference temporary for object
// GR <object name> _ # First temporary
// GR <object name> <seq-id> _ # Subsequent temporaries
case 'R': {
First += 2;
Node *Name = parseName();
if (Name == nullptr)
return nullptr;
size_t Count;
bool ParsedSeqId = !parseSeqId(&Count);
if (!consumeIf('_') && ParsedSeqId)
return nullptr;
return make<SpecialName>("reference temporary for ", Name);
}
}
}
return nullptr;
}
// <encoding> ::= <function name> <bare-function-type>
// ::= <data name>
// ::= <special-name>
Node *Db::parseEncoding() {
// Always "tag" templates (insert them into Db::TemplateParams) unless we're
// doing a second parse to resolve a forward template reference, in which case
// we only tag templates if EncodingDepth > 1.
// FIXME: This is kinda broken; it would be better to make a forward reference
// and patch it all in one pass.
SwapAndRestore<bool> SaveTagTemplates(TagTemplates,
TagTemplates || EncodingDepth);
SwapAndRestore<unsigned> SaveEncodingDepth(EncodingDepth, EncodingDepth + 1);
if (look() == 'G' || look() == 'T')
return parseSpecialName();
auto IsEndOfEncoding = [&] {
// The set of chars that can potentially follow an <encoding> (none of which
// can start a <type>). Enumerating these allows us to avoid speculative
// parsing.
return numLeft() == 0 || look() == 'E' || look() == '.' || look() == '_';
};
NameState NameInfo;
Node *Name = parseName(&NameInfo);
if (Name == nullptr || IsEndOfEncoding())
return Name;
TagTemplates = false;
Node *ReturnType = nullptr;
if (!NameInfo.CtorDtorConversion && NameInfo.EndsWithTemplateArgs) {
ReturnType = parseType();
if (ReturnType == nullptr)
return nullptr;
}
if (consumeIf('v'))
return make<FunctionEncoding>(ReturnType, Name, NodeArray(),
NameInfo.CVQualifiers,
NameInfo.ReferenceQualifier);
size_t ParamsBegin = Names.size();
do {
Node *Ty = parseType();
if (Ty == nullptr)
return nullptr;
Names.push_back(Ty);
} while (!IsEndOfEncoding());
return make<FunctionEncoding>(ReturnType, Name,
popTrailingNodeArray(ParamsBegin),
NameInfo.CVQualifiers,
NameInfo.ReferenceQualifier);
}
template <class Float>
struct FloatData;
template <>
struct FloatData<float>
{
static const size_t mangled_size = 8;
static const size_t max_demangled_size = 24;
static constexpr const char* spec = "%af";
};
constexpr const char* FloatData<float>::spec;
template <>
struct FloatData<double>
{
static const size_t mangled_size = 16;
static const size_t max_demangled_size = 32;
static constexpr const char* spec = "%a";
};
constexpr const char* FloatData<double>::spec;
template <>
struct FloatData<long double>
{
#if defined(__mips__) && defined(__mips_n64) || defined(__aarch64__) || \
defined(__wasm__)
static const size_t mangled_size = 32;
#elif defined(__arm__) || defined(__mips__) || defined(__hexagon__)
static const size_t mangled_size = 16;
#else
static const size_t mangled_size = 20; // May need to be adjusted to 16 or 24 on other platforms
#endif
static const size_t max_demangled_size = 40;
static constexpr const char *spec = "%LaL";
};
constexpr const char *FloatData<long double>::spec;
template <class Float> Node *Db::parseFloatingLiteral() {
const size_t N = FloatData<Float>::mangled_size;
if (numLeft() <= N)
return nullptr;
StringView Data(First, First + N);
for (char C : Data)
if (!std::isxdigit(C))
return nullptr;
First += N;
if (!consumeIf('E'))
return nullptr;
return make<FloatExpr<Float>>(Data);
}
// <seq-id> ::= <0-9A-Z>+
bool Db::parseSeqId(size_t *Out) {
if (!(look() >= '0' && look() <= '9') &&
!(look() >= 'A' && look() <= 'Z'))
return true;
size_t Id = 0;
while (true) {
if (look() >= '0' && look() <= '9') {
Id *= 36;
Id += static_cast<size_t>(look() - '0');
} else if (look() >= 'A' && look() <= 'Z') {
Id *= 36;
Id += static_cast<size_t>(look() - 'A') + 10;
} else {
*Out = Id;
return false;
}
++First;
}
}
// <substitution> ::= S <seq-id> _
// ::= S_
// <substitution> ::= Sa # ::std::allocator
// <substitution> ::= Sb # ::std::basic_string
// <substitution> ::= Ss # ::std::basic_string < char,
// ::std::char_traits<char>,
// ::std::allocator<char> >
// <substitution> ::= Si # ::std::basic_istream<char, std::char_traits<char> >
// <substitution> ::= So # ::std::basic_ostream<char, std::char_traits<char> >
// <substitution> ::= Sd # ::std::basic_iostream<char, std::char_traits<char> >
Node *Db::parseSubstitution() {
if (!consumeIf('S'))
return nullptr;
if (std::islower(look())) {
Node *SpecialSub;
switch (look()) {
case 'a':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::allocator);
break;
case 'b':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::basic_string);
break;
case 's':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::string);
break;
case 'i':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::istream);
break;
case 'o':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::ostream);
break;
case 'd':
++First;
SpecialSub = make<SpecialSubstitution>(SpecialSubKind::iostream);
break;
default:
return nullptr;
}
// Itanium C++ ABI 5.1.2: If a name that would use a built-in <substitution>
// has ABI tags, the tags are appended to the substitution; the result is a
// substitutable component.
Node *WithTags = parseAbiTags(SpecialSub);
if (WithTags != SpecialSub) {
Subs.push_back(WithTags);
SpecialSub = WithTags;
}
return SpecialSub;
}
// ::= S_
if (consumeIf('_')) {
if (Subs.empty())
return nullptr;
return Subs[0];
}
// ::= S <seq-id> _
size_t Index = 0;
if (parseSeqId(&Index))
return nullptr;
++Index;
if (!consumeIf('_') || Index >= Subs.size())
return nullptr;
return Subs[Index];
}
// <template-param> ::= T_ # first template parameter
// ::= T <parameter-2 non-negative number> _
Node *Db::parseTemplateParam() {
if (!consumeIf('T'))
return nullptr;
size_t Index = 0;
if (!consumeIf('_')) {
if (parsePositiveInteger(&Index))
return nullptr;
++Index;
if (!consumeIf('_'))
return nullptr;
}
// Itanium ABI 5.1.8: In a generic lambda, uses of auto in the parameter list
// are mangled as the corresponding artificial template type parameter.
if (ParsingLambdaParams)
return make<NameType>("auto");
if (Index >= TemplateParams.size()) {
FixForwardReferences = true;
return make<NameType>("FORWARD_REFERENCE");
}
return TemplateParams[Index];
}
// <template-arg> ::= <type> # type or template
// ::= X <expression> E # expression
// ::= <expr-primary> # simple expressions
// ::= J <template-arg>* E # argument pack
// ::= LZ <encoding> E # extension
Node *Db::parseTemplateArg() {
switch (look()) {
case 'X': {
++First;
Node *Arg = parseExpr();
if (Arg == nullptr || !consumeIf('E'))
return nullptr;
return Arg;
}
case 'J': {
++First;
size_t ArgsBegin = Names.size();
while (!consumeIf('E')) {
Node *Arg = parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
NodeArray Args = popTrailingNodeArray(ArgsBegin);
return make<TemplateArgumentPack>(Args);
}
case 'L': {
// ::= LZ <encoding> E # extension
if (look(1) == 'Z') {
First += 2;
Node *Arg = parseEncoding();
if (Arg == nullptr || !consumeIf('E'))
return nullptr;
return Arg;
}
// ::= <expr-primary> # simple expressions
return parseExprPrimary();
}
default:
return parseType();
}
}
// <template-args> ::= I <template-arg>* E
// extension, the abi says <template-arg>+
Node *Db::parseTemplateArgs() {
if (!consumeIf('I'))
return nullptr;
// <template-params> refer to the innermost <template-args>. Clear out any
// outer args that we may have inserted into TemplateParams.
if (TagTemplates)
TemplateParams.clear();
size_t ArgsBegin = Names.size();
while (!consumeIf('E')) {
if (TagTemplates) {
auto OldParams = std::move(TemplateParams);
Node *Arg = parseTemplateArg();
TemplateParams = std::move(OldParams);
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
Node *TableEntry = Arg;
if (Arg->getKind() == Node::KTemplateArgumentPack) {
TableEntry = make<ParameterPack>(
static_cast<TemplateArgumentPack*>(TableEntry)->getElements());
}
TemplateParams.push_back(TableEntry);
} else {
Node *Arg = parseTemplateArg();
if (Arg == nullptr)
return nullptr;
Names.push_back(Arg);
}
}
return make<TemplateArgs>(popTrailingNodeArray(ArgsBegin));
}
// <discriminator> := _ <non-negative number> # when number < 10
// := __ <non-negative number> _ # when number >= 10
// extension := decimal-digit+ # at the end of string
const char*
parse_discriminator(const char* first, const char* last)
{
// parse but ignore discriminator
if (first != last)
{
if (*first == '_')
{
const char* t1 = first+1;
if (t1 != last)
{
if (std::isdigit(*t1))
first = t1+1;
else if (*t1 == '_')
{
for (++t1; t1 != last && std::isdigit(*t1); ++t1)
;
if (t1 != last && *t1 == '_')
first = t1 + 1;
}
}
}
else if (std::isdigit(*first))
{
const char* t1 = first+1;
for (; t1 != last && std::isdigit(*t1); ++t1)
;
if (t1 == last)
first = last;
}
}
return first;
}
// <mangled-name> ::= _Z <encoding>
// ::= <type>
// extension ::= ___Z <encoding> _block_invoke
// extension ::= ___Z <encoding> _block_invoke<decimal-digit>+
// extension ::= ___Z <encoding> _block_invoke_<decimal-digit>+
Node *Db::parse() {
if (consumeIf("_Z")) {
Node *Encoding = parseEncoding();
if (Encoding == nullptr)
return nullptr;
if (look() == '.') {
Encoding = make<DotSuffix>(Encoding, StringView(First, Last));
First = Last;
}
if (numLeft() != 0)
return nullptr;
return Encoding;
}
if (consumeIf("___Z")) {
Node *Encoding = parseEncoding();
if (Encoding == nullptr || !consumeIf("_block_invoke"))
return nullptr;
bool RequireNumber = consumeIf('_');
if (parseNumber().empty() && RequireNumber)
return nullptr;
if (numLeft() != 0)
return nullptr;
return make<SpecialName>("invocation function for block in ", Encoding);
}
Node *Ty = parseType();
if (numLeft() != 0)
return nullptr;
return Ty;
}
} // unnamed namespace
enum {
unknown_error = -4,
invalid_args = -3,
invalid_mangled_name = -2,
memory_alloc_failure = -1,
success = 0,
};
char *llvm::itaniumDemangle(const char *MangledName, char *Buf,
size_t *N, int *Status) {
if (MangledName == nullptr || (Buf != nullptr && N == nullptr)) {
if (Status)
*Status = invalid_args;
return nullptr;
}
size_t BufSize = Buf != nullptr ? *N : 0;
int InternalStatus = success;
size_t MangledNameLength = std::strlen(MangledName);
Db Parser(MangledName, MangledName + MangledNameLength);
Node *AST = Parser.parse();
if (AST == nullptr)
InternalStatus = invalid_mangled_name;
if (InternalStatus == success && Parser.FixForwardReferences &&
!Parser.TemplateParams.empty()) {
Parser.FixForwardReferences = false;
Parser.TagTemplates = false;
Parser.Names.clear();
Parser.Subs.clear();
Parser.First = MangledName;
Parser.Last = MangledName + MangledNameLength;
AST = Parser.parse();
if (AST == nullptr || Parser.FixForwardReferences)
InternalStatus = invalid_mangled_name;
}
if (InternalStatus == success && AST->containsUnexpandedParameterPack())
InternalStatus = invalid_mangled_name;
if (InternalStatus == success) {
if (Buf == nullptr) {
BufSize = 1024;
Buf = static_cast<char*>(std::malloc(BufSize));
}
if (Buf) {
OutputStream Stream(Buf, BufSize);
AST->print(Stream);
Stream += '\0';
if (N != nullptr)
*N = Stream.getCurrentPosition();
Buf = Stream.getBuffer();
} else
InternalStatus = memory_alloc_failure;
}
if (Status)
*Status = InternalStatus;
return InternalStatus == success ? Buf : nullptr;
}