forked from OSchip/llvm-project
447 lines
17 KiB
C++
447 lines
17 KiB
C++
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the MapValue function, which is shared by various parts of
|
|
// the lib/Transforms/Utils library.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
using namespace llvm;
|
|
|
|
// Out of line method to get vtable etc for class.
|
|
void ValueMapTypeRemapper::anchor() {}
|
|
void ValueMaterializer::anchor() {}
|
|
void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
|
|
}
|
|
|
|
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
ValueToValueMapTy::iterator I = VM.find(V);
|
|
|
|
// If the value already exists in the map, use it.
|
|
if (I != VM.end() && I->second) return I->second;
|
|
|
|
// If we have a materializer and it can materialize a value, use that.
|
|
if (Materializer) {
|
|
if (Value *NewV =
|
|
Materializer->materializeDeclFor(const_cast<Value *>(V))) {
|
|
VM[V] = NewV;
|
|
if (auto *NewGV = dyn_cast<GlobalValue>(NewV))
|
|
Materializer->materializeInitFor(
|
|
NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V)));
|
|
return NewV;
|
|
}
|
|
}
|
|
|
|
// Global values do not need to be seeded into the VM if they
|
|
// are using the identity mapping.
|
|
if (isa<GlobalValue>(V)) {
|
|
if (Flags & RF_NullMapMissingGlobalValues) {
|
|
assert(!(Flags & RF_IgnoreMissingEntries) &&
|
|
"Illegal to specify both RF_NullMapMissingGlobalValues and "
|
|
"RF_IgnoreMissingEntries");
|
|
return nullptr;
|
|
}
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
// Inline asm may need *type* remapping.
|
|
FunctionType *NewTy = IA->getFunctionType();
|
|
if (TypeMapper) {
|
|
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
|
|
|
|
if (NewTy != IA->getFunctionType())
|
|
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
|
|
IA->hasSideEffects(), IA->isAlignStack());
|
|
}
|
|
|
|
return VM[V] = const_cast<Value*>(V);
|
|
}
|
|
|
|
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
|
|
const Metadata *MD = MDV->getMetadata();
|
|
// If this is a module-level metadata and we know that nothing at the module
|
|
// level is changing, then use an identity mapping.
|
|
if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
|
|
if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
|
|
return VM[V] = const_cast<Value *>(V);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) &&
|
|
// "Referenced metadata value not in value map");
|
|
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
|
|
}
|
|
|
|
// Okay, this either must be a constant (which may or may not be mappable) or
|
|
// is something that is not in the mapping table.
|
|
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
|
|
Function *F =
|
|
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
|
|
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
|
|
}
|
|
|
|
// Otherwise, we have some other constant to remap. Start by checking to see
|
|
// if all operands have an identity remapping.
|
|
unsigned OpNo = 0, NumOperands = C->getNumOperands();
|
|
Value *Mapped = nullptr;
|
|
for (; OpNo != NumOperands; ++OpNo) {
|
|
Value *Op = C->getOperand(OpNo);
|
|
Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
|
|
if (Mapped != C) break;
|
|
}
|
|
|
|
// See if the type mapper wants to remap the type as well.
|
|
Type *NewTy = C->getType();
|
|
if (TypeMapper)
|
|
NewTy = TypeMapper->remapType(NewTy);
|
|
|
|
// If the result type and all operands match up, then just insert an identity
|
|
// mapping.
|
|
if (OpNo == NumOperands && NewTy == C->getType())
|
|
return VM[V] = C;
|
|
|
|
// Okay, we need to create a new constant. We've already processed some or
|
|
// all of the operands, set them all up now.
|
|
SmallVector<Constant*, 8> Ops;
|
|
Ops.reserve(NumOperands);
|
|
for (unsigned j = 0; j != OpNo; ++j)
|
|
Ops.push_back(cast<Constant>(C->getOperand(j)));
|
|
|
|
// If one of the operands mismatch, push it and the other mapped operands.
|
|
if (OpNo != NumOperands) {
|
|
Ops.push_back(cast<Constant>(Mapped));
|
|
|
|
// Map the rest of the operands that aren't processed yet.
|
|
for (++OpNo; OpNo != NumOperands; ++OpNo)
|
|
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
|
|
Flags, TypeMapper, Materializer));
|
|
}
|
|
Type *NewSrcTy = nullptr;
|
|
if (TypeMapper)
|
|
if (auto *GEPO = dyn_cast<GEPOperator>(C))
|
|
NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
|
|
if (isa<ConstantArray>(C))
|
|
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
|
|
if (isa<ConstantStruct>(C))
|
|
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
|
|
if (isa<ConstantVector>(C))
|
|
return VM[V] = ConstantVector::get(Ops);
|
|
// If this is a no-operand constant, it must be because the type was remapped.
|
|
if (isa<UndefValue>(C))
|
|
return VM[V] = UndefValue::get(NewTy);
|
|
if (isa<ConstantAggregateZero>(C))
|
|
return VM[V] = ConstantAggregateZero::get(NewTy);
|
|
assert(isa<ConstantPointerNull>(C));
|
|
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
|
|
}
|
|
|
|
static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
|
|
Metadata *Val) {
|
|
VM.MD()[Key].reset(Val);
|
|
return Val;
|
|
}
|
|
|
|
static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD) {
|
|
return mapToMetadata(VM, MD, const_cast<Metadata *>(MD));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer);
|
|
|
|
static Metadata *mapMetadataOp(Metadata *Op,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
if (!Op)
|
|
return nullptr;
|
|
if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags,
|
|
TypeMapper, Materializer))
|
|
return MappedOp;
|
|
// Use identity map if MappedOp is null and we can ignore missing entries.
|
|
if (Flags & RF_IgnoreMissingEntries)
|
|
return Op;
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert((Flags & RF_NullMapMissingGlobalValues) &&
|
|
// "Referenced metadata not in value map!");
|
|
return nullptr;
|
|
}
|
|
|
|
/// Resolve uniquing cycles involving the given metadata.
|
|
static void resolveCycles(Metadata *MD) {
|
|
if (auto *N = dyn_cast_or_null<MDNode>(MD))
|
|
if (!N->isResolved())
|
|
N->resolveCycles();
|
|
}
|
|
|
|
/// Remap the operands of an MDNode.
|
|
///
|
|
/// If \c Node is temporary, uniquing cycles are ignored. If \c Node is
|
|
/// distinct, uniquing cycles are resolved as they're found.
|
|
///
|
|
/// \pre \c Node.isDistinct() or \c Node.isTemporary().
|
|
static bool remapOperands(MDNode &Node,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(!Node.isUniqued() && "Expected temporary or distinct node");
|
|
const bool IsDistinct = Node.isDistinct();
|
|
|
|
bool AnyChanged = false;
|
|
for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) {
|
|
Metadata *Old = Node.getOperand(I);
|
|
Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper,
|
|
Materializer);
|
|
if (Old != New) {
|
|
AnyChanged = true;
|
|
Node.replaceOperandWith(I, New);
|
|
|
|
// Resolve uniquing cycles underneath distinct nodes on the fly so they
|
|
// don't infect later operands.
|
|
if (IsDistinct)
|
|
resolveCycles(New);
|
|
}
|
|
}
|
|
|
|
return AnyChanged;
|
|
}
|
|
|
|
/// Map a distinct MDNode.
|
|
///
|
|
/// Whether distinct nodes change is independent of their operands. If \a
|
|
/// RF_MoveDistinctMDs, then they are reused, and their operands remapped in
|
|
/// place; effectively, they're moved from one graph to another. Otherwise,
|
|
/// they're cloned/duplicated, and the new copy's operands are remapped.
|
|
static Metadata *mapDistinctNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isDistinct() && "Expected distinct node");
|
|
|
|
MDNode *NewMD;
|
|
if (Flags & RF_MoveDistinctMDs)
|
|
NewMD = const_cast<MDNode *>(Node);
|
|
else
|
|
NewMD = MDNode::replaceWithDistinct(Node->clone());
|
|
|
|
// Remap operands later.
|
|
DistinctWorklist.push_back(NewMD);
|
|
return mapToMetadata(VM, Node, NewMD);
|
|
}
|
|
|
|
/// \brief Map a uniqued MDNode.
|
|
///
|
|
/// Uniqued nodes may not need to be recreated (they may map to themselves).
|
|
static Metadata *mapUniquedNode(const MDNode *Node,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
assert(Node->isUniqued() && "Expected uniqued node");
|
|
|
|
// Create a temporary node and map it upfront in case we have a uniquing
|
|
// cycle. If necessary, this mapping will get updated by RAUW logic before
|
|
// returning.
|
|
auto ClonedMD = Node->clone();
|
|
mapToMetadata(VM, Node, ClonedMD.get());
|
|
if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper,
|
|
Materializer)) {
|
|
// No operands changed, so use the original.
|
|
ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node));
|
|
return const_cast<MDNode *>(Node);
|
|
}
|
|
|
|
// Uniquify the cloned node.
|
|
return MDNode::replaceWithUniqued(std::move(ClonedMD));
|
|
}
|
|
|
|
static Metadata *MapMetadataImpl(const Metadata *MD,
|
|
SmallVectorImpl<MDNode *> &DistinctWorklist,
|
|
ValueToValueMapTy &VM, RemapFlags Flags,
|
|
ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
// If the value already exists in the map, use it.
|
|
if (Metadata *NewMD = VM.MD().lookup(MD).get())
|
|
return NewMD;
|
|
|
|
if (isa<MDString>(MD))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (isa<ConstantAsMetadata>(MD))
|
|
if ((Flags & RF_NoModuleLevelChanges))
|
|
return mapToSelf(VM, MD);
|
|
|
|
if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *MappedV =
|
|
MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
|
|
if (VMD->getValue() == MappedV ||
|
|
(!MappedV && (Flags & RF_IgnoreMissingEntries)))
|
|
return mapToSelf(VM, MD);
|
|
|
|
// FIXME: This assert crashes during bootstrap, but I think it should be
|
|
// correct. For now, just match behaviour from before the metadata/value
|
|
// split.
|
|
//
|
|
// assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) &&
|
|
// "Referenced metadata not in value map!");
|
|
if (MappedV)
|
|
return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV));
|
|
return nullptr;
|
|
}
|
|
|
|
// Note: this cast precedes the Flags check so we always get its associated
|
|
// assertion.
|
|
const MDNode *Node = cast<MDNode>(MD);
|
|
|
|
// If this is a module-level metadata and we know that nothing at the
|
|
// module level is changing, then use an identity mapping.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return mapToSelf(VM, MD);
|
|
|
|
// Require resolved nodes whenever metadata might be remapped.
|
|
assert(Node->isResolved() && "Unexpected unresolved node");
|
|
|
|
if (Node->isDistinct())
|
|
return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
|
|
Materializer);
|
|
|
|
return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
|
|
Materializer);
|
|
}
|
|
|
|
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
SmallVector<MDNode *, 8> DistinctWorklist;
|
|
Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper,
|
|
Materializer);
|
|
|
|
// When there are no module-level changes, it's possible that the metadata
|
|
// graph has temporaries. Skip the logic to resolve cycles, since it's
|
|
// unnecessary (and invalid) in that case.
|
|
if (Flags & RF_NoModuleLevelChanges)
|
|
return NewMD;
|
|
|
|
// Resolve cycles involving the entry metadata.
|
|
resolveCycles(NewMD);
|
|
|
|
// Remap the operands of distinct MDNodes.
|
|
while (!DistinctWorklist.empty())
|
|
remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags,
|
|
TypeMapper, Materializer);
|
|
|
|
return NewMD;
|
|
}
|
|
|
|
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer) {
|
|
return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
|
|
TypeMapper, Materializer));
|
|
}
|
|
|
|
/// RemapInstruction - Convert the instruction operands from referencing the
|
|
/// current values into those specified by VMap.
|
|
///
|
|
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
|
|
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
|
|
ValueMaterializer *Materializer){
|
|
// Remap operands.
|
|
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
|
|
Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
*op = V;
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced value not in value map!");
|
|
}
|
|
|
|
// Remap phi nodes' incoming blocks.
|
|
if (PHINode *PN = dyn_cast<PHINode>(I)) {
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
|
|
// If we aren't ignoring missing entries, assert that something happened.
|
|
if (V)
|
|
PN->setIncomingBlock(i, cast<BasicBlock>(V));
|
|
else
|
|
assert((Flags & RF_IgnoreMissingEntries) &&
|
|
"Referenced block not in value map!");
|
|
}
|
|
}
|
|
|
|
// Remap attached metadata.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I->getAllMetadata(MDs);
|
|
for (const auto &MI : MDs) {
|
|
MDNode *Old = MI.second;
|
|
MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
|
|
if (New != Old)
|
|
I->setMetadata(MI.first, New);
|
|
}
|
|
|
|
if (!TypeMapper)
|
|
return;
|
|
|
|
// If the instruction's type is being remapped, do so now.
|
|
if (auto CS = CallSite(I)) {
|
|
SmallVector<Type *, 3> Tys;
|
|
FunctionType *FTy = CS.getFunctionType();
|
|
Tys.reserve(FTy->getNumParams());
|
|
for (Type *Ty : FTy->params())
|
|
Tys.push_back(TypeMapper->remapType(Ty));
|
|
CS.mutateFunctionType(FunctionType::get(
|
|
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
|
|
return;
|
|
}
|
|
if (auto *AI = dyn_cast<AllocaInst>(I))
|
|
AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
|
|
GEP->setSourceElementType(
|
|
TypeMapper->remapType(GEP->getSourceElementType()));
|
|
GEP->setResultElementType(
|
|
TypeMapper->remapType(GEP->getResultElementType()));
|
|
}
|
|
I->mutateType(TypeMapper->remapType(I->getType()));
|
|
}
|