forked from OSchip/llvm-project
738 lines
24 KiB
C++
738 lines
24 KiB
C++
//==- IdempotentOperationChecker.cpp - Idempotent Operations ----*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a set of path-sensitive checks for idempotent and/or
|
|
// tautological operations. Each potential operation is checked along all paths
|
|
// to see if every path results in a pointless operation.
|
|
// +-------------------------------------------+
|
|
// |Table of idempotent/tautological operations|
|
|
// +-------------------------------------------+
|
|
//+--------------------------------------------------------------------------+
|
|
//|Operator | x op x | x op 1 | 1 op x | x op 0 | 0 op x | x op ~0 | ~0 op x |
|
|
//+--------------------------------------------------------------------------+
|
|
// +, += | | | | x | x | |
|
|
// -, -= | | | | x | -x | |
|
|
// *, *= | | x | x | 0 | 0 | |
|
|
// /, /= | 1 | x | | N/A | 0 | |
|
|
// &, &= | x | | | 0 | 0 | x | x
|
|
// |, |= | x | | | x | x | ~0 | ~0
|
|
// ^, ^= | 0 | | | x | x | |
|
|
// <<, <<= | | | | x | 0 | |
|
|
// >>, >>= | | | | x | 0 | |
|
|
// || | x | 1 | 1 | x | x | 1 | 1
|
|
// && | x | x | x | 0 | 0 | x | x
|
|
// = | x | | | | | |
|
|
// == | 1 | | | | | |
|
|
// >= | 1 | | | | | |
|
|
// <= | 1 | | | | | |
|
|
// > | 0 | | | | | |
|
|
// < | 0 | | | | | |
|
|
// != | 0 | | | | | |
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Things TODO:
|
|
// - Improved error messages
|
|
// - Handle mixed assumptions (which assumptions can belong together?)
|
|
// - Finer grained false positive control (levels)
|
|
// - Handling ~0 values
|
|
|
|
#include "ClangSACheckers.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
|
|
#include "clang/Analysis/Analyses/PseudoConstantAnalysis.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h"
|
|
#include "clang/StaticAnalyzer/Core/BugReporter/BugType.h"
|
|
#include "clang/StaticAnalyzer/Core/Checker.h"
|
|
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
namespace {
|
|
class IdempotentOperationChecker
|
|
: public Checker<check::PreStmt<BinaryOperator>,
|
|
check::PostStmt<BinaryOperator>,
|
|
check::EndAnalysis> {
|
|
public:
|
|
void checkPreStmt(const BinaryOperator *B, CheckerContext &C) const;
|
|
void checkPostStmt(const BinaryOperator *B, CheckerContext &C) const;
|
|
void checkEndAnalysis(ExplodedGraph &G, BugReporter &B,ExprEngine &Eng) const;
|
|
|
|
private:
|
|
// Our assumption about a particular operation.
|
|
enum Assumption { Possible = 0, Impossible, Equal, LHSis1, RHSis1, LHSis0,
|
|
RHSis0 };
|
|
|
|
static void UpdateAssumption(Assumption &A, const Assumption &New);
|
|
|
|
// False positive reduction methods
|
|
static bool isSelfAssign(const Expr *LHS, const Expr *RHS);
|
|
static bool isUnused(const Expr *E, AnalysisDeclContext *AC);
|
|
static bool isTruncationExtensionAssignment(const Expr *LHS,
|
|
const Expr *RHS);
|
|
static bool pathWasCompletelyAnalyzed(AnalysisDeclContext *AC,
|
|
const CFGBlock *CB,
|
|
const CoreEngine &CE);
|
|
static bool CanVary(const Expr *Ex,
|
|
AnalysisDeclContext *AC);
|
|
static bool isConstantOrPseudoConstant(const DeclRefExpr *DR,
|
|
AnalysisDeclContext *AC);
|
|
static bool containsNonLocalVarDecl(const Stmt *S);
|
|
|
|
// Hash table and related data structures
|
|
struct BinaryOperatorData {
|
|
BinaryOperatorData() : assumption(Possible) {}
|
|
|
|
Assumption assumption;
|
|
ExplodedNodeSet explodedNodes; // Set of ExplodedNodes that refer to a
|
|
// BinaryOperator
|
|
};
|
|
typedef llvm::DenseMap<const BinaryOperator *, BinaryOperatorData>
|
|
AssumptionMap;
|
|
mutable AssumptionMap hash;
|
|
mutable OwningPtr<BugType> BT;
|
|
};
|
|
}
|
|
|
|
void IdempotentOperationChecker::checkPreStmt(const BinaryOperator *B,
|
|
CheckerContext &C) const {
|
|
// Find or create an entry in the hash for this BinaryOperator instance.
|
|
// If we haven't done a lookup before, it will get default initialized to
|
|
// 'Possible'. At this stage we do not store the ExplodedNode, as it has not
|
|
// been created yet.
|
|
BinaryOperatorData &Data = hash[B];
|
|
Assumption &A = Data.assumption;
|
|
AnalysisDeclContext *AC = C.getCurrentAnalysisDeclContext();
|
|
|
|
// If we already have visited this node on a path that does not contain an
|
|
// idempotent operation, return immediately.
|
|
if (A == Impossible)
|
|
return;
|
|
|
|
// Retrieve both sides of the operator and determine if they can vary (which
|
|
// may mean this is a false positive.
|
|
const Expr *LHS = B->getLHS();
|
|
const Expr *RHS = B->getRHS();
|
|
|
|
// At this stage we can calculate whether each side contains a false positive
|
|
// that applies to all operators. We only need to calculate this the first
|
|
// time.
|
|
bool LHSContainsFalsePositive = false, RHSContainsFalsePositive = false;
|
|
if (A == Possible) {
|
|
// An expression contains a false positive if it can't vary, or if it
|
|
// contains a known false positive VarDecl.
|
|
LHSContainsFalsePositive = !CanVary(LHS, AC)
|
|
|| containsNonLocalVarDecl(LHS);
|
|
RHSContainsFalsePositive = !CanVary(RHS, AC)
|
|
|| containsNonLocalVarDecl(RHS);
|
|
}
|
|
|
|
ProgramStateRef state = C.getState();
|
|
const LocationContext *LCtx = C.getLocationContext();
|
|
SVal LHSVal = state->getSVal(LHS, LCtx);
|
|
SVal RHSVal = state->getSVal(RHS, LCtx);
|
|
|
|
// If either value is unknown, we can't be 100% sure of all paths.
|
|
if (LHSVal.isUnknownOrUndef() || RHSVal.isUnknownOrUndef()) {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
BinaryOperator::Opcode Op = B->getOpcode();
|
|
|
|
// Dereference the LHS SVal if this is an assign operation
|
|
switch (Op) {
|
|
default:
|
|
break;
|
|
|
|
// Fall through intentional
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Assign:
|
|
// Assign statements have one extra level of indirection
|
|
if (!LHSVal.getAs<Loc>()) {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
LHSVal = state->getSVal(LHSVal.castAs<Loc>(), LHS->getType());
|
|
}
|
|
|
|
|
|
// We now check for various cases which result in an idempotent operation.
|
|
|
|
// x op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_Assign:
|
|
// x Assign x can be used to silence unused variable warnings intentionally.
|
|
// If this is a self assignment and the variable is referenced elsewhere,
|
|
// and the assignment is not a truncation or extension, then it is a false
|
|
// positive.
|
|
if (isSelfAssign(LHS, RHS)) {
|
|
if (!isUnused(LHS, AC) && !isTruncationExtensionAssignment(LHS, RHS)) {
|
|
UpdateAssumption(A, Equal);
|
|
return;
|
|
}
|
|
else {
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
}
|
|
|
|
case BO_SubAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_Sub:
|
|
case BO_Div:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
if (LHSVal != RHSVal || LHSContainsFalsePositive
|
|
|| RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, Equal);
|
|
return;
|
|
}
|
|
|
|
// x op 1
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!RHSVal.isConstant(1) || RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, RHSis1);
|
|
return;
|
|
}
|
|
|
|
// 1 op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_MulAssign:
|
|
case BO_Mul:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!LHSVal.isConstant(1) || LHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, LHSis1);
|
|
return;
|
|
}
|
|
|
|
// x op 0
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_MulAssign:
|
|
case BO_AndAssign:
|
|
case BO_OrAssign:
|
|
case BO_XorAssign:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Mul:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!RHSVal.isConstant(0) || RHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, RHSis0);
|
|
return;
|
|
}
|
|
|
|
// 0 op x
|
|
switch (Op) {
|
|
default:
|
|
break; // We don't care about any other operators.
|
|
|
|
// Fall through intentional
|
|
//case BO_AddAssign: // Common false positive
|
|
case BO_SubAssign: // Check only if unsigned
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_AndAssign:
|
|
//case BO_OrAssign: // Common false positive
|
|
//case BO_XorAssign: // Common false positive
|
|
case BO_ShlAssign:
|
|
case BO_ShrAssign:
|
|
case BO_Add:
|
|
case BO_Sub:
|
|
case BO_Mul:
|
|
case BO_Div:
|
|
case BO_And:
|
|
case BO_Or:
|
|
case BO_Xor:
|
|
case BO_Shl:
|
|
case BO_Shr:
|
|
case BO_LOr:
|
|
case BO_LAnd:
|
|
if (!LHSVal.isConstant(0) || LHSContainsFalsePositive)
|
|
break;
|
|
UpdateAssumption(A, LHSis0);
|
|
return;
|
|
}
|
|
|
|
// If we get to this point, there has been a valid use of this operation.
|
|
A = Impossible;
|
|
}
|
|
|
|
// At the post visit stage, the predecessor ExplodedNode will be the
|
|
// BinaryOperator that was just created. We use this hook to collect the
|
|
// ExplodedNode.
|
|
void IdempotentOperationChecker::checkPostStmt(const BinaryOperator *B,
|
|
CheckerContext &C) const {
|
|
// Add the ExplodedNode we just visited
|
|
BinaryOperatorData &Data = hash[B];
|
|
|
|
const Stmt *predStmt =
|
|
C.getPredecessor()->getLocation().castAs<StmtPoint>().getStmt();
|
|
|
|
// Ignore implicit calls to setters.
|
|
if (!isa<BinaryOperator>(predStmt))
|
|
return;
|
|
|
|
Data.explodedNodes.Add(C.getPredecessor());
|
|
}
|
|
|
|
void IdempotentOperationChecker::checkEndAnalysis(ExplodedGraph &G,
|
|
BugReporter &BR,
|
|
ExprEngine &Eng) const {
|
|
if (!BT)
|
|
BT.reset(new BugType("Idempotent operation", "Dead code"));
|
|
|
|
// Iterate over the hash to see if we have any paths with definite
|
|
// idempotent operations.
|
|
for (AssumptionMap::const_iterator i = hash.begin(); i != hash.end(); ++i) {
|
|
// Unpack the hash contents
|
|
const BinaryOperatorData &Data = i->second;
|
|
const Assumption &A = Data.assumption;
|
|
const ExplodedNodeSet &ES = Data.explodedNodes;
|
|
|
|
// If there are no nodes accosted with the expression, nothing to report.
|
|
// FIXME: This is possible because the checker does part of processing in
|
|
// checkPreStmt and part in checkPostStmt.
|
|
if (ES.begin() == ES.end())
|
|
continue;
|
|
|
|
const BinaryOperator *B = i->first;
|
|
|
|
if (A == Impossible)
|
|
continue;
|
|
|
|
// If the analyzer did not finish, check to see if we can still emit this
|
|
// warning
|
|
if (Eng.hasWorkRemaining()) {
|
|
// If we can trace back
|
|
AnalysisDeclContext *AC = (*ES.begin())->getLocationContext()
|
|
->getAnalysisDeclContext();
|
|
if (!pathWasCompletelyAnalyzed(AC,
|
|
AC->getCFGStmtMap()->getBlock(B),
|
|
Eng.getCoreEngine()))
|
|
continue;
|
|
}
|
|
|
|
// Select the error message and SourceRanges to report.
|
|
SmallString<128> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
bool LHSRelevant = false, RHSRelevant = false;
|
|
switch (A) {
|
|
case Equal:
|
|
LHSRelevant = true;
|
|
RHSRelevant = true;
|
|
if (B->getOpcode() == BO_Assign)
|
|
os << "Assigned value is always the same as the existing value";
|
|
else
|
|
os << "Both operands to '" << B->getOpcodeStr()
|
|
<< "' always have the same value";
|
|
break;
|
|
case LHSis1:
|
|
LHSRelevant = true;
|
|
os << "The left operand to '" << B->getOpcodeStr() << "' is always 1";
|
|
break;
|
|
case RHSis1:
|
|
RHSRelevant = true;
|
|
os << "The right operand to '" << B->getOpcodeStr() << "' is always 1";
|
|
break;
|
|
case LHSis0:
|
|
LHSRelevant = true;
|
|
os << "The left operand to '" << B->getOpcodeStr() << "' is always 0";
|
|
break;
|
|
case RHSis0:
|
|
RHSRelevant = true;
|
|
os << "The right operand to '" << B->getOpcodeStr() << "' is always 0";
|
|
break;
|
|
case Possible:
|
|
llvm_unreachable("Operation was never marked with an assumption");
|
|
case Impossible:
|
|
llvm_unreachable(0);
|
|
}
|
|
|
|
// Add a report for each ExplodedNode
|
|
for (ExplodedNodeSet::iterator I = ES.begin(), E = ES.end(); I != E; ++I) {
|
|
BugReport *report = new BugReport(*BT, os.str(), *I);
|
|
|
|
// Add source ranges and visitor hooks
|
|
if (LHSRelevant) {
|
|
const Expr *LHS = i->first->getLHS();
|
|
report->addRange(LHS->getSourceRange());
|
|
FindLastStoreBRVisitor::registerStatementVarDecls(*report, LHS, false);
|
|
}
|
|
if (RHSRelevant) {
|
|
const Expr *RHS = i->first->getRHS();
|
|
report->addRange(i->first->getRHS()->getSourceRange());
|
|
FindLastStoreBRVisitor::registerStatementVarDecls(*report, RHS, false);
|
|
}
|
|
|
|
BR.emitReport(report);
|
|
}
|
|
}
|
|
|
|
hash.clear();
|
|
}
|
|
|
|
// Updates the current assumption given the new assumption
|
|
inline void IdempotentOperationChecker::UpdateAssumption(Assumption &A,
|
|
const Assumption &New) {
|
|
// If the assumption is the same, there is nothing to do
|
|
if (A == New)
|
|
return;
|
|
|
|
switch (A) {
|
|
// If we don't currently have an assumption, set it
|
|
case Possible:
|
|
A = New;
|
|
return;
|
|
|
|
// If we have determined that a valid state happened, ignore the new
|
|
// assumption.
|
|
case Impossible:
|
|
return;
|
|
|
|
// Any other case means that we had a different assumption last time. We don't
|
|
// currently support mixing assumptions for diagnostic reasons, so we set
|
|
// our assumption to be impossible.
|
|
default:
|
|
A = Impossible;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check for a statement where a variable is self assigned to possibly avoid an
|
|
// unused variable warning.
|
|
bool IdempotentOperationChecker::isSelfAssign(const Expr *LHS, const Expr *RHS) {
|
|
LHS = LHS->IgnoreParenCasts();
|
|
RHS = RHS->IgnoreParenCasts();
|
|
|
|
const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS);
|
|
if (!LHS_DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS);
|
|
if (!RHS_DR)
|
|
return false;
|
|
|
|
if (VD != RHS_DR->getDecl())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the Expr points to a VarDecl that is not read anywhere
|
|
// outside of self-assignments.
|
|
bool IdempotentOperationChecker::isUnused(const Expr *E,
|
|
AnalysisDeclContext *AC) {
|
|
if (!E)
|
|
return false;
|
|
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
|
|
if (!DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
if (AC->getPseudoConstantAnalysis()->wasReferenced(VD))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check for self casts truncating/extending a variable
|
|
bool IdempotentOperationChecker::isTruncationExtensionAssignment(
|
|
const Expr *LHS,
|
|
const Expr *RHS) {
|
|
|
|
const DeclRefExpr *LHS_DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParenCasts());
|
|
if (!LHS_DR)
|
|
return false;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(LHS_DR->getDecl());
|
|
if (!VD)
|
|
return false;
|
|
|
|
const DeclRefExpr *RHS_DR = dyn_cast<DeclRefExpr>(RHS->IgnoreParenCasts());
|
|
if (!RHS_DR)
|
|
return false;
|
|
|
|
if (VD != RHS_DR->getDecl())
|
|
return false;
|
|
|
|
return dyn_cast<DeclRefExpr>(RHS->IgnoreParenLValueCasts()) == NULL;
|
|
}
|
|
|
|
// Returns false if a path to this block was not completely analyzed, or true
|
|
// otherwise.
|
|
bool
|
|
IdempotentOperationChecker::pathWasCompletelyAnalyzed(AnalysisDeclContext *AC,
|
|
const CFGBlock *CB,
|
|
const CoreEngine &CE) {
|
|
|
|
CFGReverseBlockReachabilityAnalysis *CRA = AC->getCFGReachablityAnalysis();
|
|
|
|
// Test for reachability from any aborted blocks to this block
|
|
typedef CoreEngine::BlocksExhausted::const_iterator ExhaustedIterator;
|
|
for (ExhaustedIterator I = CE.blocks_exhausted_begin(),
|
|
E = CE.blocks_exhausted_end(); I != E; ++I) {
|
|
const BlockEdge &BE = I->first;
|
|
|
|
// The destination block on the BlockEdge is the first block that was not
|
|
// analyzed. If we can reach this block from the aborted block, then this
|
|
// block was not completely analyzed.
|
|
//
|
|
// Also explicitly check if the current block is the destination block.
|
|
// While technically reachable, it means we aborted the analysis on
|
|
// a path that included that block.
|
|
const CFGBlock *destBlock = BE.getDst();
|
|
if (destBlock == CB || CRA->isReachable(destBlock, CB))
|
|
return false;
|
|
}
|
|
|
|
// Test for reachability from blocks we just gave up on.
|
|
typedef CoreEngine::BlocksAborted::const_iterator AbortedIterator;
|
|
for (AbortedIterator I = CE.blocks_aborted_begin(),
|
|
E = CE.blocks_aborted_end(); I != E; ++I) {
|
|
const CFGBlock *destBlock = I->first;
|
|
if (destBlock == CB || CRA->isReachable(destBlock, CB))
|
|
return false;
|
|
}
|
|
|
|
// For the items still on the worklist, see if they are in blocks that
|
|
// can eventually reach 'CB'.
|
|
class VisitWL : public WorkList::Visitor {
|
|
const CFGStmtMap *CBM;
|
|
const CFGBlock *TargetBlock;
|
|
CFGReverseBlockReachabilityAnalysis &CRA;
|
|
public:
|
|
VisitWL(const CFGStmtMap *cbm, const CFGBlock *targetBlock,
|
|
CFGReverseBlockReachabilityAnalysis &cra)
|
|
: CBM(cbm), TargetBlock(targetBlock), CRA(cra) {}
|
|
virtual bool visit(const WorkListUnit &U) {
|
|
ProgramPoint P = U.getNode()->getLocation();
|
|
const CFGBlock *B = 0;
|
|
if (Optional<StmtPoint> SP = P.getAs<StmtPoint>()) {
|
|
B = CBM->getBlock(SP->getStmt());
|
|
} else if (Optional<BlockEdge> BE = P.getAs<BlockEdge>()) {
|
|
B = BE->getDst();
|
|
} else if (Optional<BlockEntrance> BEnt = P.getAs<BlockEntrance>()) {
|
|
B = BEnt->getBlock();
|
|
} else if (Optional<BlockExit> BExit = P.getAs<BlockExit>()) {
|
|
B = BExit->getBlock();
|
|
}
|
|
if (!B)
|
|
return true;
|
|
|
|
return B == TargetBlock || CRA.isReachable(B, TargetBlock);
|
|
}
|
|
};
|
|
VisitWL visitWL(AC->getCFGStmtMap(), CB, *CRA);
|
|
// Were there any items in the worklist that could potentially reach
|
|
// this block?
|
|
if (CE.getWorkList()->visitItemsInWorkList(visitWL))
|
|
return false;
|
|
|
|
// Verify that this block is reachable from the entry block
|
|
if (!CRA->isReachable(&AC->getCFG()->getEntry(), CB))
|
|
return false;
|
|
|
|
// If we get to this point, there is no connection to the entry block or an
|
|
// aborted block. This path is unreachable and we can report the error.
|
|
return true;
|
|
}
|
|
|
|
// Recursive function that determines whether an expression contains any element
|
|
// that varies. This could be due to a compile-time constant like sizeof. An
|
|
// expression may also involve a variable that behaves like a constant. The
|
|
// function returns true if the expression varies, and false otherwise.
|
|
bool IdempotentOperationChecker::CanVary(const Expr *Ex,
|
|
AnalysisDeclContext *AC) {
|
|
// Parentheses and casts are irrelevant here
|
|
Ex = Ex->IgnoreParenCasts();
|
|
|
|
if (Ex->getLocStart().isMacroID())
|
|
return false;
|
|
|
|
switch (Ex->getStmtClass()) {
|
|
// Trivially true cases
|
|
case Stmt::ArraySubscriptExprClass:
|
|
case Stmt::MemberExprClass:
|
|
case Stmt::StmtExprClass:
|
|
case Stmt::CallExprClass:
|
|
case Stmt::VAArgExprClass:
|
|
case Stmt::ShuffleVectorExprClass:
|
|
return true;
|
|
default:
|
|
return true;
|
|
|
|
// Trivially false cases
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::PredefinedExprClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::OffsetOfExprClass:
|
|
case Stmt::CompoundLiteralExprClass:
|
|
case Stmt::AddrLabelExprClass:
|
|
case Stmt::BinaryTypeTraitExprClass:
|
|
case Stmt::GNUNullExprClass:
|
|
case Stmt::InitListExprClass:
|
|
case Stmt::DesignatedInitExprClass:
|
|
case Stmt::BlockExprClass:
|
|
return false;
|
|
|
|
// Cases requiring custom logic
|
|
case Stmt::UnaryExprOrTypeTraitExprClass: {
|
|
const UnaryExprOrTypeTraitExpr *SE =
|
|
cast<const UnaryExprOrTypeTraitExpr>(Ex);
|
|
if (SE->getKind() != UETT_SizeOf)
|
|
return false;
|
|
return SE->getTypeOfArgument()->isVariableArrayType();
|
|
}
|
|
case Stmt::DeclRefExprClass:
|
|
// Check for constants/pseudoconstants
|
|
return !isConstantOrPseudoConstant(cast<DeclRefExpr>(Ex), AC);
|
|
|
|
// The next cases require recursion for subexpressions
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *B = cast<const BinaryOperator>(Ex);
|
|
|
|
// Exclude cases involving pointer arithmetic. These are usually
|
|
// false positives.
|
|
if (B->getOpcode() == BO_Sub || B->getOpcode() == BO_Add)
|
|
if (B->getLHS()->getType()->getAs<PointerType>())
|
|
return false;
|
|
|
|
return CanVary(B->getRHS(), AC)
|
|
|| CanVary(B->getLHS(), AC);
|
|
}
|
|
case Stmt::UnaryOperatorClass:
|
|
return CanVary(cast<UnaryOperator>(Ex)->getSubExpr(), AC);
|
|
case Stmt::ConditionalOperatorClass:
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
return CanVary(cast<AbstractConditionalOperator>(Ex)->getCond(), AC);
|
|
}
|
|
}
|
|
|
|
// Returns true if a DeclRefExpr is or behaves like a constant.
|
|
bool IdempotentOperationChecker::isConstantOrPseudoConstant(
|
|
const DeclRefExpr *DR,
|
|
AnalysisDeclContext *AC) {
|
|
// Check if the type of the Decl is const-qualified
|
|
if (DR->getType().isConstQualified())
|
|
return true;
|
|
|
|
// Check for an enum
|
|
if (isa<EnumConstantDecl>(DR->getDecl()))
|
|
return true;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
|
|
if (!VD)
|
|
return true;
|
|
|
|
// Check if the Decl behaves like a constant. This check also takes care of
|
|
// static variables, which can only change between function calls if they are
|
|
// modified in the AST.
|
|
PseudoConstantAnalysis *PCA = AC->getPseudoConstantAnalysis();
|
|
if (PCA->isPseudoConstant(VD))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Recursively find any substatements containing VarDecl's with storage other
|
|
// than local
|
|
bool IdempotentOperationChecker::containsNonLocalVarDecl(const Stmt *S) {
|
|
const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(S);
|
|
|
|
if (DR)
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl()))
|
|
if (!VD->hasLocalStorage())
|
|
return true;
|
|
|
|
for (Stmt::const_child_iterator I = S->child_begin(); I != S->child_end();
|
|
++I)
|
|
if (const Stmt *child = *I)
|
|
if (containsNonLocalVarDecl(child))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void ento::registerIdempotentOperationChecker(CheckerManager &mgr) {
|
|
mgr.registerChecker<IdempotentOperationChecker>();
|
|
}
|