forked from OSchip/llvm-project
1869 lines
68 KiB
C++
1869 lines
68 KiB
C++
//===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a printer that converts from our internal representation
|
|
// of machine-dependent LLVM code to GAS-format ARM assembly language.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMAsmPrinter.h"
|
|
#include "ARM.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "InstPrinter/ARMInstPrinter.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "MCTargetDesc/ARMMCExpr.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCAssembler.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/ARMBuildAttributes.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include "llvm/Support/COFF.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ELF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "asm-printer"
|
|
|
|
ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
|
|
std::unique_ptr<MCStreamer> Streamer)
|
|
: AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
|
|
InConstantPool(false) {}
|
|
|
|
void ARMAsmPrinter::EmitFunctionBodyEnd() {
|
|
// Make sure to terminate any constant pools that were at the end
|
|
// of the function.
|
|
if (!InConstantPool)
|
|
return;
|
|
InConstantPool = false;
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitFunctionEntryLabel() {
|
|
if (AFI->isThumbFunction()) {
|
|
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
|
|
OutStreamer->EmitThumbFunc(CurrentFnSym);
|
|
}
|
|
|
|
OutStreamer->EmitLabel(CurrentFnSym);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
|
|
uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
|
|
assert(Size && "C++ constructor pointer had zero size!");
|
|
|
|
const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
|
|
assert(GV && "C++ constructor pointer was not a GlobalValue!");
|
|
|
|
const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
|
|
ARMII::MO_NO_FLAG),
|
|
(Subtarget->isTargetELF()
|
|
? MCSymbolRefExpr::VK_ARM_TARGET1
|
|
: MCSymbolRefExpr::VK_None),
|
|
OutContext);
|
|
|
|
OutStreamer->EmitValue(E, Size);
|
|
}
|
|
|
|
/// runOnMachineFunction - This uses the EmitInstruction()
|
|
/// method to print assembly for each instruction.
|
|
///
|
|
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
|
|
AFI = MF.getInfo<ARMFunctionInfo>();
|
|
MCP = MF.getConstantPool();
|
|
Subtarget = &MF.getSubtarget<ARMSubtarget>();
|
|
|
|
SetupMachineFunction(MF);
|
|
|
|
if (Subtarget->isTargetCOFF()) {
|
|
bool Internal = MF.getFunction()->hasInternalLinkage();
|
|
COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
|
|
: COFF::IMAGE_SYM_CLASS_EXTERNAL;
|
|
int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
|
|
|
|
OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
|
|
OutStreamer->EmitCOFFSymbolStorageClass(Scl);
|
|
OutStreamer->EmitCOFFSymbolType(Type);
|
|
OutStreamer->EndCOFFSymbolDef();
|
|
}
|
|
|
|
// Emit the rest of the function body.
|
|
EmitFunctionBody();
|
|
|
|
// If we need V4T thumb mode Register Indirect Jump pads, emit them.
|
|
// These are created per function, rather than per TU, since it's
|
|
// relatively easy to exceed the thumb branch range within a TU.
|
|
if (! ThumbIndirectPads.empty()) {
|
|
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
|
|
EmitAlignment(1);
|
|
for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
|
|
OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
|
|
.addReg(ThumbIndirectPads[i].first)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
}
|
|
ThumbIndirectPads.clear();
|
|
}
|
|
|
|
// We didn't modify anything.
|
|
return false;
|
|
}
|
|
|
|
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
|
|
raw_ostream &O) {
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
unsigned TF = MO.getTargetFlags();
|
|
|
|
switch (MO.getType()) {
|
|
default: llvm_unreachable("<unknown operand type>");
|
|
case MachineOperand::MO_Register: {
|
|
unsigned Reg = MO.getReg();
|
|
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
|
|
assert(!MO.getSubReg() && "Subregs should be eliminated!");
|
|
if(ARM::GPRPairRegClass.contains(Reg)) {
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
Reg = TRI->getSubReg(Reg, ARM::gsub_0);
|
|
}
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
break;
|
|
}
|
|
case MachineOperand::MO_Immediate: {
|
|
int64_t Imm = MO.getImm();
|
|
O << '#';
|
|
if (TF == ARMII::MO_LO16)
|
|
O << ":lower16:";
|
|
else if (TF == ARMII::MO_HI16)
|
|
O << ":upper16:";
|
|
O << Imm;
|
|
break;
|
|
}
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
MO.getMBB()->getSymbol()->print(O, MAI);
|
|
return;
|
|
case MachineOperand::MO_GlobalAddress: {
|
|
const GlobalValue *GV = MO.getGlobal();
|
|
if (TF & ARMII::MO_LO16)
|
|
O << ":lower16:";
|
|
else if (TF & ARMII::MO_HI16)
|
|
O << ":upper16:";
|
|
GetARMGVSymbol(GV, TF)->print(O, MAI);
|
|
|
|
printOffset(MO.getOffset(), O);
|
|
if (TF == ARMII::MO_PLT)
|
|
O << "(PLT)";
|
|
break;
|
|
}
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
GetCPISymbol(MO.getIndex())->print(O, MAI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
MCSymbol *ARMAsmPrinter::
|
|
GetARMJTIPICJumpTableLabel(unsigned uid) const {
|
|
const DataLayout &DL = getDataLayout();
|
|
SmallString<60> Name;
|
|
raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
|
|
<< getFunctionNumber() << '_' << uid;
|
|
return OutContext.getOrCreateSymbol(Name);
|
|
}
|
|
|
|
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
|
|
unsigned AsmVariant, const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
// Does this asm operand have a single letter operand modifier?
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
default:
|
|
// See if this is a generic print operand
|
|
return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
|
|
case 'a': // Print as a memory address.
|
|
if (MI->getOperand(OpNum).isReg()) {
|
|
O << "["
|
|
<< ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
|
|
<< "]";
|
|
return false;
|
|
}
|
|
// Fallthrough
|
|
case 'c': // Don't print "#" before an immediate operand.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << MI->getOperand(OpNum).getImm();
|
|
return false;
|
|
case 'P': // Print a VFP double precision register.
|
|
case 'q': // Print a NEON quad precision register.
|
|
printOperand(MI, OpNum, O);
|
|
return false;
|
|
case 'y': // Print a VFP single precision register as indexed double.
|
|
if (MI->getOperand(OpNum).isReg()) {
|
|
unsigned Reg = MI->getOperand(OpNum).getReg();
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
// Find the 'd' register that has this 's' register as a sub-register,
|
|
// and determine the lane number.
|
|
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
|
|
if (!ARM::DPRRegClass.contains(*SR))
|
|
continue;
|
|
bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
|
|
O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
case 'B': // Bitwise inverse of integer or symbol without a preceding #.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << ~(MI->getOperand(OpNum).getImm());
|
|
return false;
|
|
case 'L': // The low 16 bits of an immediate constant.
|
|
if (!MI->getOperand(OpNum).isImm())
|
|
return true;
|
|
O << (MI->getOperand(OpNum).getImm() & 0xffff);
|
|
return false;
|
|
case 'M': { // A register range suitable for LDM/STM.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
unsigned RegBegin = MO.getReg();
|
|
// This takes advantage of the 2 operand-ness of ldm/stm and that we've
|
|
// already got the operands in registers that are operands to the
|
|
// inline asm statement.
|
|
O << "{";
|
|
if (ARM::GPRPairRegClass.contains(RegBegin)) {
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
|
|
O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
|
|
RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
|
|
}
|
|
O << ARMInstPrinter::getRegisterName(RegBegin);
|
|
|
|
// FIXME: The register allocator not only may not have given us the
|
|
// registers in sequence, but may not be in ascending registers. This
|
|
// will require changes in the register allocator that'll need to be
|
|
// propagated down here if the operands change.
|
|
unsigned RegOps = OpNum + 1;
|
|
while (MI->getOperand(RegOps).isReg()) {
|
|
O << ", "
|
|
<< ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
|
|
RegOps++;
|
|
}
|
|
|
|
O << "}";
|
|
|
|
return false;
|
|
}
|
|
case 'R': // The most significant register of a pair.
|
|
case 'Q': { // The least significant register of a pair.
|
|
if (OpNum == 0)
|
|
return true;
|
|
const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
|
|
if (!FlagsOP.isImm())
|
|
return true;
|
|
unsigned Flags = FlagsOP.getImm();
|
|
|
|
// This operand may not be the one that actually provides the register. If
|
|
// it's tied to a previous one then we should refer instead to that one
|
|
// for registers and their classes.
|
|
unsigned TiedIdx;
|
|
if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
|
|
for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
|
|
unsigned OpFlags = MI->getOperand(OpNum).getImm();
|
|
OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
|
|
}
|
|
Flags = MI->getOperand(OpNum).getImm();
|
|
|
|
// Later code expects OpNum to be pointing at the register rather than
|
|
// the flags.
|
|
OpNum += 1;
|
|
}
|
|
|
|
unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
|
|
unsigned RC;
|
|
InlineAsm::hasRegClassConstraint(Flags, RC);
|
|
if (RC == ARM::GPRPairRegClassID) {
|
|
if (NumVals != 1)
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
if (!MO.isReg())
|
|
return true;
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
|
|
ARM::gsub_0 : ARM::gsub_1);
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
if (NumVals != 2)
|
|
return true;
|
|
unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
|
|
if (RegOp >= MI->getNumOperands())
|
|
return true;
|
|
const MachineOperand &MO = MI->getOperand(RegOp);
|
|
if (!MO.isReg())
|
|
return true;
|
|
unsigned Reg = MO.getReg();
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
|
|
case 'e': // The low doubleword register of a NEON quad register.
|
|
case 'f': { // The high doubleword register of a NEON quad register.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
unsigned Reg = MI->getOperand(OpNum).getReg();
|
|
if (!ARM::QPRRegClass.contains(Reg))
|
|
return true;
|
|
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
|
|
unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
|
|
ARM::dsub_0 : ARM::dsub_1);
|
|
O << ARMInstPrinter::getRegisterName(SubReg);
|
|
return false;
|
|
}
|
|
|
|
// This modifier is not yet supported.
|
|
case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
|
|
return true;
|
|
case 'H': { // The highest-numbered register of a pair.
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
if (!MO.isReg())
|
|
return true;
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
|
|
unsigned Reg = MO.getReg();
|
|
if(!ARM::GPRPairRegClass.contains(Reg))
|
|
return false;
|
|
Reg = TRI->getSubReg(Reg, ARM::gsub_1);
|
|
O << ARMInstPrinter::getRegisterName(Reg);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
printOperand(MI, OpNum, O);
|
|
return false;
|
|
}
|
|
|
|
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
|
|
unsigned OpNum, unsigned AsmVariant,
|
|
const char *ExtraCode,
|
|
raw_ostream &O) {
|
|
// Does this asm operand have a single letter operand modifier?
|
|
if (ExtraCode && ExtraCode[0]) {
|
|
if (ExtraCode[1] != 0) return true; // Unknown modifier.
|
|
|
|
switch (ExtraCode[0]) {
|
|
case 'A': // A memory operand for a VLD1/VST1 instruction.
|
|
default: return true; // Unknown modifier.
|
|
case 'm': // The base register of a memory operand.
|
|
if (!MI->getOperand(OpNum).isReg())
|
|
return true;
|
|
O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const MachineOperand &MO = MI->getOperand(OpNum);
|
|
assert(MO.isReg() && "unexpected inline asm memory operand");
|
|
O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
|
|
return false;
|
|
}
|
|
|
|
static bool isThumb(const MCSubtargetInfo& STI) {
|
|
return STI.getFeatureBits()[ARM::ModeThumb];
|
|
}
|
|
|
|
void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
|
|
const MCSubtargetInfo *EndInfo) const {
|
|
// If either end mode is unknown (EndInfo == NULL) or different than
|
|
// the start mode, then restore the start mode.
|
|
const bool WasThumb = isThumb(StartInfo);
|
|
if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
|
|
OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
|
|
}
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
|
|
const Triple &TT = TM.getTargetTriple();
|
|
// Use unified assembler syntax.
|
|
OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
|
|
|
|
// Emit ARM Build Attributes
|
|
if (TT.isOSBinFormatELF())
|
|
emitAttributes();
|
|
|
|
// Use the triple's architecture and subarchitecture to determine
|
|
// if we're thumb for the purposes of the top level code16 assembler
|
|
// flag.
|
|
bool isThumb = TT.getArch() == Triple::thumb ||
|
|
TT.getArch() == Triple::thumbeb ||
|
|
TT.getSubArch() == Triple::ARMSubArch_v7m ||
|
|
TT.getSubArch() == Triple::ARMSubArch_v6m;
|
|
if (!M.getModuleInlineAsm().empty() && isThumb)
|
|
OutStreamer->EmitAssemblerFlag(MCAF_Code16);
|
|
}
|
|
|
|
static void
|
|
emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
|
|
MachineModuleInfoImpl::StubValueTy &MCSym) {
|
|
// L_foo$stub:
|
|
OutStreamer.EmitLabel(StubLabel);
|
|
// .indirect_symbol _foo
|
|
OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
|
|
|
|
if (MCSym.getInt())
|
|
// External to current translation unit.
|
|
OutStreamer.EmitIntValue(0, 4/*size*/);
|
|
else
|
|
// Internal to current translation unit.
|
|
//
|
|
// When we place the LSDA into the TEXT section, the type info
|
|
// pointers need to be indirect and pc-rel. We accomplish this by
|
|
// using NLPs; however, sometimes the types are local to the file.
|
|
// We need to fill in the value for the NLP in those cases.
|
|
OutStreamer.EmitValue(
|
|
MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
|
|
4 /*size*/);
|
|
}
|
|
|
|
|
|
void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
|
|
const Triple &TT = TM.getTargetTriple();
|
|
if (TT.isOSBinFormatMachO()) {
|
|
// All darwin targets use mach-o.
|
|
const TargetLoweringObjectFileMachO &TLOFMacho =
|
|
static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
|
|
MachineModuleInfoMachO &MMIMacho =
|
|
MMI->getObjFileInfo<MachineModuleInfoMachO>();
|
|
|
|
// Output non-lazy-pointers for external and common global variables.
|
|
MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
|
|
|
|
if (!Stubs.empty()) {
|
|
// Switch with ".non_lazy_symbol_pointer" directive.
|
|
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
|
|
EmitAlignment(2);
|
|
|
|
for (auto &Stub : Stubs)
|
|
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
|
|
|
|
Stubs.clear();
|
|
OutStreamer->AddBlankLine();
|
|
}
|
|
|
|
Stubs = MMIMacho.GetHiddenGVStubList();
|
|
if (!Stubs.empty()) {
|
|
OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
|
|
EmitAlignment(2);
|
|
|
|
for (auto &Stub : Stubs)
|
|
emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
|
|
|
|
Stubs.clear();
|
|
OutStreamer->AddBlankLine();
|
|
}
|
|
|
|
// Funny Darwin hack: This flag tells the linker that no global symbols
|
|
// contain code that falls through to other global symbols (e.g. the obvious
|
|
// implementation of multiple entry points). If this doesn't occur, the
|
|
// linker can safely perform dead code stripping. Since LLVM never
|
|
// generates code that does this, it is always safe to set.
|
|
OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
|
|
// FIXME:
|
|
// The following seem like one-off assembler flags, but they actually need
|
|
// to appear in the .ARM.attributes section in ELF.
|
|
// Instead of subclassing the MCELFStreamer, we do the work here.
|
|
|
|
static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (CPU == "xscale")
|
|
return ARMBuildAttrs::v5TEJ;
|
|
|
|
if (Subtarget->hasV8Ops())
|
|
return ARMBuildAttrs::v8;
|
|
else if (Subtarget->hasV7Ops()) {
|
|
if (Subtarget->isMClass() && Subtarget->hasDSP())
|
|
return ARMBuildAttrs::v7E_M;
|
|
return ARMBuildAttrs::v7;
|
|
} else if (Subtarget->hasV6T2Ops())
|
|
return ARMBuildAttrs::v6T2;
|
|
else if (Subtarget->hasV6MOps())
|
|
return ARMBuildAttrs::v6S_M;
|
|
else if (Subtarget->hasV6Ops())
|
|
return ARMBuildAttrs::v6;
|
|
else if (Subtarget->hasV5TEOps())
|
|
return ARMBuildAttrs::v5TE;
|
|
else if (Subtarget->hasV5TOps())
|
|
return ARMBuildAttrs::v5T;
|
|
else if (Subtarget->hasV4TOps())
|
|
return ARMBuildAttrs::v4T;
|
|
else
|
|
return ARMBuildAttrs::v4;
|
|
}
|
|
|
|
void ARMAsmPrinter::emitAttributes() {
|
|
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
|
|
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
|
|
|
|
ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
|
|
|
|
ATS.switchVendor("aeabi");
|
|
|
|
// Compute ARM ELF Attributes based on the default subtarget that
|
|
// we'd have constructed. The existing ARM behavior isn't LTO clean
|
|
// anyhow.
|
|
// FIXME: For ifunc related functions we could iterate over and look
|
|
// for a feature string that doesn't match the default one.
|
|
const Triple &TT = TM.getTargetTriple();
|
|
StringRef CPU = TM.getTargetCPU();
|
|
StringRef FS = TM.getTargetFeatureString();
|
|
std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
|
|
if (!FS.empty()) {
|
|
if (!ArchFS.empty())
|
|
ArchFS = (Twine(ArchFS) + "," + FS).str();
|
|
else
|
|
ArchFS = FS;
|
|
}
|
|
const ARMBaseTargetMachine &ATM =
|
|
static_cast<const ARMBaseTargetMachine &>(TM);
|
|
const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
|
|
|
|
std::string CPUString = STI.getCPUString();
|
|
|
|
if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic"
|
|
// FIXME: remove krait check when GNU tools support krait cpu
|
|
if (STI.isKrait()) {
|
|
ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
|
|
// We consider krait as a "cortex-a9" + hwdiv CPU
|
|
// Enable hwdiv through ".arch_extension idiv"
|
|
if (STI.hasDivide() || STI.hasDivideInARMMode())
|
|
ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
|
|
} else
|
|
ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
|
|
}
|
|
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
|
|
|
|
// Tag_CPU_arch_profile must have the default value of 0 when "Architecture
|
|
// profile is not applicable (e.g. pre v7, or cross-profile code)".
|
|
if (STI.hasV7Ops()) {
|
|
if (STI.isAClass()) {
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
|
|
ARMBuildAttrs::ApplicationProfile);
|
|
} else if (STI.isRClass()) {
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
|
|
ARMBuildAttrs::RealTimeProfile);
|
|
} else if (STI.isMClass()) {
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
|
|
ARMBuildAttrs::MicroControllerProfile);
|
|
}
|
|
}
|
|
|
|
ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
|
|
STI.hasARMOps() ? ARMBuildAttrs::Allowed
|
|
: ARMBuildAttrs::Not_Allowed);
|
|
if (STI.isThumb1Only()) {
|
|
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
|
|
} else if (STI.hasThumb2()) {
|
|
ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
|
|
ARMBuildAttrs::AllowThumb32);
|
|
}
|
|
|
|
if (STI.hasNEON()) {
|
|
/* NEON is not exactly a VFP architecture, but GAS emit one of
|
|
* neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
|
|
if (STI.hasFPARMv8()) {
|
|
if (STI.hasCrypto())
|
|
ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
|
|
else
|
|
ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
|
|
} else if (STI.hasVFP4())
|
|
ATS.emitFPU(ARM::FK_NEON_VFPV4);
|
|
else
|
|
ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
|
|
// Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
|
|
if (STI.hasV8Ops())
|
|
ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
|
|
STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
|
|
ARMBuildAttrs::AllowNeonARMv8);
|
|
} else {
|
|
if (STI.hasFPARMv8())
|
|
// FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
|
|
// FPU, but there are two different names for it depending on the CPU.
|
|
ATS.emitFPU(STI.hasD16()
|
|
? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
|
|
: ARM::FK_FP_ARMV8);
|
|
else if (STI.hasVFP4())
|
|
ATS.emitFPU(STI.hasD16()
|
|
? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
|
|
: ARM::FK_VFPV4);
|
|
else if (STI.hasVFP3())
|
|
ATS.emitFPU(STI.hasD16()
|
|
// +d16
|
|
? (STI.isFPOnlySP()
|
|
? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
|
|
: (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
|
|
// -d16
|
|
: (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
|
|
else if (STI.hasVFP2())
|
|
ATS.emitFPU(ARM::FK_VFPV2);
|
|
}
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
// PIC specific attributes.
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
|
|
ARMBuildAttrs::AddressRWPCRel);
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
|
|
ARMBuildAttrs::AddressROPCRel);
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
|
|
ARMBuildAttrs::AddressGOT);
|
|
} else {
|
|
// Allow direct addressing of imported data for all other relocation models.
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
|
|
ARMBuildAttrs::AddressDirect);
|
|
}
|
|
|
|
// Signal various FP modes.
|
|
if (!TM.Options.UnsafeFPMath) {
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
|
|
ARMBuildAttrs::IEEEDenormals);
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
|
|
|
|
// If the user has permitted this code to choose the IEEE 754
|
|
// rounding at run-time, emit the rounding attribute.
|
|
if (TM.Options.HonorSignDependentRoundingFPMathOption)
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
|
|
} else {
|
|
if (!STI.hasVFP2()) {
|
|
// When the target doesn't have an FPU (by design or
|
|
// intention), the assumptions made on the software support
|
|
// mirror that of the equivalent hardware support *if it
|
|
// existed*. For v7 and better we indicate that denormals are
|
|
// flushed preserving sign, and for V6 we indicate that
|
|
// denormals are flushed to positive zero.
|
|
if (STI.hasV7Ops())
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
|
|
ARMBuildAttrs::PreserveFPSign);
|
|
} else if (STI.hasVFP3()) {
|
|
// In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
|
|
// the sign bit of the zero matches the sign bit of the input or
|
|
// result that is being flushed to zero.
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
|
|
ARMBuildAttrs::PreserveFPSign);
|
|
}
|
|
// For VFPv2 implementations it is implementation defined as
|
|
// to whether denormals are flushed to positive zero or to
|
|
// whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
|
|
// LLVM has chosen to flush this to positive zero (most likely for
|
|
// GCC compatibility), so that's the chosen value here (the
|
|
// absence of its emission implies zero).
|
|
}
|
|
|
|
// TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
|
|
// equivalent of GCC's -ffinite-math-only flag.
|
|
if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
|
|
ARMBuildAttrs::Allowed);
|
|
else
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
|
|
ARMBuildAttrs::AllowIEE754);
|
|
|
|
if (STI.allowsUnalignedMem())
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
|
|
ARMBuildAttrs::Allowed);
|
|
else
|
|
ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
|
|
ARMBuildAttrs::Not_Allowed);
|
|
|
|
// FIXME: add more flags to ARMBuildAttributes.h
|
|
// 8-bytes alignment stuff.
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
|
|
|
|
// ABI_HardFP_use attribute to indicate single precision FP.
|
|
if (STI.isFPOnlySP())
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
|
|
ARMBuildAttrs::HardFPSinglePrecision);
|
|
|
|
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
|
|
if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
|
|
|
|
// FIXME: Should we signal R9 usage?
|
|
|
|
if (STI.hasFP16())
|
|
ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
|
|
|
|
// FIXME: To support emitting this build attribute as GCC does, the
|
|
// -mfp16-format option and associated plumbing must be
|
|
// supported. For now the __fp16 type is exposed by default, so this
|
|
// attribute should be emitted with value 1.
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
|
|
ARMBuildAttrs::FP16FormatIEEE);
|
|
|
|
if (STI.hasMPExtension())
|
|
ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
|
|
|
|
// Hardware divide in ARM mode is part of base arch, starting from ARMv8.
|
|
// If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
|
|
// It is not possible to produce DisallowDIV: if hwdiv is present in the base
|
|
// arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
|
|
// AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
|
|
// otherwise, the default value (AllowDIVIfExists) applies.
|
|
if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
|
|
ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
|
|
|
|
if (MMI) {
|
|
if (const Module *SourceModule = MMI->getModule()) {
|
|
// ABI_PCS_wchar_t to indicate wchar_t width
|
|
// FIXME: There is no way to emit value 0 (wchar_t prohibited).
|
|
if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
|
|
SourceModule->getModuleFlag("wchar_size"))) {
|
|
int WCharWidth = WCharWidthValue->getZExtValue();
|
|
assert((WCharWidth == 2 || WCharWidth == 4) &&
|
|
"wchar_t width must be 2 or 4 bytes");
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
|
|
}
|
|
|
|
// ABI_enum_size to indicate enum width
|
|
// FIXME: There is no way to emit value 0 (enums prohibited) or value 3
|
|
// (all enums contain a value needing 32 bits to encode).
|
|
if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
|
|
SourceModule->getModuleFlag("min_enum_size"))) {
|
|
int EnumWidth = EnumWidthValue->getZExtValue();
|
|
assert((EnumWidth == 1 || EnumWidth == 4) &&
|
|
"Minimum enum width must be 1 or 4 bytes");
|
|
int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: We currently only support either reserving the register, or treating
|
|
// it as another callee-saved register, but not as SB or a TLS pointer; It
|
|
// would instead be nicer to push this from the frontend as metadata, as we do
|
|
// for the wchar and enum size tags
|
|
if (STI.isR9Reserved())
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
|
|
else
|
|
ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
|
|
|
|
if (STI.hasTrustZone() && STI.hasVirtualization())
|
|
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
|
|
ARMBuildAttrs::AllowTZVirtualization);
|
|
else if (STI.hasTrustZone())
|
|
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
|
|
ARMBuildAttrs::AllowTZ);
|
|
else if (STI.hasVirtualization())
|
|
ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
|
|
ARMBuildAttrs::AllowVirtualization);
|
|
|
|
ATS.finishAttributeSection();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
|
|
unsigned LabelId, MCContext &Ctx) {
|
|
|
|
MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
|
|
+ "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
|
|
return Label;
|
|
}
|
|
|
|
static MCSymbolRefExpr::VariantKind
|
|
getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
|
|
switch (Modifier) {
|
|
case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
|
|
case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD;
|
|
case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF;
|
|
case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF;
|
|
case ARMCP::GOT_PREL: return MCSymbolRefExpr::VK_ARM_GOT_PREL;
|
|
}
|
|
llvm_unreachable("Invalid ARMCPModifier!");
|
|
}
|
|
|
|
MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
|
|
unsigned char TargetFlags) {
|
|
if (Subtarget->isTargetMachO()) {
|
|
bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
|
|
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
|
|
|
|
if (!IsIndirect)
|
|
return getSymbol(GV);
|
|
|
|
// FIXME: Remove this when Darwin transition to @GOT like syntax.
|
|
MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
|
|
MachineModuleInfoMachO &MMIMachO =
|
|
MMI->getObjFileInfo<MachineModuleInfoMachO>();
|
|
MachineModuleInfoImpl::StubValueTy &StubSym =
|
|
GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
|
|
: MMIMachO.getGVStubEntry(MCSym);
|
|
if (!StubSym.getPointer())
|
|
StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
|
|
!GV->hasInternalLinkage());
|
|
return MCSym;
|
|
} else if (Subtarget->isTargetCOFF()) {
|
|
assert(Subtarget->isTargetWindows() &&
|
|
"Windows is the only supported COFF target");
|
|
|
|
bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
|
|
if (!IsIndirect)
|
|
return getSymbol(GV);
|
|
|
|
SmallString<128> Name;
|
|
Name = "__imp_";
|
|
getNameWithPrefix(Name, GV);
|
|
|
|
return OutContext.getOrCreateSymbol(Name);
|
|
} else if (Subtarget->isTargetELF()) {
|
|
return getSymbol(GV);
|
|
}
|
|
llvm_unreachable("unexpected target");
|
|
}
|
|
|
|
void ARMAsmPrinter::
|
|
EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
|
|
const DataLayout &DL = getDataLayout();
|
|
int Size = DL.getTypeAllocSize(MCPV->getType());
|
|
|
|
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
|
|
|
|
MCSymbol *MCSym;
|
|
if (ACPV->isLSDA()) {
|
|
MCSym = getCurExceptionSym();
|
|
} else if (ACPV->isBlockAddress()) {
|
|
const BlockAddress *BA =
|
|
cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
|
|
MCSym = GetBlockAddressSymbol(BA);
|
|
} else if (ACPV->isGlobalValue()) {
|
|
const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
|
|
|
|
// On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
|
|
// flag the global as MO_NONLAZY.
|
|
unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
|
|
MCSym = GetARMGVSymbol(GV, TF);
|
|
} else if (ACPV->isMachineBasicBlock()) {
|
|
const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
|
|
MCSym = MBB->getSymbol();
|
|
} else {
|
|
assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
|
|
const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
|
|
MCSym = GetExternalSymbolSymbol(Sym);
|
|
}
|
|
|
|
// Create an MCSymbol for the reference.
|
|
const MCExpr *Expr =
|
|
MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
|
|
OutContext);
|
|
|
|
if (ACPV->getPCAdjustment()) {
|
|
MCSymbol *PCLabel =
|
|
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
|
|
ACPV->getLabelId(), OutContext);
|
|
const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
|
|
PCRelExpr =
|
|
MCBinaryExpr::createAdd(PCRelExpr,
|
|
MCConstantExpr::create(ACPV->getPCAdjustment(),
|
|
OutContext),
|
|
OutContext);
|
|
if (ACPV->mustAddCurrentAddress()) {
|
|
// We want "(<expr> - .)", but MC doesn't have a concept of the '.'
|
|
// label, so just emit a local label end reference that instead.
|
|
MCSymbol *DotSym = OutContext.createTempSymbol();
|
|
OutStreamer->EmitLabel(DotSym);
|
|
const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
|
|
PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
|
|
}
|
|
Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
|
|
}
|
|
OutStreamer->EmitValue(Expr, Size);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
|
|
const MachineOperand &MO1 = MI->getOperand(1);
|
|
unsigned JTI = MO1.getIndex();
|
|
|
|
// Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
|
|
// ARM mode tables.
|
|
EmitAlignment(2);
|
|
|
|
// Emit a label for the jump table.
|
|
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
|
|
OutStreamer->EmitLabel(JTISymbol);
|
|
|
|
// Mark the jump table as data-in-code.
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
|
|
|
|
// Emit each entry of the table.
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
|
|
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = JTBBs[i];
|
|
// Construct an MCExpr for the entry. We want a value of the form:
|
|
// (BasicBlockAddr - TableBeginAddr)
|
|
//
|
|
// For example, a table with entries jumping to basic blocks BB0 and BB1
|
|
// would look like:
|
|
// LJTI_0_0:
|
|
// .word (LBB0 - LJTI_0_0)
|
|
// .word (LBB1 - LJTI_0_0)
|
|
const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
|
|
|
|
if (TM.getRelocationModel() == Reloc::PIC_)
|
|
Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
|
|
OutContext),
|
|
OutContext);
|
|
// If we're generating a table of Thumb addresses in static relocation
|
|
// model, we need to add one to keep interworking correctly.
|
|
else if (AFI->isThumbFunction())
|
|
Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
|
|
OutContext);
|
|
OutStreamer->EmitValue(Expr, 4);
|
|
}
|
|
// Mark the end of jump table data-in-code region.
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
|
|
const MachineOperand &MO1 = MI->getOperand(1);
|
|
unsigned JTI = MO1.getIndex();
|
|
|
|
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
|
|
OutStreamer->EmitLabel(JTISymbol);
|
|
|
|
// Emit each entry of the table.
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
|
|
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
|
|
MachineBasicBlock *MBB = JTBBs[i];
|
|
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
|
|
OutContext);
|
|
// If this isn't a TBB or TBH, the entries are direct branch instructions.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
|
|
.addExpr(MBBSymbolExpr)
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
}
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
|
|
unsigned OffsetWidth) {
|
|
assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
|
|
const MachineOperand &MO1 = MI->getOperand(1);
|
|
unsigned JTI = MO1.getIndex();
|
|
|
|
MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
|
|
OutStreamer->EmitLabel(JTISymbol);
|
|
|
|
// Emit each entry of the table.
|
|
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
|
|
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
|
|
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
|
|
|
|
// Mark the jump table as data-in-code.
|
|
OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
|
|
: MCDR_DataRegionJT16);
|
|
|
|
for (auto MBB : JTBBs) {
|
|
const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
|
|
OutContext);
|
|
// Otherwise it's an offset from the dispatch instruction. Construct an
|
|
// MCExpr for the entry. We want a value of the form:
|
|
// (BasicBlockAddr - TBBInstAddr + 4) / 2
|
|
//
|
|
// For example, a TBB table with entries jumping to basic blocks BB0 and BB1
|
|
// would look like:
|
|
// LJTI_0_0:
|
|
// .byte (LBB0 - (LCPI0_0 + 4)) / 2
|
|
// .byte (LBB1 - (LCPI0_0 + 4)) / 2
|
|
// where LCPI0_0 is a label defined just before the TBB instruction using
|
|
// this table.
|
|
MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
|
|
const MCExpr *Expr = MCBinaryExpr::createAdd(
|
|
MCSymbolRefExpr::create(TBInstPC, OutContext),
|
|
MCConstantExpr::create(4, OutContext), OutContext);
|
|
Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
|
|
Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
|
|
OutContext);
|
|
OutStreamer->EmitValue(Expr, OffsetWidth);
|
|
}
|
|
// Mark the end of jump table data-in-code region. 32-bit offsets use
|
|
// actual branch instructions here, so we don't mark those as a data-region
|
|
// at all.
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
|
|
|
|
// Make sure the next instruction is 2-byte aligned.
|
|
EmitAlignment(1);
|
|
}
|
|
|
|
void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
|
|
assert(MI->getFlag(MachineInstr::FrameSetup) &&
|
|
"Only instruction which are involved into frame setup code are allowed");
|
|
|
|
MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
|
|
ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
|
|
const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
|
|
|
|
unsigned FramePtr = RegInfo->getFrameRegister(MF);
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned SrcReg, DstReg;
|
|
|
|
if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
|
|
// Two special cases:
|
|
// 1) tPUSH does not have src/dst regs.
|
|
// 2) for Thumb1 code we sometimes materialize the constant via constpool
|
|
// load. Yes, this is pretty fragile, but for now I don't see better
|
|
// way... :(
|
|
SrcReg = DstReg = ARM::SP;
|
|
} else {
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
DstReg = MI->getOperand(0).getReg();
|
|
}
|
|
|
|
// Try to figure out the unwinding opcode out of src / dst regs.
|
|
if (MI->mayStore()) {
|
|
// Register saves.
|
|
assert(DstReg == ARM::SP &&
|
|
"Only stack pointer as a destination reg is supported");
|
|
|
|
SmallVector<unsigned, 4> RegList;
|
|
// Skip src & dst reg, and pred ops.
|
|
unsigned StartOp = 2 + 2;
|
|
// Use all the operands.
|
|
unsigned NumOffset = 0;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
case ARM::tPUSH:
|
|
// Special case here: no src & dst reg, but two extra imp ops.
|
|
StartOp = 2; NumOffset = 2;
|
|
case ARM::STMDB_UPD:
|
|
case ARM::t2STMDB_UPD:
|
|
case ARM::VSTMDDB_UPD:
|
|
assert(SrcReg == ARM::SP &&
|
|
"Only stack pointer as a source reg is supported");
|
|
for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
|
|
i != NumOps; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
// Actually, there should never be any impdef stuff here. Skip it
|
|
// temporary to workaround PR11902.
|
|
if (MO.isImplicit())
|
|
continue;
|
|
RegList.push_back(MO.getReg());
|
|
}
|
|
break;
|
|
case ARM::STR_PRE_IMM:
|
|
case ARM::STR_PRE_REG:
|
|
case ARM::t2STR_PRE:
|
|
assert(MI->getOperand(2).getReg() == ARM::SP &&
|
|
"Only stack pointer as a source reg is supported");
|
|
RegList.push_back(SrcReg);
|
|
break;
|
|
}
|
|
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
|
|
ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
|
|
} else {
|
|
// Changes of stack / frame pointer.
|
|
if (SrcReg == ARM::SP) {
|
|
int64_t Offset = 0;
|
|
switch (Opc) {
|
|
default:
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
case ARM::MOVr:
|
|
case ARM::tMOVr:
|
|
Offset = 0;
|
|
break;
|
|
case ARM::ADDri:
|
|
case ARM::t2ADDri:
|
|
Offset = -MI->getOperand(2).getImm();
|
|
break;
|
|
case ARM::SUBri:
|
|
case ARM::t2SUBri:
|
|
Offset = MI->getOperand(2).getImm();
|
|
break;
|
|
case ARM::tSUBspi:
|
|
Offset = MI->getOperand(2).getImm()*4;
|
|
break;
|
|
case ARM::tADDspi:
|
|
case ARM::tADDrSPi:
|
|
Offset = -MI->getOperand(2).getImm()*4;
|
|
break;
|
|
case ARM::tLDRpci: {
|
|
// Grab the constpool index and check, whether it corresponds to
|
|
// original or cloned constpool entry.
|
|
unsigned CPI = MI->getOperand(1).getIndex();
|
|
const MachineConstantPool *MCP = MF.getConstantPool();
|
|
if (CPI >= MCP->getConstants().size())
|
|
CPI = AFI.getOriginalCPIdx(CPI);
|
|
assert(CPI != -1U && "Invalid constpool index");
|
|
|
|
// Derive the actual offset.
|
|
const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
|
|
assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
|
|
// FIXME: Check for user, it should be "add" instruction!
|
|
Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
|
|
if (DstReg == FramePtr && FramePtr != ARM::SP)
|
|
// Set-up of the frame pointer. Positive values correspond to "add"
|
|
// instruction.
|
|
ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
|
|
else if (DstReg == ARM::SP) {
|
|
// Change of SP by an offset. Positive values correspond to "sub"
|
|
// instruction.
|
|
ATS.emitPad(Offset);
|
|
} else {
|
|
// Move of SP to a register. Positive values correspond to an "add"
|
|
// instruction.
|
|
ATS.emitMovSP(DstReg, -Offset);
|
|
}
|
|
}
|
|
} else if (DstReg == ARM::SP) {
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
}
|
|
else {
|
|
MI->dump();
|
|
llvm_unreachable("Unsupported opcode for unwinding information");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simple pseudo-instructions have their lowering (with expansion to real
|
|
// instructions) auto-generated.
|
|
#include "ARMGenMCPseudoLowering.inc"
|
|
|
|
void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
|
|
const DataLayout &DL = getDataLayout();
|
|
|
|
// If we just ended a constant pool, mark it as such.
|
|
if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
|
|
InConstantPool = false;
|
|
}
|
|
|
|
// Emit unwinding stuff for frame-related instructions
|
|
if (Subtarget->isTargetEHABICompatible() &&
|
|
MI->getFlag(MachineInstr::FrameSetup))
|
|
EmitUnwindingInstruction(MI);
|
|
|
|
// Do any auto-generated pseudo lowerings.
|
|
if (emitPseudoExpansionLowering(*OutStreamer, MI))
|
|
return;
|
|
|
|
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
|
|
"Pseudo flag setting opcode should be expanded early");
|
|
|
|
// Check for manual lowerings.
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
|
|
case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
|
|
case ARM::LEApcrel:
|
|
case ARM::tLEApcrel:
|
|
case ARM::t2LEApcrel: {
|
|
// FIXME: Need to also handle globals and externals
|
|
MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
|
|
ARM::t2LEApcrel ? ARM::t2ADR
|
|
: (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
|
|
: ARM::ADR))
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(2).getImm())
|
|
.addReg(MI->getOperand(3).getReg()));
|
|
return;
|
|
}
|
|
case ARM::LEApcrelJT:
|
|
case ARM::tLEApcrelJT:
|
|
case ARM::t2LEApcrelJT: {
|
|
MCSymbol *JTIPICSymbol =
|
|
GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
|
|
ARM::t2LEApcrelJT ? ARM::t2ADR
|
|
: (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
|
|
: ARM::ADR))
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(2).getImm())
|
|
.addReg(MI->getOperand(3).getReg()));
|
|
return;
|
|
}
|
|
// Darwin call instructions are just normal call instructions with different
|
|
// clobber semantics (they clobber R9).
|
|
case ARM::BX_CALL: {
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
|
|
.addReg(MI->getOperand(0).getReg()));
|
|
return;
|
|
}
|
|
case ARM::tBX_CALL: {
|
|
if (Subtarget->hasV5TOps())
|
|
llvm_unreachable("Expected BLX to be selected for v5t+");
|
|
|
|
// On ARM v4t, when doing a call from thumb mode, we need to ensure
|
|
// that the saved lr has its LSB set correctly (the arch doesn't
|
|
// have blx).
|
|
// So here we generate a bl to a small jump pad that does bx rN.
|
|
// The jump pads are emitted after the function body.
|
|
|
|
unsigned TReg = MI->getOperand(0).getReg();
|
|
MCSymbol *TRegSym = nullptr;
|
|
for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
|
|
if (ThumbIndirectPads[i].first == TReg) {
|
|
TRegSym = ThumbIndirectPads[i].second;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!TRegSym) {
|
|
TRegSym = OutContext.createTempSymbol();
|
|
ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
|
|
}
|
|
|
|
// Create a link-saving branch to the Reg Indirect Jump Pad.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
|
|
// Predicate comes first here.
|
|
.addImm(ARMCC::AL).addReg(0)
|
|
.addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
|
|
return;
|
|
}
|
|
case ARM::BMOVPCRX_CALL: {
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::BMOVPCB_CALL: {
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
|
|
.addReg(ARM::LR)
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
|
|
const MachineOperand &Op = MI->getOperand(0);
|
|
const GlobalValue *GV = Op.getGlobal();
|
|
const unsigned TF = Op.getTargetFlags();
|
|
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
|
|
.addExpr(GVSymExpr)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::MOVi16_ga_pcrel:
|
|
case ARM::t2MOVi16_ga_pcrel: {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
|
|
|
|
unsigned TF = MI->getOperand(1).getTargetFlags();
|
|
const GlobalValue *GV = MI->getOperand(1).getGlobal();
|
|
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
|
|
|
|
MCSymbol *LabelSym =
|
|
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
|
|
MI->getOperand(2).getImm(), OutContext);
|
|
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
|
|
unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
|
|
const MCExpr *PCRelExpr =
|
|
ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
|
|
MCBinaryExpr::createAdd(LabelSymExpr,
|
|
MCConstantExpr::create(PCAdj, OutContext),
|
|
OutContext), OutContext), OutContext);
|
|
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
|
|
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case ARM::MOVTi16_ga_pcrel:
|
|
case ARM::t2MOVTi16_ga_pcrel: {
|
|
MCInst TmpInst;
|
|
TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
|
|
? ARM::MOVTi16 : ARM::t2MOVTi16);
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
|
|
|
|
unsigned TF = MI->getOperand(2).getTargetFlags();
|
|
const GlobalValue *GV = MI->getOperand(2).getGlobal();
|
|
MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
|
|
const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
|
|
|
|
MCSymbol *LabelSym =
|
|
getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
|
|
MI->getOperand(3).getImm(), OutContext);
|
|
const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
|
|
unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
|
|
const MCExpr *PCRelExpr =
|
|
ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
|
|
MCBinaryExpr::createAdd(LabelSymExpr,
|
|
MCConstantExpr::create(PCAdj, OutContext),
|
|
OutContext), OutContext), OutContext);
|
|
TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case ARM::tPICADD: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// add r0, pc
|
|
// This adds the address of LPC0 to r0.
|
|
|
|
// Emit the label.
|
|
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
MI->getOperand(2).getImm(), OutContext));
|
|
|
|
// Form and emit the add.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::PICADD: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// add r0, pc, r0
|
|
// This adds the address of LPC0 to r0.
|
|
|
|
// Emit the label.
|
|
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
MI->getOperand(2).getImm(), OutContext));
|
|
|
|
// Form and emit the add.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(1).getReg())
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(3).getImm())
|
|
.addReg(MI->getOperand(4).getReg())
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::PICSTR:
|
|
case ARM::PICSTRB:
|
|
case ARM::PICSTRH:
|
|
case ARM::PICLDR:
|
|
case ARM::PICLDRB:
|
|
case ARM::PICLDRH:
|
|
case ARM::PICLDRSB:
|
|
case ARM::PICLDRSH: {
|
|
// This is a pseudo op for a label + instruction sequence, which looks like:
|
|
// LPC0:
|
|
// OP r0, [pc, r0]
|
|
// The LCP0 label is referenced by a constant pool entry in order to get
|
|
// a PC-relative address at the ldr instruction.
|
|
|
|
// Emit the label.
|
|
OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
|
|
getFunctionNumber(),
|
|
MI->getOperand(2).getImm(), OutContext));
|
|
|
|
// Form and emit the load
|
|
unsigned Opcode;
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unexpected opcode!");
|
|
case ARM::PICSTR: Opcode = ARM::STRrs; break;
|
|
case ARM::PICSTRB: Opcode = ARM::STRBrs; break;
|
|
case ARM::PICSTRH: Opcode = ARM::STRH; break;
|
|
case ARM::PICLDR: Opcode = ARM::LDRrs; break;
|
|
case ARM::PICLDRB: Opcode = ARM::LDRBrs; break;
|
|
case ARM::PICLDRH: Opcode = ARM::LDRH; break;
|
|
case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
|
|
case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
|
|
}
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(1).getReg())
|
|
.addImm(0)
|
|
// Add predicate operands.
|
|
.addImm(MI->getOperand(3).getImm())
|
|
.addReg(MI->getOperand(4).getReg()));
|
|
|
|
return;
|
|
}
|
|
case ARM::CONSTPOOL_ENTRY: {
|
|
/// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
|
|
/// in the function. The first operand is the ID# for this instruction, the
|
|
/// second is the index into the MachineConstantPool that this is, the third
|
|
/// is the size in bytes of this constant pool entry.
|
|
/// The required alignment is specified on the basic block holding this MI.
|
|
unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
|
|
unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();
|
|
|
|
// If this is the first entry of the pool, mark it.
|
|
if (!InConstantPool) {
|
|
OutStreamer->EmitDataRegion(MCDR_DataRegion);
|
|
InConstantPool = true;
|
|
}
|
|
|
|
OutStreamer->EmitLabel(GetCPISymbol(LabelId));
|
|
|
|
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
|
|
if (MCPE.isMachineConstantPoolEntry())
|
|
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
|
|
else
|
|
EmitGlobalConstant(DL, MCPE.Val.ConstVal);
|
|
return;
|
|
}
|
|
case ARM::JUMPTABLE_ADDRS:
|
|
EmitJumpTableAddrs(MI);
|
|
return;
|
|
case ARM::JUMPTABLE_INSTS:
|
|
EmitJumpTableInsts(MI);
|
|
return;
|
|
case ARM::JUMPTABLE_TBB:
|
|
case ARM::JUMPTABLE_TBH:
|
|
EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
|
|
return;
|
|
case ARM::t2BR_JT: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::t2TBB_JT:
|
|
case ARM::t2TBH_JT: {
|
|
unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
|
|
// Lower and emit the PC label, then the instruction itself.
|
|
OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::tBR_JTr:
|
|
case ARM::BR_JTr: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// mov pc, target
|
|
MCInst TmpInst;
|
|
unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
|
|
ARM::MOVr : ARM::tMOVr;
|
|
TmpInst.setOpcode(Opc);
|
|
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
// Add 's' bit operand (always reg0 for this)
|
|
if (Opc == ARM::MOVr)
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case ARM::BR_JTm: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// ldr pc, target
|
|
MCInst TmpInst;
|
|
if (MI->getOperand(1).getReg() == 0) {
|
|
// literal offset
|
|
TmpInst.setOpcode(ARM::LDRi12);
|
|
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
|
|
} else {
|
|
TmpInst.setOpcode(ARM::LDRrs);
|
|
TmpInst.addOperand(MCOperand::createReg(ARM::PC));
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
|
|
TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
|
|
TmpInst.addOperand(MCOperand::createImm(0));
|
|
}
|
|
// Add predicate operands.
|
|
TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
|
|
TmpInst.addOperand(MCOperand::createReg(0));
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
return;
|
|
}
|
|
case ARM::BR_JTadd: {
|
|
// Lower and emit the instruction itself, then the jump table following it.
|
|
// add pc, target, idx
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
|
|
.addReg(ARM::PC)
|
|
.addReg(MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg())
|
|
// Add predicate operands.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// Add 's' bit operand (always reg0 for this)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::SPACE:
|
|
OutStreamer->EmitZeros(MI->getOperand(1).getImm());
|
|
return;
|
|
case ARM::TRAP: {
|
|
// Non-Darwin binutils don't yet support the "trap" mnemonic.
|
|
// FIXME: Remove this special case when they do.
|
|
if (!Subtarget->isTargetMachO()) {
|
|
//.long 0xe7ffdefe @ trap
|
|
uint32_t Val = 0xe7ffdefeUL;
|
|
OutStreamer->AddComment("trap");
|
|
OutStreamer->EmitIntValue(Val, 4);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::TRAPNaCl: {
|
|
//.long 0xe7fedef0 @ trap
|
|
uint32_t Val = 0xe7fedef0UL;
|
|
OutStreamer->AddComment("trap");
|
|
OutStreamer->EmitIntValue(Val, 4);
|
|
return;
|
|
}
|
|
case ARM::tTRAP: {
|
|
// Non-Darwin binutils don't yet support the "trap" mnemonic.
|
|
// FIXME: Remove this special case when they do.
|
|
if (!Subtarget->isTargetMachO()) {
|
|
//.short 57086 @ trap
|
|
uint16_t Val = 0xdefe;
|
|
OutStreamer->AddComment("trap");
|
|
OutStreamer->EmitIntValue(Val, 2);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case ARM::t2Int_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::tInt_eh_sjlj_setjmp: {
|
|
// Two incoming args: GPR:$src, GPR:$val
|
|
// mov $val, pc
|
|
// adds $val, #7
|
|
// str $val, [$src, #4]
|
|
// movs r0, #0
|
|
// b LSJLJEH
|
|
// movs r0, #1
|
|
// LSJLJEH:
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ValReg = MI->getOperand(1).getReg();
|
|
MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
|
|
OutStreamer->AddComment("eh_setjmp begin");
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ValReg)
|
|
.addReg(ARM::PC)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
|
|
.addReg(ValReg)
|
|
// 's' bit operand
|
|
.addReg(ARM::CPSR)
|
|
.addReg(ValReg)
|
|
.addImm(7)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
|
|
.addReg(ValReg)
|
|
.addReg(SrcReg)
|
|
// The offset immediate is #4. The operand value is scaled by 4 for the
|
|
// tSTR instruction.
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
|
|
.addReg(ARM::R0)
|
|
.addReg(ARM::CPSR)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
|
|
.addExpr(SymbolExpr)
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer->AddComment("eh_setjmp end");
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
|
|
.addReg(ARM::R0)
|
|
.addReg(ARM::CPSR)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
OutStreamer->EmitLabel(Label);
|
|
return;
|
|
}
|
|
|
|
case ARM::Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::Int_eh_sjlj_setjmp: {
|
|
// Two incoming args: GPR:$src, GPR:$val
|
|
// add $val, pc, #8
|
|
// str $val, [$src, #+4]
|
|
// mov r0, #0
|
|
// add pc, pc, #0
|
|
// mov r0, #1
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ValReg = MI->getOperand(1).getReg();
|
|
|
|
OutStreamer->AddComment("eh_setjmp begin");
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
|
|
.addReg(ValReg)
|
|
.addReg(ARM::PC)
|
|
.addImm(8)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
|
|
.addReg(ValReg)
|
|
.addReg(SrcReg)
|
|
.addImm(4)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
|
|
.addReg(ARM::R0)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
|
|
.addReg(ARM::PC)
|
|
.addReg(ARM::PC)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
|
|
OutStreamer->AddComment("eh_setjmp end");
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
|
|
.addReg(ARM::R0)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0)
|
|
// 's' bit operand (always reg0 for this).
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::Int_eh_sjlj_longjmp: {
|
|
// ldr sp, [$src, #8]
|
|
// ldr $scratch, [$src, #4]
|
|
// ldr r7, [$src]
|
|
// bx $scratch
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ScratchReg = MI->getOperand(1).getReg();
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ARM::SP)
|
|
.addReg(SrcReg)
|
|
.addImm(8)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
.addImm(4)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
|
|
.addReg(ARM::R7)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
case ARM::tInt_eh_sjlj_longjmp: {
|
|
// ldr $scratch, [$src, #8]
|
|
// mov sp, $scratch
|
|
// ldr $scratch, [$src, #4]
|
|
// ldr r7, [$src]
|
|
// bx $scratch
|
|
unsigned SrcReg = MI->getOperand(0).getReg();
|
|
unsigned ScratchReg = MI->getOperand(1).getReg();
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
// The offset immediate is #8. The operand value is scaled by 4 for the
|
|
// tLDR instruction.
|
|
.addImm(2)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
|
|
.addReg(ARM::SP)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ScratchReg)
|
|
.addReg(SrcReg)
|
|
.addImm(1)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
|
|
.addReg(ARM::R7)
|
|
.addReg(SrcReg)
|
|
.addImm(0)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
|
|
EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
|
|
.addReg(ScratchReg)
|
|
// Predicate.
|
|
.addImm(ARMCC::AL)
|
|
.addReg(0));
|
|
return;
|
|
}
|
|
}
|
|
|
|
MCInst TmpInst;
|
|
LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
|
|
|
|
EmitToStreamer(*OutStreamer, TmpInst);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Target Registry Stuff
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeARMAsmPrinter() {
|
|
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
|
|
RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
|
|
RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
|
|
RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
|
|
}
|