llvm-project/llvm/lib/MC/MCELFStreamer.cpp

896 lines
32 KiB
C++

//===- lib/MC/MCELFStreamer.cpp - ELF Object Output -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file assembles .s files and emits ELF .o object files.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFragment.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
using namespace llvm;
MCELFStreamer::MCELFStreamer(MCContext &Context,
std::unique_ptr<MCAsmBackend> TAB,
std::unique_ptr<MCObjectWriter> OW,
std::unique_ptr<MCCodeEmitter> Emitter)
: MCObjectStreamer(Context, std::move(TAB), std::move(OW),
std::move(Emitter)) {}
bool MCELFStreamer::isBundleLocked() const {
return getCurrentSectionOnly()->isBundleLocked();
}
void MCELFStreamer::mergeFragment(MCDataFragment *DF,
MCDataFragment *EF) {
MCAssembler &Assembler = getAssembler();
if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) {
uint64_t FSize = EF->getContents().size();
if (FSize > Assembler.getBundleAlignSize())
report_fatal_error("Fragment can't be larger than a bundle size");
uint64_t RequiredBundlePadding = computeBundlePadding(
Assembler, EF, DF->getContents().size(), FSize);
if (RequiredBundlePadding > UINT8_MAX)
report_fatal_error("Padding cannot exceed 255 bytes");
if (RequiredBundlePadding > 0) {
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
Assembler.writeFragmentPadding(VecOS, *EF, FSize);
DF->getContents().append(Code.begin(), Code.end());
}
}
flushPendingLabels(DF, DF->getContents().size());
for (unsigned i = 0, e = EF->getFixups().size(); i != e; ++i) {
EF->getFixups()[i].setOffset(EF->getFixups()[i].getOffset() +
DF->getContents().size());
DF->getFixups().push_back(EF->getFixups()[i]);
}
if (DF->getSubtargetInfo() == nullptr && EF->getSubtargetInfo())
DF->setHasInstructions(*EF->getSubtargetInfo());
DF->getContents().append(EF->getContents().begin(), EF->getContents().end());
}
void MCELFStreamer::initSections(bool NoExecStack, const MCSubtargetInfo &STI) {
MCContext &Ctx = getContext();
SwitchSection(Ctx.getObjectFileInfo()->getTextSection());
emitCodeAlignment(Ctx.getObjectFileInfo()->getTextSectionAlignment(), &STI);
if (NoExecStack)
SwitchSection(Ctx.getAsmInfo()->getNonexecutableStackSection(Ctx));
}
void MCELFStreamer::emitLabel(MCSymbol *S, SMLoc Loc) {
auto *Symbol = cast<MCSymbolELF>(S);
MCObjectStreamer::emitLabel(Symbol, Loc);
const MCSectionELF &Section =
static_cast<const MCSectionELF &>(*getCurrentSectionOnly());
if (Section.getFlags() & ELF::SHF_TLS)
Symbol->setType(ELF::STT_TLS);
}
void MCELFStreamer::emitLabelAtPos(MCSymbol *S, SMLoc Loc, MCFragment *F,
uint64_t Offset) {
auto *Symbol = cast<MCSymbolELF>(S);
MCObjectStreamer::emitLabelAtPos(Symbol, Loc, F, Offset);
const MCSectionELF &Section =
static_cast<const MCSectionELF &>(*getCurrentSectionOnly());
if (Section.getFlags() & ELF::SHF_TLS)
Symbol->setType(ELF::STT_TLS);
}
void MCELFStreamer::emitAssemblerFlag(MCAssemblerFlag Flag) {
// Let the target do whatever target specific stuff it needs to do.
getAssembler().getBackend().handleAssemblerFlag(Flag);
// Do any generic stuff we need to do.
switch (Flag) {
case MCAF_SyntaxUnified: return; // no-op here.
case MCAF_Code16: return; // Change parsing mode; no-op here.
case MCAF_Code32: return; // Change parsing mode; no-op here.
case MCAF_Code64: return; // Change parsing mode; no-op here.
case MCAF_SubsectionsViaSymbols:
getAssembler().setSubsectionsViaSymbols(true);
return;
}
llvm_unreachable("invalid assembler flag!");
}
// If bundle alignment is used and there are any instructions in the section, it
// needs to be aligned to at least the bundle size.
static void setSectionAlignmentForBundling(const MCAssembler &Assembler,
MCSection *Section) {
if (Section && Assembler.isBundlingEnabled() && Section->hasInstructions() &&
Section->getAlignment() < Assembler.getBundleAlignSize())
Section->setAlignment(Align(Assembler.getBundleAlignSize()));
}
void MCELFStreamer::changeSection(MCSection *Section,
const MCExpr *Subsection) {
MCSection *CurSection = getCurrentSectionOnly();
if (CurSection && isBundleLocked())
report_fatal_error("Unterminated .bundle_lock when changing a section");
MCAssembler &Asm = getAssembler();
// Ensure the previous section gets aligned if necessary.
setSectionAlignmentForBundling(Asm, CurSection);
auto *SectionELF = static_cast<const MCSectionELF *>(Section);
const MCSymbol *Grp = SectionELF->getGroup();
if (Grp)
Asm.registerSymbol(*Grp);
if (SectionELF->getFlags() & ELF::SHF_GNU_RETAIN)
Asm.getWriter().markGnuAbi();
changeSectionImpl(Section, Subsection);
Asm.registerSymbol(*Section->getBeginSymbol());
}
void MCELFStreamer::emitWeakReference(MCSymbol *Alias, const MCSymbol *Symbol) {
getAssembler().registerSymbol(*Symbol);
const MCExpr *Value = MCSymbolRefExpr::create(
Symbol, MCSymbolRefExpr::VK_WEAKREF, getContext());
Alias->setVariableValue(Value);
}
// When GNU as encounters more than one .type declaration for an object it seems
// to use a mechanism similar to the one below to decide which type is actually
// used in the object file. The greater of T1 and T2 is selected based on the
// following ordering:
// STT_NOTYPE < STT_OBJECT < STT_FUNC < STT_GNU_IFUNC < STT_TLS < anything else
// If neither T1 < T2 nor T2 < T1 according to this ordering, use T2 (the user
// provided type).
static unsigned CombineSymbolTypes(unsigned T1, unsigned T2) {
for (unsigned Type : {ELF::STT_NOTYPE, ELF::STT_OBJECT, ELF::STT_FUNC,
ELF::STT_GNU_IFUNC, ELF::STT_TLS}) {
if (T1 == Type)
return T2;
if (T2 == Type)
return T1;
}
return T2;
}
bool MCELFStreamer::emitSymbolAttribute(MCSymbol *S, MCSymbolAttr Attribute) {
auto *Symbol = cast<MCSymbolELF>(S);
// Adding a symbol attribute always introduces the symbol, note that an
// important side effect of calling registerSymbol here is to register
// the symbol with the assembler.
getAssembler().registerSymbol(*Symbol);
// The implementation of symbol attributes is designed to match 'as', but it
// leaves much to desired. It doesn't really make sense to arbitrarily add and
// remove flags, but 'as' allows this (in particular, see .desc).
//
// In the future it might be worth trying to make these operations more well
// defined.
switch (Attribute) {
case MCSA_Cold:
case MCSA_Extern:
case MCSA_LazyReference:
case MCSA_Reference:
case MCSA_SymbolResolver:
case MCSA_PrivateExtern:
case MCSA_WeakDefinition:
case MCSA_WeakDefAutoPrivate:
case MCSA_Invalid:
case MCSA_IndirectSymbol:
return false;
case MCSA_NoDeadStrip:
// Ignore for now.
break;
case MCSA_ELF_TypeGnuUniqueObject:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
Symbol->setBinding(ELF::STB_GNU_UNIQUE);
getAssembler().getWriter().markGnuAbi();
break;
case MCSA_Global:
// For `.weak x; .global x`, GNU as sets the binding to STB_WEAK while we
// traditionally set the binding to STB_GLOBAL. This is error-prone, so we
// error on such cases. Note, we also disallow changed binding from .local.
if (Symbol->isBindingSet() && Symbol->getBinding() != ELF::STB_GLOBAL)
getContext().reportError(getStartTokLoc(),
Symbol->getName() +
" changed binding to STB_GLOBAL");
Symbol->setBinding(ELF::STB_GLOBAL);
break;
case MCSA_WeakReference:
case MCSA_Weak:
// For `.global x; .weak x`, both MC and GNU as set the binding to STB_WEAK.
// We emit a warning for now but may switch to an error in the future.
if (Symbol->isBindingSet() && Symbol->getBinding() != ELF::STB_WEAK)
getContext().reportWarning(
getStartTokLoc(), Symbol->getName() + " changed binding to STB_WEAK");
Symbol->setBinding(ELF::STB_WEAK);
break;
case MCSA_Local:
if (Symbol->isBindingSet() && Symbol->getBinding() != ELF::STB_LOCAL)
getContext().reportError(getStartTokLoc(),
Symbol->getName() +
" changed binding to STB_LOCAL");
Symbol->setBinding(ELF::STB_LOCAL);
break;
case MCSA_ELF_TypeFunction:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_FUNC));
break;
case MCSA_ELF_TypeIndFunction:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_GNU_IFUNC));
break;
case MCSA_ELF_TypeObject:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
break;
case MCSA_ELF_TypeTLS:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_TLS));
break;
case MCSA_ELF_TypeCommon:
// TODO: Emit these as a common symbol.
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_OBJECT));
break;
case MCSA_ELF_TypeNoType:
Symbol->setType(CombineSymbolTypes(Symbol->getType(), ELF::STT_NOTYPE));
break;
case MCSA_Protected:
Symbol->setVisibility(ELF::STV_PROTECTED);
break;
case MCSA_Hidden:
Symbol->setVisibility(ELF::STV_HIDDEN);
break;
case MCSA_Internal:
Symbol->setVisibility(ELF::STV_INTERNAL);
break;
case MCSA_AltEntry:
llvm_unreachable("ELF doesn't support the .alt_entry attribute");
case MCSA_LGlobal:
llvm_unreachable("ELF doesn't support the .lglobl attribute");
}
return true;
}
void MCELFStreamer::emitCommonSymbol(MCSymbol *S, uint64_t Size,
unsigned ByteAlignment) {
auto *Symbol = cast<MCSymbolELF>(S);
getAssembler().registerSymbol(*Symbol);
if (!Symbol->isBindingSet())
Symbol->setBinding(ELF::STB_GLOBAL);
Symbol->setType(ELF::STT_OBJECT);
if (Symbol->getBinding() == ELF::STB_LOCAL) {
MCSection &Section = *getAssembler().getContext().getELFSection(
".bss", ELF::SHT_NOBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
MCSectionSubPair P = getCurrentSection();
SwitchSection(&Section);
emitValueToAlignment(ByteAlignment, 0, 1, 0);
emitLabel(Symbol);
emitZeros(Size);
SwitchSection(P.first, P.second);
} else {
if(Symbol->declareCommon(Size, ByteAlignment))
report_fatal_error(Twine("Symbol: ") + Symbol->getName() +
" redeclared as different type");
}
cast<MCSymbolELF>(Symbol)
->setSize(MCConstantExpr::create(Size, getContext()));
}
void MCELFStreamer::emitELFSize(MCSymbol *Symbol, const MCExpr *Value) {
cast<MCSymbolELF>(Symbol)->setSize(Value);
}
void MCELFStreamer::emitELFSymverDirective(const MCSymbol *OriginalSym,
StringRef Name,
bool KeepOriginalSym) {
getAssembler().Symvers.push_back(MCAssembler::Symver{
getStartTokLoc(), OriginalSym, Name, KeepOriginalSym});
}
void MCELFStreamer::emitLocalCommonSymbol(MCSymbol *S, uint64_t Size,
unsigned ByteAlignment) {
auto *Symbol = cast<MCSymbolELF>(S);
// FIXME: Should this be caught and done earlier?
getAssembler().registerSymbol(*Symbol);
Symbol->setBinding(ELF::STB_LOCAL);
emitCommonSymbol(Symbol, Size, ByteAlignment);
}
void MCELFStreamer::emitValueImpl(const MCExpr *Value, unsigned Size,
SMLoc Loc) {
if (isBundleLocked())
report_fatal_error("Emitting values inside a locked bundle is forbidden");
fixSymbolsInTLSFixups(Value);
MCObjectStreamer::emitValueImpl(Value, Size, Loc);
}
void MCELFStreamer::emitValueToAlignment(unsigned ByteAlignment,
int64_t Value,
unsigned ValueSize,
unsigned MaxBytesToEmit) {
if (isBundleLocked())
report_fatal_error("Emitting values inside a locked bundle is forbidden");
MCObjectStreamer::emitValueToAlignment(ByteAlignment, Value,
ValueSize, MaxBytesToEmit);
}
void MCELFStreamer::emitCGProfileEntry(const MCSymbolRefExpr *From,
const MCSymbolRefExpr *To,
uint64_t Count) {
getAssembler().CGProfile.push_back({From, To, Count});
}
void MCELFStreamer::emitIdent(StringRef IdentString) {
MCSection *Comment = getAssembler().getContext().getELFSection(
".comment", ELF::SHT_PROGBITS, ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
PushSection();
SwitchSection(Comment);
if (!SeenIdent) {
emitInt8(0);
SeenIdent = true;
}
emitBytes(IdentString);
emitInt8(0);
PopSection();
}
void MCELFStreamer::fixSymbolsInTLSFixups(const MCExpr *expr) {
switch (expr->getKind()) {
case MCExpr::Target:
cast<MCTargetExpr>(expr)->fixELFSymbolsInTLSFixups(getAssembler());
break;
case MCExpr::Constant:
break;
case MCExpr::Binary: {
const MCBinaryExpr *be = cast<MCBinaryExpr>(expr);
fixSymbolsInTLSFixups(be->getLHS());
fixSymbolsInTLSFixups(be->getRHS());
break;
}
case MCExpr::SymbolRef: {
const MCSymbolRefExpr &symRef = *cast<MCSymbolRefExpr>(expr);
switch (symRef.getKind()) {
default:
return;
case MCSymbolRefExpr::VK_GOTTPOFF:
case MCSymbolRefExpr::VK_INDNTPOFF:
case MCSymbolRefExpr::VK_NTPOFF:
case MCSymbolRefExpr::VK_GOTNTPOFF:
case MCSymbolRefExpr::VK_TLSCALL:
case MCSymbolRefExpr::VK_TLSDESC:
case MCSymbolRefExpr::VK_TLSGD:
case MCSymbolRefExpr::VK_TLSLD:
case MCSymbolRefExpr::VK_TLSLDM:
case MCSymbolRefExpr::VK_TPOFF:
case MCSymbolRefExpr::VK_TPREL:
case MCSymbolRefExpr::VK_DTPOFF:
case MCSymbolRefExpr::VK_DTPREL:
case MCSymbolRefExpr::VK_PPC_DTPMOD:
case MCSymbolRefExpr::VK_PPC_TPREL_LO:
case MCSymbolRefExpr::VK_PPC_TPREL_HI:
case MCSymbolRefExpr::VK_PPC_TPREL_HA:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGH:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHA:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHER:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHERA:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHEST:
case MCSymbolRefExpr::VK_PPC_TPREL_HIGHESTA:
case MCSymbolRefExpr::VK_PPC_DTPREL_LO:
case MCSymbolRefExpr::VK_PPC_DTPREL_HI:
case MCSymbolRefExpr::VK_PPC_DTPREL_HA:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGH:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHA:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHER:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHERA:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHEST:
case MCSymbolRefExpr::VK_PPC_DTPREL_HIGHESTA:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_HA:
case MCSymbolRefExpr::VK_PPC_GOT_TPREL_PCREL:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_LO:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HI:
case MCSymbolRefExpr::VK_PPC_GOT_DTPREL_HA:
case MCSymbolRefExpr::VK_PPC_TLS:
case MCSymbolRefExpr::VK_PPC_TLS_PCREL:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_HA:
case MCSymbolRefExpr::VK_PPC_GOT_TLSGD_PCREL:
case MCSymbolRefExpr::VK_PPC_TLSGD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_LO:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HI:
case MCSymbolRefExpr::VK_PPC_GOT_TLSLD_HA:
case MCSymbolRefExpr::VK_PPC_TLSLD:
break;
}
getAssembler().registerSymbol(symRef.getSymbol());
cast<MCSymbolELF>(symRef.getSymbol()).setType(ELF::STT_TLS);
break;
}
case MCExpr::Unary:
fixSymbolsInTLSFixups(cast<MCUnaryExpr>(expr)->getSubExpr());
break;
}
}
void MCELFStreamer::finalizeCGProfileEntry(const MCSymbolRefExpr *&SRE,
uint64_t Offset) {
const MCSymbol *S = &SRE->getSymbol();
if (S->isTemporary()) {
if (!S->isInSection()) {
getContext().reportError(
SRE->getLoc(), Twine("Reference to undefined temporary symbol ") +
"`" + S->getName() + "`");
return;
}
S = S->getSection().getBeginSymbol();
S->setUsedInReloc();
SRE = MCSymbolRefExpr::create(S, MCSymbolRefExpr::VK_None, getContext(),
SRE->getLoc());
}
const MCConstantExpr *MCOffset = MCConstantExpr::create(Offset, getContext());
MCObjectStreamer::visitUsedExpr(*SRE);
if (Optional<std::pair<bool, std::string>> Err =
MCObjectStreamer::emitRelocDirective(
*MCOffset, "BFD_RELOC_NONE", SRE, SRE->getLoc(),
*getContext().getSubtargetInfo()))
report_fatal_error("Relocation for CG Profile could not be created: " +
Twine(Err->second));
}
void MCELFStreamer::finalizeCGProfile() {
MCAssembler &Asm = getAssembler();
if (Asm.CGProfile.empty())
return;
MCSection *CGProfile = getAssembler().getContext().getELFSection(
".llvm.call-graph-profile", ELF::SHT_LLVM_CALL_GRAPH_PROFILE,
ELF::SHF_EXCLUDE, /*sizeof(Elf_CGProfile_Impl<>)=*/8);
PushSection();
SwitchSection(CGProfile);
uint64_t Offset = 0;
for (MCAssembler::CGProfileEntry &E : Asm.CGProfile) {
finalizeCGProfileEntry(E.From, Offset);
finalizeCGProfileEntry(E.To, Offset);
emitIntValue(E.Count, sizeof(uint64_t));
Offset += sizeof(uint64_t);
}
PopSection();
}
void MCELFStreamer::emitInstToFragment(const MCInst &Inst,
const MCSubtargetInfo &STI) {
this->MCObjectStreamer::emitInstToFragment(Inst, STI);
MCRelaxableFragment &F = *cast<MCRelaxableFragment>(getCurrentFragment());
for (auto &Fixup : F.getFixups())
fixSymbolsInTLSFixups(Fixup.getValue());
}
// A fragment can only have one Subtarget, and when bundling is enabled we
// sometimes need to use the same fragment. We give an error if there
// are conflicting Subtargets.
static void CheckBundleSubtargets(const MCSubtargetInfo *OldSTI,
const MCSubtargetInfo *NewSTI) {
if (OldSTI && NewSTI && OldSTI != NewSTI)
report_fatal_error("A Bundle can only have one Subtarget.");
}
void MCELFStreamer::emitInstToData(const MCInst &Inst,
const MCSubtargetInfo &STI) {
MCAssembler &Assembler = getAssembler();
SmallVector<MCFixup, 4> Fixups;
SmallString<256> Code;
raw_svector_ostream VecOS(Code);
Assembler.getEmitter().encodeInstruction(Inst, VecOS, Fixups, STI);
for (auto &Fixup : Fixups)
fixSymbolsInTLSFixups(Fixup.getValue());
// There are several possibilities here:
//
// If bundling is disabled, append the encoded instruction to the current data
// fragment (or create a new such fragment if the current fragment is not a
// data fragment, or the Subtarget has changed).
//
// If bundling is enabled:
// - If we're not in a bundle-locked group, emit the instruction into a
// fragment of its own. If there are no fixups registered for the
// instruction, emit a MCCompactEncodedInstFragment. Otherwise, emit a
// MCDataFragment.
// - If we're in a bundle-locked group, append the instruction to the current
// data fragment because we want all the instructions in a group to get into
// the same fragment. Be careful not to do that for the first instruction in
// the group, though.
MCDataFragment *DF;
if (Assembler.isBundlingEnabled()) {
MCSection &Sec = *getCurrentSectionOnly();
if (Assembler.getRelaxAll() && isBundleLocked()) {
// If the -mc-relax-all flag is used and we are bundle-locked, we re-use
// the current bundle group.
DF = BundleGroups.back();
CheckBundleSubtargets(DF->getSubtargetInfo(), &STI);
}
else if (Assembler.getRelaxAll() && !isBundleLocked())
// When not in a bundle-locked group and the -mc-relax-all flag is used,
// we create a new temporary fragment which will be later merged into
// the current fragment.
DF = new MCDataFragment();
else if (isBundleLocked() && !Sec.isBundleGroupBeforeFirstInst()) {
// If we are bundle-locked, we re-use the current fragment.
// The bundle-locking directive ensures this is a new data fragment.
DF = cast<MCDataFragment>(getCurrentFragment());
CheckBundleSubtargets(DF->getSubtargetInfo(), &STI);
}
else if (!isBundleLocked() && Fixups.size() == 0) {
// Optimize memory usage by emitting the instruction to a
// MCCompactEncodedInstFragment when not in a bundle-locked group and
// there are no fixups registered.
MCCompactEncodedInstFragment *CEIF = new MCCompactEncodedInstFragment();
insert(CEIF);
CEIF->getContents().append(Code.begin(), Code.end());
CEIF->setHasInstructions(STI);
return;
} else {
DF = new MCDataFragment();
insert(DF);
}
if (Sec.getBundleLockState() == MCSection::BundleLockedAlignToEnd) {
// If this fragment is for a group marked "align_to_end", set a flag
// in the fragment. This can happen after the fragment has already been
// created if there are nested bundle_align groups and an inner one
// is the one marked align_to_end.
DF->setAlignToBundleEnd(true);
}
// We're now emitting an instruction in a bundle group, so this flag has
// to be turned off.
Sec.setBundleGroupBeforeFirstInst(false);
} else {
DF = getOrCreateDataFragment(&STI);
}
// Add the fixups and data.
for (auto &Fixup : Fixups) {
Fixup.setOffset(Fixup.getOffset() + DF->getContents().size());
DF->getFixups().push_back(Fixup);
}
DF->setHasInstructions(STI);
DF->getContents().append(Code.begin(), Code.end());
if (Assembler.isBundlingEnabled() && Assembler.getRelaxAll()) {
if (!isBundleLocked()) {
mergeFragment(getOrCreateDataFragment(&STI), DF);
delete DF;
}
}
}
void MCELFStreamer::emitBundleAlignMode(unsigned AlignPow2) {
assert(AlignPow2 <= 30 && "Invalid bundle alignment");
MCAssembler &Assembler = getAssembler();
if (AlignPow2 > 0 && (Assembler.getBundleAlignSize() == 0 ||
Assembler.getBundleAlignSize() == 1U << AlignPow2))
Assembler.setBundleAlignSize(1U << AlignPow2);
else
report_fatal_error(".bundle_align_mode cannot be changed once set");
}
void MCELFStreamer::emitBundleLock(bool AlignToEnd) {
MCSection &Sec = *getCurrentSectionOnly();
if (!getAssembler().isBundlingEnabled())
report_fatal_error(".bundle_lock forbidden when bundling is disabled");
if (!isBundleLocked())
Sec.setBundleGroupBeforeFirstInst(true);
if (getAssembler().getRelaxAll() && !isBundleLocked()) {
// TODO: drop the lock state and set directly in the fragment
MCDataFragment *DF = new MCDataFragment();
BundleGroups.push_back(DF);
}
Sec.setBundleLockState(AlignToEnd ? MCSection::BundleLockedAlignToEnd
: MCSection::BundleLocked);
}
void MCELFStreamer::emitBundleUnlock() {
MCSection &Sec = *getCurrentSectionOnly();
if (!getAssembler().isBundlingEnabled())
report_fatal_error(".bundle_unlock forbidden when bundling is disabled");
else if (!isBundleLocked())
report_fatal_error(".bundle_unlock without matching lock");
else if (Sec.isBundleGroupBeforeFirstInst())
report_fatal_error("Empty bundle-locked group is forbidden");
// When the -mc-relax-all flag is used, we emit instructions to fragments
// stored on a stack. When the bundle unlock is emitted, we pop a fragment
// from the stack a merge it to the one below.
if (getAssembler().getRelaxAll()) {
assert(!BundleGroups.empty() && "There are no bundle groups");
MCDataFragment *DF = BundleGroups.back();
// FIXME: Use BundleGroups to track the lock state instead.
Sec.setBundleLockState(MCSection::NotBundleLocked);
// FIXME: Use more separate fragments for nested groups.
if (!isBundleLocked()) {
mergeFragment(getOrCreateDataFragment(DF->getSubtargetInfo()), DF);
BundleGroups.pop_back();
delete DF;
}
if (Sec.getBundleLockState() != MCSection::BundleLockedAlignToEnd)
getOrCreateDataFragment()->setAlignToBundleEnd(false);
} else
Sec.setBundleLockState(MCSection::NotBundleLocked);
}
void MCELFStreamer::finishImpl() {
// Emit the .gnu attributes section if any attributes have been added.
if (!GNUAttributes.empty()) {
MCSection *DummyAttributeSection = nullptr;
createAttributesSection("gnu", ".gnu.attributes", ELF::SHT_GNU_ATTRIBUTES,
DummyAttributeSection, GNUAttributes);
}
// Ensure the last section gets aligned if necessary.
MCSection *CurSection = getCurrentSectionOnly();
setSectionAlignmentForBundling(getAssembler(), CurSection);
finalizeCGProfile();
emitFrames(nullptr);
this->MCObjectStreamer::finishImpl();
}
void MCELFStreamer::emitThumbFunc(MCSymbol *Func) {
llvm_unreachable("Generic ELF doesn't support this directive");
}
void MCELFStreamer::emitSymbolDesc(MCSymbol *Symbol, unsigned DescValue) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::emitZerofill(MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment,
SMLoc Loc) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::emitTBSSSymbol(MCSection *Section, MCSymbol *Symbol,
uint64_t Size, unsigned ByteAlignment) {
llvm_unreachable("ELF doesn't support this directive");
}
void MCELFStreamer::setAttributeItem(unsigned Attribute, unsigned Value,
bool OverwriteExisting) {
// Look for existing attribute item
if (AttributeItem *Item = getAttributeItem(Attribute)) {
if (!OverwriteExisting)
return;
Item->Type = AttributeItem::NumericAttribute;
Item->IntValue = Value;
return;
}
// Create new attribute item
AttributeItem Item = {AttributeItem::NumericAttribute, Attribute, Value,
std::string(StringRef(""))};
Contents.push_back(Item);
}
void MCELFStreamer::setAttributeItem(unsigned Attribute, StringRef Value,
bool OverwriteExisting) {
// Look for existing attribute item
if (AttributeItem *Item = getAttributeItem(Attribute)) {
if (!OverwriteExisting)
return;
Item->Type = AttributeItem::TextAttribute;
Item->StringValue = std::string(Value);
return;
}
// Create new attribute item
AttributeItem Item = {AttributeItem::TextAttribute, Attribute, 0,
std::string(Value)};
Contents.push_back(Item);
}
void MCELFStreamer::setAttributeItems(unsigned Attribute, unsigned IntValue,
StringRef StringValue,
bool OverwriteExisting) {
// Look for existing attribute item
if (AttributeItem *Item = getAttributeItem(Attribute)) {
if (!OverwriteExisting)
return;
Item->Type = AttributeItem::NumericAndTextAttributes;
Item->IntValue = IntValue;
Item->StringValue = std::string(StringValue);
return;
}
// Create new attribute item
AttributeItem Item = {AttributeItem::NumericAndTextAttributes, Attribute,
IntValue, std::string(StringValue)};
Contents.push_back(Item);
}
MCELFStreamer::AttributeItem *
MCELFStreamer::getAttributeItem(unsigned Attribute) {
for (size_t I = 0; I < Contents.size(); ++I)
if (Contents[I].Tag == Attribute)
return &Contents[I];
return nullptr;
}
size_t
MCELFStreamer::calculateContentSize(SmallVector<AttributeItem, 64> &AttrsVec) {
size_t Result = 0;
for (size_t I = 0; I < AttrsVec.size(); ++I) {
AttributeItem Item = AttrsVec[I];
switch (Item.Type) {
case AttributeItem::HiddenAttribute:
break;
case AttributeItem::NumericAttribute:
Result += getULEB128Size(Item.Tag);
Result += getULEB128Size(Item.IntValue);
break;
case AttributeItem::TextAttribute:
Result += getULEB128Size(Item.Tag);
Result += Item.StringValue.size() + 1; // string + '\0'
break;
case AttributeItem::NumericAndTextAttributes:
Result += getULEB128Size(Item.Tag);
Result += getULEB128Size(Item.IntValue);
Result += Item.StringValue.size() + 1; // string + '\0';
break;
}
}
return Result;
}
void MCELFStreamer::createAttributesSection(
StringRef Vendor, const Twine &Section, unsigned Type,
MCSection *&AttributeSection, SmallVector<AttributeItem, 64> &AttrsVec) {
// <format-version>
// [ <section-length> "vendor-name"
// [ <file-tag> <size> <attribute>*
// | <section-tag> <size> <section-number>* 0 <attribute>*
// | <symbol-tag> <size> <symbol-number>* 0 <attribute>*
// ]+
// ]*
// Switch section to AttributeSection or get/create the section.
if (AttributeSection) {
SwitchSection(AttributeSection);
} else {
AttributeSection = getContext().getELFSection(Section, Type, 0);
SwitchSection(AttributeSection);
// Format version
emitInt8(0x41);
}
// Vendor size + Vendor name + '\0'
const size_t VendorHeaderSize = 4 + Vendor.size() + 1;
// Tag + Tag Size
const size_t TagHeaderSize = 1 + 4;
const size_t ContentsSize = calculateContentSize(AttrsVec);
emitInt32(VendorHeaderSize + TagHeaderSize + ContentsSize);
emitBytes(Vendor);
emitInt8(0); // '\0'
emitInt8(ARMBuildAttrs::File);
emitInt32(TagHeaderSize + ContentsSize);
// Size should have been accounted for already, now
// emit each field as its type (ULEB or String)
for (size_t I = 0; I < AttrsVec.size(); ++I) {
AttributeItem Item = AttrsVec[I];
emitULEB128IntValue(Item.Tag);
switch (Item.Type) {
default:
llvm_unreachable("Invalid attribute type");
case AttributeItem::NumericAttribute:
emitULEB128IntValue(Item.IntValue);
break;
case AttributeItem::TextAttribute:
emitBytes(Item.StringValue);
emitInt8(0); // '\0'
break;
case AttributeItem::NumericAndTextAttributes:
emitULEB128IntValue(Item.IntValue);
emitBytes(Item.StringValue);
emitInt8(0); // '\0'
break;
}
}
AttrsVec.clear();
}
MCStreamer *llvm::createELFStreamer(MCContext &Context,
std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&CE,
bool RelaxAll) {
MCELFStreamer *S =
new MCELFStreamer(Context, std::move(MAB), std::move(OW), std::move(CE));
if (RelaxAll)
S->getAssembler().setRelaxAll(true);
return S;
}