llvm-project/llvm/lib/Target/RISCV/RISCVISelLowering.h

442 lines
17 KiB
C++

//===-- RISCVISelLowering.h - RISCV DAG Lowering Interface ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that RISCV uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_RISCVISELLOWERING_H
#define LLVM_LIB_TARGET_RISCV_RISCVISELLOWERING_H
#include "RISCV.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
namespace llvm {
class RISCVSubtarget;
namespace RISCVISD {
enum NodeType : unsigned {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
RET_FLAG,
URET_FLAG,
SRET_FLAG,
MRET_FLAG,
CALL,
/// Select with condition operator - This selects between a true value and
/// a false value (ops #3 and #4) based on the boolean result of comparing
/// the lhs and rhs (ops #0 and #1) of a conditional expression with the
/// condition code in op #2, a XLenVT constant from the ISD::CondCode enum.
/// The lhs and rhs are XLenVT integers. The true and false values can be
/// integer or floating point.
SELECT_CC,
BuildPairF64,
SplitF64,
TAIL,
// RV64I shifts, directly matching the semantics of the named RISC-V
// instructions.
SLLW,
SRAW,
SRLW,
// 32-bit operations from RV64M that can't be simply matched with a pattern
// at instruction selection time. These have undefined behavior for division
// by 0 or overflow (divw) like their target independent counterparts.
DIVW,
DIVUW,
REMUW,
// RV64IB rotates, directly matching the semantics of the named RISC-V
// instructions.
ROLW,
RORW,
// RV64IB/RV32IB funnel shifts, with the semantics of the named RISC-V
// instructions, but the same operand order as fshl/fshr intrinsics.
FSR,
FSL,
// RV64IB funnel shifts, with the semantics of the named RISC-V instructions,
// but the same operand order as fshl/fshr intrinsics.
FSRW,
FSLW,
// FPR<->GPR transfer operations when the FPR is smaller than XLEN, needed as
// XLEN is the only legal integer width.
//
// FMV_H_X matches the semantics of the FMV.H.X.
// FMV_X_ANYEXTH is similar to FMV.X.H but has an any-extended result.
// FMV_W_X_RV64 matches the semantics of the FMV.W.X.
// FMV_X_ANYEXTW_RV64 is similar to FMV.X.W but has an any-extended result.
//
// This is a more convenient semantic for producing dagcombines that remove
// unnecessary GPR->FPR->GPR moves.
FMV_H_X,
FMV_X_ANYEXTH,
FMV_W_X_RV64,
FMV_X_ANYEXTW_RV64,
// READ_CYCLE_WIDE - A read of the 64-bit cycle CSR on a 32-bit target
// (returns (Lo, Hi)). It takes a chain operand.
READ_CYCLE_WIDE,
// Generalized Reverse and Generalized Or-Combine - directly matching the
// semantics of the named RISC-V instructions. Lowered as custom nodes as
// TableGen chokes when faced with commutative permutations in deeply-nested
// DAGs. Each node takes an input operand and a TargetConstant immediate
// shift amount, and outputs a bit-manipulated version of input. All operands
// are of type XLenVT.
GREVI,
GREVIW,
GORCI,
GORCIW,
// Vector Extension
// VMV_V_X_VL matches the semantics of vmv.v.x but includes an extra operand
// for the VL value to be used for the operation.
VMV_V_X_VL,
// VFMV_V_F_VL matches the semantics of vfmv.v.f but includes an extra operand
// for the VL value to be used for the operation.
VFMV_V_F_VL,
// VMV_X_S matches the semantics of vmv.x.s. The result is always XLenVT sign
// extended from the vector element size.
VMV_X_S,
// Splats an i64 scalar to a vector type (with element type i64) where the
// scalar is a sign-extended i32.
SPLAT_VECTOR_I64,
// Read VLENB CSR
READ_VLENB,
// Truncates a RVV integer vector by one power-of-two.
TRUNCATE_VECTOR,
// Unit-stride fault-only-first load
VLEFF,
VLEFF_MASK,
// Matches the semantics of vslideup/vslidedown. The first operand is the
// pass-thru operand, the second is the source vector, and the third is the
// XLenVT index (either constant or non-constant).
VSLIDEUP,
VSLIDEDOWN,
// Matches the semantics of the unmasked vid.v instruction.
VID,
// Matches the semantics of the vfcnvt.rod function (Convert double-width
// float to single-width float, rounding towards odd). Takes a double-width
// float vector and produces a single-width float vector.
VFNCVT_ROD,
// These nodes match the semantics of the corresponding RVV vector reduction
// instructions. They produce a vector result which is the reduction
// performed over the first vector operand plus the first element of the
// second vector operand. The first operand is an unconstrained vector type,
// and the result and second operand's types are expected to be the
// corresponding full-width LMUL=1 type for the first operand:
// nxv8i8 = vecreduce_add nxv32i8, nxv8i8
// nxv2i32 = vecreduce_add nxv8i32, nxv2i32
// The different in types does introduce extra vsetvli instructions but
// similarly it reduces the number of registers consumed per reduction.
VECREDUCE_ADD,
VECREDUCE_UMAX,
VECREDUCE_SMAX,
VECREDUCE_UMIN,
VECREDUCE_SMIN,
VECREDUCE_AND,
VECREDUCE_OR,
VECREDUCE_XOR,
VECREDUCE_FADD,
VECREDUCE_SEQ_FADD,
// Vector binary and unary ops with VL as a third operand.
// FIXME: Can we replace these with ISD::VP_*?
ADD_VL,
AND_VL,
MUL_VL,
OR_VL,
SDIV_VL,
SHL_VL,
SREM_VL,
SRA_VL,
SRL_VL,
SUB_VL,
UDIV_VL,
UREM_VL,
XOR_VL,
FADD_VL,
FSUB_VL,
FMUL_VL,
FDIV_VL,
FNEG_VL,
FMA_VL,
// Set mask vector to all zeros or ones.
VMCLR_VL,
VMSET_VL,
// Memory opcodes start here.
VLE_VL = ISD::FIRST_TARGET_MEMORY_OPCODE,
VSE_VL,
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from FIRST_TARGET_MEMORY_OPCODE all
// opcodes will be thought as target memory ops!
};
} // namespace RISCVISD
class RISCVTargetLowering : public TargetLowering {
const RISCVSubtarget &Subtarget;
public:
explicit RISCVTargetLowering(const TargetMachine &TM,
const RISCVSubtarget &STI);
const RISCVSubtarget &getSubtarget() const { return Subtarget; }
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I = nullptr) const override;
bool isLegalICmpImmediate(int64_t Imm) const override;
bool isLegalAddImmediate(int64_t Imm) const override;
bool isTruncateFree(Type *SrcTy, Type *DstTy) const override;
bool isTruncateFree(EVT SrcVT, EVT DstVT) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool isSExtCheaperThanZExt(EVT SrcVT, EVT DstVT) const override;
bool isCheapToSpeculateCttz() const override;
bool isCheapToSpeculateCtlz() const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
bool hasBitPreservingFPLogic(EVT VT) const override;
// Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const override;
void computeKnownBitsForTargetNode(const SDValue Op,
KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth) const override;
// This method returns the name of a target specific DAG node.
const char *getTargetNodeName(unsigned Opcode) const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const override;
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
bool convertSetCCLogicToBitwiseLogic(EVT VT) const override {
return VT.isScalarInteger();
}
bool convertSelectOfConstantsToMath(EVT VT) const override { return true; }
bool shouldInsertFencesForAtomic(const Instruction *I) const override {
return isa<LoadInst>(I) || isa<StoreInst>(I);
}
Instruction *emitLeadingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
Instruction *emitTrailingFence(IRBuilder<> &Builder, Instruction *Inst,
AtomicOrdering Ord) const override;
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
ISD::NodeType getExtendForAtomicOps() const override {
return ISD::SIGN_EXTEND;
}
ISD::NodeType getExtendForAtomicCmpSwapArg() const override {
return ISD::SIGN_EXTEND;
}
bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override {
if (DAG.getMachineFunction().getFunction().hasMinSize())
return false;
return true;
}
bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register
getExceptionPointerRegister(const Constant *PersonalityFn) const override;
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const override;
bool shouldExtendTypeInLibCall(EVT Type) const override;
bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const override;
/// Returns the register with the specified architectural or ABI name. This
/// method is necessary to lower the llvm.read_register.* and
/// llvm.write_register.* intrinsics. Allocatable registers must be reserved
/// with the clang -ffixed-xX flag for access to be allowed.
Register getRegisterByName(const char *RegName, LLT VT,
const MachineFunction &MF) const override;
// Lower incoming arguments, copy physregs into vregs
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
bool IsVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const override;
SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const override;
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override {
return true;
}
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool shouldConsiderGEPOffsetSplit() const override { return true; }
bool decomposeMulByConstant(LLVMContext &Context, EVT VT,
SDValue C) const override;
TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
Value *emitMaskedAtomicRMWIntrinsic(IRBuilder<> &Builder, AtomicRMWInst *AI,
Value *AlignedAddr, Value *Incr,
Value *Mask, Value *ShiftAmt,
AtomicOrdering Ord) const override;
TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *CI) const override;
Value *emitMaskedAtomicCmpXchgIntrinsic(IRBuilder<> &Builder,
AtomicCmpXchgInst *CI,
Value *AlignedAddr, Value *CmpVal,
Value *NewVal, Value *Mask,
AtomicOrdering Ord) const override;
/// Returns true if the target allows unaligned memory accesses of the
/// specified type.
bool allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool *Fast = nullptr) const override;
private:
void analyzeInputArgs(MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::InputArg> &Ins,
bool IsRet) const;
void analyzeOutputArgs(MachineFunction &MF, CCState &CCInfo,
const SmallVectorImpl<ISD::OutputArg> &Outs,
bool IsRet, CallLoweringInfo *CLI) const;
template <class NodeTy>
SDValue getAddr(NodeTy *N, SelectionDAG &DAG, bool IsLocal = true) const;
SDValue getStaticTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG,
bool UseGOT) const;
SDValue getDynamicTLSAddr(GlobalAddressSDNode *N, SelectionDAG &DAG) const;
SDValue lowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerShiftRightParts(SDValue Op, SelectionDAG &DAG, bool IsSRA) const;
SDValue lowerSPLATVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVectorMaskExt(SDValue Op, SelectionDAG &DAG,
int64_t ExtTrueVal) const;
SDValue lowerVectorMaskTrunc(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFPVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorLoadToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerFixedLengthVectorStoreToRVV(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerToScalableOp(SDValue Op, SelectionDAG &DAG,
unsigned NewOpc) const;
bool isEligibleForTailCallOptimization(
CCState &CCInfo, CallLoweringInfo &CLI, MachineFunction &MF,
const SmallVector<CCValAssign, 16> &ArgLocs) const;
/// Generate error diagnostics if any register used by CC has been marked
/// reserved.
void validateCCReservedRegs(
const SmallVectorImpl<std::pair<llvm::Register, llvm::SDValue>> &Regs,
MachineFunction &MF) const;
bool useRVVForFixedLengthVectorVT(MVT VT) const;
};
namespace RISCV {
// We use 64 bits as the known part in the scalable vector types.
static constexpr unsigned RVVBitsPerBlock = 64;
}; // namespace RISCV
namespace RISCVVIntrinsicsTable {
struct RISCVVIntrinsicInfo {
unsigned IntrinsicID;
uint8_t ExtendedOperand;
};
using namespace RISCV;
#define GET_RISCVVIntrinsicsTable_DECL
#include "RISCVGenSearchableTables.inc"
} // end namespace RISCVVIntrinsicsTable
namespace RISCVZvlssegTable {
struct RISCVZvlsseg {
unsigned IntrinsicID;
uint8_t SEW;
uint8_t LMUL;
uint8_t IndexLMUL;
uint16_t Pseudo;
};
using namespace RISCV;
#define GET_RISCVZvlssegTable_DECL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVZvlssegTable
}
#endif