llvm-project/llvm/lib/Target/X86/X86SelectionDAGInfo.cpp

326 lines
12 KiB
C++

//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#include "X86SelectionDAGInfo.h"
#include "X86ISelLowering.h"
#include "X86InstrInfo.h"
#include "X86RegisterInfo.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
#define DEBUG_TYPE "x86-selectiondag-info"
static cl::opt<bool>
UseFSRMForMemcpy("x86-use-fsrm-for-memcpy", cl::Hidden, cl::init(false),
cl::desc("Use fast short rep mov in memcpy lowering"));
bool X86SelectionDAGInfo::isBaseRegConflictPossible(
SelectionDAG &DAG, ArrayRef<MCPhysReg> ClobberSet) const {
// We cannot use TRI->hasBasePointer() until *after* we select all basic
// blocks. Legalization may introduce new stack temporaries with large
// alignment requirements. Fall back to generic code if there are any
// dynamic stack adjustments (hopefully rare) and the base pointer would
// conflict if we had to use it.
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
if (!MFI.hasVarSizedObjects() && !MFI.hasOpaqueSPAdjustment())
return false;
const X86RegisterInfo *TRI = static_cast<const X86RegisterInfo *>(
DAG.getSubtarget().getRegisterInfo());
Register BaseReg = TRI->getBaseRegister();
for (unsigned R : ClobberSet)
if (BaseReg == R)
return true;
return false;
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemset(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Val,
SDValue Size, Align Alignment, bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
#ifndef NDEBUG
// If the base register might conflict with our physical registers, bail out.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RAX, X86::RDI,
X86::ECX, X86::EAX, X86::EDI};
assert(!isBaseRegConflictPossible(DAG, ClobberSet));
#endif
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if (Alignment < Align(4) || !ConstantSize ||
ConstantSize->getZExtValue() > Subtarget.getMaxInlineSizeThreshold()) {
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
if (const char *bzeroName = (ValC && ValC->isNullValue())
? DAG.getTargetLoweringInfo().getLibcallName(RTLIB::BZERO)
: nullptr) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl)
.setChain(Chain)
.setLibCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()),
DAG.getExternalSymbol(bzeroName, IntPtr),
std::move(Args))
.setDiscardResult();
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag;
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Val);
unsigned BytesLeft = 0;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
if (Alignment > Align(2)) {
// DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget.is64Bit() && Alignment > Align(8)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
} else if (Alignment == Align(2)) {
// WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
} else {
// Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal, dl);
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes, dl);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, dl, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal, dl);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Val, InFlag);
InFlag = Chain.getValue(1);
}
bool Use64BitRegs = Subtarget.isTarget64BitLP64();
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RCX : X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Use64BitRegs ? X86::RDI : X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain =
DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, dl, AddrVT)),
Val, DAG.getConstant(BytesLeft, dl, SizeVT), Alignment,
isVolatile, false, DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
/// Emit a single REP MOVS{B,W,D,Q} instruction.
static SDValue emitRepmovs(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, SDValue Size, MVT AVT) {
const bool Use64BitRegs = Subtarget.isTarget64BitLP64();
const unsigned CX = Use64BitRegs ? X86::RCX : X86::ECX;
const unsigned DI = Use64BitRegs ? X86::RDI : X86::EDI;
const unsigned SI = Use64BitRegs ? X86::RSI : X86::ESI;
SDValue InFlag;
Chain = DAG.getCopyToReg(Chain, dl, CX, Size, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, DI, Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, SI, Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = {Chain, DAG.getValueType(AVT), InFlag};
return DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops);
}
/// Emit a single REP MOVSB instruction for a particular constant size.
static SDValue emitRepmovsB(const X86Subtarget &Subtarget, SelectionDAG &DAG,
const SDLoc &dl, SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size) {
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(Size, dl), MVT::i8);
}
/// Returns the best type to use with repmovs depending on alignment.
static MVT getOptimalRepmovsType(const X86Subtarget &Subtarget,
uint64_t Align) {
assert((Align != 0) && "Align is normalized");
assert(isPowerOf2_64(Align) && "Align is a power of 2");
switch (Align) {
case 1:
return MVT::i8;
case 2:
return MVT::i16;
case 4:
return MVT::i32;
default:
return Subtarget.is64Bit() ? MVT::i64 : MVT::i32;
}
}
/// Returns a REP MOVS instruction, possibly with a few load/stores to implement
/// a constant size memory copy. In some cases where we know REP MOVS is
/// inefficient we return an empty SDValue so the calling code can either
/// generate a load/store sequence or call the runtime memcpy function.
static SDValue emitConstantSizeRepmov(
SelectionDAG &DAG, const X86Subtarget &Subtarget, const SDLoc &dl,
SDValue Chain, SDValue Dst, SDValue Src, uint64_t Size, EVT SizeVT,
unsigned Align, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) {
/// TODO: Revisit next line: big copy with ERMSB on march >= haswell are very
/// efficient.
if (!AlwaysInline && Size > Subtarget.getMaxInlineSizeThreshold())
return SDValue();
/// If we have enhanced repmovs we use it.
if (Subtarget.hasERMSB())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
assert(!Subtarget.hasERMSB() && "No efficient RepMovs");
/// We assume runtime memcpy will do a better job for unaligned copies when
/// ERMS is not present.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
const MVT BlockType = getOptimalRepmovsType(Subtarget, Align);
const uint64_t BlockBytes = BlockType.getSizeInBits() / 8;
const uint64_t BlockCount = Size / BlockBytes;
const uint64_t BytesLeft = Size % BlockBytes;
SDValue RepMovs =
emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src,
DAG.getIntPtrConstant(BlockCount, dl), BlockType);
/// RepMov can process the whole length.
if (BytesLeft == 0)
return RepMovs;
assert(BytesLeft && "We have leftover at this point");
/// In case we optimize for size we use repmovsb even if it's less efficient
/// so we can save the loads/stores of the leftover.
if (DAG.getMachineFunction().getFunction().hasMinSize())
return emitRepmovsB(Subtarget, DAG, dl, Chain, Dst, Src, Size);
// Handle the last 1 - 7 bytes.
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
unsigned Offset = Size - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
Results.push_back(DAG.getMemcpy(
Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst, DAG.getConstant(Offset, dl, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src, DAG.getConstant(Offset, dl, SrcVT)),
DAG.getConstant(BytesLeft, dl, SizeVT), llvm::Align(Align), isVolatile,
/*AlwaysInline*/ true, /*isTailCall*/ false,
DstPtrInfo.getWithOffset(Offset), SrcPtrInfo.getWithOffset(Offset)));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Results);
}
SDValue X86SelectionDAGInfo::EmitTargetCodeForMemcpy(
SelectionDAG &DAG, const SDLoc &dl, SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, Align Alignment, bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo, MachinePointerInfo SrcPtrInfo) const {
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 || SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If the base registers conflict with our physical registers, use the default
// lowering.
const MCPhysReg ClobberSet[] = {X86::RCX, X86::RSI, X86::RDI,
X86::ECX, X86::ESI, X86::EDI};
if (isBaseRegConflictPossible(DAG, ClobberSet))
return SDValue();
const X86Subtarget &Subtarget =
DAG.getMachineFunction().getSubtarget<X86Subtarget>();
// If enabled and available, use fast short rep mov.
if (UseFSRMForMemcpy && Subtarget.hasFSRM())
return emitRepmovs(Subtarget, DAG, dl, Chain, Dst, Src, Size, MVT::i8);
/// Handle constant sizes,
if (ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size))
return emitConstantSizeRepmov(
DAG, Subtarget, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
Size.getValueType(), Alignment.value(), isVolatile, AlwaysInline,
DstPtrInfo, SrcPtrInfo);
return SDValue();
}