llvm-project/llvm/lib/Target/PowerPC/PPCMacroFusion.cpp

204 lines
6.7 KiB
C++

//===- PPCMacroFusion.cpp - PowerPC Macro Fusion --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains the PowerPC implementation of the DAG scheduling
/// mutation to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/CodeGen/MacroFusion.h"
using namespace llvm;
namespace {
class FusionFeature {
public:
typedef SmallDenseSet<unsigned> FusionOpSet;
enum FusionKind {
#define FUSION_KIND(KIND) FK_##KIND
#define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) \
FUSION_KIND(KIND),
#include "PPCMacroFusion.def"
FUSION_KIND(END)
};
private:
// Each fusion feature is assigned with one fusion kind. All the
// instructions with the same fusion kind have the same fusion characteristic.
FusionKind Kd;
// True if this feature is enabled.
bool Supported;
// li rx, si
// load rt, ra, rx
// The dependent operand index in the second op(load). And the negative means
// it could be any one.
int DepOpIdx;
// The first fusion op set.
FusionOpSet OpSet1;
// The second fusion op set.
FusionOpSet OpSet2;
public:
FusionFeature(FusionKind Kind, bool HasFeature, int Index,
const FusionOpSet &First, const FusionOpSet &Second) :
Kd(Kind), Supported(HasFeature), DepOpIdx(Index), OpSet1(First),
OpSet2(Second) {}
bool hasOp1(unsigned Opc) const { return OpSet1.contains(Opc); }
bool hasOp2(unsigned Opc) const { return OpSet2.contains(Opc); }
bool isSupported() const { return Supported; }
Optional<unsigned> depOpIdx() const {
if (DepOpIdx < 0)
return None;
return DepOpIdx;
}
FusionKind getKind() const { return Kd; }
};
static bool matchingRegOps(const MachineInstr &FirstMI,
int FirstMIOpIndex,
const MachineInstr &SecondMI,
int SecondMIOpIndex) {
const MachineOperand &Op1 = FirstMI.getOperand(FirstMIOpIndex);
const MachineOperand &Op2 = SecondMI.getOperand(SecondMIOpIndex);
if (!Op1.isReg() || !Op2.isReg())
return false;
return Op1.getReg() == Op2.getReg();
}
// Return true if the FirstMI meets the constraints of SecondMI according to
// fusion specification.
static bool checkOpConstraints(FusionFeature::FusionKind Kd,
const MachineInstr &FirstMI,
const MachineInstr &SecondMI) {
switch (Kd) {
// The hardware didn't require any specific check for the fused instructions'
// operands. Therefore, return true to indicate that, it is fusable.
default: return true;
// [addi rt,ra,si - lxvd2x xt,ra,rb] etc.
case FusionFeature::FK_AddiLoad: {
// lxvd2x(ra) cannot be zero
const MachineOperand &RA = SecondMI.getOperand(1);
if (!RA.isReg())
return true;
return Register::isVirtualRegister(RA.getReg()) ||
(RA.getReg() != PPC::ZERO && RA.getReg() != PPC::ZERO8);
}
// [addis rt,ra,si - ld rt,ds(ra)] etc.
case FusionFeature::FK_AddisLoad: {
const MachineOperand &RT = SecondMI.getOperand(0);
if (!RT.isReg())
return true;
// Only check it for non-virtual register.
if (!Register::isVirtualRegister(RT.getReg()))
// addis(rt) = ld(ra) = ld(rt)
// ld(rt) cannot be zero
if (!matchingRegOps(SecondMI, 0, SecondMI, 2) ||
(RT.getReg() == PPC::ZERO || RT.getReg() == PPC::ZERO8))
return false;
// addis(si) first 12 bits must be all 1s or all 0s
const MachineOperand &SI = FirstMI.getOperand(2);
if (!SI.isImm())
return true;
int64_t Imm = SI.getImm();
if (((Imm & 0xFFF0) != 0) && ((Imm & 0xFFF0) != 0xFFF0))
return false;
// If si = 1111111111110000 and the msb of the d/ds field of the load equals
// 1, then fusion does not occur.
if ((Imm & 0xFFF0) == 0xFFF0) {
const MachineOperand &D = SecondMI.getOperand(1);
if (!D.isImm())
return true;
// 14 bit for DS field, while 16 bit for D field.
int MSB = 15;
if (SecondMI.getOpcode() == PPC::LD)
MSB = 13;
return (D.getImm() & (1ULL << MSB)) == 0;
}
return true;
}
}
llvm_unreachable("All the cases should have been handled");
return true;
}
/// Check if the instr pair, FirstMI and SecondMI, should be fused together.
/// Given SecondMI, when FirstMI is unspecified, then check if SecondMI may be
/// part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr &SecondMI) {
// We use the PPC namespace to avoid the need to prefix opcodes with PPC:: in
// the def file.
using namespace PPC;
const PPCSubtarget &ST = static_cast<const PPCSubtarget&>(TSI);
static const FusionFeature FusionFeatures[] = {
#define FUSION_FEATURE(KIND, HAS_FEATURE, DEP_OP_IDX, OPSET1, OPSET2) { \
FusionFeature::FUSION_KIND(KIND), ST.HAS_FEATURE(), DEP_OP_IDX, { OPSET1 },\
{ OPSET2 } },
#include "PPCMacroFusion.def"
};
#undef FUSION_KIND
for (auto &Feature : FusionFeatures) {
// Skip if the feature is not supported.
if (!Feature.isSupported())
continue;
// Only when the SecondMI is fusable, we are starting to look for the
// fusable FirstMI.
if (Feature.hasOp2(SecondMI.getOpcode())) {
// If FirstMI == nullptr, that means, we're only checking whether SecondMI
// can be fused at all.
if (!FirstMI)
return true;
// Checking if the FirstMI is fusable with the SecondMI.
if (!Feature.hasOp1(FirstMI->getOpcode()))
continue;
auto DepOpIdx = Feature.depOpIdx();
if (DepOpIdx.hasValue()) {
// Checking if the result of the FirstMI is the desired operand of the
// SecondMI if the DepOpIdx is set. Otherwise, ignore it.
if (!matchingRegOps(*FirstMI, 0, SecondMI, *DepOpIdx))
return false;
}
// Checking more on the instruction operands.
if (checkOpConstraints(Feature.getKind(), *FirstMI, SecondMI))
return true;
}
}
return false;
}
} // end anonymous namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createPowerPCMacroFusionDAGMutation () {
return createMacroFusionDAGMutation(shouldScheduleAdjacent);
}
} // end namespace llvm