forked from OSchip/llvm-project
1227 lines
48 KiB
TableGen
1227 lines
48 KiB
TableGen
//===-- RISCVInstrInfo.td - Target Description for RISCV ---*- tablegen -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file describes the RISC-V instructions in TableGen format.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RISC-V specific DAG Nodes.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Target-independent type requirements, but with target-specific formats.
|
|
def SDT_CallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
|
|
SDTCisVT<1, i32>]>;
|
|
def SDT_CallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>,
|
|
SDTCisVT<1, i32>]>;
|
|
|
|
// Target-dependent type requirements.
|
|
def SDT_RISCVCall : SDTypeProfile<0, -1, [SDTCisVT<0, XLenVT>]>;
|
|
def SDT_RISCVSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
|
|
SDTCisSameAs<0, 4>,
|
|
SDTCisSameAs<4, 5>]>;
|
|
def SDT_RISCVReadCycleWide : SDTypeProfile<2, 0, [SDTCisVT<0, i32>,
|
|
SDTCisVT<1, i32>]>;
|
|
|
|
// Target-independent nodes, but with target-specific formats.
|
|
def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_CallSeqStart,
|
|
[SDNPHasChain, SDNPOutGlue]>;
|
|
def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_CallSeqEnd,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
|
|
|
|
// Target-dependent nodes.
|
|
def riscv_call : SDNode<"RISCVISD::CALL", SDT_RISCVCall,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
SDNPVariadic]>;
|
|
def riscv_ret_flag : SDNode<"RISCVISD::RET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
|
|
def riscv_uret_flag : SDNode<"RISCVISD::URET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue]>;
|
|
def riscv_sret_flag : SDNode<"RISCVISD::SRET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue]>;
|
|
def riscv_mret_flag : SDNode<"RISCVISD::MRET_FLAG", SDTNone,
|
|
[SDNPHasChain, SDNPOptInGlue]>;
|
|
def riscv_selectcc : SDNode<"RISCVISD::SELECT_CC", SDT_RISCVSelectCC>;
|
|
def riscv_tail : SDNode<"RISCVISD::TAIL", SDT_RISCVCall,
|
|
[SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
|
|
SDNPVariadic]>;
|
|
def riscv_sllw : SDNode<"RISCVISD::SLLW", SDTIntShiftOp>;
|
|
def riscv_sraw : SDNode<"RISCVISD::SRAW", SDTIntShiftOp>;
|
|
def riscv_srlw : SDNode<"RISCVISD::SRLW", SDTIntShiftOp>;
|
|
|
|
def riscv_read_cycle_wide : SDNode<"RISCVISD::READ_CYCLE_WIDE",
|
|
SDT_RISCVReadCycleWide,
|
|
[SDNPHasChain, SDNPSideEffect]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Operand and SDNode transformation definitions.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
class ImmXLenAsmOperand<string prefix, string suffix = ""> : AsmOperandClass {
|
|
let Name = prefix # "ImmXLen" # suffix;
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = !strconcat("Invalid", Name);
|
|
}
|
|
|
|
class ImmAsmOperand<string prefix, int width, string suffix> : AsmOperandClass {
|
|
let Name = prefix # "Imm" # width # suffix;
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = !strconcat("Invalid", Name);
|
|
}
|
|
|
|
def ImmZeroAsmOperand : AsmOperandClass {
|
|
let Name = "ImmZero";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = !strconcat("Invalid", Name);
|
|
}
|
|
|
|
class SImmAsmOperand<int width, string suffix = "">
|
|
: ImmAsmOperand<"S", width, suffix> {
|
|
}
|
|
|
|
class UImmAsmOperand<int width, string suffix = "">
|
|
: ImmAsmOperand<"U", width, suffix> {
|
|
}
|
|
|
|
def FenceArg : AsmOperandClass {
|
|
let Name = "FenceArg";
|
|
let RenderMethod = "addFenceArgOperands";
|
|
let DiagnosticType = "InvalidFenceArg";
|
|
}
|
|
|
|
def fencearg : Operand<XLenVT> {
|
|
let ParserMatchClass = FenceArg;
|
|
let PrintMethod = "printFenceArg";
|
|
let DecoderMethod = "decodeUImmOperand<4>";
|
|
let OperandType = "OPERAND_UIMM4";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
def UImmLog2XLenAsmOperand : AsmOperandClass {
|
|
let Name = "UImmLog2XLen";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = "InvalidUImmLog2XLen";
|
|
}
|
|
|
|
def uimmlog2xlen : Operand<XLenVT>, ImmLeaf<XLenVT, [{
|
|
if (Subtarget->is64Bit())
|
|
return isUInt<6>(Imm);
|
|
return isUInt<5>(Imm);
|
|
}]> {
|
|
let ParserMatchClass = UImmLog2XLenAsmOperand;
|
|
// TODO: should ensure invalid shamt is rejected when decoding.
|
|
let DecoderMethod = "decodeUImmOperand<6>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (!MCOp.evaluateAsConstantImm(Imm))
|
|
return false;
|
|
if (STI.getTargetTriple().isArch64Bit())
|
|
return isUInt<6>(Imm);
|
|
return isUInt<5>(Imm);
|
|
}];
|
|
let OperandType = "OPERAND_UIMMLOG2XLEN";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
def uimm5 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isUInt<5>(Imm);}]> {
|
|
let ParserMatchClass = UImmAsmOperand<5>;
|
|
let DecoderMethod = "decodeUImmOperand<5>";
|
|
let OperandType = "OPERAND_UIMM5";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
def simm12 : Operand<XLenVT>, ImmLeaf<XLenVT, [{return isInt<12>(Imm);}]> {
|
|
let ParserMatchClass = SImmAsmOperand<12>;
|
|
let EncoderMethod = "getImmOpValue";
|
|
let DecoderMethod = "decodeSImmOperand<12>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (MCOp.evaluateAsConstantImm(Imm))
|
|
return isInt<12>(Imm);
|
|
return MCOp.isBareSymbolRef();
|
|
}];
|
|
let OperandType = "OPERAND_SIMM12";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
// A 12-bit signed immediate plus one where the imm range will be -2047~2048.
|
|
def simm12_plus1 : Operand<XLenVT>, ImmLeaf<XLenVT,
|
|
[{return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;}]> {
|
|
let ParserMatchClass = SImmAsmOperand<12>;
|
|
let EncoderMethod = "getImmOpValue";
|
|
let DecoderMethod = "decodeSImmOperand<12>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (MCOp.evaluateAsConstantImm(Imm))
|
|
return (isInt<12>(Imm) && Imm != -2048) || Imm == 2048;
|
|
return MCOp.isBareSymbolRef();
|
|
}];
|
|
}
|
|
|
|
// A 13-bit signed immediate where the least significant bit is zero.
|
|
def simm13_lsb0 : Operand<OtherVT> {
|
|
let ParserMatchClass = SImmAsmOperand<13, "Lsb0">;
|
|
let PrintMethod = "printBranchOperand";
|
|
let EncoderMethod = "getImmOpValueAsr1";
|
|
let DecoderMethod = "decodeSImmOperandAndLsl1<13>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (MCOp.evaluateAsConstantImm(Imm))
|
|
return isShiftedInt<12, 1>(Imm);
|
|
return MCOp.isBareSymbolRef();
|
|
}];
|
|
let OperandType = "OPERAND_PCREL";
|
|
}
|
|
|
|
class UImm20Operand : Operand<XLenVT> {
|
|
let EncoderMethod = "getImmOpValue";
|
|
let DecoderMethod = "decodeUImmOperand<20>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (MCOp.evaluateAsConstantImm(Imm))
|
|
return isUInt<20>(Imm);
|
|
return MCOp.isBareSymbolRef();
|
|
}];
|
|
let OperandType = "OPERAND_UIMM20";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
def uimm20_lui : UImm20Operand {
|
|
let ParserMatchClass = UImmAsmOperand<20, "LUI">;
|
|
}
|
|
def uimm20_auipc : UImm20Operand {
|
|
let ParserMatchClass = UImmAsmOperand<20, "AUIPC">;
|
|
}
|
|
|
|
def Simm21Lsb0JALAsmOperand : SImmAsmOperand<21, "Lsb0JAL"> {
|
|
let ParserMethod = "parseJALOffset";
|
|
}
|
|
|
|
// A 21-bit signed immediate where the least significant bit is zero.
|
|
def simm21_lsb0_jal : Operand<OtherVT> {
|
|
let ParserMatchClass = Simm21Lsb0JALAsmOperand;
|
|
let PrintMethod = "printBranchOperand";
|
|
let EncoderMethod = "getImmOpValueAsr1";
|
|
let DecoderMethod = "decodeSImmOperandAndLsl1<21>";
|
|
let MCOperandPredicate = [{
|
|
int64_t Imm;
|
|
if (MCOp.evaluateAsConstantImm(Imm))
|
|
return isShiftedInt<20, 1>(Imm);
|
|
return MCOp.isBareSymbolRef();
|
|
}];
|
|
let OperandType = "OPERAND_PCREL";
|
|
}
|
|
|
|
def BareSymbol : AsmOperandClass {
|
|
let Name = "BareSymbol";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = "InvalidBareSymbol";
|
|
let ParserMethod = "parseBareSymbol";
|
|
}
|
|
|
|
// A bare symbol.
|
|
def bare_symbol : Operand<XLenVT> {
|
|
let ParserMatchClass = BareSymbol;
|
|
}
|
|
|
|
def CallSymbol : AsmOperandClass {
|
|
let Name = "CallSymbol";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = "InvalidCallSymbol";
|
|
let ParserMethod = "parseCallSymbol";
|
|
}
|
|
|
|
// A bare symbol used in call/tail only.
|
|
def call_symbol : Operand<XLenVT> {
|
|
let ParserMatchClass = CallSymbol;
|
|
}
|
|
|
|
def PseudoJumpSymbol : AsmOperandClass {
|
|
let Name = "PseudoJumpSymbol";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = "InvalidPseudoJumpSymbol";
|
|
let ParserMethod = "parsePseudoJumpSymbol";
|
|
}
|
|
|
|
// A bare symbol used for pseudo jumps only.
|
|
def pseudo_jump_symbol : Operand<XLenVT> {
|
|
let ParserMatchClass = PseudoJumpSymbol;
|
|
}
|
|
|
|
def TPRelAddSymbol : AsmOperandClass {
|
|
let Name = "TPRelAddSymbol";
|
|
let RenderMethod = "addImmOperands";
|
|
let DiagnosticType = "InvalidTPRelAddSymbol";
|
|
let ParserMethod = "parseOperandWithModifier";
|
|
}
|
|
|
|
// A bare symbol with the %tprel_add variant.
|
|
def tprel_add_symbol : Operand<XLenVT> {
|
|
let ParserMatchClass = TPRelAddSymbol;
|
|
}
|
|
|
|
def CSRSystemRegister : AsmOperandClass {
|
|
let Name = "CSRSystemRegister";
|
|
let ParserMethod = "parseCSRSystemRegister";
|
|
let DiagnosticType = "InvalidCSRSystemRegister";
|
|
}
|
|
|
|
def csr_sysreg : Operand<XLenVT> {
|
|
let ParserMatchClass = CSRSystemRegister;
|
|
let PrintMethod = "printCSRSystemRegister";
|
|
let DecoderMethod = "decodeUImmOperand<12>";
|
|
let OperandType = "OPERAND_UIMM12";
|
|
let OperandNamespace = "RISCVOp";
|
|
}
|
|
|
|
// A parameterized register class alternative to i32imm/i64imm from Target.td.
|
|
def ixlenimm : Operand<XLenVT>;
|
|
|
|
def ixlenimm_li : Operand<XLenVT> {
|
|
let ParserMatchClass = ImmXLenAsmOperand<"", "LI">;
|
|
}
|
|
|
|
// Standalone (codegen-only) immleaf patterns.
|
|
def simm32 : ImmLeaf<XLenVT, [{return isInt<32>(Imm);}]>;
|
|
def simm32hi20 : ImmLeaf<XLenVT, [{return isShiftedInt<20, 12>(Imm);}]>;
|
|
// A mask value that won't affect significant shift bits.
|
|
def immbottomxlenset : ImmLeaf<XLenVT, [{
|
|
if (Subtarget->is64Bit())
|
|
return countTrailingOnes<uint64_t>(Imm) >= 6;
|
|
return countTrailingOnes<uint64_t>(Imm) >= 5;
|
|
}]>;
|
|
|
|
// A 6-bit constant greater than 32.
|
|
def uimm6gt32 : ImmLeaf<XLenVT, [{
|
|
return isUInt<6>(Imm) && Imm > 32;
|
|
}]>;
|
|
|
|
// Addressing modes.
|
|
// Necessary because a frameindex can't be matched directly in a pattern.
|
|
def AddrFI : ComplexPattern<iPTR, 1, "SelectAddrFI", [frameindex], []>;
|
|
|
|
// Extract least significant 12 bits from an immediate value and sign extend
|
|
// them.
|
|
def LO12Sext : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(SignExtend64<12>(N->getZExtValue()),
|
|
SDLoc(N), N->getValueType(0));
|
|
}]>;
|
|
|
|
// Extract the most significant 20 bits from an immediate value. Add 1 if bit
|
|
// 11 is 1, to compensate for the low 12 bits in the matching immediate addi
|
|
// or ld/st being negative.
|
|
def HI20 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(((N->getZExtValue()+0x800) >> 12) & 0xfffff,
|
|
SDLoc(N), N->getValueType(0));
|
|
}]>;
|
|
|
|
// Return the negation of an immediate value.
|
|
def NegImm : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(-N->getSExtValue(), SDLoc(N),
|
|
N->getValueType(0));
|
|
}]>;
|
|
|
|
// Return an immediate value minus 32.
|
|
def ImmSub32 : SDNodeXForm<imm, [{
|
|
return CurDAG->getTargetConstant(N->getSExtValue() - 32, SDLoc(N),
|
|
N->getValueType(0));
|
|
}]>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Formats
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "RISCVInstrFormats.td"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Class Templates
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class BranchCC_rri<bits<3> funct3, string opcodestr>
|
|
: RVInstB<funct3, OPC_BRANCH, (outs),
|
|
(ins GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12),
|
|
opcodestr, "$rs1, $rs2, $imm12">,
|
|
Sched<[WriteJmp, ReadJmp, ReadJmp]> {
|
|
let isBranch = 1;
|
|
let isTerminator = 1;
|
|
}
|
|
|
|
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
|
|
class Load_ri<bits<3> funct3, string opcodestr>
|
|
: RVInstI<funct3, OPC_LOAD, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
|
|
opcodestr, "$rd, ${imm12}(${rs1})">;
|
|
|
|
// Operands for stores are in the order srcreg, base, offset rather than
|
|
// reflecting the order these fields are specified in the instruction
|
|
// encoding.
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
|
|
class Store_rri<bits<3> funct3, string opcodestr>
|
|
: RVInstS<funct3, OPC_STORE, (outs),
|
|
(ins GPR:$rs2, GPR:$rs1, simm12:$imm12),
|
|
opcodestr, "$rs2, ${imm12}(${rs1})">;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class ALU_ri<bits<3> funct3, string opcodestr>
|
|
: RVInstI<funct3, OPC_OP_IMM, (outs GPR:$rd), (ins GPR:$rs1, simm12:$imm12),
|
|
opcodestr, "$rd, $rs1, $imm12">,
|
|
Sched<[WriteIALU, ReadIALU]>;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class Shift_ri<bit arithshift, bits<3> funct3, string opcodestr>
|
|
: RVInstIShift<arithshift, funct3, OPC_OP_IMM, (outs GPR:$rd),
|
|
(ins GPR:$rs1, uimmlog2xlen:$shamt), opcodestr,
|
|
"$rd, $rs1, $shamt">,
|
|
Sched<[WriteShift, ReadShift]>;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class ALU_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
|
|
: RVInstR<funct7, funct3, OPC_OP, (outs GPR:$rd), (ins GPR:$rs1, GPR:$rs2),
|
|
opcodestr, "$rd, $rs1, $rs2">;
|
|
|
|
let hasNoSchedulingInfo = 1,
|
|
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
|
|
class CSR_ir<bits<3> funct3, string opcodestr>
|
|
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd), (ins csr_sysreg:$imm12, GPR:$rs1),
|
|
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR, ReadCSR]>;
|
|
|
|
let hasNoSchedulingInfo = 1,
|
|
hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
|
|
class CSR_ii<bits<3> funct3, string opcodestr>
|
|
: RVInstI<funct3, OPC_SYSTEM, (outs GPR:$rd),
|
|
(ins csr_sysreg:$imm12, uimm5:$rs1),
|
|
opcodestr, "$rd, $imm12, $rs1">, Sched<[WriteCSR]>;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class ShiftW_ri<bit arithshift, bits<3> funct3, string opcodestr>
|
|
: RVInstIShiftW<arithshift, funct3, OPC_OP_IMM_32, (outs GPR:$rd),
|
|
(ins GPR:$rs1, uimm5:$shamt), opcodestr,
|
|
"$rd, $rs1, $shamt">,
|
|
Sched<[WriteShift32, ReadShift32]>;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
class ALUW_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
|
|
: RVInstR<funct7, funct3, OPC_OP_32, (outs GPR:$rd),
|
|
(ins GPR:$rs1, GPR:$rs2), opcodestr, "$rd, $rs1, $rs2">;
|
|
|
|
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
|
|
class Priv<string opcodestr, bits<7> funct7>
|
|
: RVInstR<funct7, 0b000, OPC_SYSTEM, (outs), (ins GPR:$rs1, GPR:$rs2),
|
|
opcodestr, "">;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in {
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
def LUI : RVInstU<OPC_LUI, (outs GPR:$rd), (ins uimm20_lui:$imm20),
|
|
"lui", "$rd, $imm20">, Sched<[WriteIALU]>;
|
|
|
|
def AUIPC : RVInstU<OPC_AUIPC, (outs GPR:$rd), (ins uimm20_auipc:$imm20),
|
|
"auipc", "$rd, $imm20">, Sched<[WriteIALU]>;
|
|
|
|
let isCall = 1 in
|
|
def JAL : RVInstJ<OPC_JAL, (outs GPR:$rd), (ins simm21_lsb0_jal:$imm20),
|
|
"jal", "$rd, $imm20">, Sched<[WriteJal]>;
|
|
|
|
let isCall = 1 in
|
|
def JALR : RVInstI<0b000, OPC_JALR, (outs GPR:$rd),
|
|
(ins GPR:$rs1, simm12:$imm12),
|
|
"jalr", "$rd, ${imm12}(${rs1})">,
|
|
Sched<[WriteJalr, ReadJalr]>;
|
|
} // hasSideEffects = 0, mayLoad = 0, mayStore = 0
|
|
|
|
def BEQ : BranchCC_rri<0b000, "beq">;
|
|
def BNE : BranchCC_rri<0b001, "bne">;
|
|
def BLT : BranchCC_rri<0b100, "blt">;
|
|
def BGE : BranchCC_rri<0b101, "bge">;
|
|
def BLTU : BranchCC_rri<0b110, "bltu">;
|
|
def BGEU : BranchCC_rri<0b111, "bgeu">;
|
|
|
|
def LB : Load_ri<0b000, "lb">, Sched<[WriteLDB, ReadMemBase]>;
|
|
def LH : Load_ri<0b001, "lh">, Sched<[WriteLDH, ReadMemBase]>;
|
|
def LW : Load_ri<0b010, "lw">, Sched<[WriteLDW, ReadMemBase]>;
|
|
def LBU : Load_ri<0b100, "lbu">, Sched<[WriteLDB, ReadMemBase]>;
|
|
def LHU : Load_ri<0b101, "lhu">, Sched<[WriteLDH, ReadMemBase]>;
|
|
|
|
def SB : Store_rri<0b000, "sb">, Sched<[WriteSTB, ReadStoreData, ReadMemBase]>;
|
|
def SH : Store_rri<0b001, "sh">, Sched<[WriteSTH, ReadStoreData, ReadMemBase]>;
|
|
def SW : Store_rri<0b010, "sw">, Sched<[WriteSTW, ReadStoreData, ReadMemBase]>;
|
|
|
|
// ADDI isn't always rematerializable, but isReMaterializable will be used as
|
|
// a hint which is verified in isReallyTriviallyReMaterializable.
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
|
|
def ADDI : ALU_ri<0b000, "addi">;
|
|
|
|
def SLTI : ALU_ri<0b010, "slti">;
|
|
def SLTIU : ALU_ri<0b011, "sltiu">;
|
|
|
|
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
|
|
def XORI : ALU_ri<0b100, "xori">;
|
|
def ORI : ALU_ri<0b110, "ori">;
|
|
}
|
|
|
|
def ANDI : ALU_ri<0b111, "andi">;
|
|
|
|
def SLLI : Shift_ri<0, 0b001, "slli">;
|
|
def SRLI : Shift_ri<0, 0b101, "srli">;
|
|
def SRAI : Shift_ri<1, 0b101, "srai">;
|
|
|
|
def ADD : ALU_rr<0b0000000, 0b000, "add">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SUB : ALU_rr<0b0100000, 0b000, "sub">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SLL : ALU_rr<0b0000000, 0b001, "sll">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SLT : ALU_rr<0b0000000, 0b010, "slt">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SLTU : ALU_rr<0b0000000, 0b011, "sltu">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def XOR : ALU_rr<0b0000000, 0b100, "xor">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SRL : ALU_rr<0b0000000, 0b101, "srl">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def SRA : ALU_rr<0b0100000, 0b101, "sra">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def OR : ALU_rr<0b0000000, 0b110, "or">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
def AND : ALU_rr<0b0000000, 0b111, "and">, Sched<[WriteIALU, ReadIALU, ReadIALU]>;
|
|
|
|
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in {
|
|
def FENCE : RVInstI<0b000, OPC_MISC_MEM, (outs),
|
|
(ins fencearg:$pred, fencearg:$succ),
|
|
"fence", "$pred, $succ">, Sched<[]> {
|
|
bits<4> pred;
|
|
bits<4> succ;
|
|
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = {0b0000,pred,succ};
|
|
}
|
|
|
|
def FENCE_TSO : RVInstI<0b000, OPC_MISC_MEM, (outs), (ins), "fence.tso", "">, Sched<[]> {
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = {0b1000,0b0011,0b0011};
|
|
}
|
|
|
|
def FENCE_I : RVInstI<0b001, OPC_MISC_MEM, (outs), (ins), "fence.i", "">, Sched<[]> {
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = 0;
|
|
}
|
|
|
|
def ECALL : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ecall", "">, Sched<[WriteJmp]> {
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = 0;
|
|
}
|
|
|
|
def EBREAK : RVInstI<0b000, OPC_SYSTEM, (outs), (ins), "ebreak", "">,
|
|
Sched<[]> {
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = 1;
|
|
}
|
|
|
|
// This is a de facto standard (as set by GNU binutils) 32-bit unimplemented
|
|
// instruction (i.e., it should always trap, if your implementation has invalid
|
|
// instruction traps).
|
|
def UNIMP : RVInstI<0b001, OPC_SYSTEM, (outs), (ins), "unimp", "">,
|
|
Sched<[]> {
|
|
let rs1 = 0;
|
|
let rd = 0;
|
|
let imm12 = 0b110000000000;
|
|
}
|
|
} // hasSideEffects = 1, mayLoad = 0, mayStore = 0
|
|
|
|
def CSRRW : CSR_ir<0b001, "csrrw">;
|
|
def CSRRS : CSR_ir<0b010, "csrrs">;
|
|
def CSRRC : CSR_ir<0b011, "csrrc">;
|
|
|
|
def CSRRWI : CSR_ii<0b101, "csrrwi">;
|
|
def CSRRSI : CSR_ii<0b110, "csrrsi">;
|
|
def CSRRCI : CSR_ii<0b111, "csrrci">;
|
|
|
|
/// RV64I instructions
|
|
|
|
let Predicates = [IsRV64] in {
|
|
def LWU : Load_ri<0b110, "lwu">, Sched<[WriteLDWU, ReadMemBase]>;
|
|
def LD : Load_ri<0b011, "ld">, Sched<[WriteLDD, ReadMemBase]>;
|
|
def SD : Store_rri<0b011, "sd">, Sched<[WriteSTD, ReadStoreData, ReadMemBase]>;
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
|
|
def ADDIW : RVInstI<0b000, OPC_OP_IMM_32, (outs GPR:$rd),
|
|
(ins GPR:$rs1, simm12:$imm12),
|
|
"addiw", "$rd, $rs1, $imm12">,
|
|
Sched<[WriteIALU32, ReadIALU32]>;
|
|
|
|
def SLLIW : ShiftW_ri<0, 0b001, "slliw">;
|
|
def SRLIW : ShiftW_ri<0, 0b101, "srliw">;
|
|
def SRAIW : ShiftW_ri<1, 0b101, "sraiw">;
|
|
|
|
def ADDW : ALUW_rr<0b0000000, 0b000, "addw">,
|
|
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
|
|
def SUBW : ALUW_rr<0b0100000, 0b000, "subw">,
|
|
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
|
|
def SLLW : ALUW_rr<0b0000000, 0b001, "sllw">,
|
|
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
|
|
def SRLW : ALUW_rr<0b0000000, 0b101, "srlw">,
|
|
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
|
|
def SRAW : ALUW_rr<0b0100000, 0b101, "sraw">,
|
|
Sched<[WriteIALU32, ReadIALU32, ReadIALU32]>;
|
|
} // Predicates = [IsRV64]
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Privileged instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
|
|
def URET : Priv<"uret", 0b0000000>, Sched<[]> {
|
|
let rd = 0;
|
|
let rs1 = 0;
|
|
let rs2 = 0b00010;
|
|
}
|
|
|
|
def SRET : Priv<"sret", 0b0001000>, Sched<[]> {
|
|
let rd = 0;
|
|
let rs1 = 0;
|
|
let rs2 = 0b00010;
|
|
}
|
|
|
|
def MRET : Priv<"mret", 0b0011000>, Sched<[]> {
|
|
let rd = 0;
|
|
let rs1 = 0;
|
|
let rs2 = 0b00010;
|
|
}
|
|
} // isBarrier = 1, isReturn = 1, isTerminator = 1
|
|
|
|
def WFI : Priv<"wfi", 0b0001000>, Sched<[]> {
|
|
let rd = 0;
|
|
let rs1 = 0;
|
|
let rs2 = 0b00101;
|
|
}
|
|
|
|
let hasSideEffects = 1, mayLoad = 0, mayStore = 0 in
|
|
def SFENCE_VMA : RVInstR<0b0001001, 0b000, OPC_SYSTEM, (outs),
|
|
(ins GPR:$rs1, GPR:$rs2),
|
|
"sfence.vma", "$rs1, $rs2">, Sched<[]> {
|
|
let rd = 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Debug instructions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
let isBarrier = 1, isReturn = 1, isTerminator = 1 in {
|
|
def DRET : Priv<"dret", 0b0111101>, Sched<[]> {
|
|
let rd = 0;
|
|
let rs1 = 0;
|
|
let rs2 = 0b10010;
|
|
}
|
|
} // isBarrier = 1, isReturn = 1, isTerminator = 1
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
def : InstAlias<"nop", (ADDI X0, X0, 0)>;
|
|
|
|
// Note that the size is 32 because up to 8 32-bit instructions are needed to
|
|
// generate an arbitrary 64-bit immediate. However, the size does not really
|
|
// matter since PseudoLI is currently only used in the AsmParser where it gets
|
|
// expanded to real instructions immediately.
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Size = 32,
|
|
isCodeGenOnly = 0, isAsmParserOnly = 1 in
|
|
def PseudoLI : Pseudo<(outs GPR:$rd), (ins ixlenimm_li:$imm), [],
|
|
"li", "$rd, $imm">;
|
|
|
|
def PseudoLB : PseudoLoad<"lb">;
|
|
def PseudoLBU : PseudoLoad<"lbu">;
|
|
def PseudoLH : PseudoLoad<"lh">;
|
|
def PseudoLHU : PseudoLoad<"lhu">;
|
|
def PseudoLW : PseudoLoad<"lw">;
|
|
|
|
def PseudoSB : PseudoStore<"sb">;
|
|
def PseudoSH : PseudoStore<"sh">;
|
|
def PseudoSW : PseudoStore<"sw">;
|
|
|
|
let Predicates = [IsRV64] in {
|
|
def PseudoLWU : PseudoLoad<"lwu">;
|
|
def PseudoLD : PseudoLoad<"ld">;
|
|
def PseudoSD : PseudoStore<"sd">;
|
|
} // Predicates = [IsRV64]
|
|
|
|
def : InstAlias<"mv $rd, $rs", (ADDI GPR:$rd, GPR:$rs, 0)>;
|
|
def : InstAlias<"not $rd, $rs", (XORI GPR:$rd, GPR:$rs, -1)>;
|
|
def : InstAlias<"neg $rd, $rs", (SUB GPR:$rd, X0, GPR:$rs)>;
|
|
|
|
let Predicates = [IsRV64] in {
|
|
def : InstAlias<"negw $rd, $rs", (SUBW GPR:$rd, X0, GPR:$rs)>;
|
|
def : InstAlias<"sext.w $rd, $rs", (ADDIW GPR:$rd, GPR:$rs, 0)>;
|
|
} // Predicates = [IsRV64]
|
|
|
|
def : InstAlias<"seqz $rd, $rs", (SLTIU GPR:$rd, GPR:$rs, 1)>;
|
|
def : InstAlias<"snez $rd, $rs", (SLTU GPR:$rd, X0, GPR:$rs)>;
|
|
def : InstAlias<"sltz $rd, $rs", (SLT GPR:$rd, GPR:$rs, X0)>;
|
|
def : InstAlias<"sgtz $rd, $rs", (SLT GPR:$rd, X0, GPR:$rs)>;
|
|
|
|
// sgt/sgtu are recognised by the GNU assembler but the canonical slt/sltu
|
|
// form will always be printed. Therefore, set a zero weight.
|
|
def : InstAlias<"sgt $rd, $rs, $rt", (SLT GPR:$rd, GPR:$rt, GPR:$rs), 0>;
|
|
def : InstAlias<"sgtu $rd, $rs, $rt", (SLTU GPR:$rd, GPR:$rt, GPR:$rs), 0>;
|
|
|
|
def : InstAlias<"beqz $rs, $offset",
|
|
(BEQ GPR:$rs, X0, simm13_lsb0:$offset)>;
|
|
def : InstAlias<"bnez $rs, $offset",
|
|
(BNE GPR:$rs, X0, simm13_lsb0:$offset)>;
|
|
def : InstAlias<"blez $rs, $offset",
|
|
(BGE X0, GPR:$rs, simm13_lsb0:$offset)>;
|
|
def : InstAlias<"bgez $rs, $offset",
|
|
(BGE GPR:$rs, X0, simm13_lsb0:$offset)>;
|
|
def : InstAlias<"bltz $rs, $offset",
|
|
(BLT GPR:$rs, X0, simm13_lsb0:$offset)>;
|
|
def : InstAlias<"bgtz $rs, $offset",
|
|
(BLT X0, GPR:$rs, simm13_lsb0:$offset)>;
|
|
|
|
// Always output the canonical mnemonic for the pseudo branch instructions.
|
|
// The GNU tools emit the canonical mnemonic for the branch pseudo instructions
|
|
// as well (e.g. "bgt" will be recognised by the assembler but never printed by
|
|
// objdump). Match this behaviour by setting a zero weight.
|
|
def : InstAlias<"bgt $rs, $rt, $offset",
|
|
(BLT GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
|
|
def : InstAlias<"ble $rs, $rt, $offset",
|
|
(BGE GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
|
|
def : InstAlias<"bgtu $rs, $rt, $offset",
|
|
(BLTU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
|
|
def : InstAlias<"bleu $rs, $rt, $offset",
|
|
(BGEU GPR:$rt, GPR:$rs, simm13_lsb0:$offset), 0>;
|
|
|
|
def : InstAlias<"j $offset", (JAL X0, simm21_lsb0_jal:$offset)>;
|
|
def : InstAlias<"jal $offset", (JAL X1, simm21_lsb0_jal:$offset)>;
|
|
|
|
// Non-zero offset aliases of "jalr" are the lowest weight, followed by the
|
|
// two-register form, then the one-register forms and finally "ret".
|
|
def : InstAlias<"jr $rs", (JALR X0, GPR:$rs, 0), 3>;
|
|
def : InstAlias<"jr ${offset}(${rs})", (JALR X0, GPR:$rs, simm12:$offset)>;
|
|
def : InstAlias<"jalr $rs", (JALR X1, GPR:$rs, 0), 3>;
|
|
def : InstAlias<"jalr ${offset}(${rs})", (JALR X1, GPR:$rs, simm12:$offset)>;
|
|
def : InstAlias<"jalr $rd, $rs", (JALR GPR:$rd, GPR:$rs, 0), 2>;
|
|
def : InstAlias<"ret", (JALR X0, X1, 0), 4>;
|
|
|
|
// Non-canonical forms for jump targets also accepted by the assembler.
|
|
def : InstAlias<"jr $rs, $offset", (JALR X0, GPR:$rs, simm12:$offset), 0>;
|
|
def : InstAlias<"jalr $rs, $offset", (JALR X1, GPR:$rs, simm12:$offset), 0>;
|
|
def : InstAlias<"jalr $rd, $rs, $offset", (JALR GPR:$rd, GPR:$rs, simm12:$offset), 0>;
|
|
|
|
def : InstAlias<"fence", (FENCE 0xF, 0xF)>; // 0xF == iorw
|
|
|
|
def : InstAlias<"rdinstret $rd", (CSRRS GPR:$rd, INSTRET.Encoding, X0)>;
|
|
def : InstAlias<"rdcycle $rd", (CSRRS GPR:$rd, CYCLE.Encoding, X0)>;
|
|
def : InstAlias<"rdtime $rd", (CSRRS GPR:$rd, TIME.Encoding, X0)>;
|
|
|
|
let Predicates = [IsRV32] in {
|
|
def : InstAlias<"rdinstreth $rd", (CSRRS GPR:$rd, INSTRETH.Encoding, X0)>;
|
|
def : InstAlias<"rdcycleh $rd", (CSRRS GPR:$rd, CYCLEH.Encoding, X0)>;
|
|
def : InstAlias<"rdtimeh $rd", (CSRRS GPR:$rd, TIMEH.Encoding, X0)>;
|
|
} // Predicates = [IsRV32]
|
|
|
|
def : InstAlias<"csrr $rd, $csr", (CSRRS GPR:$rd, csr_sysreg:$csr, X0)>;
|
|
def : InstAlias<"csrw $csr, $rs", (CSRRW X0, csr_sysreg:$csr, GPR:$rs)>;
|
|
def : InstAlias<"csrs $csr, $rs", (CSRRS X0, csr_sysreg:$csr, GPR:$rs)>;
|
|
def : InstAlias<"csrc $csr, $rs", (CSRRC X0, csr_sysreg:$csr, GPR:$rs)>;
|
|
|
|
def : InstAlias<"csrwi $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrsi $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrci $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
|
|
let EmitPriority = 0 in {
|
|
def : InstAlias<"csrw $csr, $imm", (CSRRWI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrs $csr, $imm", (CSRRSI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrc $csr, $imm", (CSRRCI X0, csr_sysreg:$csr, uimm5:$imm)>;
|
|
|
|
def : InstAlias<"csrrw $rd, $csr, $imm", (CSRRWI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrrs $rd, $csr, $imm", (CSRRSI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
|
|
def : InstAlias<"csrrc $rd, $csr, $imm", (CSRRCI GPR:$rd, csr_sysreg:$csr, uimm5:$imm)>;
|
|
}
|
|
|
|
def : InstAlias<"sfence.vma", (SFENCE_VMA X0, X0)>;
|
|
def : InstAlias<"sfence.vma $rs", (SFENCE_VMA GPR:$rs, X0)>;
|
|
|
|
let EmitPriority = 0 in {
|
|
def : InstAlias<"lb $rd, (${rs1})",
|
|
(LB GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"lh $rd, (${rs1})",
|
|
(LH GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"lw $rd, (${rs1})",
|
|
(LW GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"lbu $rd, (${rs1})",
|
|
(LBU GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"lhu $rd, (${rs1})",
|
|
(LHU GPR:$rd, GPR:$rs1, 0)>;
|
|
|
|
def : InstAlias<"sb $rs2, (${rs1})",
|
|
(SB GPR:$rs2, GPR:$rs1, 0)>;
|
|
def : InstAlias<"sh $rs2, (${rs1})",
|
|
(SH GPR:$rs2, GPR:$rs1, 0)>;
|
|
def : InstAlias<"sw $rs2, (${rs1})",
|
|
(SW GPR:$rs2, GPR:$rs1, 0)>;
|
|
|
|
def : InstAlias<"add $rd, $rs1, $imm12",
|
|
(ADDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"and $rd, $rs1, $imm12",
|
|
(ANDI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"xor $rd, $rs1, $imm12",
|
|
(XORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"or $rd, $rs1, $imm12",
|
|
(ORI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"sll $rd, $rs1, $shamt",
|
|
(SLLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
|
|
def : InstAlias<"srl $rd, $rs1, $shamt",
|
|
(SRLI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
|
|
def : InstAlias<"sra $rd, $rs1, $shamt",
|
|
(SRAI GPR:$rd, GPR:$rs1, uimmlog2xlen:$shamt)>;
|
|
let Predicates = [IsRV64] in {
|
|
def : InstAlias<"lwu $rd, (${rs1})",
|
|
(LWU GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"ld $rd, (${rs1})",
|
|
(LD GPR:$rd, GPR:$rs1, 0)>;
|
|
def : InstAlias<"sd $rs2, (${rs1})",
|
|
(SD GPR:$rs2, GPR:$rs1, 0)>;
|
|
|
|
def : InstAlias<"addw $rd, $rs1, $imm12",
|
|
(ADDIW GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"sllw $rd, $rs1, $shamt",
|
|
(SLLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
|
|
def : InstAlias<"srlw $rd, $rs1, $shamt",
|
|
(SRLIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
|
|
def : InstAlias<"sraw $rd, $rs1, $shamt",
|
|
(SRAIW GPR:$rd, GPR:$rs1, uimm5:$shamt)>;
|
|
} // Predicates = [IsRV64]
|
|
def : InstAlias<"slt $rd, $rs1, $imm12",
|
|
(SLTI GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
def : InstAlias<"sltu $rd, $rs1, $imm12",
|
|
(SLTIU GPR:$rd, GPR:$rs1, simm12:$imm12)>;
|
|
}
|
|
|
|
def : MnemonicAlias<"move", "mv">;
|
|
|
|
// The SCALL and SBREAK instructions wererenamed to ECALL and EBREAK in
|
|
// version 2.1 of the user-level ISA. Like the GNU toolchain, we still accept
|
|
// the old name for backwards compatibility.
|
|
def : MnemonicAlias<"scall", "ecall">;
|
|
def : MnemonicAlias<"sbreak", "ebreak">;
|
|
|
|
def : InstAlias<"zext.b $rd, $rs", (ANDI GPR:$rd, GPR:$rs, 0xFF)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Pseudo-instructions and codegen patterns
|
|
//
|
|
// Naming convention: For 'generic' pattern classes, we use the naming
|
|
// convention PatTy1Ty2. For pattern classes which offer a more complex
|
|
// expansion, prefix the class name, e.g. BccPat.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Generic pattern classes
|
|
|
|
class PatGprGpr<SDPatternOperator OpNode, RVInst Inst>
|
|
: Pat<(OpNode GPR:$rs1, GPR:$rs2), (Inst GPR:$rs1, GPR:$rs2)>;
|
|
class PatGprSimm12<SDPatternOperator OpNode, RVInstI Inst>
|
|
: Pat<(OpNode GPR:$rs1, simm12:$imm12), (Inst GPR:$rs1, simm12:$imm12)>;
|
|
class PatGprUimmLog2XLen<SDPatternOperator OpNode, RVInstIShift Inst>
|
|
: Pat<(OpNode GPR:$rs1, uimmlog2xlen:$shamt),
|
|
(Inst GPR:$rs1, uimmlog2xlen:$shamt)>;
|
|
|
|
/// Predicates
|
|
|
|
def IsOrAdd: PatFrag<(ops node:$A, node:$B), (or node:$A, node:$B), [{
|
|
return isOrEquivalentToAdd(N);
|
|
}]>;
|
|
def assertsexti32 : PatFrag<(ops node:$src), (assertsext node:$src), [{
|
|
return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
|
|
}]>;
|
|
def sexti32 : PatFrags<(ops node:$src),
|
|
[(sext_inreg node:$src, i32),
|
|
(assertsexti32 node:$src)]>;
|
|
def assertzexti32 : PatFrag<(ops node:$src), (assertzext node:$src), [{
|
|
return cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32;
|
|
}]>;
|
|
def zexti32 : PatFrags<(ops node:$src),
|
|
[(and node:$src, 0xffffffff),
|
|
(assertzexti32 node:$src)]>;
|
|
|
|
/// Immediates
|
|
|
|
def : Pat<(simm12:$imm), (ADDI X0, simm12:$imm)>;
|
|
def : Pat<(simm32hi20:$imm), (LUI (HI20 imm:$imm))>;
|
|
def : Pat<(simm32:$imm), (ADDI (LUI (HI20 imm:$imm)), (LO12Sext imm:$imm))>,
|
|
Requires<[IsRV32]>;
|
|
|
|
/// Simple arithmetic operations
|
|
|
|
def : PatGprGpr<add, ADD>;
|
|
def : PatGprSimm12<add, ADDI>;
|
|
def : PatGprGpr<sub, SUB>;
|
|
def : PatGprGpr<or, OR>;
|
|
def : PatGprSimm12<or, ORI>;
|
|
def : PatGprGpr<and, AND>;
|
|
def : PatGprSimm12<and, ANDI>;
|
|
def : PatGprGpr<xor, XOR>;
|
|
def : PatGprSimm12<xor, XORI>;
|
|
def : PatGprUimmLog2XLen<shl, SLLI>;
|
|
def : PatGprUimmLog2XLen<srl, SRLI>;
|
|
def : PatGprUimmLog2XLen<sra, SRAI>;
|
|
|
|
// Match both a plain shift and one where the shift amount is masked (this is
|
|
// typically introduced when the legalizer promotes the shift amount and
|
|
// zero-extends it). For RISC-V, the mask is unnecessary as shifts in the base
|
|
// ISA only read the least significant 5 bits (RV32I) or 6 bits (RV64I).
|
|
class shiftop<SDPatternOperator operator>
|
|
: PatFrags<(ops node:$val, node:$count),
|
|
[(operator node:$val, node:$count),
|
|
(operator node:$val, (and node:$count, immbottomxlenset))]>;
|
|
|
|
def : PatGprGpr<shiftop<shl>, SLL>;
|
|
def : PatGprGpr<shiftop<srl>, SRL>;
|
|
def : PatGprGpr<shiftop<sra>, SRA>;
|
|
|
|
// This is a special case of the ADD instruction used to facilitate the use of a
|
|
// fourth operand to emit a relocation on a symbol relating to this instruction.
|
|
// The relocation does not affect any bits of the instruction itself but is used
|
|
// as a hint to the linker.
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0 in
|
|
def PseudoAddTPRel : Pseudo<(outs GPR:$rd),
|
|
(ins GPR:$rs1, GPR:$rs2, tprel_add_symbol:$src), [],
|
|
"add", "$rd, $rs1, $rs2, $src">;
|
|
|
|
/// FrameIndex calculations
|
|
|
|
def : Pat<(add (i32 AddrFI:$Rs), simm12:$imm12),
|
|
(ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
|
|
def : Pat<(IsOrAdd (i32 AddrFI:$Rs), simm12:$imm12),
|
|
(ADDI (i32 AddrFI:$Rs), simm12:$imm12)>;
|
|
|
|
/// Setcc
|
|
|
|
def : PatGprGpr<setlt, SLT>;
|
|
def : PatGprSimm12<setlt, SLTI>;
|
|
def : PatGprGpr<setult, SLTU>;
|
|
def : PatGprSimm12<setult, SLTIU>;
|
|
|
|
// Define pattern expansions for setcc operations that aren't directly
|
|
// handled by a RISC-V instruction.
|
|
def : Pat<(seteq GPR:$rs1, 0), (SLTIU GPR:$rs1, 1)>;
|
|
def : Pat<(seteq GPR:$rs1, GPR:$rs2), (SLTIU (XOR GPR:$rs1, GPR:$rs2), 1)>;
|
|
def : Pat<(seteq GPR:$rs1, simm12_plus1:$imm12),
|
|
(SLTIU (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)), 1)>;
|
|
def : Pat<(setne GPR:$rs1, 0), (SLTU X0, GPR:$rs1)>;
|
|
def : Pat<(setne GPR:$rs1, GPR:$rs2), (SLTU X0, (XOR GPR:$rs1, GPR:$rs2))>;
|
|
def : Pat<(setne GPR:$rs1, simm12_plus1:$imm12),
|
|
(SLTU X0, (ADDI GPR:$rs1, (NegImm simm12_plus1:$imm12)))>;
|
|
def : Pat<(setugt GPR:$rs1, GPR:$rs2), (SLTU GPR:$rs2, GPR:$rs1)>;
|
|
def : Pat<(setuge GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs1, GPR:$rs2), 1)>;
|
|
def : Pat<(setule GPR:$rs1, GPR:$rs2), (XORI (SLTU GPR:$rs2, GPR:$rs1), 1)>;
|
|
def : Pat<(setgt GPR:$rs1, GPR:$rs2), (SLT GPR:$rs2, GPR:$rs1)>;
|
|
def : Pat<(setge GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs1, GPR:$rs2), 1)>;
|
|
def : Pat<(setle GPR:$rs1, GPR:$rs2), (XORI (SLT GPR:$rs2, GPR:$rs1), 1)>;
|
|
|
|
let usesCustomInserter = 1 in
|
|
class SelectCC_rrirr<RegisterClass valty, RegisterClass cmpty>
|
|
: Pseudo<(outs valty:$dst),
|
|
(ins cmpty:$lhs, cmpty:$rhs, ixlenimm:$imm,
|
|
valty:$truev, valty:$falsev),
|
|
[(set valty:$dst, (riscv_selectcc cmpty:$lhs, cmpty:$rhs,
|
|
(XLenVT imm:$imm), valty:$truev, valty:$falsev))]>;
|
|
|
|
def Select_GPR_Using_CC_GPR : SelectCC_rrirr<GPR, GPR>;
|
|
|
|
/// Branches and jumps
|
|
|
|
// Match `(brcond (CondOp ..), ..)` and lower to the appropriate RISC-V branch
|
|
// instruction.
|
|
class BccPat<PatFrag CondOp, RVInstB Inst>
|
|
: Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
|
|
(Inst GPR:$rs1, GPR:$rs2, simm13_lsb0:$imm12)>;
|
|
|
|
def : BccPat<seteq, BEQ>;
|
|
def : BccPat<setne, BNE>;
|
|
def : BccPat<setlt, BLT>;
|
|
def : BccPat<setge, BGE>;
|
|
def : BccPat<setult, BLTU>;
|
|
def : BccPat<setuge, BGEU>;
|
|
|
|
class BccSwapPat<PatFrag CondOp, RVInst InstBcc>
|
|
: Pat<(brcond (XLenVT (CondOp GPR:$rs1, GPR:$rs2)), bb:$imm12),
|
|
(InstBcc GPR:$rs2, GPR:$rs1, bb:$imm12)>;
|
|
|
|
// Condition codes that don't have matching RISC-V branch instructions, but
|
|
// are trivially supported by swapping the two input operands
|
|
def : BccSwapPat<setgt, BLT>;
|
|
def : BccSwapPat<setle, BGE>;
|
|
def : BccSwapPat<setugt, BLTU>;
|
|
def : BccSwapPat<setule, BGEU>;
|
|
|
|
// An extra pattern is needed for a brcond without a setcc (i.e. where the
|
|
// condition was calculated elsewhere).
|
|
def : Pat<(brcond GPR:$cond, bb:$imm12), (BNE GPR:$cond, X0, bb:$imm12)>;
|
|
|
|
let isBarrier = 1, isBranch = 1, isTerminator = 1 in
|
|
def PseudoBR : Pseudo<(outs), (ins simm21_lsb0_jal:$imm20), [(br bb:$imm20)]>,
|
|
PseudoInstExpansion<(JAL X0, simm21_lsb0_jal:$imm20)>;
|
|
|
|
let isBarrier = 1, isBranch = 1, isIndirectBranch = 1, isTerminator = 1 in
|
|
def PseudoBRIND : Pseudo<(outs), (ins GPR:$rs1, simm12:$imm12), []>,
|
|
PseudoInstExpansion<(JALR X0, GPR:$rs1, simm12:$imm12)>;
|
|
|
|
def : Pat<(brind GPR:$rs1), (PseudoBRIND GPR:$rs1, 0)>;
|
|
def : Pat<(brind (add GPR:$rs1, simm12:$imm12)),
|
|
(PseudoBRIND GPR:$rs1, simm12:$imm12)>;
|
|
|
|
// PseudoCALLReg is a generic pseudo instruction for calls which will eventually
|
|
// expand to auipc and jalr while encoding, with any given register used as the
|
|
// destination.
|
|
// Define AsmString to print "call" when compile with -S flag.
|
|
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
|
|
let isCall = 1, isBarrier = 1, isCodeGenOnly = 0, hasSideEffects = 0,
|
|
mayStore = 0, mayLoad = 0 in
|
|
def PseudoCALLReg : Pseudo<(outs GPR:$rd), (ins call_symbol:$func), []> {
|
|
let AsmString = "call\t$rd, $func";
|
|
}
|
|
|
|
// PseudoCALL is a pseudo instruction which will eventually expand to auipc
|
|
// and jalr while encoding. This is desirable, as an auipc+jalr pair with
|
|
// R_RISCV_CALL and R_RISCV_RELAX relocations can be be relaxed by the linker
|
|
// if the offset fits in a signed 21-bit immediate.
|
|
// Define AsmString to print "call" when compile with -S flag.
|
|
// Define isCodeGenOnly = 0 to support parsing assembly "call" instruction.
|
|
let isCall = 1, Defs = [X1], isCodeGenOnly = 0 in
|
|
def PseudoCALL : Pseudo<(outs), (ins call_symbol:$func), []> {
|
|
let AsmString = "call\t$func";
|
|
}
|
|
|
|
def : Pat<(riscv_call tglobaladdr:$func), (PseudoCALL tglobaladdr:$func)>;
|
|
def : Pat<(riscv_call texternalsym:$func), (PseudoCALL texternalsym:$func)>;
|
|
|
|
def : Pat<(riscv_uret_flag), (URET X0, X0)>;
|
|
def : Pat<(riscv_sret_flag), (SRET X0, X0)>;
|
|
def : Pat<(riscv_mret_flag), (MRET X0, X0)>;
|
|
|
|
let isCall = 1, Defs = [X1] in
|
|
def PseudoCALLIndirect : Pseudo<(outs), (ins GPR:$rs1),
|
|
[(riscv_call GPR:$rs1)]>,
|
|
PseudoInstExpansion<(JALR X1, GPR:$rs1, 0)>;
|
|
|
|
let isBarrier = 1, isReturn = 1, isTerminator = 1 in
|
|
def PseudoRET : Pseudo<(outs), (ins), [(riscv_ret_flag)]>,
|
|
PseudoInstExpansion<(JALR X0, X1, 0)>;
|
|
|
|
// PseudoTAIL is a pseudo instruction similar to PseudoCALL and will eventually
|
|
// expand to auipc and jalr while encoding.
|
|
// Define AsmString to print "tail" when compile with -S flag.
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2],
|
|
isCodeGenOnly = 0 in
|
|
def PseudoTAIL : Pseudo<(outs), (ins call_symbol:$dst), []> {
|
|
let AsmString = "tail\t$dst";
|
|
}
|
|
|
|
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [X2] in
|
|
def PseudoTAILIndirect : Pseudo<(outs), (ins GPRTC:$rs1),
|
|
[(riscv_tail GPRTC:$rs1)]>,
|
|
PseudoInstExpansion<(JALR X0, GPR:$rs1, 0)>;
|
|
|
|
def : Pat<(riscv_tail (iPTR tglobaladdr:$dst)),
|
|
(PseudoTAIL texternalsym:$dst)>;
|
|
def : Pat<(riscv_tail (iPTR texternalsym:$dst)),
|
|
(PseudoTAIL texternalsym:$dst)>;
|
|
|
|
let isCall = 0, isBarrier = 1, isBranch = 1, isTerminator = 1,
|
|
isCodeGenOnly = 0, hasSideEffects = 0, mayStore = 0, mayLoad = 0 in
|
|
def PseudoJump : Pseudo<(outs GPR:$rd), (ins pseudo_jump_symbol:$target), []> {
|
|
let AsmString = "jump\t$target, $rd";
|
|
}
|
|
|
|
let hasSideEffects = 0, mayLoad = 0, mayStore = 0, isCodeGenOnly = 0,
|
|
isAsmParserOnly = 1 in
|
|
def PseudoLLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
|
|
"lla", "$dst, $src">;
|
|
|
|
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
|
|
isAsmParserOnly = 1 in
|
|
def PseudoLA : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
|
|
"la", "$dst, $src">;
|
|
|
|
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
|
|
isAsmParserOnly = 1 in
|
|
def PseudoLA_TLS_IE : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
|
|
"la.tls.ie", "$dst, $src">;
|
|
|
|
let hasSideEffects = 0, mayLoad = 1, mayStore = 0, isCodeGenOnly = 0,
|
|
isAsmParserOnly = 1 in
|
|
def PseudoLA_TLS_GD : Pseudo<(outs GPR:$dst), (ins bare_symbol:$src), [],
|
|
"la.tls.gd", "$dst, $src">;
|
|
|
|
|
|
/// Sign/Zero Extends
|
|
|
|
// There are single-instruction versions of these in Zbb, so disable these
|
|
// Pseudos if that extension is present.
|
|
let Predicates = [NotHasStdExtZbb], hasSideEffects = 0, mayLoad = 0,
|
|
mayStore = 0, isCodeGenOnly = 0, isAsmParserOnly = 1 in {
|
|
def PseudoSEXT_B : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.b", "$rd, $rs">;
|
|
def PseudoSEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "sext.h", "$rd, $rs">;
|
|
// rv64's sext.w is defined above, using InstAlias<"sext.w ...
|
|
// zext.b is defined above, using InstAlias<"zext.b ...
|
|
def PseudoZEXT_H : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.h", "$rd, $rs">;
|
|
} // Predicates = [NotHasStdExtZbb], ...
|
|
|
|
let Predicates = [NotHasStdExtZbb, IsRV64], hasSideEffects = 0, mayLoad = 0, mayStore = 0,
|
|
isCodeGenOnly = 0, isAsmParserOnly = 1 in {
|
|
def PseudoZEXT_W : Pseudo<(outs GPR:$rd), (ins GPR:$rs), [], "zext.w", "$rd, $rs">;
|
|
} // Predicates = [NotHasStdExtZbb, IsRV64], ...
|
|
|
|
/// Loads
|
|
|
|
multiclass LdPat<PatFrag LoadOp, RVInst Inst> {
|
|
def : Pat<(LoadOp GPR:$rs1), (Inst GPR:$rs1, 0)>;
|
|
def : Pat<(LoadOp AddrFI:$rs1), (Inst AddrFI:$rs1, 0)>;
|
|
def : Pat<(LoadOp (add GPR:$rs1, simm12:$imm12)),
|
|
(Inst GPR:$rs1, simm12:$imm12)>;
|
|
def : Pat<(LoadOp (add AddrFI:$rs1, simm12:$imm12)),
|
|
(Inst AddrFI:$rs1, simm12:$imm12)>;
|
|
def : Pat<(LoadOp (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
|
|
(Inst AddrFI:$rs1, simm12:$imm12)>;
|
|
}
|
|
|
|
defm : LdPat<sextloadi8, LB>;
|
|
defm : LdPat<extloadi8, LB>;
|
|
defm : LdPat<sextloadi16, LH>;
|
|
defm : LdPat<extloadi16, LH>;
|
|
defm : LdPat<load, LW>, Requires<[IsRV32]>;
|
|
defm : LdPat<zextloadi8, LBU>;
|
|
defm : LdPat<zextloadi16, LHU>;
|
|
|
|
/// Stores
|
|
|
|
multiclass StPat<PatFrag StoreOp, RVInst Inst, RegisterClass StTy> {
|
|
def : Pat<(StoreOp StTy:$rs2, GPR:$rs1), (Inst StTy:$rs2, GPR:$rs1, 0)>;
|
|
def : Pat<(StoreOp StTy:$rs2, AddrFI:$rs1), (Inst StTy:$rs2, AddrFI:$rs1, 0)>;
|
|
def : Pat<(StoreOp StTy:$rs2, (add GPR:$rs1, simm12:$imm12)),
|
|
(Inst StTy:$rs2, GPR:$rs1, simm12:$imm12)>;
|
|
def : Pat<(StoreOp StTy:$rs2, (add AddrFI:$rs1, simm12:$imm12)),
|
|
(Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
|
|
def : Pat<(StoreOp StTy:$rs2, (IsOrAdd AddrFI:$rs1, simm12:$imm12)),
|
|
(Inst StTy:$rs2, AddrFI:$rs1, simm12:$imm12)>;
|
|
}
|
|
|
|
defm : StPat<truncstorei8, SB, GPR>;
|
|
defm : StPat<truncstorei16, SH, GPR>;
|
|
defm : StPat<store, SW, GPR>, Requires<[IsRV32]>;
|
|
|
|
/// Fences
|
|
|
|
// Refer to Table A.6 in the version 2.3 draft of the RISC-V Instruction Set
|
|
// Manual: Volume I.
|
|
|
|
// fence acquire -> fence r, rw
|
|
def : Pat<(atomic_fence (XLenVT 4), (timm)), (FENCE 0b10, 0b11)>;
|
|
// fence release -> fence rw, w
|
|
def : Pat<(atomic_fence (XLenVT 5), (timm)), (FENCE 0b11, 0b1)>;
|
|
// fence acq_rel -> fence.tso
|
|
def : Pat<(atomic_fence (XLenVT 6), (timm)), (FENCE_TSO)>;
|
|
// fence seq_cst -> fence rw, rw
|
|
def : Pat<(atomic_fence (XLenVT 7), (timm)), (FENCE 0b11, 0b11)>;
|
|
|
|
// Lowering for atomic load and store is defined in RISCVInstrInfoA.td.
|
|
// Although these are lowered to fence+load/store instructions defined in the
|
|
// base RV32I/RV64I ISA, this lowering is only used when the A extension is
|
|
// present. This is necessary as it isn't valid to mix __atomic_* libcalls
|
|
// with inline atomic operations for the same object.
|
|
|
|
/// Other pseudo-instructions
|
|
|
|
// Pessimistically assume the stack pointer will be clobbered
|
|
let Defs = [X2], Uses = [X2] in {
|
|
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
[(callseq_start timm:$amt1, timm:$amt2)]>;
|
|
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
|
|
[(callseq_end timm:$amt1, timm:$amt2)]>;
|
|
} // Defs = [X2], Uses = [X2]
|
|
|
|
/// RV64 patterns
|
|
|
|
let Predicates = [IsRV64, NotHasStdExtZbbOrZbp] in
|
|
def : Pat<(and GPR:$rs1, 0xffffffff), (SRLI (SLLI GPR:$rs1, 32), 32)>;
|
|
|
|
let Predicates = [IsRV64] in {
|
|
|
|
/// sext and zext
|
|
|
|
def : Pat<(sext_inreg GPR:$rs1, i32), (ADDIW GPR:$rs1, 0)>;
|
|
|
|
/// ALU operations
|
|
|
|
def : Pat<(sext_inreg (add GPR:$rs1, GPR:$rs2), i32),
|
|
(ADDW GPR:$rs1, GPR:$rs2)>;
|
|
def : Pat<(sext_inreg (add GPR:$rs1, simm12:$imm12), i32),
|
|
(ADDIW GPR:$rs1, simm12:$imm12)>;
|
|
def : Pat<(sext_inreg (sub GPR:$rs1, GPR:$rs2), i32),
|
|
(SUBW GPR:$rs1, GPR:$rs2)>;
|
|
def : Pat<(sext_inreg (shl GPR:$rs1, uimm5:$shamt), i32),
|
|
(SLLIW GPR:$rs1, uimm5:$shamt)>;
|
|
// (srl (zexti32 ...), uimm5:$shamt) is matched with custom code due to the
|
|
// need to undo manipulation of the mask value performed by DAGCombine.
|
|
def : Pat<(srl (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt),
|
|
(SRLIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
|
|
def : Pat<(sra (sext_inreg GPR:$rs1, i32), uimm5:$shamt),
|
|
(SRAIW GPR:$rs1, uimm5:$shamt)>;
|
|
def : Pat<(sra (shl GPR:$rs1, (i64 32)), uimm6gt32:$shamt),
|
|
(SRAIW GPR:$rs1, (ImmSub32 uimm6gt32:$shamt))>;
|
|
|
|
def : PatGprGpr<riscv_sllw, SLLW>;
|
|
def : PatGprGpr<riscv_srlw, SRLW>;
|
|
def : PatGprGpr<riscv_sraw, SRAW>;
|
|
|
|
/// Loads
|
|
|
|
defm : LdPat<sextloadi32, LW>;
|
|
defm : LdPat<extloadi32, LW>;
|
|
defm : LdPat<zextloadi32, LWU>;
|
|
defm : LdPat<load, LD>;
|
|
|
|
/// Stores
|
|
|
|
defm : StPat<truncstorei32, SW, GPR>;
|
|
defm : StPat<store, SD, GPR>;
|
|
} // Predicates = [IsRV64]
|
|
|
|
/// readcyclecounter
|
|
// On RV64, we can directly read the 64-bit "cycle" CSR.
|
|
let Predicates = [IsRV64] in
|
|
def : Pat<(readcyclecounter), (CSRRS CYCLE.Encoding, X0)>;
|
|
// On RV32, ReadCycleWide will be expanded to the suggested loop reading both
|
|
// halves of the 64-bit "cycle" CSR.
|
|
let Predicates = [IsRV32], usesCustomInserter = 1, hasNoSchedulingInfo = 1 in
|
|
def ReadCycleWide : Pseudo<(outs GPR:$lo, GPR:$hi), (ins),
|
|
[(set GPR:$lo, GPR:$hi, (riscv_read_cycle_wide))],
|
|
"", "">;
|
|
|
|
/// traps
|
|
|
|
// We lower `trap` to `unimp`, as this causes a hard exception on nearly all
|
|
// systems.
|
|
def : Pat<(trap), (UNIMP)>;
|
|
|
|
// We lower `debugtrap` to `ebreak`, as this will get the attention of the
|
|
// debugger if possible.
|
|
def : Pat<(debugtrap), (EBREAK)>;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Standard extensions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
include "RISCVInstrInfoM.td"
|
|
include "RISCVInstrInfoA.td"
|
|
include "RISCVInstrInfoF.td"
|
|
include "RISCVInstrInfoD.td"
|
|
include "RISCVInstrInfoC.td"
|
|
include "RISCVInstrInfoB.td"
|
|
include "RISCVInstrInfoV.td"
|
|
include "RISCVInstrInfoZfh.td"
|