llvm-project/llvm/lib/Target/X86/X86SpeculativeExecutionSide...

183 lines
7.0 KiB
C++

//===-- X86SpeculativeExecutionSideEffectSuppression.cpp ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file contains the X86 implementation of the speculative execution side
/// effect suppression mitigation.
///
/// This must be used with the -mlvi-cfi flag in order to mitigate indirect
/// branches and returns.
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Pass.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-seses"
STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
static cl::opt<bool> EnableSpeculativeExecutionSideEffectSuppression(
"x86-seses-enable-without-lvi-cfi",
cl::desc("Force enable speculative execution side effect suppression. "
"(Note: User must pass -mlvi-cfi in order to mitigate indirect "
"branches and returns.)"),
cl::init(false), cl::Hidden);
static cl::opt<bool> OneLFENCEPerBasicBlock(
"x86-seses-one-lfence-per-bb",
cl::desc(
"Omit all lfences other than the first to be placed in a basic block."),
cl::init(false), cl::Hidden);
static cl::opt<bool> OnlyLFENCENonConst(
"x86-seses-only-lfence-non-const",
cl::desc("Only lfence before groups of terminators where at least one "
"branch instruction has an input to the addressing mode that is a "
"register other than %rip."),
cl::init(false), cl::Hidden);
static cl::opt<bool>
OmitBranchLFENCEs("x86-seses-omit-branch-lfences",
cl::desc("Omit all lfences before branch instructions."),
cl::init(false), cl::Hidden);
namespace {
class X86SpeculativeExecutionSideEffectSuppression
: public MachineFunctionPass {
public:
X86SpeculativeExecutionSideEffectSuppression() : MachineFunctionPass(ID) {}
static char ID;
StringRef getPassName() const override {
return "X86 Speculative Execution Side Effect Suppression";
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // namespace
char X86SpeculativeExecutionSideEffectSuppression::ID = 0;
// This function returns whether the passed instruction uses a memory addressing
// mode that is constant. We treat all memory addressing modes that read
// from a register that is not %rip as non-constant. Note that the use
// of the EFLAGS register results in an addressing mode being considered
// non-constant, therefore all JCC instructions will return false from this
// function since one of their operands will always be the EFLAGS register.
static bool hasConstantAddressingMode(const MachineInstr &MI) {
for (const MachineOperand &MO : MI.uses())
if (MO.isReg() && X86::RIP != MO.getReg())
return false;
return true;
}
bool X86SpeculativeExecutionSideEffectSuppression::runOnMachineFunction(
MachineFunction &MF) {
const auto &OptLevel = MF.getTarget().getOptLevel();
const X86Subtarget &Subtarget = MF.getSubtarget<X86Subtarget>();
// Check whether SESES needs to run as the fallback for LVI at O0, whether the
// user explicitly passed an SESES flag, or whether the SESES target feature
// was set.
if (!EnableSpeculativeExecutionSideEffectSuppression &&
!(Subtarget.useLVILoadHardening() && OptLevel == CodeGenOpt::None) &&
!Subtarget.useSpeculativeExecutionSideEffectSuppression())
return false;
LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
<< " **********\n");
bool Modified = false;
const X86InstrInfo *TII = Subtarget.getInstrInfo();
for (MachineBasicBlock &MBB : MF) {
MachineInstr *FirstTerminator = nullptr;
// Keep track of whether the previous instruction was an LFENCE to avoid
// adding redundant LFENCEs.
bool PrevInstIsLFENCE = false;
for (auto &MI : MBB) {
if (MI.getOpcode() == X86::LFENCE) {
PrevInstIsLFENCE = true;
continue;
}
// We want to put an LFENCE before any instruction that
// may load or store. This LFENCE is intended to avoid leaking any secret
// data due to a given load or store. This results in closing the cache
// and memory timing side channels. We will treat terminators that load
// or store separately.
if (MI.mayLoadOrStore() && !MI.isTerminator()) {
if (!PrevInstIsLFENCE) {
BuildMI(MBB, MI, DebugLoc(), TII->get(X86::LFENCE));
NumLFENCEsInserted++;
Modified = true;
}
if (OneLFENCEPerBasicBlock)
break;
}
// The following section will be LFENCEing before groups of terminators
// that include branches. This will close the branch prediction side
// channels since we will prevent code executing after misspeculation as
// a result of the LFENCEs placed with this logic.
// Keep track of the first terminator in a basic block since if we need
// to LFENCE the terminators in this basic block we must add the
// instruction before the first terminator in the basic block (as
// opposed to before the terminator that indicates an LFENCE is
// required). An example of why this is necessary is that the
// X86InstrInfo::analyzeBranch method assumes all terminators are grouped
// together and terminates it's analysis once the first non-termintor
// instruction is found.
if (MI.isTerminator() && FirstTerminator == nullptr)
FirstTerminator = &MI;
// Look for branch instructions that will require an LFENCE to be put
// before this basic block's terminators.
if (!MI.isBranch() || OmitBranchLFENCEs) {
// This isn't a branch or we're not putting LFENCEs before branches.
PrevInstIsLFENCE = false;
continue;
}
if (OnlyLFENCENonConst && hasConstantAddressingMode(MI)) {
// This is a branch, but it only has constant addressing mode and we're
// not adding LFENCEs before such branches.
PrevInstIsLFENCE = false;
continue;
}
// This branch requires adding an LFENCE.
if (!PrevInstIsLFENCE) {
assert(FirstTerminator && "Unknown terminator instruction");
BuildMI(MBB, FirstTerminator, DebugLoc(), TII->get(X86::LFENCE));
NumLFENCEsInserted++;
Modified = true;
}
break;
}
}
return Modified;
}
FunctionPass *llvm::createX86SpeculativeExecutionSideEffectSuppression() {
return new X86SpeculativeExecutionSideEffectSuppression();
}
INITIALIZE_PASS(X86SpeculativeExecutionSideEffectSuppression, "x86-seses",
"X86 Speculative Execution Side Effect Suppression", false,
false)