llvm-project/clang/lib/CodeGen/CGObjCMac.cpp

5740 lines
226 KiB
C++

//===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This provides Objective-C code generation targetting the Apple runtime.
//
//===----------------------------------------------------------------------===//
#include "CGObjCRuntime.h"
#include "CodeGenModule.h"
#include "CodeGenFunction.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtObjC.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/Intrinsics.h"
#include "llvm/LLVMContext.h"
#include "llvm/Module.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetData.h"
#include <cstdio>
using namespace clang;
using namespace CodeGen;
// Common CGObjCRuntime functions, these don't belong here, but they
// don't belong in CGObjCRuntime either so we will live with it for
// now.
/// FindIvarInterface - Find the interface containing the ivar.
///
/// FIXME: We shouldn't need to do this, the containing context should
/// be fixed.
static const ObjCInterfaceDecl *FindIvarInterface(ASTContext &Context,
const ObjCInterfaceDecl *OID,
const ObjCIvarDecl *OIVD,
unsigned &Index) {
// FIXME: The index here is closely tied to how
// ASTContext::getObjCLayout is implemented. This should be fixed to
// get the information from the layout directly.
Index = 0;
llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
Context.ShallowCollectObjCIvars(OID, Ivars);
for (unsigned k = 0, e = Ivars.size(); k != e; ++k) {
if (OIVD == Ivars[k])
return OID;
++Index;
}
// Otherwise check in the super class.
if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
return FindIvarInterface(Context, Super, OIVD, Index);
return 0;
}
static uint64_t LookupFieldBitOffset(CodeGen::CodeGenModule &CGM,
const ObjCInterfaceDecl *OID,
const ObjCImplementationDecl *ID,
const ObjCIvarDecl *Ivar) {
unsigned Index;
const ObjCInterfaceDecl *Container =
FindIvarInterface(CGM.getContext(), OID, Ivar, Index);
assert(Container && "Unable to find ivar container");
// If we know have an implementation (and the ivar is in it) then
// look up in the implementation layout.
const ASTRecordLayout *RL;
if (ID && ID->getClassInterface() == Container)
RL = &CGM.getContext().getASTObjCImplementationLayout(ID);
else
RL = &CGM.getContext().getASTObjCInterfaceLayout(Container);
return RL->getFieldOffset(Index);
}
uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
const ObjCInterfaceDecl *OID,
const ObjCIvarDecl *Ivar) {
return LookupFieldBitOffset(CGM, OID, 0, Ivar) / 8;
}
uint64_t CGObjCRuntime::ComputeIvarBaseOffset(CodeGen::CodeGenModule &CGM,
const ObjCImplementationDecl *OID,
const ObjCIvarDecl *Ivar) {
return LookupFieldBitOffset(CGM, OID->getClassInterface(), OID, Ivar) / 8;
}
LValue CGObjCRuntime::EmitValueForIvarAtOffset(CodeGen::CodeGenFunction &CGF,
const ObjCInterfaceDecl *OID,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers,
llvm::Value *Offset) {
// Compute (type*) ( (char *) BaseValue + Offset)
llvm::Type *I8Ptr =
llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(CGF.getLLVMContext()));
QualType IvarTy = Ivar->getType();
const llvm::Type *LTy = CGF.CGM.getTypes().ConvertTypeForMem(IvarTy);
llvm::Value *V = CGF.Builder.CreateBitCast(BaseValue, I8Ptr);
V = CGF.Builder.CreateGEP(V, Offset, "add.ptr");
V = CGF.Builder.CreateBitCast(V, llvm::PointerType::getUnqual(LTy));
if (Ivar->isBitField()) {
// We need to compute the bit offset for the bit-field, the offset
// is to the byte. Note, there is a subtle invariant here: we can
// only call this routine on non-sythesized ivars but we may be
// called for synthesized ivars. However, a synthesized ivar can
// never be a bit-field so this is safe.
uint64_t BitOffset = LookupFieldBitOffset(CGF.CGM, OID, 0, Ivar) % 8;
uint64_t BitFieldSize =
Ivar->getBitWidth()->EvaluateAsInt(CGF.getContext()).getZExtValue();
return LValue::MakeBitfield(V, BitOffset, BitFieldSize,
IvarTy->isSignedIntegerType(),
IvarTy.getCVRQualifiers()|CVRQualifiers);
}
LValue LV = LValue::MakeAddr(V, IvarTy.getCVRQualifiers()|CVRQualifiers,
CGF.CGM.getContext().getObjCGCAttrKind(IvarTy));
return LV;
}
///
namespace {
typedef std::vector<llvm::Constant*> ConstantVector;
// FIXME: We should find a nicer way to make the labels for metadata, string
// concatenation is lame.
class ObjCCommonTypesHelper {
protected:
llvm::LLVMContext &VMContext;
private:
llvm::Constant *getMessageSendFn() const {
// id objc_msgSend (id, SEL, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(SelectorPtrTy);
return
CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSend");
}
llvm::Constant *getMessageSendStretFn() const {
// id objc_msgSend_stret (id, SEL, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(SelectorPtrTy);
return
CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, true),
"objc_msgSend_stret");
}
llvm::Constant *getMessageSendFpretFn() const {
// FIXME: This should be long double on x86_64?
// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(SelectorPtrTy);
return
CGM.CreateRuntimeFunction(llvm::FunctionType::get(
llvm::Type::getDoubleTy(VMContext),
Params,
true),
"objc_msgSend_fpret");
}
llvm::Constant *getMessageSendSuperFn() const {
// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
const char *SuperName = "objc_msgSendSuper";
std::vector<const llvm::Type*> Params;
Params.push_back(SuperPtrTy);
Params.push_back(SelectorPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
SuperName);
}
llvm::Constant *getMessageSendSuperFn2() const {
// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
const char *SuperName = "objc_msgSendSuper2";
std::vector<const llvm::Type*> Params;
Params.push_back(SuperPtrTy);
Params.push_back(SelectorPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
SuperName);
}
llvm::Constant *getMessageSendSuperStretFn() const {
// void objc_msgSendSuper_stret(void * stretAddr, struct objc_super *super,
// SEL op, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(Int8PtrTy);
Params.push_back(SuperPtrTy);
Params.push_back(SelectorPtrTy);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, true),
"objc_msgSendSuper_stret");
}
llvm::Constant *getMessageSendSuperStretFn2() const {
// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
// SEL op, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(Int8PtrTy);
Params.push_back(SuperPtrTy);
Params.push_back(SelectorPtrTy);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, true),
"objc_msgSendSuper2_stret");
}
llvm::Constant *getMessageSendSuperFpretFn() const {
// There is no objc_msgSendSuper_fpret? How can that work?
return getMessageSendSuperFn();
}
llvm::Constant *getMessageSendSuperFpretFn2() const {
// There is no objc_msgSendSuper_fpret? How can that work?
return getMessageSendSuperFn2();
}
protected:
CodeGen::CodeGenModule &CGM;
public:
const llvm::Type *ShortTy, *IntTy, *LongTy, *LongLongTy;
const llvm::Type *Int8PtrTy;
/// ObjectPtrTy - LLVM type for object handles (typeof(id))
const llvm::Type *ObjectPtrTy;
/// PtrObjectPtrTy - LLVM type for id *
const llvm::Type *PtrObjectPtrTy;
/// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
const llvm::Type *SelectorPtrTy;
/// ProtocolPtrTy - LLVM type for external protocol handles
/// (typeof(Protocol))
const llvm::Type *ExternalProtocolPtrTy;
// SuperCTy - clang type for struct objc_super.
QualType SuperCTy;
// SuperPtrCTy - clang type for struct objc_super *.
QualType SuperPtrCTy;
/// SuperTy - LLVM type for struct objc_super.
const llvm::StructType *SuperTy;
/// SuperPtrTy - LLVM type for struct objc_super *.
const llvm::Type *SuperPtrTy;
/// PropertyTy - LLVM type for struct objc_property (struct _prop_t
/// in GCC parlance).
const llvm::StructType *PropertyTy;
/// PropertyListTy - LLVM type for struct objc_property_list
/// (_prop_list_t in GCC parlance).
const llvm::StructType *PropertyListTy;
/// PropertyListPtrTy - LLVM type for struct objc_property_list*.
const llvm::Type *PropertyListPtrTy;
// MethodTy - LLVM type for struct objc_method.
const llvm::StructType *MethodTy;
/// CacheTy - LLVM type for struct objc_cache.
const llvm::Type *CacheTy;
/// CachePtrTy - LLVM type for struct objc_cache *.
const llvm::Type *CachePtrTy;
llvm::Constant *getGetPropertyFn() {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
// id objc_getProperty (id, SEL, ptrdiff_t, bool)
llvm::SmallVector<QualType,16> Params;
QualType IdType = Ctx.getObjCIdType();
QualType SelType = Ctx.getObjCSelType();
Params.push_back(IdType);
Params.push_back(SelType);
Params.push_back(Ctx.LongTy);
Params.push_back(Ctx.BoolTy);
const llvm::FunctionType *FTy =
Types.GetFunctionType(Types.getFunctionInfo(IdType, Params), false);
return CGM.CreateRuntimeFunction(FTy, "objc_getProperty");
}
llvm::Constant *getSetPropertyFn() {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
// void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
llvm::SmallVector<QualType,16> Params;
QualType IdType = Ctx.getObjCIdType();
QualType SelType = Ctx.getObjCSelType();
Params.push_back(IdType);
Params.push_back(SelType);
Params.push_back(Ctx.LongTy);
Params.push_back(IdType);
Params.push_back(Ctx.BoolTy);
Params.push_back(Ctx.BoolTy);
const llvm::FunctionType *FTy =
Types.GetFunctionType(Types.getFunctionInfo(Ctx.VoidTy, Params), false);
return CGM.CreateRuntimeFunction(FTy, "objc_setProperty");
}
llvm::Constant *getEnumerationMutationFn() {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
// void objc_enumerationMutation (id)
llvm::SmallVector<QualType,16> Params;
Params.push_back(Ctx.getObjCIdType());
const llvm::FunctionType *FTy =
Types.GetFunctionType(Types.getFunctionInfo(Ctx.VoidTy, Params), false);
return CGM.CreateRuntimeFunction(FTy, "objc_enumerationMutation");
}
/// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
llvm::Constant *getGcReadWeakFn() {
// id objc_read_weak (id *)
std::vector<const llvm::Type*> Args;
Args.push_back(ObjectPtrTy->getPointerTo());
llvm::FunctionType *FTy =
llvm::FunctionType::get(ObjectPtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_read_weak");
}
/// GcAssignWeakFn -- LLVM objc_assign_weak function.
llvm::Constant *getGcAssignWeakFn() {
// id objc_assign_weak (id, id *)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
Args.push_back(ObjectPtrTy->getPointerTo());
llvm::FunctionType *FTy =
llvm::FunctionType::get(ObjectPtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_assign_weak");
}
/// GcAssignGlobalFn -- LLVM objc_assign_global function.
llvm::Constant *getGcAssignGlobalFn() {
// id objc_assign_global(id, id *)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
Args.push_back(ObjectPtrTy->getPointerTo());
llvm::FunctionType *FTy =
llvm::FunctionType::get(ObjectPtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_assign_global");
}
/// GcAssignIvarFn -- LLVM objc_assign_ivar function.
llvm::Constant *getGcAssignIvarFn() {
// id objc_assign_ivar(id, id *)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
Args.push_back(ObjectPtrTy->getPointerTo());
llvm::FunctionType *FTy =
llvm::FunctionType::get(ObjectPtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_assign_ivar");
}
/// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
llvm::Constant *GcMemmoveCollectableFn() {
// void *objc_memmove_collectable(void *dst, const void *src, size_t size)
std::vector<const llvm::Type*> Args(1, Int8PtrTy);
Args.push_back(Int8PtrTy);
Args.push_back(LongTy);
llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_memmove_collectable");
}
/// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
llvm::Constant *getGcAssignStrongCastFn() {
// id objc_assign_global(id, id *)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
Args.push_back(ObjectPtrTy->getPointerTo());
llvm::FunctionType *FTy =
llvm::FunctionType::get(ObjectPtrTy, Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_assign_strongCast");
}
/// ExceptionThrowFn - LLVM objc_exception_throw function.
llvm::Constant *getExceptionThrowFn() {
// void objc_exception_throw(id)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_exception_throw");
}
/// SyncEnterFn - LLVM object_sync_enter function.
llvm::Constant *getSyncEnterFn() {
// void objc_sync_enter (id)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_sync_enter");
}
/// SyncExitFn - LLVM object_sync_exit function.
llvm::Constant *getSyncExitFn() {
// void objc_sync_exit (id)
std::vector<const llvm::Type*> Args(1, ObjectPtrTy);
llvm::FunctionType *FTy =
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), Args, false);
return CGM.CreateRuntimeFunction(FTy, "objc_sync_exit");
}
llvm::Constant *getSendFn(bool IsSuper) const {
return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
}
llvm::Constant *getSendFn2(bool IsSuper) const {
return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
}
llvm::Constant *getSendStretFn(bool IsSuper) const {
return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
}
llvm::Constant *getSendStretFn2(bool IsSuper) const {
return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
}
llvm::Constant *getSendFpretFn(bool IsSuper) const {
return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
}
llvm::Constant *getSendFpretFn2(bool IsSuper) const {
return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
}
ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
~ObjCCommonTypesHelper(){}
};
/// ObjCTypesHelper - Helper class that encapsulates lazy
/// construction of varies types used during ObjC generation.
class ObjCTypesHelper : public ObjCCommonTypesHelper {
public:
/// SymtabTy - LLVM type for struct objc_symtab.
const llvm::StructType *SymtabTy;
/// SymtabPtrTy - LLVM type for struct objc_symtab *.
const llvm::Type *SymtabPtrTy;
/// ModuleTy - LLVM type for struct objc_module.
const llvm::StructType *ModuleTy;
/// ProtocolTy - LLVM type for struct objc_protocol.
const llvm::StructType *ProtocolTy;
/// ProtocolPtrTy - LLVM type for struct objc_protocol *.
const llvm::Type *ProtocolPtrTy;
/// ProtocolExtensionTy - LLVM type for struct
/// objc_protocol_extension.
const llvm::StructType *ProtocolExtensionTy;
/// ProtocolExtensionTy - LLVM type for struct
/// objc_protocol_extension *.
const llvm::Type *ProtocolExtensionPtrTy;
/// MethodDescriptionTy - LLVM type for struct
/// objc_method_description.
const llvm::StructType *MethodDescriptionTy;
/// MethodDescriptionListTy - LLVM type for struct
/// objc_method_description_list.
const llvm::StructType *MethodDescriptionListTy;
/// MethodDescriptionListPtrTy - LLVM type for struct
/// objc_method_description_list *.
const llvm::Type *MethodDescriptionListPtrTy;
/// ProtocolListTy - LLVM type for struct objc_property_list.
const llvm::Type *ProtocolListTy;
/// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
const llvm::Type *ProtocolListPtrTy;
/// CategoryTy - LLVM type for struct objc_category.
const llvm::StructType *CategoryTy;
/// ClassTy - LLVM type for struct objc_class.
const llvm::StructType *ClassTy;
/// ClassPtrTy - LLVM type for struct objc_class *.
const llvm::Type *ClassPtrTy;
/// ClassExtensionTy - LLVM type for struct objc_class_ext.
const llvm::StructType *ClassExtensionTy;
/// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
const llvm::Type *ClassExtensionPtrTy;
// IvarTy - LLVM type for struct objc_ivar.
const llvm::StructType *IvarTy;
/// IvarListTy - LLVM type for struct objc_ivar_list.
const llvm::Type *IvarListTy;
/// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
const llvm::Type *IvarListPtrTy;
/// MethodListTy - LLVM type for struct objc_method_list.
const llvm::Type *MethodListTy;
/// MethodListPtrTy - LLVM type for struct objc_method_list *.
const llvm::Type *MethodListPtrTy;
/// ExceptionDataTy - LLVM type for struct _objc_exception_data.
const llvm::Type *ExceptionDataTy;
/// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
llvm::Constant *getExceptionTryEnterFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(llvm::PointerType::getUnqual(ExceptionDataTy));
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, false),
"objc_exception_try_enter");
}
/// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
llvm::Constant *getExceptionTryExitFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(llvm::PointerType::getUnqual(ExceptionDataTy));
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, false),
"objc_exception_try_exit");
}
/// ExceptionExtractFn - LLVM objc_exception_extract function.
llvm::Constant *getExceptionExtractFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(llvm::PointerType::getUnqual(ExceptionDataTy));
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, false),
"objc_exception_extract");
}
/// ExceptionMatchFn - LLVM objc_exception_match function.
llvm::Constant *getExceptionMatchFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(ClassPtrTy);
Params.push_back(ObjectPtrTy);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getInt32Ty(VMContext),
Params, false),
"objc_exception_match");
}
/// SetJmpFn - LLVM _setjmp function.
llvm::Constant *getSetJmpFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(llvm::PointerType::getUnqual(llvm::Type::getInt32Ty(VMContext)));
return
CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::getInt32Ty(VMContext),
Params, false),
"_setjmp");
}
public:
ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
~ObjCTypesHelper() {}
};
/// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
/// modern abi
class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
public:
// MethodListnfABITy - LLVM for struct _method_list_t
const llvm::StructType *MethodListnfABITy;
// MethodListnfABIPtrTy - LLVM for struct _method_list_t*
const llvm::Type *MethodListnfABIPtrTy;
// ProtocolnfABITy = LLVM for struct _protocol_t
const llvm::StructType *ProtocolnfABITy;
// ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
const llvm::Type *ProtocolnfABIPtrTy;
// ProtocolListnfABITy - LLVM for struct _objc_protocol_list
const llvm::StructType *ProtocolListnfABITy;
// ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
const llvm::Type *ProtocolListnfABIPtrTy;
// ClassnfABITy - LLVM for struct _class_t
const llvm::StructType *ClassnfABITy;
// ClassnfABIPtrTy - LLVM for struct _class_t*
const llvm::Type *ClassnfABIPtrTy;
// IvarnfABITy - LLVM for struct _ivar_t
const llvm::StructType *IvarnfABITy;
// IvarListnfABITy - LLVM for struct _ivar_list_t
const llvm::StructType *IvarListnfABITy;
// IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
const llvm::Type *IvarListnfABIPtrTy;
// ClassRonfABITy - LLVM for struct _class_ro_t
const llvm::StructType *ClassRonfABITy;
// ImpnfABITy - LLVM for id (*)(id, SEL, ...)
const llvm::Type *ImpnfABITy;
// CategorynfABITy - LLVM for struct _category_t
const llvm::StructType *CategorynfABITy;
// New types for nonfragile abi messaging.
// MessageRefTy - LLVM for:
// struct _message_ref_t {
// IMP messenger;
// SEL name;
// };
const llvm::StructType *MessageRefTy;
// MessageRefCTy - clang type for struct _message_ref_t
QualType MessageRefCTy;
// MessageRefPtrTy - LLVM for struct _message_ref_t*
const llvm::Type *MessageRefPtrTy;
// MessageRefCPtrTy - clang type for struct _message_ref_t*
QualType MessageRefCPtrTy;
// MessengerTy - Type of the messenger (shown as IMP above)
const llvm::FunctionType *MessengerTy;
// SuperMessageRefTy - LLVM for:
// struct _super_message_ref_t {
// SUPER_IMP messenger;
// SEL name;
// };
const llvm::StructType *SuperMessageRefTy;
// SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
const llvm::Type *SuperMessageRefPtrTy;
llvm::Constant *getMessageSendFixupFn() {
// id objc_msgSend_fixup(id, struct message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(MessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSend_fixup");
}
llvm::Constant *getMessageSendFpretFixupFn() {
// id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(MessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSend_fpret_fixup");
}
llvm::Constant *getMessageSendStretFixupFn() {
// id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(MessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSend_stret_fixup");
}
llvm::Constant *getMessageSendIdFixupFn() {
// id objc_msgSendId_fixup(id, struct message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(MessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSendId_fixup");
}
llvm::Constant *getMessageSendIdStretFixupFn() {
// id objc_msgSendId_stret_fixup(id, struct message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(MessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSendId_stret_fixup");
}
llvm::Constant *getMessageSendSuper2FixupFn() {
// id objc_msgSendSuper2_fixup (struct objc_super *,
// struct _super_message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(SuperPtrTy);
Params.push_back(SuperMessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSendSuper2_fixup");
}
llvm::Constant *getMessageSendSuper2StretFixupFn() {
// id objc_msgSendSuper2_stret_fixup(struct objc_super *,
// struct _super_message_ref_t*, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(SuperPtrTy);
Params.push_back(SuperMessageRefPtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(ObjectPtrTy,
Params, true),
"objc_msgSendSuper2_stret_fixup");
}
/// EHPersonalityPtr - LLVM value for an i8* to the Objective-C
/// exception personality function.
llvm::Value *getEHPersonalityPtr() {
llvm::Constant *Personality =
CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::getInt32Ty(VMContext),
true),
"__objc_personality_v0");
return llvm::ConstantExpr::getBitCast(Personality, Int8PtrTy);
}
llvm::Constant *getUnwindResumeOrRethrowFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(Int8PtrTy);
return CGM.CreateRuntimeFunction(
llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
Params, false),
"_Unwind_Resume_or_Rethrow");
}
llvm::Constant *getObjCEndCatchFn() {
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
false),
"objc_end_catch");
}
llvm::Constant *getObjCBeginCatchFn() {
std::vector<const llvm::Type*> Params;
Params.push_back(Int8PtrTy);
return CGM.CreateRuntimeFunction(llvm::FunctionType::get(Int8PtrTy,
Params, false),
"objc_begin_catch");
}
const llvm::StructType *EHTypeTy;
const llvm::Type *EHTypePtrTy;
ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
~ObjCNonFragileABITypesHelper(){}
};
class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
public:
// FIXME - accessibility
class GC_IVAR {
public:
unsigned ivar_bytepos;
unsigned ivar_size;
GC_IVAR(unsigned bytepos = 0, unsigned size = 0)
: ivar_bytepos(bytepos), ivar_size(size) {}
// Allow sorting based on byte pos.
bool operator<(const GC_IVAR &b) const {
return ivar_bytepos < b.ivar_bytepos;
}
};
class SKIP_SCAN {
public:
unsigned skip;
unsigned scan;
SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
: skip(_skip), scan(_scan) {}
};
protected:
CodeGen::CodeGenModule &CGM;
llvm::LLVMContext &VMContext;
// FIXME! May not be needing this after all.
unsigned ObjCABI;
// gc ivar layout bitmap calculation helper caches.
llvm::SmallVector<GC_IVAR, 16> SkipIvars;
llvm::SmallVector<GC_IVAR, 16> IvarsInfo;
/// LazySymbols - Symbols to generate a lazy reference for. See
/// DefinedSymbols and FinishModule().
llvm::SetVector<IdentifierInfo*> LazySymbols;
/// DefinedSymbols - External symbols which are defined by this
/// module. The symbols in this list and LazySymbols are used to add
/// special linker symbols which ensure that Objective-C modules are
/// linked properly.
llvm::SetVector<IdentifierInfo*> DefinedSymbols;
/// ClassNames - uniqued class names.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassNames;
/// MethodVarNames - uniqued method variable names.
llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
/// MethodVarTypes - uniqued method type signatures. We have to use
/// a StringMap here because have no other unique reference.
llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
/// MethodDefinitions - map of methods which have been defined in
/// this translation unit.
llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
/// PropertyNames - uniqued method variable names.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
/// ClassReferences - uniqued class references.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
/// SelectorReferences - uniqued selector references.
llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
/// Protocols - Protocols for which an objc_protocol structure has
/// been emitted. Forward declarations are handled by creating an
/// empty structure whose initializer is filled in when/if defined.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
/// DefinedProtocols - Protocols which have actually been
/// defined. We should not need this, see FIXME in GenerateProtocol.
llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
/// DefinedClasses - List of defined classes.
std::vector<llvm::GlobalValue*> DefinedClasses;
/// DefinedNonLazyClasses - List of defined "non-lazy" classes.
std::vector<llvm::GlobalValue*> DefinedNonLazyClasses;
/// DefinedCategories - List of defined categories.
std::vector<llvm::GlobalValue*> DefinedCategories;
/// DefinedNonLazyCategories - List of defined "non-lazy" categories.
std::vector<llvm::GlobalValue*> DefinedNonLazyCategories;
/// GetNameForMethod - Return a name for the given method.
/// \param[out] NameOut - The return value.
void GetNameForMethod(const ObjCMethodDecl *OMD,
const ObjCContainerDecl *CD,
std::string &NameOut);
/// GetMethodVarName - Return a unique constant for the given
/// selector's name. The return value has type char *.
llvm::Constant *GetMethodVarName(Selector Sel);
llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
llvm::Constant *GetMethodVarName(const std::string &Name);
/// GetMethodVarType - Return a unique constant for the given
/// selector's name. The return value has type char *.
// FIXME: This is a horrible name.
llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D);
llvm::Constant *GetMethodVarType(const FieldDecl *D);
/// GetPropertyName - Return a unique constant for the given
/// name. The return value has type char *.
llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
// FIXME: This can be dropped once string functions are unified.
llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
const Decl *Container);
/// GetClassName - Return a unique constant for the given selector's
/// name. The return value has type char *.
llvm::Constant *GetClassName(IdentifierInfo *Ident);
/// BuildIvarLayout - Builds ivar layout bitmap for the class
/// implementation for the __strong or __weak case.
///
llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
bool ForStrongLayout);
void BuildAggrIvarRecordLayout(const RecordType *RT,
unsigned int BytePos, bool ForStrongLayout,
bool &HasUnion);
void BuildAggrIvarLayout(const ObjCImplementationDecl *OI,
const llvm::StructLayout *Layout,
const RecordDecl *RD,
const llvm::SmallVectorImpl<FieldDecl*> &RecFields,
unsigned int BytePos, bool ForStrongLayout,
bool &HasUnion);
/// GetIvarLayoutName - Returns a unique constant for the given
/// ivar layout bitmap.
llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
const ObjCCommonTypesHelper &ObjCTypes);
/// EmitPropertyList - Emit the given property list. The return
/// value has type PropertyListPtrTy.
llvm::Constant *EmitPropertyList(const std::string &Name,
const Decl *Container,
const ObjCContainerDecl *OCD,
const ObjCCommonTypesHelper &ObjCTypes);
/// GetProtocolRef - Return a reference to the internal protocol
/// description, creating an empty one if it has not been
/// defined. The return value has type ProtocolPtrTy.
llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
/// CreateMetadataVar - Create a global variable with internal
/// linkage for use by the Objective-C runtime.
///
/// This is a convenience wrapper which not only creates the
/// variable, but also sets the section and alignment and adds the
/// global to the "llvm.used" list.
///
/// \param Name - The variable name.
/// \param Init - The variable initializer; this is also used to
/// define the type of the variable.
/// \param Section - The section the variable should go into, or 0.
/// \param Align - The alignment for the variable, or 0.
/// \param AddToUsed - Whether the variable should be added to
/// "llvm.used".
llvm::GlobalVariable *CreateMetadataVar(const std::string &Name,
llvm::Constant *Init,
const char *Section,
unsigned Align,
bool AddToUsed);
CodeGen::RValue EmitLegacyMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
llvm::Value *Sel,
llvm::Value *Arg0,
QualType Arg0Ty,
bool IsSuper,
const CallArgList &CallArgs,
const ObjCMethodDecl *OMD,
const ObjCCommonTypesHelper &ObjCTypes);
public:
CGObjCCommonMac(CodeGen::CodeGenModule &cgm) :
CGM(cgm), VMContext(cgm.getLLVMContext()) { }
virtual llvm::Constant *GenerateConstantString(const ObjCStringLiteral *SL);
virtual llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
const ObjCContainerDecl *CD=0);
virtual void GenerateProtocol(const ObjCProtocolDecl *PD);
/// GetOrEmitProtocol - Get the protocol object for the given
/// declaration, emitting it if necessary. The return value has type
/// ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD)=0;
/// GetOrEmitProtocolRef - Get a forward reference to the protocol
/// object for the given declaration, emitting it if needed. These
/// forward references will be filled in with empty bodies if no
/// definition is seen. The return value has type ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
};
class CGObjCMac : public CGObjCCommonMac {
private:
ObjCTypesHelper ObjCTypes;
/// EmitImageInfo - Emit the image info marker used to encode some module
/// level information.
void EmitImageInfo();
/// EmitModuleInfo - Another marker encoding module level
/// information.
void EmitModuleInfo();
/// EmitModuleSymols - Emit module symbols, the list of defined
/// classes and categories. The result has type SymtabPtrTy.
llvm::Constant *EmitModuleSymbols();
/// FinishModule - Write out global data structures at the end of
/// processing a translation unit.
void FinishModule();
/// EmitClassExtension - Generate the class extension structure used
/// to store the weak ivar layout and properties. The return value
/// has type ClassExtensionPtrTy.
llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID);
/// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
/// for the given class.
llvm::Value *EmitClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Arg0,
QualType Arg0Ty,
bool IsSuper,
const CallArgList &CallArgs);
/// EmitIvarList - Emit the ivar list for the given
/// implementation. If ForClass is true the list of class ivars
/// (i.e. metaclass ivars) is emitted, otherwise the list of
/// interface ivars will be emitted. The return value has type
/// IvarListPtrTy.
llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
bool ForClass);
/// EmitMetaClass - Emit a forward reference to the class structure
/// for the metaclass of the given interface. The return value has
/// type ClassPtrTy.
llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
/// EmitMetaClass - Emit a class structure for the metaclass of the
/// given implementation. The return value has type ClassPtrTy.
llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
llvm::Constant *Protocols,
const ConstantVector &Methods);
llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
/// EmitMethodList - Emit the method list for the given
/// implementation. The return value has type MethodListPtrTy.
llvm::Constant *EmitMethodList(const std::string &Name,
const char *Section,
const ConstantVector &Methods);
/// EmitMethodDescList - Emit a method description list for a list of
/// method declarations.
/// - TypeName: The name for the type containing the methods.
/// - IsProtocol: True iff these methods are for a protocol.
/// - ClassMethds: True iff these are class methods.
/// - Required: When true, only "required" methods are
/// listed. Similarly, when false only "optional" methods are
/// listed. For classes this should always be true.
/// - begin, end: The method list to output.
///
/// The return value has type MethodDescriptionListPtrTy.
llvm::Constant *EmitMethodDescList(const std::string &Name,
const char *Section,
const ConstantVector &Methods);
/// GetOrEmitProtocol - Get the protocol object for the given
/// declaration, emitting it if necessary. The return value has type
/// ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD);
/// GetOrEmitProtocolRef - Get a forward reference to the protocol
/// object for the given declaration, emitting it if needed. These
/// forward references will be filled in with empty bodies if no
/// definition is seen. The return value has type ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD);
/// EmitProtocolExtension - Generate the protocol extension
/// structure used to store optional instance and class methods, and
/// protocol properties. The return value has type
/// ProtocolExtensionPtrTy.
llvm::Constant *
EmitProtocolExtension(const ObjCProtocolDecl *PD,
const ConstantVector &OptInstanceMethods,
const ConstantVector &OptClassMethods);
/// EmitProtocolList - Generate the list of referenced
/// protocols. The return value has type ProtocolListPtrTy.
llvm::Constant *EmitProtocolList(const std::string &Name,
ObjCProtocolDecl::protocol_iterator begin,
ObjCProtocolDecl::protocol_iterator end);
/// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
/// for the given selector.
llvm::Value *EmitSelector(CGBuilderTy &Builder, Selector Sel);
public:
CGObjCMac(CodeGen::CodeGenModule &cgm);
virtual llvm::Function *ModuleInitFunction();
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method);
virtual CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
const ObjCInterfaceDecl *Class,
bool isCategoryImpl,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method);
virtual llvm::Value *GetClass(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel);
/// The NeXT/Apple runtimes do not support typed selectors; just emit an
/// untyped one.
virtual llvm::Value *GetSelector(CGBuilderTy &Builder,
const ObjCMethodDecl *Method);
virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD);
virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl);
virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder,
const ObjCProtocolDecl *PD);
virtual llvm::Constant *GetPropertyGetFunction();
virtual llvm::Constant *GetPropertySetFunction();
virtual llvm::Constant *EnumerationMutationFunction();
virtual void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
const Stmt &S);
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
const ObjCAtThrowStmt &S);
virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
llvm::Value *AddrWeakObj);
virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst);
virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
llvm::Value *dest, llvm::Value *src,
QualType Ty);
virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
QualType ObjectTy,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers);
virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
};
class CGObjCNonFragileABIMac : public CGObjCCommonMac {
private:
ObjCNonFragileABITypesHelper ObjCTypes;
llvm::GlobalVariable* ObjCEmptyCacheVar;
llvm::GlobalVariable* ObjCEmptyVtableVar;
/// SuperClassReferences - uniqued super class references.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
/// MetaClassReferences - uniqued meta class references.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
/// EHTypeReferences - uniqued class ehtype references.
llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
/// NonLegacyDispatchMethods - List of methods for which we do *not* generate
/// legacy messaging dispatch.
llvm::DenseSet<Selector> NonLegacyDispatchMethods;
/// LegacyDispatchedSelector - Returns true if SEL is not in the list of
/// NonLegacyDispatchMethods; false otherwise.
bool LegacyDispatchedSelector(Selector Sel);
/// FinishNonFragileABIModule - Write out global data structures at the end of
/// processing a translation unit.
void FinishNonFragileABIModule();
/// AddModuleClassList - Add the given list of class pointers to the
/// module with the provided symbol and section names.
void AddModuleClassList(const std::vector<llvm::GlobalValue*> &Container,
const char *SymbolName,
const char *SectionName);
llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
unsigned InstanceStart,
unsigned InstanceSize,
const ObjCImplementationDecl *ID);
llvm::GlobalVariable * BuildClassMetaData(std::string &ClassName,
llvm::Constant *IsAGV,
llvm::Constant *SuperClassGV,
llvm::Constant *ClassRoGV,
bool HiddenVisibility);
llvm::Constant *GetMethodConstant(const ObjCMethodDecl *MD);
llvm::Constant *GetMethodDescriptionConstant(const ObjCMethodDecl *MD);
/// EmitMethodList - Emit the method list for the given
/// implementation. The return value has type MethodListnfABITy.
llvm::Constant *EmitMethodList(const std::string &Name,
const char *Section,
const ConstantVector &Methods);
/// EmitIvarList - Emit the ivar list for the given
/// implementation. If ForClass is true the list of class ivars
/// (i.e. metaclass ivars) is emitted, otherwise the list of
/// interface ivars will be emitted. The return value has type
/// IvarListnfABIPtrTy.
llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
const ObjCIvarDecl *Ivar,
unsigned long int offset);
/// GetOrEmitProtocol - Get the protocol object for the given
/// declaration, emitting it if necessary. The return value has type
/// ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD);
/// GetOrEmitProtocolRef - Get a forward reference to the protocol
/// object for the given declaration, emitting it if needed. These
/// forward references will be filled in with empty bodies if no
/// definition is seen. The return value has type ProtocolPtrTy.
virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD);
/// EmitProtocolList - Generate the list of referenced
/// protocols. The return value has type ProtocolListPtrTy.
llvm::Constant *EmitProtocolList(const std::string &Name,
ObjCProtocolDecl::protocol_iterator begin,
ObjCProtocolDecl::protocol_iterator end);
CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
QualType Arg0Ty,
bool IsSuper,
const CallArgList &CallArgs);
/// GetClassGlobal - Return the global variable for the Objective-C
/// class of the given name.
llvm::GlobalVariable *GetClassGlobal(const std::string &Name);
/// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
/// for the given class reference.
llvm::Value *EmitClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
/// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
/// for the given super class reference.
llvm::Value *EmitSuperClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
/// EmitMetaClassRef - Return a Value * of the address of _class_t
/// meta-data
llvm::Value *EmitMetaClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
/// ObjCIvarOffsetVariable - Returns the ivar offset variable for
/// the given ivar.
///
llvm::GlobalVariable * ObjCIvarOffsetVariable(
const ObjCInterfaceDecl *ID,
const ObjCIvarDecl *Ivar);
/// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
/// for the given selector.
llvm::Value *EmitSelector(CGBuilderTy &Builder, Selector Sel);
/// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
/// interface. The return value has type EHTypePtrTy.
llvm::Value *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
bool ForDefinition);
const char *getMetaclassSymbolPrefix() const {
return "OBJC_METACLASS_$_";
}
const char *getClassSymbolPrefix() const {
return "OBJC_CLASS_$_";
}
void GetClassSizeInfo(const ObjCImplementationDecl *OID,
uint32_t &InstanceStart,
uint32_t &InstanceSize);
// Shamelessly stolen from Analysis/CFRefCount.cpp
Selector GetNullarySelector(const char* name) const {
IdentifierInfo* II = &CGM.getContext().Idents.get(name);
return CGM.getContext().Selectors.getSelector(0, &II);
}
Selector GetUnarySelector(const char* name) const {
IdentifierInfo* II = &CGM.getContext().Idents.get(name);
return CGM.getContext().Selectors.getSelector(1, &II);
}
/// ImplementationIsNonLazy - Check whether the given category or
/// class implementation is "non-lazy".
bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
public:
CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
// FIXME. All stubs for now!
virtual llvm::Function *ModuleInitFunction();
virtual CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method);
virtual CodeGen::RValue
GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
const ObjCInterfaceDecl *Class,
bool isCategoryImpl,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method);
virtual llvm::Value *GetClass(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID);
virtual llvm::Value *GetSelector(CGBuilderTy &Builder, Selector Sel)
{ return EmitSelector(Builder, Sel); }
/// The NeXT/Apple runtimes do not support typed selectors; just emit an
/// untyped one.
virtual llvm::Value *GetSelector(CGBuilderTy &Builder,
const ObjCMethodDecl *Method)
{ return EmitSelector(Builder, Method->getSelector()); }
virtual void GenerateCategory(const ObjCCategoryImplDecl *CMD);
virtual void GenerateClass(const ObjCImplementationDecl *ClassDecl);
virtual llvm::Value *GenerateProtocolRef(CGBuilderTy &Builder,
const ObjCProtocolDecl *PD);
virtual llvm::Constant *GetPropertyGetFunction() {
return ObjCTypes.getGetPropertyFn();
}
virtual llvm::Constant *GetPropertySetFunction() {
return ObjCTypes.getSetPropertyFn();
}
virtual llvm::Constant *EnumerationMutationFunction() {
return ObjCTypes.getEnumerationMutationFn();
}
virtual void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
const Stmt &S);
virtual void EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
const ObjCAtThrowStmt &S);
virtual llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
llvm::Value *AddrWeakObj);
virtual void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst);
virtual void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dest);
virtual void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
llvm::Value *dest, llvm::Value *src,
QualType Ty);
virtual LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
QualType ObjectTy,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers);
virtual llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar);
};
} // end anonymous namespace
/* *** Helper Functions *** */
/// getConstantGEP() - Help routine to construct simple GEPs.
static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
llvm::Constant *C,
unsigned idx0,
unsigned idx1) {
llvm::Value *Idxs[] = {
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx0),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), idx1)
};
return llvm::ConstantExpr::getGetElementPtr(C, Idxs, 2);
}
/// hasObjCExceptionAttribute - Return true if this class or any super
/// class has the __objc_exception__ attribute.
static bool hasObjCExceptionAttribute(ASTContext &Context,
const ObjCInterfaceDecl *OID) {
if (OID->hasAttr<ObjCExceptionAttr>())
return true;
if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
return hasObjCExceptionAttribute(Context, Super);
return false;
}
/* *** CGObjCMac Public Interface *** */
CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
ObjCTypes(cgm) {
ObjCABI = 1;
EmitImageInfo();
}
/// GetClass - Return a reference to the class for the given interface
/// decl.
llvm::Value *CGObjCMac::GetClass(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
return EmitClassRef(Builder, ID);
}
/// GetSelector - Return the pointer to the unique'd string for this selector.
llvm::Value *CGObjCMac::GetSelector(CGBuilderTy &Builder, Selector Sel) {
return EmitSelector(Builder, Sel);
}
llvm::Value *CGObjCMac::GetSelector(CGBuilderTy &Builder, const ObjCMethodDecl
*Method) {
return EmitSelector(Builder, Method->getSelector());
}
/// Generate a constant CFString object.
/*
struct __builtin_CFString {
const int *isa; // point to __CFConstantStringClassReference
int flags;
const char *str;
long length;
};
*/
llvm::Constant *CGObjCCommonMac::GenerateConstantString(
const ObjCStringLiteral *SL) {
return CGM.GetAddrOfConstantCFString(SL->getString());
}
/// Generates a message send where the super is the receiver. This is
/// a message send to self with special delivery semantics indicating
/// which class's method should be called.
CodeGen::RValue
CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
const ObjCInterfaceDecl *Class,
bool isCategoryImpl,
llvm::Value *Receiver,
bool IsClassMessage,
const CodeGen::CallArgList &CallArgs,
const ObjCMethodDecl *Method) {
// Create and init a super structure; this is a (receiver, class)
// pair we will pass to objc_msgSendSuper.
llvm::Value *ObjCSuper =
CGF.Builder.CreateAlloca(ObjCTypes.SuperTy, 0, "objc_super");
llvm::Value *ReceiverAsObject =
CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
CGF.Builder.CreateStore(ReceiverAsObject,
CGF.Builder.CreateStructGEP(ObjCSuper, 0));
// If this is a class message the metaclass is passed as the target.
llvm::Value *Target;
if (IsClassMessage) {
if (isCategoryImpl) {
// Message sent to 'super' in a class method defined in a category
// implementation requires an odd treatment.
// If we are in a class method, we must retrieve the
// _metaclass_ for the current class, pointed at by
// the class's "isa" pointer. The following assumes that
// isa" is the first ivar in a class (which it must be).
Target = EmitClassRef(CGF.Builder, Class->getSuperClass());
Target = CGF.Builder.CreateStructGEP(Target, 0);
Target = CGF.Builder.CreateLoad(Target);
} else {
llvm::Value *MetaClassPtr = EmitMetaClassRef(Class);
llvm::Value *SuperPtr = CGF.Builder.CreateStructGEP(MetaClassPtr, 1);
llvm::Value *Super = CGF.Builder.CreateLoad(SuperPtr);
Target = Super;
}
} else {
Target = EmitClassRef(CGF.Builder, Class->getSuperClass());
}
// FIXME: We shouldn't need to do this cast, rectify the ASTContext and
// ObjCTypes types.
const llvm::Type *ClassTy =
CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
Target = CGF.Builder.CreateBitCast(Target, ClassTy);
CGF.Builder.CreateStore(Target,
CGF.Builder.CreateStructGEP(ObjCSuper, 1));
return EmitLegacyMessageSend(CGF, ResultType,
EmitSelector(CGF.Builder, Sel),
ObjCSuper, ObjCTypes.SuperPtrCTy,
true, CallArgs, Method, ObjCTypes);
}
/// Generate code for a message send expression.
CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method) {
return EmitLegacyMessageSend(CGF, ResultType,
EmitSelector(CGF.Builder, Sel),
Receiver, CGF.getContext().getObjCIdType(),
false, CallArgs, Method, ObjCTypes);
}
CodeGen::RValue
CGObjCCommonMac::EmitLegacyMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
llvm::Value *Sel,
llvm::Value *Arg0,
QualType Arg0Ty,
bool IsSuper,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method,
const ObjCCommonTypesHelper &ObjCTypes) {
CallArgList ActualArgs;
if (!IsSuper)
Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy, "tmp");
ActualArgs.push_back(std::make_pair(RValue::get(Arg0), Arg0Ty));
ActualArgs.push_back(std::make_pair(RValue::get(Sel),
CGF.getContext().getObjCSelType()));
ActualArgs.insert(ActualArgs.end(), CallArgs.begin(), CallArgs.end());
CodeGenTypes &Types = CGM.getTypes();
const CGFunctionInfo &FnInfo = Types.getFunctionInfo(ResultType, ActualArgs);
const llvm::FunctionType *FTy =
Types.GetFunctionType(FnInfo, Method ? Method->isVariadic() : false);
llvm::Constant *Fn = NULL;
if (CGM.ReturnTypeUsesSret(FnInfo)) {
Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper)
: ObjCTypes.getSendStretFn(IsSuper);
} else if (ResultType->isFloatingType()) {
if (ObjCABI == 2) {
if (const BuiltinType *BT = ResultType->getAsBuiltinType()) {
BuiltinType::Kind k = BT->getKind();
Fn = (k == BuiltinType::LongDouble) ? ObjCTypes.getSendFpretFn2(IsSuper)
: ObjCTypes.getSendFn2(IsSuper);
} else {
Fn = ObjCTypes.getSendFn2(IsSuper);
}
} else
// FIXME. This currently matches gcc's API for x86-32. May need to change
// for others if we have their API.
Fn = ObjCTypes.getSendFpretFn(IsSuper);
} else {
Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
: ObjCTypes.getSendFn(IsSuper);
}
assert(Fn && "EmitLegacyMessageSend - unknown API");
Fn = llvm::ConstantExpr::getBitCast(Fn,
llvm::PointerType::getUnqual(FTy));
return CGF.EmitCall(FnInfo, Fn, ActualArgs);
}
llvm::Value *CGObjCMac::GenerateProtocolRef(CGBuilderTy &Builder,
const ObjCProtocolDecl *PD) {
// FIXME: I don't understand why gcc generates this, or where it is
// resolved. Investigate. Its also wasteful to look this up over and over.
LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
return llvm::ConstantExpr::getBitCast(GetProtocolRef(PD),
ObjCTypes.ExternalProtocolPtrTy);
}
void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
// FIXME: We shouldn't need this, the protocol decl should contain enough
// information to tell us whether this was a declaration or a definition.
DefinedProtocols.insert(PD->getIdentifier());
// If we have generated a forward reference to this protocol, emit
// it now. Otherwise do nothing, the protocol objects are lazily
// emitted.
if (Protocols.count(PD->getIdentifier()))
GetOrEmitProtocol(PD);
}
llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
if (DefinedProtocols.count(PD->getIdentifier()))
return GetOrEmitProtocol(PD);
return GetOrEmitProtocolRef(PD);
}
/*
// APPLE LOCAL radar 4585769 - Objective-C 1.0 extensions
struct _objc_protocol {
struct _objc_protocol_extension *isa;
char *protocol_name;
struct _objc_protocol_list *protocol_list;
struct _objc__method_prototype_list *instance_methods;
struct _objc__method_prototype_list *class_methods
};
See EmitProtocolExtension().
*/
llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
// Early exit if a defining object has already been generated.
if (Entry && Entry->hasInitializer())
return Entry;
// FIXME: I don't understand why gcc generates this, or where it is
// resolved. Investigate. Its also wasteful to look this up over and over.
LazySymbols.insert(&CGM.getContext().Idents.get("Protocol"));
const char *ProtocolName = PD->getNameAsCString();
// Construct method lists.
std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
for (ObjCProtocolDecl::instmeth_iterator
i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
llvm::Constant *C = GetMethodDescriptionConstant(MD);
if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
OptInstanceMethods.push_back(C);
} else {
InstanceMethods.push_back(C);
}
}
for (ObjCProtocolDecl::classmeth_iterator
i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
llvm::Constant *C = GetMethodDescriptionConstant(MD);
if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
OptClassMethods.push_back(C);
} else {
ClassMethods.push_back(C);
}
}
std::vector<llvm::Constant*> Values(5);
Values[0] = EmitProtocolExtension(PD, OptInstanceMethods, OptClassMethods);
Values[1] = GetClassName(PD->getIdentifier());
Values[2] =
EmitProtocolList("\01L_OBJC_PROTOCOL_REFS_" + PD->getNameAsString(),
PD->protocol_begin(),
PD->protocol_end());
Values[3] =
EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_"
+ PD->getNameAsString(),
"__OBJC,__cat_inst_meth,regular,no_dead_strip",
InstanceMethods);
Values[4] =
EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_"
+ PD->getNameAsString(),
"__OBJC,__cat_cls_meth,regular,no_dead_strip",
ClassMethods);
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
Values);
if (Entry) {
// Already created, fix the linkage and update the initializer.
Entry->setLinkage(llvm::GlobalValue::InternalLinkage);
Entry->setInitializer(Init);
} else {
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false,
llvm::GlobalValue::InternalLinkage,
Init,
std::string("\01L_OBJC_PROTOCOL_")+ProtocolName);
Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
Entry->setAlignment(4);
// FIXME: Is this necessary? Why only for protocol?
Entry->setAlignment(4);
}
CGM.AddUsedGlobal(Entry);
return Entry;
}
llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
if (!Entry) {
// We use the initializer as a marker of whether this is a forward
// reference or not. At module finalization we add the empty
// contents for protocols which were referenced but never defined.
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy, false,
llvm::GlobalValue::ExternalLinkage,
0,
"\01L_OBJC_PROTOCOL_" + PD->getNameAsString());
Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
Entry->setAlignment(4);
// FIXME: Is this necessary? Why only for protocol?
Entry->setAlignment(4);
}
return Entry;
}
/*
struct _objc_protocol_extension {
uint32_t size;
struct objc_method_description_list *optional_instance_methods;
struct objc_method_description_list *optional_class_methods;
struct objc_property_list *instance_properties;
};
*/
llvm::Constant *
CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
const ConstantVector &OptInstanceMethods,
const ConstantVector &OptClassMethods) {
uint64_t Size =
CGM.getTargetData().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
std::vector<llvm::Constant*> Values(4);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
Values[1] =
EmitMethodDescList("\01L_OBJC_PROTOCOL_INSTANCE_METHODS_OPT_"
+ PD->getNameAsString(),
"__OBJC,__cat_inst_meth,regular,no_dead_strip",
OptInstanceMethods);
Values[2] =
EmitMethodDescList("\01L_OBJC_PROTOCOL_CLASS_METHODS_OPT_"
+ PD->getNameAsString(),
"__OBJC,__cat_cls_meth,regular,no_dead_strip",
OptClassMethods);
Values[3] = EmitPropertyList("\01L_OBJC_$_PROP_PROTO_LIST_" +
PD->getNameAsString(),
0, PD, ObjCTypes);
// Return null if no extension bits are used.
if (Values[1]->isNullValue() && Values[2]->isNullValue() &&
Values[3]->isNullValue())
return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
llvm::Constant *Init =
llvm::ConstantStruct::get(ObjCTypes.ProtocolExtensionTy, Values);
// No special section, but goes in llvm.used
return CreateMetadataVar("\01L_OBJC_PROTOCOLEXT_" + PD->getNameAsString(),
Init,
0, 0, true);
}
/*
struct objc_protocol_list {
struct objc_protocol_list *next;
long count;
Protocol *list[];
};
*/
llvm::Constant *
CGObjCMac::EmitProtocolList(const std::string &Name,
ObjCProtocolDecl::protocol_iterator begin,
ObjCProtocolDecl::protocol_iterator end) {
std::vector<llvm::Constant*> ProtocolRefs;
for (; begin != end; ++begin)
ProtocolRefs.push_back(GetProtocolRef(*begin));
// Just return null for empty protocol lists
if (ProtocolRefs.empty())
return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
// This list is null terminated.
ProtocolRefs.push_back(llvm::Constant::getNullValue(ObjCTypes.ProtocolPtrTy));
std::vector<llvm::Constant*> Values(3);
// This field is only used by the runtime.
Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy,
ProtocolRefs.size() - 1);
Values[2] =
llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.ProtocolPtrTy,
ProtocolRefs.size()),
ProtocolRefs);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV =
CreateMetadataVar(Name, Init, "__OBJC,__cat_cls_meth,regular,no_dead_strip",
4, false);
return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.ProtocolListPtrTy);
}
/*
struct _objc_property {
const char * const name;
const char * const attributes;
};
struct _objc_property_list {
uint32_t entsize; // sizeof (struct _objc_property)
uint32_t prop_count;
struct _objc_property[prop_count];
};
*/
llvm::Constant *CGObjCCommonMac::EmitPropertyList(const std::string &Name,
const Decl *Container,
const ObjCContainerDecl *OCD,
const ObjCCommonTypesHelper &ObjCTypes) {
std::vector<llvm::Constant*> Properties, Prop(2);
for (ObjCContainerDecl::prop_iterator I = OCD->prop_begin(),
E = OCD->prop_end(); I != E; ++I) {
const ObjCPropertyDecl *PD = *I;
Prop[0] = GetPropertyName(PD->getIdentifier());
Prop[1] = GetPropertyTypeString(PD, Container);
Properties.push_back(llvm::ConstantStruct::get(ObjCTypes.PropertyTy,
Prop));
}
// Return null for empty list.
if (Properties.empty())
return llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
unsigned PropertySize =
CGM.getTargetData().getTypeAllocSize(ObjCTypes.PropertyTy);
std::vector<llvm::Constant*> Values(3);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, PropertySize);
Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Properties.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.PropertyTy,
Properties.size());
Values[2] = llvm::ConstantArray::get(AT, Properties);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV =
CreateMetadataVar(Name, Init,
(ObjCABI == 2) ? "__DATA, __objc_const" :
"__OBJC,__property,regular,no_dead_strip",
(ObjCABI == 2) ? 8 : 4,
true);
return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.PropertyListPtrTy);
}
/*
struct objc_method_description_list {
int count;
struct objc_method_description list[];
};
*/
llvm::Constant *
CGObjCMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
std::vector<llvm::Constant*> Desc(2);
Desc[0] =
llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
ObjCTypes.SelectorPtrTy);
Desc[1] = GetMethodVarType(MD);
return llvm::ConstantStruct::get(ObjCTypes.MethodDescriptionTy,
Desc);
}
llvm::Constant *CGObjCMac::EmitMethodDescList(const std::string &Name,
const char *Section,
const ConstantVector &Methods) {
// Return null for empty list.
if (Methods.empty())
return llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
std::vector<llvm::Constant*> Values(2);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodDescriptionTy,
Methods.size());
Values[1] = llvm::ConstantArray::get(AT, Methods);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true);
return llvm::ConstantExpr::getBitCast(GV,
ObjCTypes.MethodDescriptionListPtrTy);
}
/*
struct _objc_category {
char *category_name;
char *class_name;
struct _objc_method_list *instance_methods;
struct _objc_method_list *class_methods;
struct _objc_protocol_list *protocols;
uint32_t size; // <rdar://4585769>
struct _objc_property_list *instance_properties;
};
*/
void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.CategoryTy);
// FIXME: This is poor design, the OCD should have a pointer to the category
// decl. Additionally, note that Category can be null for the @implementation
// w/o an @interface case. Sema should just create one for us as it does for
// @implementation so everyone else can live life under a clear blue sky.
const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
const ObjCCategoryDecl *Category =
Interface->FindCategoryDeclaration(OCD->getIdentifier());
std::string ExtName(Interface->getNameAsString() + "_" +
OCD->getNameAsString());
std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
for (ObjCCategoryImplDecl::instmeth_iterator
i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) {
// Instance methods should always be defined.
InstanceMethods.push_back(GetMethodConstant(*i));
}
for (ObjCCategoryImplDecl::classmeth_iterator
i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) {
// Class methods should always be defined.
ClassMethods.push_back(GetMethodConstant(*i));
}
std::vector<llvm::Constant*> Values(7);
Values[0] = GetClassName(OCD->getIdentifier());
Values[1] = GetClassName(Interface->getIdentifier());
LazySymbols.insert(Interface->getIdentifier());
Values[2] =
EmitMethodList(std::string("\01L_OBJC_CATEGORY_INSTANCE_METHODS_") +
ExtName,
"__OBJC,__cat_inst_meth,regular,no_dead_strip",
InstanceMethods);
Values[3] =
EmitMethodList(std::string("\01L_OBJC_CATEGORY_CLASS_METHODS_") + ExtName,
"__OBJC,__cat_cls_meth,regular,no_dead_strip",
ClassMethods);
if (Category) {
Values[4] =
EmitProtocolList(std::string("\01L_OBJC_CATEGORY_PROTOCOLS_") + ExtName,
Category->protocol_begin(),
Category->protocol_end());
} else {
Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
}
Values[5] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
// If there is no category @interface then there can be no properties.
if (Category) {
Values[6] = EmitPropertyList(std::string("\01l_OBJC_$_PROP_LIST_")+ExtName,
OCD, Category, ObjCTypes);
} else {
Values[6] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
}
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.CategoryTy,
Values);
llvm::GlobalVariable *GV =
CreateMetadataVar(std::string("\01L_OBJC_CATEGORY_")+ExtName, Init,
"__OBJC,__category,regular,no_dead_strip",
4, true);
DefinedCategories.push_back(GV);
}
// FIXME: Get from somewhere?
enum ClassFlags {
eClassFlags_Factory = 0x00001,
eClassFlags_Meta = 0x00002,
// <rdr://5142207>
eClassFlags_HasCXXStructors = 0x02000,
eClassFlags_Hidden = 0x20000,
eClassFlags_ABI2_Hidden = 0x00010,
eClassFlags_ABI2_HasCXXStructors = 0x00004 // <rdr://4923634>
};
/*
struct _objc_class {
Class isa;
Class super_class;
const char *name;
long version;
long info;
long instance_size;
struct _objc_ivar_list *ivars;
struct _objc_method_list *methods;
struct _objc_cache *cache;
struct _objc_protocol_list *protocols;
// Objective-C 1.0 extensions (<rdr://4585769>)
const char *ivar_layout;
struct _objc_class_ext *ext;
};
See EmitClassExtension();
*/
void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
DefinedSymbols.insert(ID->getIdentifier());
std::string ClassName = ID->getNameAsString();
// FIXME: Gross
ObjCInterfaceDecl *Interface =
const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
llvm::Constant *Protocols =
EmitProtocolList("\01L_OBJC_CLASS_PROTOCOLS_" + ID->getNameAsString(),
Interface->protocol_begin(),
Interface->protocol_end());
unsigned Flags = eClassFlags_Factory;
unsigned Size =
CGM.getContext().getASTObjCImplementationLayout(ID).getSize() / 8;
// FIXME: Set CXX-structors flag.
if (CGM.getDeclVisibilityMode(ID->getClassInterface()) == LangOptions::Hidden)
Flags |= eClassFlags_Hidden;
std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
for (ObjCImplementationDecl::instmeth_iterator
i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) {
// Instance methods should always be defined.
InstanceMethods.push_back(GetMethodConstant(*i));
}
for (ObjCImplementationDecl::classmeth_iterator
i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) {
// Class methods should always be defined.
ClassMethods.push_back(GetMethodConstant(*i));
}
for (ObjCImplementationDecl::propimpl_iterator
i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
ObjCPropertyDecl *PD = PID->getPropertyDecl();
if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
if (llvm::Constant *C = GetMethodConstant(MD))
InstanceMethods.push_back(C);
if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
if (llvm::Constant *C = GetMethodConstant(MD))
InstanceMethods.push_back(C);
}
}
std::vector<llvm::Constant*> Values(12);
Values[ 0] = EmitMetaClass(ID, Protocols, ClassMethods);
if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
// Record a reference to the super class.
LazySymbols.insert(Super->getIdentifier());
Values[ 1] =
llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()),
ObjCTypes.ClassPtrTy);
} else {
Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
}
Values[ 2] = GetClassName(ID->getIdentifier());
// Version is always 0.
Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
Values[ 6] = EmitIvarList(ID, false);
Values[ 7] =
EmitMethodList("\01L_OBJC_INSTANCE_METHODS_" + ID->getNameAsString(),
"__OBJC,__inst_meth,regular,no_dead_strip",
InstanceMethods);
// cache is always NULL.
Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
Values[ 9] = Protocols;
Values[10] = BuildIvarLayout(ID, true);
Values[11] = EmitClassExtension(ID);
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
Values);
llvm::GlobalVariable *GV =
CreateMetadataVar(std::string("\01L_OBJC_CLASS_")+ClassName, Init,
"__OBJC,__class,regular,no_dead_strip",
4, true);
DefinedClasses.push_back(GV);
}
llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
llvm::Constant *Protocols,
const ConstantVector &Methods) {
unsigned Flags = eClassFlags_Meta;
unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassTy);
if (CGM.getDeclVisibilityMode(ID->getClassInterface()) == LangOptions::Hidden)
Flags |= eClassFlags_Hidden;
std::vector<llvm::Constant*> Values(12);
// The isa for the metaclass is the root of the hierarchy.
const ObjCInterfaceDecl *Root = ID->getClassInterface();
while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
Root = Super;
Values[ 0] =
llvm::ConstantExpr::getBitCast(GetClassName(Root->getIdentifier()),
ObjCTypes.ClassPtrTy);
// The super class for the metaclass is emitted as the name of the
// super class. The runtime fixes this up to point to the
// *metaclass* for the super class.
if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
Values[ 1] =
llvm::ConstantExpr::getBitCast(GetClassName(Super->getIdentifier()),
ObjCTypes.ClassPtrTy);
} else {
Values[ 1] = llvm::Constant::getNullValue(ObjCTypes.ClassPtrTy);
}
Values[ 2] = GetClassName(ID->getIdentifier());
// Version is always 0.
Values[ 3] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
Values[ 4] = llvm::ConstantInt::get(ObjCTypes.LongTy, Flags);
Values[ 5] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
Values[ 6] = EmitIvarList(ID, true);
Values[ 7] =
EmitMethodList("\01L_OBJC_CLASS_METHODS_" + ID->getNameAsString(),
"__OBJC,__cls_meth,regular,no_dead_strip",
Methods);
// cache is always NULL.
Values[ 8] = llvm::Constant::getNullValue(ObjCTypes.CachePtrTy);
Values[ 9] = Protocols;
// ivar_layout for metaclass is always NULL.
Values[10] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
// The class extension is always unused for metaclasses.
Values[11] = llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassTy,
Values);
std::string Name("\01L_OBJC_METACLASS_");
Name += ID->getNameAsCString();
// Check for a forward reference.
llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
if (GV) {
assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
"Forward metaclass reference has incorrect type.");
GV->setLinkage(llvm::GlobalValue::InternalLinkage);
GV->setInitializer(Init);
} else {
GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
llvm::GlobalValue::InternalLinkage,
Init, Name);
}
GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
GV->setAlignment(4);
CGM.AddUsedGlobal(GV);
return GV;
}
llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
std::string Name = "\01L_OBJC_METACLASS_" + ID->getNameAsString();
// FIXME: Should we look these up somewhere other than the module. Its a bit
// silly since we only generate these while processing an implementation, so
// exactly one pointer would work if know when we entered/exitted an
// implementation block.
// Check for an existing forward reference.
// Previously, metaclass with internal linkage may have been defined.
// pass 'true' as 2nd argument so it is returned.
if (llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name,
true)) {
assert(GV->getType()->getElementType() == ObjCTypes.ClassTy &&
"Forward metaclass reference has incorrect type.");
return GV;
} else {
// Generate as an external reference to keep a consistent
// module. This will be patched up when we emit the metaclass.
return new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
llvm::GlobalValue::ExternalLinkage,
0,
Name);
}
}
/*
struct objc_class_ext {
uint32_t size;
const char *weak_ivar_layout;
struct _objc_property_list *properties;
};
*/
llvm::Constant *
CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID) {
uint64_t Size =
CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
std::vector<llvm::Constant*> Values(3);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
Values[1] = BuildIvarLayout(ID, false);
Values[2] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getNameAsString(),
ID, ID->getClassInterface(), ObjCTypes);
// Return null if no extension bits are used.
if (Values[1]->isNullValue() && Values[2]->isNullValue())
return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
llvm::Constant *Init =
llvm::ConstantStruct::get(ObjCTypes.ClassExtensionTy, Values);
return CreateMetadataVar("\01L_OBJC_CLASSEXT_" + ID->getNameAsString(),
Init, "__OBJC,__class_ext,regular,no_dead_strip",
4, true);
}
/*
struct objc_ivar {
char *ivar_name;
char *ivar_type;
int ivar_offset;
};
struct objc_ivar_list {
int ivar_count;
struct objc_ivar list[count];
};
*/
llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
bool ForClass) {
std::vector<llvm::Constant*> Ivars, Ivar(3);
// When emitting the root class GCC emits ivar entries for the
// actual class structure. It is not clear if we need to follow this
// behavior; for now lets try and get away with not doing it. If so,
// the cleanest solution would be to make up an ObjCInterfaceDecl
// for the class.
if (ForClass)
return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
ObjCInterfaceDecl *OID =
const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
llvm::SmallVector<ObjCIvarDecl*, 16> OIvars;
CGM.getContext().ShallowCollectObjCIvars(OID, OIvars);
for (unsigned i = 0, e = OIvars.size(); i != e; ++i) {
ObjCIvarDecl *IVD = OIvars[i];
// Ignore unnamed bit-fields.
if (!IVD->getDeclName())
continue;
Ivar[0] = GetMethodVarName(IVD->getIdentifier());
Ivar[1] = GetMethodVarType(IVD);
Ivar[2] = llvm::ConstantInt::get(ObjCTypes.IntTy,
ComputeIvarBaseOffset(CGM, OID, IVD));
Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarTy, Ivar));
}
// Return null for empty list.
if (Ivars.empty())
return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
std::vector<llvm::Constant*> Values(2);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarTy,
Ivars.size());
Values[1] = llvm::ConstantArray::get(AT, Ivars);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV;
if (ForClass)
GV = CreateMetadataVar("\01L_OBJC_CLASS_VARIABLES_" + ID->getNameAsString(),
Init, "__OBJC,__class_vars,regular,no_dead_strip",
4, true);
else
GV = CreateMetadataVar("\01L_OBJC_INSTANCE_VARIABLES_"
+ ID->getNameAsString(),
Init, "__OBJC,__instance_vars,regular,no_dead_strip",
4, true);
return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListPtrTy);
}
/*
struct objc_method {
SEL method_name;
char *method_types;
void *method;
};
struct objc_method_list {
struct objc_method_list *obsolete;
int count;
struct objc_method methods_list[count];
};
*/
/// GetMethodConstant - Return a struct objc_method constant for the
/// given method if it has been defined. The result is null if the
/// method has not been defined. The return value has type MethodPtrTy.
llvm::Constant *CGObjCMac::GetMethodConstant(const ObjCMethodDecl *MD) {
// FIXME: Use DenseMap::lookup
llvm::Function *Fn = MethodDefinitions[MD];
if (!Fn)
return 0;
std::vector<llvm::Constant*> Method(3);
Method[0] =
llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
ObjCTypes.SelectorPtrTy);
Method[1] = GetMethodVarType(MD);
Method[2] = llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy);
return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
}
llvm::Constant *CGObjCMac::EmitMethodList(const std::string &Name,
const char *Section,
const ConstantVector &Methods) {
// Return null for empty list.
if (Methods.empty())
return llvm::Constant::getNullValue(ObjCTypes.MethodListPtrTy);
std::vector<llvm::Constant*> Values(3);
Values[0] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
Methods.size());
Values[2] = llvm::ConstantArray::get(AT, Methods);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV = CreateMetadataVar(Name, Init, Section, 4, true);
return llvm::ConstantExpr::getBitCast(GV,
ObjCTypes.MethodListPtrTy);
}
llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
const ObjCContainerDecl *CD) {
std::string Name;
GetNameForMethod(OMD, CD, Name);
CodeGenTypes &Types = CGM.getTypes();
const llvm::FunctionType *MethodTy =
Types.GetFunctionType(Types.getFunctionInfo(OMD), OMD->isVariadic());
llvm::Function *Method =
llvm::Function::Create(MethodTy,
llvm::GlobalValue::InternalLinkage,
Name,
&CGM.getModule());
MethodDefinitions.insert(std::make_pair(OMD, Method));
return Method;
}
llvm::GlobalVariable *
CGObjCCommonMac::CreateMetadataVar(const std::string &Name,
llvm::Constant *Init,
const char *Section,
unsigned Align,
bool AddToUsed) {
const llvm::Type *Ty = Init->getType();
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Ty, false,
llvm::GlobalValue::InternalLinkage, Init, Name);
if (Section)
GV->setSection(Section);
if (Align)
GV->setAlignment(Align);
if (AddToUsed)
CGM.AddUsedGlobal(GV);
return GV;
}
llvm::Function *CGObjCMac::ModuleInitFunction() {
// Abuse this interface function as a place to finalize.
FinishModule();
return NULL;
}
llvm::Constant *CGObjCMac::GetPropertyGetFunction() {
return ObjCTypes.getGetPropertyFn();
}
llvm::Constant *CGObjCMac::GetPropertySetFunction() {
return ObjCTypes.getSetPropertyFn();
}
llvm::Constant *CGObjCMac::EnumerationMutationFunction() {
return ObjCTypes.getEnumerationMutationFn();
}
/*
Objective-C setjmp-longjmp (sjlj) Exception Handling
--
The basic framework for a @try-catch-finally is as follows:
{
objc_exception_data d;
id _rethrow = null;
bool _call_try_exit = true;
objc_exception_try_enter(&d);
if (!setjmp(d.jmp_buf)) {
... try body ...
} else {
// exception path
id _caught = objc_exception_extract(&d);
// enter new try scope for handlers
if (!setjmp(d.jmp_buf)) {
... match exception and execute catch blocks ...
// fell off end, rethrow.
_rethrow = _caught;
... jump-through-finally to finally_rethrow ...
} else {
// exception in catch block
_rethrow = objc_exception_extract(&d);
_call_try_exit = false;
... jump-through-finally to finally_rethrow ...
}
}
... jump-through-finally to finally_end ...
finally:
if (_call_try_exit)
objc_exception_try_exit(&d);
... finally block ....
... dispatch to finally destination ...
finally_rethrow:
objc_exception_throw(_rethrow);
finally_end:
}
This framework differs slightly from the one gcc uses, in that gcc
uses _rethrow to determine if objc_exception_try_exit should be called
and if the object should be rethrown. This breaks in the face of
throwing nil and introduces unnecessary branches.
We specialize this framework for a few particular circumstances:
- If there are no catch blocks, then we avoid emitting the second
exception handling context.
- If there is a catch-all catch block (i.e. @catch(...) or @catch(id
e)) we avoid emitting the code to rethrow an uncaught exception.
- FIXME: If there is no @finally block we can do a few more
simplifications.
Rethrows and Jumps-Through-Finally
--
Support for implicit rethrows and jumping through the finally block is
handled by storing the current exception-handling context in
ObjCEHStack.
In order to implement proper @finally semantics, we support one basic
mechanism for jumping through the finally block to an arbitrary
destination. Constructs which generate exits from a @try or @catch
block use this mechanism to implement the proper semantics by chaining
jumps, as necessary.
This mechanism works like the one used for indirect goto: we
arbitrarily assign an ID to each destination and store the ID for the
destination in a variable prior to entering the finally block. At the
end of the finally block we simply create a switch to the proper
destination.
Code gen for @synchronized(expr) stmt;
Effectively generating code for:
objc_sync_enter(expr);
@try stmt @finally { objc_sync_exit(expr); }
*/
void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
const Stmt &S) {
bool isTry = isa<ObjCAtTryStmt>(S);
// Create various blocks we refer to for handling @finally.
llvm::BasicBlock *FinallyBlock = CGF.createBasicBlock("finally");
llvm::BasicBlock *FinallyExit = CGF.createBasicBlock("finally.exit");
llvm::BasicBlock *FinallyNoExit = CGF.createBasicBlock("finally.noexit");
llvm::BasicBlock *FinallyRethrow = CGF.createBasicBlock("finally.throw");
llvm::BasicBlock *FinallyEnd = CGF.createBasicBlock("finally.end");
// For @synchronized, call objc_sync_enter(sync.expr). The
// evaluation of the expression must occur before we enter the
// @synchronized. We can safely avoid a temp here because jumps into
// @synchronized are illegal & this will dominate uses.
llvm::Value *SyncArg = 0;
if (!isTry) {
SyncArg =
CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
CGF.Builder.CreateCall(ObjCTypes.getSyncEnterFn(), SyncArg);
}
// Push an EH context entry, used for handling rethrows and jumps
// through finally.
CGF.PushCleanupBlock(FinallyBlock);
CGF.ObjCEHValueStack.push_back(0);
// Allocate memory for the exception data and rethrow pointer.
llvm::Value *ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
"exceptiondata.ptr");
llvm::Value *RethrowPtr = CGF.CreateTempAlloca(ObjCTypes.ObjectPtrTy,
"_rethrow");
llvm::Value *CallTryExitPtr = CGF.CreateTempAlloca(
llvm::Type::getInt1Ty(VMContext),
"_call_try_exit");
CGF.Builder.CreateStore(llvm::ConstantInt::getTrue(VMContext),
CallTryExitPtr);
// Enter a new try block and call setjmp.
CGF.Builder.CreateCall(ObjCTypes.getExceptionTryEnterFn(), ExceptionData);
llvm::Value *JmpBufPtr = CGF.Builder.CreateStructGEP(ExceptionData, 0,
"jmpbufarray");
JmpBufPtr = CGF.Builder.CreateStructGEP(JmpBufPtr, 0, "tmp");
llvm::Value *SetJmpResult = CGF.Builder.CreateCall(ObjCTypes.getSetJmpFn(),
JmpBufPtr, "result");
llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(SetJmpResult, "threw"),
TryHandler, TryBlock);
// Emit the @try block.
CGF.EmitBlock(TryBlock);
CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
: cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
CGF.EmitBranchThroughCleanup(FinallyEnd);
// Emit the "exception in @try" block.
CGF.EmitBlock(TryHandler);
// Retrieve the exception object. We may emit multiple blocks but
// nothing can cross this so the value is already in SSA form.
llvm::Value *Caught =
CGF.Builder.CreateCall(ObjCTypes.getExceptionExtractFn(),
ExceptionData, "caught");
CGF.ObjCEHValueStack.back() = Caught;
if (!isTry) {
CGF.Builder.CreateStore(Caught, RethrowPtr);
CGF.Builder.CreateStore(llvm::ConstantInt::getFalse(VMContext),
CallTryExitPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
} else if (const ObjCAtCatchStmt* CatchStmt =
cast<ObjCAtTryStmt>(S).getCatchStmts()) {
// Enter a new exception try block (in case a @catch block throws
// an exception).
CGF.Builder.CreateCall(ObjCTypes.getExceptionTryEnterFn(), ExceptionData);
llvm::Value *SetJmpResult = CGF.Builder.CreateCall(ObjCTypes.getSetJmpFn(),
JmpBufPtr, "result");
llvm::Value *Threw = CGF.Builder.CreateIsNotNull(SetJmpResult, "threw");
llvm::BasicBlock *CatchBlock = CGF.createBasicBlock("catch");
llvm::BasicBlock *CatchHandler = CGF.createBasicBlock("catch.handler");
CGF.Builder.CreateCondBr(Threw, CatchHandler, CatchBlock);
CGF.EmitBlock(CatchBlock);
// Handle catch list. As a special case we check if everything is
// matched and avoid generating code for falling off the end if
// so.
bool AllMatched = false;
for (; CatchStmt; CatchStmt = CatchStmt->getNextCatchStmt()) {
llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch");
const ParmVarDecl *CatchParam = CatchStmt->getCatchParamDecl();
const ObjCObjectPointerType *OPT = 0;
// catch(...) always matches.
if (!CatchParam) {
AllMatched = true;
} else {
OPT = CatchParam->getType()->getAsObjCObjectPointerType();
// catch(id e) always matches.
// FIXME: For the time being we also match id<X>; this should
// be rejected by Sema instead.
if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
AllMatched = true;
}
if (AllMatched) {
if (CatchParam) {
CGF.EmitLocalBlockVarDecl(*CatchParam);
assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
CGF.Builder.CreateStore(Caught, CGF.GetAddrOfLocalVar(CatchParam));
}
CGF.EmitStmt(CatchStmt->getCatchBody());
CGF.EmitBranchThroughCleanup(FinallyEnd);
break;
}
assert(OPT && "Unexpected non-object pointer type in @catch");
QualType T = OPT->getPointeeType();
const ObjCInterfaceType *ObjCType = T->getAsObjCInterfaceType();
assert(ObjCType && "Catch parameter must have Objective-C type!");
// Check if the @catch block matches the exception object.
llvm::Value *Class = EmitClassRef(CGF.Builder, ObjCType->getDecl());
llvm::Value *Match =
CGF.Builder.CreateCall2(ObjCTypes.getExceptionMatchFn(),
Class, Caught, "match");
llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("matched");
CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
MatchedBlock, NextCatchBlock);
// Emit the @catch block.
CGF.EmitBlock(MatchedBlock);
CGF.EmitLocalBlockVarDecl(*CatchParam);
assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
llvm::Value *Tmp =
CGF.Builder.CreateBitCast(Caught,
CGF.ConvertType(CatchParam->getType()),
"tmp");
CGF.Builder.CreateStore(Tmp, CGF.GetAddrOfLocalVar(CatchParam));
CGF.EmitStmt(CatchStmt->getCatchBody());
CGF.EmitBranchThroughCleanup(FinallyEnd);
CGF.EmitBlock(NextCatchBlock);
}
if (!AllMatched) {
// None of the handlers caught the exception, so store it to be
// rethrown at the end of the @finally block.
CGF.Builder.CreateStore(Caught, RethrowPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
}
// Emit the exception handler for the @catch blocks.
CGF.EmitBlock(CatchHandler);
CGF.Builder.CreateStore(
CGF.Builder.CreateCall(ObjCTypes.getExceptionExtractFn(),
ExceptionData),
RethrowPtr);
CGF.Builder.CreateStore(llvm::ConstantInt::getFalse(VMContext),
CallTryExitPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
} else {
CGF.Builder.CreateStore(Caught, RethrowPtr);
CGF.Builder.CreateStore(llvm::ConstantInt::getFalse(VMContext),
CallTryExitPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
}
// Pop the exception-handling stack entry. It is important to do
// this now, because the code in the @finally block is not in this
// context.
CodeGenFunction::CleanupBlockInfo Info = CGF.PopCleanupBlock();
CGF.ObjCEHValueStack.pop_back();
// Emit the @finally block.
CGF.EmitBlock(FinallyBlock);
llvm::Value* CallTryExit = CGF.Builder.CreateLoad(CallTryExitPtr, "tmp");
CGF.Builder.CreateCondBr(CallTryExit, FinallyExit, FinallyNoExit);
CGF.EmitBlock(FinallyExit);
CGF.Builder.CreateCall(ObjCTypes.getExceptionTryExitFn(), ExceptionData);
CGF.EmitBlock(FinallyNoExit);
if (isTry) {
if (const ObjCAtFinallyStmt* FinallyStmt =
cast<ObjCAtTryStmt>(S).getFinallyStmt())
CGF.EmitStmt(FinallyStmt->getFinallyBody());
} else {
// Emit objc_sync_exit(expr); as finally's sole statement for
// @synchronized.
CGF.Builder.CreateCall(ObjCTypes.getSyncExitFn(), SyncArg);
}
// Emit the switch block
if (Info.SwitchBlock)
CGF.EmitBlock(Info.SwitchBlock);
if (Info.EndBlock)
CGF.EmitBlock(Info.EndBlock);
CGF.EmitBlock(FinallyRethrow);
CGF.Builder.CreateCall(ObjCTypes.getExceptionThrowFn(),
CGF.Builder.CreateLoad(RethrowPtr));
CGF.Builder.CreateUnreachable();
CGF.EmitBlock(FinallyEnd);
}
void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
const ObjCAtThrowStmt &S) {
llvm::Value *ExceptionAsObject;
if (const Expr *ThrowExpr = S.getThrowExpr()) {
llvm::Value *Exception = CGF.EmitScalarExpr(ThrowExpr);
ExceptionAsObject =
CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy, "tmp");
} else {
assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
"Unexpected rethrow outside @catch block.");
ExceptionAsObject = CGF.ObjCEHValueStack.back();
}
CGF.Builder.CreateCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject);
CGF.Builder.CreateUnreachable();
// Clear the insertion point to indicate we are in unreachable code.
CGF.Builder.ClearInsertionPoint();
}
/// EmitObjCWeakRead - Code gen for loading value of a __weak
/// object: objc_read_weak (id *src)
///
llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
llvm::Value *AddrWeakObj) {
const llvm::Type* DestTy =
cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType();
AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj,
ObjCTypes.PtrObjectPtrTy);
llvm::Value *read_weak = CGF.Builder.CreateCall(ObjCTypes.getGcReadWeakFn(),
AddrWeakObj, "weakread");
read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
return read_weak;
}
/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
/// objc_assign_weak (id src, id *dst)
///
void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignWeakFn(),
src, dst, "weakassign");
return;
}
/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
/// objc_assign_global (id src, id *dst)
///
void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignGlobalFn(),
src, dst, "globalassign");
return;
}
/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
/// objc_assign_ivar (id src, id *dst)
///
void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignIvarFn(),
src, dst, "assignivar");
return;
}
/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
/// objc_assign_strongCast (id src, id *dst)
///
void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4) ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongLongTy);
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignStrongCastFn(),
src, dst, "weakassign");
return;
}
void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
llvm::Value *DestPtr,
llvm::Value *SrcPtr,
QualType Ty) {
// Get size info for this aggregate.
std::pair<uint64_t, unsigned> TypeInfo = CGM.getContext().getTypeInfo(Ty);
unsigned long size = TypeInfo.first/8;
SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
llvm::Value *N = llvm::ConstantInt::get(ObjCTypes.LongTy, size);
CGF.Builder.CreateCall3(ObjCTypes.GcMemmoveCollectableFn(),
DestPtr, SrcPtr, N);
return;
}
/// EmitObjCValueForIvar - Code Gen for ivar reference.
///
LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
QualType ObjectTy,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
const ObjCInterfaceDecl *ID = ObjectTy->getAsObjCInterfaceType()->getDecl();
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
EmitIvarOffset(CGF, ID, Ivar));
}
llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar) {
uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
return llvm::ConstantInt::get(
CGM.getTypes().ConvertType(CGM.getContext().LongTy),
Offset);
}
/* *** Private Interface *** */
/// EmitImageInfo - Emit the image info marker used to encode some module
/// level information.
///
/// See: <rdr://4810609&4810587&4810587>
/// struct IMAGE_INFO {
/// unsigned version;
/// unsigned flags;
/// };
enum ImageInfoFlags {
eImageInfo_FixAndContinue = (1 << 0), // FIXME: Not sure what
// this implies.
eImageInfo_GarbageCollected = (1 << 1),
eImageInfo_GCOnly = (1 << 2),
eImageInfo_OptimizedByDyld = (1 << 3), // FIXME: When is this set.
// A flag indicating that the module has no instances of an
// @synthesize of a superclass variable. <rdar://problem/6803242>
eImageInfo_CorrectedSynthesize = (1 << 4)
};
void CGObjCMac::EmitImageInfo() {
unsigned version = 0; // Version is unused?
unsigned flags = 0;
// FIXME: Fix and continue?
if (CGM.getLangOptions().getGCMode() != LangOptions::NonGC)
flags |= eImageInfo_GarbageCollected;
if (CGM.getLangOptions().getGCMode() == LangOptions::GCOnly)
flags |= eImageInfo_GCOnly;
// We never allow @synthesize of a superclass property.
flags |= eImageInfo_CorrectedSynthesize;
// Emitted as int[2];
llvm::Constant *values[2] = {
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), version),
llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), flags)
};
llvm::ArrayType *AT = llvm::ArrayType::get(llvm::Type::getInt32Ty(VMContext), 2);
const char *Section;
if (ObjCABI == 1)
Section = "__OBJC, __image_info,regular";
else
Section = "__DATA, __objc_imageinfo, regular, no_dead_strip";
llvm::GlobalVariable *GV =
CreateMetadataVar("\01L_OBJC_IMAGE_INFO",
llvm::ConstantArray::get(AT, values, 2),
Section,
0,
true);
GV->setConstant(true);
}
// struct objc_module {
// unsigned long version;
// unsigned long size;
// const char *name;
// Symtab symtab;
// };
// FIXME: Get from somewhere
static const int ModuleVersion = 7;
void CGObjCMac::EmitModuleInfo() {
uint64_t Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.ModuleTy);
std::vector<llvm::Constant*> Values(4);
Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, ModuleVersion);
Values[1] = llvm::ConstantInt::get(ObjCTypes.LongTy, Size);
// This used to be the filename, now it is unused. <rdr://4327263>
Values[2] = GetClassName(&CGM.getContext().Idents.get(""));
Values[3] = EmitModuleSymbols();
CreateMetadataVar("\01L_OBJC_MODULES",
llvm::ConstantStruct::get(ObjCTypes.ModuleTy, Values),
"__OBJC,__module_info,regular,no_dead_strip",
4, true);
}
llvm::Constant *CGObjCMac::EmitModuleSymbols() {
unsigned NumClasses = DefinedClasses.size();
unsigned NumCategories = DefinedCategories.size();
// Return null if no symbols were defined.
if (!NumClasses && !NumCategories)
return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
std::vector<llvm::Constant*> Values(5);
Values[0] = llvm::ConstantInt::get(ObjCTypes.LongTy, 0);
Values[1] = llvm::Constant::getNullValue(ObjCTypes.SelectorPtrTy);
Values[2] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumClasses);
Values[3] = llvm::ConstantInt::get(ObjCTypes.ShortTy, NumCategories);
// The runtime expects exactly the list of defined classes followed
// by the list of defined categories, in a single array.
std::vector<llvm::Constant*> Symbols(NumClasses + NumCategories);
for (unsigned i=0; i<NumClasses; i++)
Symbols[i] = llvm::ConstantExpr::getBitCast(DefinedClasses[i],
ObjCTypes.Int8PtrTy);
for (unsigned i=0; i<NumCategories; i++)
Symbols[NumClasses + i] =
llvm::ConstantExpr::getBitCast(DefinedCategories[i],
ObjCTypes.Int8PtrTy);
Values[4] =
llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
NumClasses + NumCategories),
Symbols);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV =
CreateMetadataVar("\01L_OBJC_SYMBOLS", Init,
"__OBJC,__symbols,regular,no_dead_strip",
4, true);
return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.SymtabPtrTy);
}
llvm::Value *CGObjCMac::EmitClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
LazySymbols.insert(ID->getIdentifier());
llvm::GlobalVariable *&Entry = ClassReferences[ID->getIdentifier()];
if (!Entry) {
llvm::Constant *Casted =
llvm::ConstantExpr::getBitCast(GetClassName(ID->getIdentifier()),
ObjCTypes.ClassPtrTy);
Entry =
CreateMetadataVar("\01L_OBJC_CLASS_REFERENCES_", Casted,
"__OBJC,__cls_refs,literal_pointers,no_dead_strip",
4, true);
}
return Builder.CreateLoad(Entry, false, "tmp");
}
llvm::Value *CGObjCMac::EmitSelector(CGBuilderTy &Builder, Selector Sel) {
llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
if (!Entry) {
llvm::Constant *Casted =
llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
ObjCTypes.SelectorPtrTy);
Entry =
CreateMetadataVar("\01L_OBJC_SELECTOR_REFERENCES_", Casted,
"__OBJC,__message_refs,literal_pointers,no_dead_strip",
4, true);
}
return Builder.CreateLoad(Entry, false, "tmp");
}
llvm::Constant *CGObjCCommonMac::GetClassName(IdentifierInfo *Ident) {
llvm::GlobalVariable *&Entry = ClassNames[Ident];
if (!Entry)
Entry = CreateMetadataVar("\01L_OBJC_CLASS_NAME_",
llvm::ConstantArray::get(VMContext, Ident->getName()),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
/// GetIvarLayoutName - Returns a unique constant for the given
/// ivar layout bitmap.
llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
const ObjCCommonTypesHelper &ObjCTypes) {
return llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
}
static QualType::GCAttrTypes GetGCAttrTypeForType(ASTContext &Ctx,
QualType FQT) {
if (FQT.isObjCGCStrong())
return QualType::Strong;
if (FQT.isObjCGCWeak())
return QualType::Weak;
if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
return QualType::Strong;
if (const PointerType *PT = FQT->getAs<PointerType>())
return GetGCAttrTypeForType(Ctx, PT->getPointeeType());
return QualType::GCNone;
}
void CGObjCCommonMac::BuildAggrIvarRecordLayout(const RecordType *RT,
unsigned int BytePos,
bool ForStrongLayout,
bool &HasUnion) {
const RecordDecl *RD = RT->getDecl();
// FIXME - Use iterator.
llvm::SmallVector<FieldDecl*, 16> Fields(RD->field_begin(), RD->field_end());
const llvm::Type *Ty = CGM.getTypes().ConvertType(QualType(RT, 0));
const llvm::StructLayout *RecLayout =
CGM.getTargetData().getStructLayout(cast<llvm::StructType>(Ty));
BuildAggrIvarLayout(0, RecLayout, RD, Fields, BytePos,
ForStrongLayout, HasUnion);
}
void CGObjCCommonMac::BuildAggrIvarLayout(const ObjCImplementationDecl *OI,
const llvm::StructLayout *Layout,
const RecordDecl *RD,
const llvm::SmallVectorImpl<FieldDecl*> &RecFields,
unsigned int BytePos, bool ForStrongLayout,
bool &HasUnion) {
bool IsUnion = (RD && RD->isUnion());
uint64_t MaxUnionIvarSize = 0;
uint64_t MaxSkippedUnionIvarSize = 0;
FieldDecl *MaxField = 0;
FieldDecl *MaxSkippedField = 0;
FieldDecl *LastFieldBitfield = 0;
uint64_t MaxFieldOffset = 0;
uint64_t MaxSkippedFieldOffset = 0;
uint64_t LastBitfieldOffset = 0;
if (RecFields.empty())
return;
unsigned WordSizeInBits = CGM.getContext().Target.getPointerWidth(0);
unsigned ByteSizeInBits = CGM.getContext().Target.getCharWidth();
for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
FieldDecl *Field = RecFields[i];
uint64_t FieldOffset;
if (RD) {
if (Field->isBitField()) {
CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);
const llvm::Type *Ty =
CGM.getTypes().ConvertTypeForMemRecursive(Field->getType());
uint64_t TypeSize =
CGM.getTypes().getTargetData().getTypeAllocSize(Ty);
FieldOffset = Info.FieldNo * TypeSize;
} else
FieldOffset =
Layout->getElementOffset(CGM.getTypes().getLLVMFieldNo(Field));
} else
FieldOffset = ComputeIvarBaseOffset(CGM, OI, cast<ObjCIvarDecl>(Field));
// Skip over unnamed or bitfields
if (!Field->getIdentifier() || Field->isBitField()) {
LastFieldBitfield = Field;
LastBitfieldOffset = FieldOffset;
continue;
}
LastFieldBitfield = 0;
QualType FQT = Field->getType();
if (FQT->isRecordType() || FQT->isUnionType()) {
if (FQT->isUnionType())
HasUnion = true;
BuildAggrIvarRecordLayout(FQT->getAs<RecordType>(),
BytePos + FieldOffset,
ForStrongLayout, HasUnion);
continue;
}
if (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
const ConstantArrayType *CArray =
dyn_cast_or_null<ConstantArrayType>(Array);
uint64_t ElCount = CArray->getSize().getZExtValue();
assert(CArray && "only array with known element size is supported");
FQT = CArray->getElementType();
while (const ArrayType *Array = CGM.getContext().getAsArrayType(FQT)) {
const ConstantArrayType *CArray =
dyn_cast_or_null<ConstantArrayType>(Array);
ElCount *= CArray->getSize().getZExtValue();
FQT = CArray->getElementType();
}
assert(!FQT->isUnionType() &&
"layout for array of unions not supported");
if (FQT->isRecordType()) {
int OldIndex = IvarsInfo.size() - 1;
int OldSkIndex = SkipIvars.size() -1;
const RecordType *RT = FQT->getAs<RecordType>();
BuildAggrIvarRecordLayout(RT, BytePos + FieldOffset,
ForStrongLayout, HasUnion);
// Replicate layout information for each array element. Note that
// one element is already done.
uint64_t ElIx = 1;
for (int FirstIndex = IvarsInfo.size() - 1,
FirstSkIndex = SkipIvars.size() - 1 ;ElIx < ElCount; ElIx++) {
uint64_t Size = CGM.getContext().getTypeSize(RT)/ByteSizeInBits;
for (int i = OldIndex+1; i <= FirstIndex; ++i)
IvarsInfo.push_back(GC_IVAR(IvarsInfo[i].ivar_bytepos + Size*ElIx,
IvarsInfo[i].ivar_size));
for (int i = OldSkIndex+1; i <= FirstSkIndex; ++i)
SkipIvars.push_back(GC_IVAR(SkipIvars[i].ivar_bytepos + Size*ElIx,
SkipIvars[i].ivar_size));
}
continue;
}
}
// At this point, we are done with Record/Union and array there of.
// For other arrays we are down to its element type.
QualType::GCAttrTypes GCAttr = GetGCAttrTypeForType(CGM.getContext(), FQT);
unsigned FieldSize = CGM.getContext().getTypeSize(Field->getType());
if ((ForStrongLayout && GCAttr == QualType::Strong)
|| (!ForStrongLayout && GCAttr == QualType::Weak)) {
if (IsUnion) {
uint64_t UnionIvarSize = FieldSize / WordSizeInBits;
if (UnionIvarSize > MaxUnionIvarSize) {
MaxUnionIvarSize = UnionIvarSize;
MaxField = Field;
MaxFieldOffset = FieldOffset;
}
} else {
IvarsInfo.push_back(GC_IVAR(BytePos + FieldOffset,
FieldSize / WordSizeInBits));
}
} else if ((ForStrongLayout &&
(GCAttr == QualType::GCNone || GCAttr == QualType::Weak))
|| (!ForStrongLayout && GCAttr != QualType::Weak)) {
if (IsUnion) {
// FIXME: Why the asymmetry? We divide by word size in bits on other
// side.
uint64_t UnionIvarSize = FieldSize;
if (UnionIvarSize > MaxSkippedUnionIvarSize) {
MaxSkippedUnionIvarSize = UnionIvarSize;
MaxSkippedField = Field;
MaxSkippedFieldOffset = FieldOffset;
}
} else {
// FIXME: Why the asymmetry, we divide by byte size in bits here?
SkipIvars.push_back(GC_IVAR(BytePos + FieldOffset,
FieldSize / ByteSizeInBits));
}
}
}
if (LastFieldBitfield) {
// Last field was a bitfield. Must update skip info.
Expr *BitWidth = LastFieldBitfield->getBitWidth();
uint64_t BitFieldSize =
BitWidth->EvaluateAsInt(CGM.getContext()).getZExtValue();
GC_IVAR skivar;
skivar.ivar_bytepos = BytePos + LastBitfieldOffset;
skivar.ivar_size = (BitFieldSize / ByteSizeInBits)
+ ((BitFieldSize % ByteSizeInBits) != 0);
SkipIvars.push_back(skivar);
}
if (MaxField)
IvarsInfo.push_back(GC_IVAR(BytePos + MaxFieldOffset,
MaxUnionIvarSize));
if (MaxSkippedField)
SkipIvars.push_back(GC_IVAR(BytePos + MaxSkippedFieldOffset,
MaxSkippedUnionIvarSize));
}
/// BuildIvarLayout - Builds ivar layout bitmap for the class
/// implementation for the __strong or __weak case.
/// The layout map displays which words in ivar list must be skipped
/// and which must be scanned by GC (see below). String is built of bytes.
/// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
/// of words to skip and right nibble is count of words to scan. So, each
/// nibble represents up to 15 workds to skip or scan. Skipping the rest is
/// represented by a 0x00 byte which also ends the string.
/// 1. when ForStrongLayout is true, following ivars are scanned:
/// - id, Class
/// - object *
/// - __strong anything
///
/// 2. When ForStrongLayout is false, following ivars are scanned:
/// - __weak anything
///
llvm::Constant *CGObjCCommonMac::BuildIvarLayout(
const ObjCImplementationDecl *OMD,
bool ForStrongLayout) {
bool hasUnion = false;
unsigned int WordsToScan, WordsToSkip;
const llvm::Type *PtrTy = llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
if (CGM.getLangOptions().getGCMode() == LangOptions::NonGC)
return llvm::Constant::getNullValue(PtrTy);
llvm::SmallVector<FieldDecl*, 32> RecFields;
const ObjCInterfaceDecl *OI = OMD->getClassInterface();
CGM.getContext().CollectObjCIvars(OI, RecFields);
// Add this implementations synthesized ivars.
llvm::SmallVector<ObjCIvarDecl*, 16> Ivars;
CGM.getContext().CollectSynthesizedIvars(OI, Ivars);
for (unsigned k = 0, e = Ivars.size(); k != e; ++k)
RecFields.push_back(cast<FieldDecl>(Ivars[k]));
if (RecFields.empty())
return llvm::Constant::getNullValue(PtrTy);
SkipIvars.clear();
IvarsInfo.clear();
BuildAggrIvarLayout(OMD, 0, 0, RecFields, 0, ForStrongLayout, hasUnion);
if (IvarsInfo.empty())
return llvm::Constant::getNullValue(PtrTy);
// Sort on byte position in case we encounterred a union nested in
// the ivar list.
if (hasUnion && !IvarsInfo.empty())
std::sort(IvarsInfo.begin(), IvarsInfo.end());
if (hasUnion && !SkipIvars.empty())
std::sort(SkipIvars.begin(), SkipIvars.end());
// Build the string of skip/scan nibbles
llvm::SmallVector<SKIP_SCAN, 32> SkipScanIvars;
unsigned int WordSize =
CGM.getTypes().getTargetData().getTypeAllocSize(PtrTy);
if (IvarsInfo[0].ivar_bytepos == 0) {
WordsToSkip = 0;
WordsToScan = IvarsInfo[0].ivar_size;
} else {
WordsToSkip = IvarsInfo[0].ivar_bytepos/WordSize;
WordsToScan = IvarsInfo[0].ivar_size;
}
for (unsigned int i=1, Last=IvarsInfo.size(); i != Last; i++) {
unsigned int TailPrevGCObjC =
IvarsInfo[i-1].ivar_bytepos + IvarsInfo[i-1].ivar_size * WordSize;
if (IvarsInfo[i].ivar_bytepos == TailPrevGCObjC) {
// consecutive 'scanned' object pointers.
WordsToScan += IvarsInfo[i].ivar_size;
} else {
// Skip over 'gc'able object pointer which lay over each other.
if (TailPrevGCObjC > IvarsInfo[i].ivar_bytepos)
continue;
// Must skip over 1 or more words. We save current skip/scan values
// and start a new pair.
SKIP_SCAN SkScan;
SkScan.skip = WordsToSkip;
SkScan.scan = WordsToScan;
SkipScanIvars.push_back(SkScan);
// Skip the hole.
SkScan.skip = (IvarsInfo[i].ivar_bytepos - TailPrevGCObjC) / WordSize;
SkScan.scan = 0;
SkipScanIvars.push_back(SkScan);
WordsToSkip = 0;
WordsToScan = IvarsInfo[i].ivar_size;
}
}
if (WordsToScan > 0) {
SKIP_SCAN SkScan;
SkScan.skip = WordsToSkip;
SkScan.scan = WordsToScan;
SkipScanIvars.push_back(SkScan);
}
bool BytesSkipped = false;
if (!SkipIvars.empty()) {
unsigned int LastIndex = SkipIvars.size()-1;
int LastByteSkipped =
SkipIvars[LastIndex].ivar_bytepos + SkipIvars[LastIndex].ivar_size;
LastIndex = IvarsInfo.size()-1;
int LastByteScanned =
IvarsInfo[LastIndex].ivar_bytepos +
IvarsInfo[LastIndex].ivar_size * WordSize;
BytesSkipped = (LastByteSkipped > LastByteScanned);
// Compute number of bytes to skip at the tail end of the last ivar scanned.
if (BytesSkipped) {
unsigned int TotalWords = (LastByteSkipped + (WordSize -1)) / WordSize;
SKIP_SCAN SkScan;
SkScan.skip = TotalWords - (LastByteScanned/WordSize);
SkScan.scan = 0;
SkipScanIvars.push_back(SkScan);
}
}
// Mini optimization of nibbles such that an 0xM0 followed by 0x0N is produced
// as 0xMN.
int SkipScan = SkipScanIvars.size()-1;
for (int i = 0; i <= SkipScan; i++) {
if ((i < SkipScan) && SkipScanIvars[i].skip && SkipScanIvars[i].scan == 0
&& SkipScanIvars[i+1].skip == 0 && SkipScanIvars[i+1].scan) {
// 0xM0 followed by 0x0N detected.
SkipScanIvars[i].scan = SkipScanIvars[i+1].scan;
for (int j = i+1; j < SkipScan; j++)
SkipScanIvars[j] = SkipScanIvars[j+1];
--SkipScan;
}
}
// Generate the string.
std::string BitMap;
for (int i = 0; i <= SkipScan; i++) {
unsigned char byte;
unsigned int skip_small = SkipScanIvars[i].skip % 0xf;
unsigned int scan_small = SkipScanIvars[i].scan % 0xf;
unsigned int skip_big = SkipScanIvars[i].skip / 0xf;
unsigned int scan_big = SkipScanIvars[i].scan / 0xf;
if (skip_small > 0 || skip_big > 0)
BytesSkipped = true;
// first skip big.
for (unsigned int ix = 0; ix < skip_big; ix++)
BitMap += (unsigned char)(0xf0);
// next (skip small, scan)
if (skip_small) {
byte = skip_small << 4;
if (scan_big > 0) {
byte |= 0xf;
--scan_big;
} else if (scan_small) {
byte |= scan_small;
scan_small = 0;
}
BitMap += byte;
}
// next scan big
for (unsigned int ix = 0; ix < scan_big; ix++)
BitMap += (unsigned char)(0x0f);
// last scan small
if (scan_small) {
byte = scan_small;
BitMap += byte;
}
}
// null terminate string.
unsigned char zero = 0;
BitMap += zero;
if (CGM.getLangOptions().ObjCGCBitmapPrint) {
printf("\n%s ivar layout for class '%s': ",
ForStrongLayout ? "strong" : "weak",
OMD->getClassInterface()->getNameAsCString());
const unsigned char *s = (unsigned char*)BitMap.c_str();
for (unsigned i = 0; i < BitMap.size(); i++)
if (!(s[i] & 0xf0))
printf("0x0%x%s", s[i], s[i] != 0 ? ", " : "");
else
printf("0x%x%s", s[i], s[i] != 0 ? ", " : "");
printf("\n");
}
llvm::GlobalVariable * Entry =
CreateMetadataVar("\01L_OBJC_CLASS_NAME_",
llvm::ConstantArray::get(VMContext, BitMap.c_str()),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
// FIXME: Avoid std::string copying.
if (!Entry)
Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_NAME_",
llvm::ConstantArray::get(VMContext, Sel.getAsString()),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
// FIXME: Merge into a single cstring creation function.
llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
return GetMethodVarName(CGM.getContext().Selectors.getNullarySelector(ID));
}
// FIXME: Merge into a single cstring creation function.
llvm::Constant *CGObjCCommonMac::GetMethodVarName(const std::string &Name) {
return GetMethodVarName(&CGM.getContext().Idents.get(Name));
}
llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
std::string TypeStr;
CGM.getContext().getObjCEncodingForType(Field->getType(), TypeStr, Field);
llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
if (!Entry)
Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_",
llvm::ConstantArray::get(VMContext, TypeStr),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D) {
std::string TypeStr;
CGM.getContext().getObjCEncodingForMethodDecl(const_cast<ObjCMethodDecl*>(D),
TypeStr);
llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
if (!Entry)
Entry = CreateMetadataVar("\01L_OBJC_METH_VAR_TYPE_",
llvm::ConstantArray::get(VMContext, TypeStr),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
// FIXME: Merge into a single cstring creation function.
llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
llvm::GlobalVariable *&Entry = PropertyNames[Ident];
if (!Entry)
Entry = CreateMetadataVar("\01L_OBJC_PROP_NAME_ATTR_",
llvm::ConstantArray::get(VMContext, Ident->getName()),
"__TEXT,__cstring,cstring_literals",
1, true);
return getConstantGEP(VMContext, Entry, 0, 0);
}
// FIXME: Merge into a single cstring creation function.
// FIXME: This Decl should be more precise.
llvm::Constant *
CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
const Decl *Container) {
std::string TypeStr;
CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container, TypeStr);
return GetPropertyName(&CGM.getContext().Idents.get(TypeStr));
}
void CGObjCCommonMac::GetNameForMethod(const ObjCMethodDecl *D,
const ObjCContainerDecl *CD,
std::string &NameOut) {
NameOut = '\01';
NameOut += (D->isInstanceMethod() ? '-' : '+');
NameOut += '[';
assert (CD && "Missing container decl in GetNameForMethod");
NameOut += CD->getNameAsString();
if (const ObjCCategoryImplDecl *CID =
dyn_cast<ObjCCategoryImplDecl>(D->getDeclContext())) {
NameOut += '(';
NameOut += CID->getNameAsString();
NameOut+= ')';
}
NameOut += ' ';
NameOut += D->getSelector().getAsString();
NameOut += ']';
}
void CGObjCMac::FinishModule() {
EmitModuleInfo();
// Emit the dummy bodies for any protocols which were referenced but
// never defined.
for (llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*>::iterator
I = Protocols.begin(), e = Protocols.end(); I != e; ++I) {
if (I->second->hasInitializer())
continue;
std::vector<llvm::Constant*> Values(5);
Values[0] = llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
Values[1] = GetClassName(I->first);
Values[2] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
Values[3] = Values[4] =
llvm::Constant::getNullValue(ObjCTypes.MethodDescriptionListPtrTy);
I->second->setLinkage(llvm::GlobalValue::InternalLinkage);
I->second->setInitializer(llvm::ConstantStruct::get(ObjCTypes.ProtocolTy,
Values));
CGM.AddUsedGlobal(I->second);
}
// Add assembler directives to add lazy undefined symbol references
// for classes which are referenced but not defined. This is
// important for correct linker interaction.
//
// FIXME: It would be nice if we had an LLVM construct for this.
if (!LazySymbols.empty() || !DefinedSymbols.empty()) {
llvm::SmallString<256> Asm;
Asm += CGM.getModule().getModuleInlineAsm();
if (!Asm.empty() && Asm.back() != '\n')
Asm += '\n';
llvm::raw_svector_ostream OS(Asm);
for (llvm::SetVector<IdentifierInfo*>::iterator I = LazySymbols.begin(),
e = LazySymbols.end(); I != e; ++I)
OS << "\t.lazy_reference .objc_class_name_" << (*I)->getName() << "\n";
for (llvm::SetVector<IdentifierInfo*>::iterator I = DefinedSymbols.begin(),
e = DefinedSymbols.end(); I != e; ++I)
OS << "\t.objc_class_name_" << (*I)->getName() << "=0\n"
<< "\t.globl .objc_class_name_" << (*I)->getName() << "\n";
CGM.getModule().setModuleInlineAsm(OS.str());
}
}
CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
: CGObjCCommonMac(cgm),
ObjCTypes(cgm) {
ObjCEmptyCacheVar = ObjCEmptyVtableVar = NULL;
ObjCABI = 2;
}
/* *** */
ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
: VMContext(cgm.getLLVMContext()), CGM(cgm) {
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
ShortTy = Types.ConvertType(Ctx.ShortTy);
IntTy = Types.ConvertType(Ctx.IntTy);
LongTy = Types.ConvertType(Ctx.LongTy);
LongLongTy = Types.ConvertType(Ctx.LongLongTy);
Int8PtrTy = llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
ObjectPtrTy = Types.ConvertType(Ctx.getObjCIdType());
PtrObjectPtrTy = llvm::PointerType::getUnqual(ObjectPtrTy);
SelectorPtrTy = Types.ConvertType(Ctx.getObjCSelType());
// FIXME: It would be nice to unify this with the opaque type, so that the IR
// comes out a bit cleaner.
const llvm::Type *T = Types.ConvertType(Ctx.getObjCProtoType());
ExternalProtocolPtrTy = llvm::PointerType::getUnqual(T);
// I'm not sure I like this. The implicit coordination is a bit
// gross. We should solve this in a reasonable fashion because this
// is a pretty common task (match some runtime data structure with
// an LLVM data structure).
// FIXME: This is leaked.
// FIXME: Merge with rewriter code?
// struct _objc_super {
// id self;
// Class cls;
// }
RecordDecl *RD = RecordDecl::Create(Ctx, TagDecl::TK_struct, 0,
SourceLocation(),
&Ctx.Idents.get("_objc_super"));
RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), 0,
Ctx.getObjCIdType(), 0, 0, false));
RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), 0,
Ctx.getObjCClassType(), 0, 0, false));
RD->completeDefinition(Ctx);
SuperCTy = Ctx.getTagDeclType(RD);
SuperPtrCTy = Ctx.getPointerType(SuperCTy);
SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
SuperPtrTy = llvm::PointerType::getUnqual(SuperTy);
// struct _prop_t {
// char *name;
// char *attributes;
// }
PropertyTy = llvm::StructType::get(VMContext, Int8PtrTy, Int8PtrTy, NULL);
CGM.getModule().addTypeName("struct._prop_t",
PropertyTy);
// struct _prop_list_t {
// uint32_t entsize; // sizeof(struct _prop_t)
// uint32_t count_of_properties;
// struct _prop_t prop_list[count_of_properties];
// }
PropertyListTy = llvm::StructType::get(VMContext, IntTy,
IntTy,
llvm::ArrayType::get(PropertyTy, 0),
NULL);
CGM.getModule().addTypeName("struct._prop_list_t",
PropertyListTy);
// struct _prop_list_t *
PropertyListPtrTy = llvm::PointerType::getUnqual(PropertyListTy);
// struct _objc_method {
// SEL _cmd;
// char *method_type;
// char *_imp;
// }
MethodTy = llvm::StructType::get(VMContext, SelectorPtrTy,
Int8PtrTy,
Int8PtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_method", MethodTy);
// struct _objc_cache *
CacheTy = llvm::OpaqueType::get(VMContext);
CGM.getModule().addTypeName("struct._objc_cache", CacheTy);
CachePtrTy = llvm::PointerType::getUnqual(CacheTy);
}
ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
: ObjCCommonTypesHelper(cgm) {
// struct _objc_method_description {
// SEL name;
// char *types;
// }
MethodDescriptionTy =
llvm::StructType::get(VMContext, SelectorPtrTy,
Int8PtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_method_description",
MethodDescriptionTy);
// struct _objc_method_description_list {
// int count;
// struct _objc_method_description[1];
// }
MethodDescriptionListTy =
llvm::StructType::get(VMContext, IntTy,
llvm::ArrayType::get(MethodDescriptionTy, 0),
NULL);
CGM.getModule().addTypeName("struct._objc_method_description_list",
MethodDescriptionListTy);
// struct _objc_method_description_list *
MethodDescriptionListPtrTy =
llvm::PointerType::getUnqual(MethodDescriptionListTy);
// Protocol description structures
// struct _objc_protocol_extension {
// uint32_t size; // sizeof(struct _objc_protocol_extension)
// struct _objc_method_description_list *optional_instance_methods;
// struct _objc_method_description_list *optional_class_methods;
// struct _objc_property_list *instance_properties;
// }
ProtocolExtensionTy =
llvm::StructType::get(VMContext, IntTy,
MethodDescriptionListPtrTy,
MethodDescriptionListPtrTy,
PropertyListPtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_protocol_extension",
ProtocolExtensionTy);
// struct _objc_protocol_extension *
ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ProtocolExtensionTy);
// Handle recursive construction of Protocol and ProtocolList types
llvm::PATypeHolder ProtocolTyHolder = llvm::OpaqueType::get(VMContext);
llvm::PATypeHolder ProtocolListTyHolder = llvm::OpaqueType::get(VMContext);
const llvm::Type *T =
llvm::StructType::get(VMContext,
llvm::PointerType::getUnqual(ProtocolListTyHolder),
LongTy,
llvm::ArrayType::get(ProtocolTyHolder, 0),
NULL);
cast<llvm::OpaqueType>(ProtocolListTyHolder.get())->refineAbstractTypeTo(T);
// struct _objc_protocol {
// struct _objc_protocol_extension *isa;
// char *protocol_name;
// struct _objc_protocol **_objc_protocol_list;
// struct _objc_method_description_list *instance_methods;
// struct _objc_method_description_list *class_methods;
// }
T = llvm::StructType::get(VMContext, ProtocolExtensionPtrTy,
Int8PtrTy,
llvm::PointerType::getUnqual(ProtocolListTyHolder),
MethodDescriptionListPtrTy,
MethodDescriptionListPtrTy,
NULL);
cast<llvm::OpaqueType>(ProtocolTyHolder.get())->refineAbstractTypeTo(T);
ProtocolListTy = cast<llvm::StructType>(ProtocolListTyHolder.get());
CGM.getModule().addTypeName("struct._objc_protocol_list",
ProtocolListTy);
// struct _objc_protocol_list *
ProtocolListPtrTy = llvm::PointerType::getUnqual(ProtocolListTy);
ProtocolTy = cast<llvm::StructType>(ProtocolTyHolder.get());
CGM.getModule().addTypeName("struct._objc_protocol", ProtocolTy);
ProtocolPtrTy = llvm::PointerType::getUnqual(ProtocolTy);
// Class description structures
// struct _objc_ivar {
// char *ivar_name;
// char *ivar_type;
// int ivar_offset;
// }
IvarTy = llvm::StructType::get(VMContext, Int8PtrTy,
Int8PtrTy,
IntTy,
NULL);
CGM.getModule().addTypeName("struct._objc_ivar", IvarTy);
// struct _objc_ivar_list *
IvarListTy = llvm::OpaqueType::get(VMContext);
CGM.getModule().addTypeName("struct._objc_ivar_list", IvarListTy);
IvarListPtrTy = llvm::PointerType::getUnqual(IvarListTy);
// struct _objc_method_list *
MethodListTy = llvm::OpaqueType::get(VMContext);
CGM.getModule().addTypeName("struct._objc_method_list", MethodListTy);
MethodListPtrTy = llvm::PointerType::getUnqual(MethodListTy);
// struct _objc_class_extension *
ClassExtensionTy =
llvm::StructType::get(VMContext, IntTy,
Int8PtrTy,
PropertyListPtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_class_extension", ClassExtensionTy);
ClassExtensionPtrTy = llvm::PointerType::getUnqual(ClassExtensionTy);
llvm::PATypeHolder ClassTyHolder = llvm::OpaqueType::get(VMContext);
// struct _objc_class {
// Class isa;
// Class super_class;
// char *name;
// long version;
// long info;
// long instance_size;
// struct _objc_ivar_list *ivars;
// struct _objc_method_list *methods;
// struct _objc_cache *cache;
// struct _objc_protocol_list *protocols;
// char *ivar_layout;
// struct _objc_class_ext *ext;
// };
T = llvm::StructType::get(VMContext,
llvm::PointerType::getUnqual(ClassTyHolder),
llvm::PointerType::getUnqual(ClassTyHolder),
Int8PtrTy,
LongTy,
LongTy,
LongTy,
IvarListPtrTy,
MethodListPtrTy,
CachePtrTy,
ProtocolListPtrTy,
Int8PtrTy,
ClassExtensionPtrTy,
NULL);
cast<llvm::OpaqueType>(ClassTyHolder.get())->refineAbstractTypeTo(T);
ClassTy = cast<llvm::StructType>(ClassTyHolder.get());
CGM.getModule().addTypeName("struct._objc_class", ClassTy);
ClassPtrTy = llvm::PointerType::getUnqual(ClassTy);
// struct _objc_category {
// char *category_name;
// char *class_name;
// struct _objc_method_list *instance_method;
// struct _objc_method_list *class_method;
// uint32_t size; // sizeof(struct _objc_category)
// struct _objc_property_list *instance_properties;// category's @property
// }
CategoryTy = llvm::StructType::get(VMContext, Int8PtrTy,
Int8PtrTy,
MethodListPtrTy,
MethodListPtrTy,
ProtocolListPtrTy,
IntTy,
PropertyListPtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_category", CategoryTy);
// Global metadata structures
// struct _objc_symtab {
// long sel_ref_cnt;
// SEL *refs;
// short cls_def_cnt;
// short cat_def_cnt;
// char *defs[cls_def_cnt + cat_def_cnt];
// }
SymtabTy = llvm::StructType::get(VMContext, LongTy,
SelectorPtrTy,
ShortTy,
ShortTy,
llvm::ArrayType::get(Int8PtrTy, 0),
NULL);
CGM.getModule().addTypeName("struct._objc_symtab", SymtabTy);
SymtabPtrTy = llvm::PointerType::getUnqual(SymtabTy);
// struct _objc_module {
// long version;
// long size; // sizeof(struct _objc_module)
// char *name;
// struct _objc_symtab* symtab;
// }
ModuleTy =
llvm::StructType::get(VMContext, LongTy,
LongTy,
Int8PtrTy,
SymtabPtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_module", ModuleTy);
// FIXME: This is the size of the setjmp buffer and should be target
// specific. 18 is what's used on 32-bit X86.
uint64_t SetJmpBufferSize = 18;
// Exceptions
const llvm::Type *StackPtrTy = llvm::ArrayType::get(
llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext)), 4);
ExceptionDataTy =
llvm::StructType::get(VMContext, llvm::ArrayType::get(llvm::Type::getInt32Ty(VMContext),
SetJmpBufferSize),
StackPtrTy, NULL);
CGM.getModule().addTypeName("struct._objc_exception_data",
ExceptionDataTy);
}
ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
: ObjCCommonTypesHelper(cgm) {
// struct _method_list_t {
// uint32_t entsize; // sizeof(struct _objc_method)
// uint32_t method_count;
// struct _objc_method method_list[method_count];
// }
MethodListnfABITy = llvm::StructType::get(VMContext, IntTy,
IntTy,
llvm::ArrayType::get(MethodTy, 0),
NULL);
CGM.getModule().addTypeName("struct.__method_list_t",
MethodListnfABITy);
// struct method_list_t *
MethodListnfABIPtrTy = llvm::PointerType::getUnqual(MethodListnfABITy);
// struct _protocol_t {
// id isa; // NULL
// const char * const protocol_name;
// const struct _protocol_list_t * protocol_list; // super protocols
// const struct method_list_t * const instance_methods;
// const struct method_list_t * const class_methods;
// const struct method_list_t *optionalInstanceMethods;
// const struct method_list_t *optionalClassMethods;
// const struct _prop_list_t * properties;
// const uint32_t size; // sizeof(struct _protocol_t)
// const uint32_t flags; // = 0
// }
// Holder for struct _protocol_list_t *
llvm::PATypeHolder ProtocolListTyHolder = llvm::OpaqueType::get(VMContext);
ProtocolnfABITy = llvm::StructType::get(VMContext, ObjectPtrTy,
Int8PtrTy,
llvm::PointerType::getUnqual(
ProtocolListTyHolder),
MethodListnfABIPtrTy,
MethodListnfABIPtrTy,
MethodListnfABIPtrTy,
MethodListnfABIPtrTy,
PropertyListPtrTy,
IntTy,
IntTy,
NULL);
CGM.getModule().addTypeName("struct._protocol_t",
ProtocolnfABITy);
// struct _protocol_t*
ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolnfABITy);
// struct _protocol_list_t {
// long protocol_count; // Note, this is 32/64 bit
// struct _protocol_t *[protocol_count];
// }
ProtocolListnfABITy = llvm::StructType::get(VMContext, LongTy,
llvm::ArrayType::get(
ProtocolnfABIPtrTy, 0),
NULL);
CGM.getModule().addTypeName("struct._objc_protocol_list",
ProtocolListnfABITy);
cast<llvm::OpaqueType>(ProtocolListTyHolder.get())->refineAbstractTypeTo(
ProtocolListnfABITy);
// struct _objc_protocol_list*
ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ProtocolListnfABITy);
// struct _ivar_t {
// unsigned long int *offset; // pointer to ivar offset location
// char *name;
// char *type;
// uint32_t alignment;
// uint32_t size;
// }
IvarnfABITy = llvm::StructType::get(VMContext,
llvm::PointerType::getUnqual(LongTy),
Int8PtrTy,
Int8PtrTy,
IntTy,
IntTy,
NULL);
CGM.getModule().addTypeName("struct._ivar_t", IvarnfABITy);
// struct _ivar_list_t {
// uint32 entsize; // sizeof(struct _ivar_t)
// uint32 count;
// struct _iver_t list[count];
// }
IvarListnfABITy = llvm::StructType::get(VMContext, IntTy,
IntTy,
llvm::ArrayType::get(
IvarnfABITy, 0),
NULL);
CGM.getModule().addTypeName("struct._ivar_list_t", IvarListnfABITy);
IvarListnfABIPtrTy = llvm::PointerType::getUnqual(IvarListnfABITy);
// struct _class_ro_t {
// uint32_t const flags;
// uint32_t const instanceStart;
// uint32_t const instanceSize;
// uint32_t const reserved; // only when building for 64bit targets
// const uint8_t * const ivarLayout;
// const char *const name;
// const struct _method_list_t * const baseMethods;
// const struct _objc_protocol_list *const baseProtocols;
// const struct _ivar_list_t *const ivars;
// const uint8_t * const weakIvarLayout;
// const struct _prop_list_t * const properties;
// }
// FIXME. Add 'reserved' field in 64bit abi mode!
ClassRonfABITy = llvm::StructType::get(VMContext, IntTy,
IntTy,
IntTy,
Int8PtrTy,
Int8PtrTy,
MethodListnfABIPtrTy,
ProtocolListnfABIPtrTy,
IvarListnfABIPtrTy,
Int8PtrTy,
PropertyListPtrTy,
NULL);
CGM.getModule().addTypeName("struct._class_ro_t",
ClassRonfABITy);
// ImpnfABITy - LLVM for id (*)(id, SEL, ...)
std::vector<const llvm::Type*> Params;
Params.push_back(ObjectPtrTy);
Params.push_back(SelectorPtrTy);
ImpnfABITy = llvm::PointerType::getUnqual(
llvm::FunctionType::get(ObjectPtrTy, Params, false));
// struct _class_t {
// struct _class_t *isa;
// struct _class_t * const superclass;
// void *cache;
// IMP *vtable;
// struct class_ro_t *ro;
// }
llvm::PATypeHolder ClassTyHolder = llvm::OpaqueType::get(VMContext);
ClassnfABITy =
llvm::StructType::get(VMContext,
llvm::PointerType::getUnqual(ClassTyHolder),
llvm::PointerType::getUnqual(ClassTyHolder),
CachePtrTy,
llvm::PointerType::getUnqual(ImpnfABITy),
llvm::PointerType::getUnqual(ClassRonfABITy),
NULL);
CGM.getModule().addTypeName("struct._class_t", ClassnfABITy);
cast<llvm::OpaqueType>(ClassTyHolder.get())->refineAbstractTypeTo(
ClassnfABITy);
// LLVM for struct _class_t *
ClassnfABIPtrTy = llvm::PointerType::getUnqual(ClassnfABITy);
// struct _category_t {
// const char * const name;
// struct _class_t *const cls;
// const struct _method_list_t * const instance_methods;
// const struct _method_list_t * const class_methods;
// const struct _protocol_list_t * const protocols;
// const struct _prop_list_t * const properties;
// }
CategorynfABITy = llvm::StructType::get(VMContext, Int8PtrTy,
ClassnfABIPtrTy,
MethodListnfABIPtrTy,
MethodListnfABIPtrTy,
ProtocolListnfABIPtrTy,
PropertyListPtrTy,
NULL);
CGM.getModule().addTypeName("struct._category_t", CategorynfABITy);
// New types for nonfragile abi messaging.
CodeGen::CodeGenTypes &Types = CGM.getTypes();
ASTContext &Ctx = CGM.getContext();
// MessageRefTy - LLVM for:
// struct _message_ref_t {
// IMP messenger;
// SEL name;
// };
// First the clang type for struct _message_ref_t
RecordDecl *RD = RecordDecl::Create(Ctx, TagDecl::TK_struct, 0,
SourceLocation(),
&Ctx.Idents.get("_message_ref_t"));
RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), 0,
Ctx.VoidPtrTy, 0, 0, false));
RD->addDecl(FieldDecl::Create(Ctx, RD, SourceLocation(), 0,
Ctx.getObjCSelType(), 0, 0, false));
RD->completeDefinition(Ctx);
MessageRefCTy = Ctx.getTagDeclType(RD);
MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
// MessageRefPtrTy - LLVM for struct _message_ref_t*
MessageRefPtrTy = llvm::PointerType::getUnqual(MessageRefTy);
// SuperMessageRefTy - LLVM for:
// struct _super_message_ref_t {
// SUPER_IMP messenger;
// SEL name;
// };
SuperMessageRefTy = llvm::StructType::get(VMContext, ImpnfABITy,
SelectorPtrTy,
NULL);
CGM.getModule().addTypeName("struct._super_message_ref_t", SuperMessageRefTy);
// SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
SuperMessageRefPtrTy = llvm::PointerType::getUnqual(SuperMessageRefTy);
// struct objc_typeinfo {
// const void** vtable; // objc_ehtype_vtable + 2
// const char* name; // c++ typeinfo string
// Class cls;
// };
EHTypeTy = llvm::StructType::get(VMContext,
llvm::PointerType::getUnqual(Int8PtrTy),
Int8PtrTy,
ClassnfABIPtrTy,
NULL);
CGM.getModule().addTypeName("struct._objc_typeinfo", EHTypeTy);
EHTypePtrTy = llvm::PointerType::getUnqual(EHTypeTy);
}
llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
FinishNonFragileABIModule();
return NULL;
}
void CGObjCNonFragileABIMac::AddModuleClassList(const
std::vector<llvm::GlobalValue*>
&Container,
const char *SymbolName,
const char *SectionName) {
unsigned NumClasses = Container.size();
if (!NumClasses)
return;
std::vector<llvm::Constant*> Symbols(NumClasses);
for (unsigned i=0; i<NumClasses; i++)
Symbols[i] = llvm::ConstantExpr::getBitCast(Container[i],
ObjCTypes.Int8PtrTy);
llvm::Constant* Init =
llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
NumClasses),
Symbols);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::InternalLinkage,
Init,
SymbolName);
GV->setAlignment(8);
GV->setSection(SectionName);
CGM.AddUsedGlobal(GV);
}
void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
// nonfragile abi has no module definition.
// Build list of all implemented class addresses in array
// L_OBJC_LABEL_CLASS_$.
AddModuleClassList(DefinedClasses,
"\01L_OBJC_LABEL_CLASS_$",
"__DATA, __objc_classlist, regular, no_dead_strip");
AddModuleClassList(DefinedNonLazyClasses,
"\01L_OBJC_LABEL_NONLAZY_CLASS_$",
"__DATA, __objc_nlclslist, regular, no_dead_strip");
// Build list of all implemented category addresses in array
// L_OBJC_LABEL_CATEGORY_$.
AddModuleClassList(DefinedCategories,
"\01L_OBJC_LABEL_CATEGORY_$",
"__DATA, __objc_catlist, regular, no_dead_strip");
AddModuleClassList(DefinedNonLazyCategories,
"\01L_OBJC_LABEL_NONLAZY_CATEGORY_$",
"__DATA, __objc_nlcatlist, regular, no_dead_strip");
// static int L_OBJC_IMAGE_INFO[2] = { 0, flags };
// FIXME. flags can be 0 | 1 | 2 | 6. For now just use 0
std::vector<llvm::Constant*> Values(2);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, 0);
unsigned int flags = 0;
// FIXME: Fix and continue?
if (CGM.getLangOptions().getGCMode() != LangOptions::NonGC)
flags |= eImageInfo_GarbageCollected;
if (CGM.getLangOptions().getGCMode() == LangOptions::GCOnly)
flags |= eImageInfo_GCOnly;
Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
llvm::Constant* Init = llvm::ConstantArray::get(
llvm::ArrayType::get(ObjCTypes.IntTy, 2),
Values);
llvm::GlobalVariable *IMGV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::InternalLinkage,
Init,
"\01L_OBJC_IMAGE_INFO");
IMGV->setSection("__DATA, __objc_imageinfo, regular, no_dead_strip");
IMGV->setConstant(true);
CGM.AddUsedGlobal(IMGV);
}
/// LegacyDispatchedSelector - Returns true if SEL is not in the list of
/// NonLegacyDispatchMethods; false otherwise. What this means is that
/// except for the 19 selectors in the list, we generate 32bit-style
/// message dispatch call for all the rest.
///
bool CGObjCNonFragileABIMac::LegacyDispatchedSelector(Selector Sel) {
if (NonLegacyDispatchMethods.empty()) {
NonLegacyDispatchMethods.insert(GetNullarySelector("alloc"));
NonLegacyDispatchMethods.insert(GetNullarySelector("class"));
NonLegacyDispatchMethods.insert(GetNullarySelector("self"));
NonLegacyDispatchMethods.insert(GetNullarySelector("isFlipped"));
NonLegacyDispatchMethods.insert(GetNullarySelector("length"));
NonLegacyDispatchMethods.insert(GetNullarySelector("count"));
NonLegacyDispatchMethods.insert(GetNullarySelector("retain"));
NonLegacyDispatchMethods.insert(GetNullarySelector("release"));
NonLegacyDispatchMethods.insert(GetNullarySelector("autorelease"));
NonLegacyDispatchMethods.insert(GetNullarySelector("hash"));
NonLegacyDispatchMethods.insert(GetUnarySelector("allocWithZone"));
NonLegacyDispatchMethods.insert(GetUnarySelector("isKindOfClass"));
NonLegacyDispatchMethods.insert(GetUnarySelector("respondsToSelector"));
NonLegacyDispatchMethods.insert(GetUnarySelector("objectForKey"));
NonLegacyDispatchMethods.insert(GetUnarySelector("objectAtIndex"));
NonLegacyDispatchMethods.insert(GetUnarySelector("isEqualToString"));
NonLegacyDispatchMethods.insert(GetUnarySelector("isEqual"));
NonLegacyDispatchMethods.insert(GetUnarySelector("addObject"));
// "countByEnumeratingWithState:objects:count"
IdentifierInfo *KeyIdents[] = {
&CGM.getContext().Idents.get("countByEnumeratingWithState"),
&CGM.getContext().Idents.get("objects"),
&CGM.getContext().Idents.get("count")
};
NonLegacyDispatchMethods.insert(
CGM.getContext().Selectors.getSelector(3, KeyIdents));
}
return (NonLegacyDispatchMethods.count(Sel) == 0);
}
// Metadata flags
enum MetaDataDlags {
CLS = 0x0,
CLS_META = 0x1,
CLS_ROOT = 0x2,
OBJC2_CLS_HIDDEN = 0x10,
CLS_EXCEPTION = 0x20
};
/// BuildClassRoTInitializer - generate meta-data for:
/// struct _class_ro_t {
/// uint32_t const flags;
/// uint32_t const instanceStart;
/// uint32_t const instanceSize;
/// uint32_t const reserved; // only when building for 64bit targets
/// const uint8_t * const ivarLayout;
/// const char *const name;
/// const struct _method_list_t * const baseMethods;
/// const struct _protocol_list_t *const baseProtocols;
/// const struct _ivar_list_t *const ivars;
/// const uint8_t * const weakIvarLayout;
/// const struct _prop_list_t * const properties;
/// }
///
llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
unsigned flags,
unsigned InstanceStart,
unsigned InstanceSize,
const ObjCImplementationDecl *ID) {
std::string ClassName = ID->getNameAsString();
std::vector<llvm::Constant*> Values(10); // 11 for 64bit targets!
Values[ 0] = llvm::ConstantInt::get(ObjCTypes.IntTy, flags);
Values[ 1] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceStart);
Values[ 2] = llvm::ConstantInt::get(ObjCTypes.IntTy, InstanceSize);
// FIXME. For 64bit targets add 0 here.
Values[ 3] = (flags & CLS_META) ? GetIvarLayoutName(0, ObjCTypes)
: BuildIvarLayout(ID, true);
Values[ 4] = GetClassName(ID->getIdentifier());
// const struct _method_list_t * const baseMethods;
std::vector<llvm::Constant*> Methods;
std::string MethodListName("\01l_OBJC_$_");
if (flags & CLS_META) {
MethodListName += "CLASS_METHODS_" + ID->getNameAsString();
for (ObjCImplementationDecl::classmeth_iterator
i = ID->classmeth_begin(), e = ID->classmeth_end(); i != e; ++i) {
// Class methods should always be defined.
Methods.push_back(GetMethodConstant(*i));
}
} else {
MethodListName += "INSTANCE_METHODS_" + ID->getNameAsString();
for (ObjCImplementationDecl::instmeth_iterator
i = ID->instmeth_begin(), e = ID->instmeth_end(); i != e; ++i) {
// Instance methods should always be defined.
Methods.push_back(GetMethodConstant(*i));
}
for (ObjCImplementationDecl::propimpl_iterator
i = ID->propimpl_begin(), e = ID->propimpl_end(); i != e; ++i) {
ObjCPropertyImplDecl *PID = *i;
if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize){
ObjCPropertyDecl *PD = PID->getPropertyDecl();
if (ObjCMethodDecl *MD = PD->getGetterMethodDecl())
if (llvm::Constant *C = GetMethodConstant(MD))
Methods.push_back(C);
if (ObjCMethodDecl *MD = PD->getSetterMethodDecl())
if (llvm::Constant *C = GetMethodConstant(MD))
Methods.push_back(C);
}
}
}
Values[ 5] = EmitMethodList(MethodListName,
"__DATA, __objc_const", Methods);
const ObjCInterfaceDecl *OID = ID->getClassInterface();
assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
Values[ 6] = EmitProtocolList("\01l_OBJC_CLASS_PROTOCOLS_$_"
+ OID->getNameAsString(),
OID->protocol_begin(),
OID->protocol_end());
if (flags & CLS_META)
Values[ 7] = llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
else
Values[ 7] = EmitIvarList(ID);
Values[ 8] = (flags & CLS_META) ? GetIvarLayoutName(0, ObjCTypes)
: BuildIvarLayout(ID, false);
if (flags & CLS_META)
Values[ 9] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
else
Values[ 9] =
EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + ID->getNameAsString(),
ID, ID->getClassInterface(), ObjCTypes);
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassRonfABITy,
Values);
llvm::GlobalVariable *CLASS_RO_GV =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassRonfABITy, false,
llvm::GlobalValue::InternalLinkage,
Init,
(flags & CLS_META) ?
std::string("\01l_OBJC_METACLASS_RO_$_")+ClassName :
std::string("\01l_OBJC_CLASS_RO_$_")+ClassName);
CLASS_RO_GV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.ClassRonfABITy));
CLASS_RO_GV->setSection("__DATA, __objc_const");
return CLASS_RO_GV;
}
/// BuildClassMetaData - This routine defines that to-level meta-data
/// for the given ClassName for:
/// struct _class_t {
/// struct _class_t *isa;
/// struct _class_t * const superclass;
/// void *cache;
/// IMP *vtable;
/// struct class_ro_t *ro;
/// }
///
llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassMetaData(
std::string &ClassName,
llvm::Constant *IsAGV,
llvm::Constant *SuperClassGV,
llvm::Constant *ClassRoGV,
bool HiddenVisibility) {
std::vector<llvm::Constant*> Values(5);
Values[0] = IsAGV;
Values[1] = SuperClassGV;
if (!Values[1])
Values[1] = llvm::Constant::getNullValue(ObjCTypes.ClassnfABIPtrTy);
Values[2] = ObjCEmptyCacheVar; // &ObjCEmptyCacheVar
Values[3] = ObjCEmptyVtableVar; // &ObjCEmptyVtableVar
Values[4] = ClassRoGV; // &CLASS_RO_GV
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ClassnfABITy,
Values);
llvm::GlobalVariable *GV = GetClassGlobal(ClassName);
GV->setInitializer(Init);
GV->setSection("__DATA, __objc_data");
GV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.ClassnfABITy));
if (HiddenVisibility)
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
return GV;
}
bool
CGObjCNonFragileABIMac::ImplementationIsNonLazy(const ObjCImplDecl *OD) const {
return OD->getClassMethod(GetNullarySelector("load")) != 0;
}
void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
uint32_t &InstanceStart,
uint32_t &InstanceSize) {
const ASTRecordLayout &RL =
CGM.getContext().getASTObjCImplementationLayout(OID);
// InstanceSize is really instance end.
InstanceSize = llvm::RoundUpToAlignment(RL.getDataSize(), 8) / 8;
// If there are no fields, the start is the same as the end.
if (!RL.getFieldCount())
InstanceStart = InstanceSize;
else
InstanceStart = RL.getFieldOffset(0) / 8;
}
void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
std::string ClassName = ID->getNameAsString();
if (!ObjCEmptyCacheVar) {
ObjCEmptyCacheVar = new llvm::GlobalVariable(
CGM.getModule(),
ObjCTypes.CacheTy,
false,
llvm::GlobalValue::ExternalLinkage,
0,
"_objc_empty_cache");
ObjCEmptyVtableVar = new llvm::GlobalVariable(
CGM.getModule(),
ObjCTypes.ImpnfABITy,
false,
llvm::GlobalValue::ExternalLinkage,
0,
"_objc_empty_vtable");
}
assert(ID->getClassInterface() &&
"CGObjCNonFragileABIMac::GenerateClass - class is 0");
// FIXME: Is this correct (that meta class size is never computed)?
uint32_t InstanceStart =
CGM.getTargetData().getTypeAllocSize(ObjCTypes.ClassnfABITy);
uint32_t InstanceSize = InstanceStart;
uint32_t flags = CLS_META;
std::string ObjCMetaClassName(getMetaclassSymbolPrefix());
std::string ObjCClassName(getClassSymbolPrefix());
llvm::GlobalVariable *SuperClassGV, *IsAGV;
bool classIsHidden =
CGM.getDeclVisibilityMode(ID->getClassInterface()) == LangOptions::Hidden;
if (classIsHidden)
flags |= OBJC2_CLS_HIDDEN;
if (!ID->getClassInterface()->getSuperClass()) {
// class is root
flags |= CLS_ROOT;
SuperClassGV = GetClassGlobal(ObjCClassName + ClassName);
IsAGV = GetClassGlobal(ObjCMetaClassName + ClassName);
} else {
// Has a root. Current class is not a root.
const ObjCInterfaceDecl *Root = ID->getClassInterface();
while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
Root = Super;
IsAGV = GetClassGlobal(ObjCMetaClassName + Root->getNameAsString());
// work on super class metadata symbol.
std::string SuperClassName =
ObjCMetaClassName + ID->getClassInterface()->getSuperClass()->getNameAsString();
SuperClassGV = GetClassGlobal(SuperClassName);
}
llvm::GlobalVariable *CLASS_RO_GV = BuildClassRoTInitializer(flags,
InstanceStart,
InstanceSize,ID);
std::string TClassName = ObjCMetaClassName + ClassName;
llvm::GlobalVariable *MetaTClass =
BuildClassMetaData(TClassName, IsAGV, SuperClassGV, CLASS_RO_GV,
classIsHidden);
// Metadata for the class
flags = CLS;
if (classIsHidden)
flags |= OBJC2_CLS_HIDDEN;
if (hasObjCExceptionAttribute(CGM.getContext(), ID->getClassInterface()))
flags |= CLS_EXCEPTION;
if (!ID->getClassInterface()->getSuperClass()) {
flags |= CLS_ROOT;
SuperClassGV = 0;
} else {
// Has a root. Current class is not a root.
std::string RootClassName =
ID->getClassInterface()->getSuperClass()->getNameAsString();
SuperClassGV = GetClassGlobal(ObjCClassName + RootClassName);
}
GetClassSizeInfo(ID, InstanceStart, InstanceSize);
CLASS_RO_GV = BuildClassRoTInitializer(flags,
InstanceStart,
InstanceSize,
ID);
TClassName = ObjCClassName + ClassName;
llvm::GlobalVariable *ClassMD =
BuildClassMetaData(TClassName, MetaTClass, SuperClassGV, CLASS_RO_GV,
classIsHidden);
DefinedClasses.push_back(ClassMD);
// Determine if this class is also "non-lazy".
if (ImplementationIsNonLazy(ID))
DefinedNonLazyClasses.push_back(ClassMD);
// Force the definition of the EHType if necessary.
if (flags & CLS_EXCEPTION)
GetInterfaceEHType(ID->getClassInterface(), true);
}
/// GenerateProtocolRef - This routine is called to generate code for
/// a protocol reference expression; as in:
/// @code
/// @protocol(Proto1);
/// @endcode
/// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
/// which will hold address of the protocol meta-data.
///
llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CGBuilderTy &Builder,
const ObjCProtocolDecl *PD) {
// This routine is called for @protocol only. So, we must build definition
// of protocol's meta-data (not a reference to it!)
//
llvm::Constant *Init =
llvm::ConstantExpr::getBitCast(GetOrEmitProtocol(PD),
ObjCTypes.ExternalProtocolPtrTy);
std::string ProtocolName("\01l_OBJC_PROTOCOL_REFERENCE_$_");
ProtocolName += PD->getNameAsCString();
llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(ProtocolName);
if (PTGV)
return Builder.CreateLoad(PTGV, false, "tmp");
PTGV = new llvm::GlobalVariable(
CGM.getModule(),
Init->getType(), false,
llvm::GlobalValue::WeakAnyLinkage,
Init,
ProtocolName);
PTGV->setSection("__DATA, __objc_protorefs, coalesced, no_dead_strip");
PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
CGM.AddUsedGlobal(PTGV);
return Builder.CreateLoad(PTGV, false, "tmp");
}
/// GenerateCategory - Build metadata for a category implementation.
/// struct _category_t {
/// const char * const name;
/// struct _class_t *const cls;
/// const struct _method_list_t * const instance_methods;
/// const struct _method_list_t * const class_methods;
/// const struct _protocol_list_t * const protocols;
/// const struct _prop_list_t * const properties;
/// }
///
void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
const char *Prefix = "\01l_OBJC_$_CATEGORY_";
std::string ExtCatName(Prefix + Interface->getNameAsString()+
"_$_" + OCD->getNameAsString());
std::string ExtClassName(getClassSymbolPrefix() +
Interface->getNameAsString());
std::vector<llvm::Constant*> Values(6);
Values[0] = GetClassName(OCD->getIdentifier());
// meta-class entry symbol
llvm::GlobalVariable *ClassGV = GetClassGlobal(ExtClassName);
Values[1] = ClassGV;
std::vector<llvm::Constant*> Methods;
std::string MethodListName(Prefix);
MethodListName += "INSTANCE_METHODS_" + Interface->getNameAsString() +
"_$_" + OCD->getNameAsString();
for (ObjCCategoryImplDecl::instmeth_iterator
i = OCD->instmeth_begin(), e = OCD->instmeth_end(); i != e; ++i) {
// Instance methods should always be defined.
Methods.push_back(GetMethodConstant(*i));
}
Values[2] = EmitMethodList(MethodListName,
"__DATA, __objc_const",
Methods);
MethodListName = Prefix;
MethodListName += "CLASS_METHODS_" + Interface->getNameAsString() + "_$_" +
OCD->getNameAsString();
Methods.clear();
for (ObjCCategoryImplDecl::classmeth_iterator
i = OCD->classmeth_begin(), e = OCD->classmeth_end(); i != e; ++i) {
// Class methods should always be defined.
Methods.push_back(GetMethodConstant(*i));
}
Values[3] = EmitMethodList(MethodListName,
"__DATA, __objc_const",
Methods);
const ObjCCategoryDecl *Category =
Interface->FindCategoryDeclaration(OCD->getIdentifier());
if (Category) {
std::string ExtName(Interface->getNameAsString() + "_$_" +
OCD->getNameAsString());
Values[4] = EmitProtocolList("\01l_OBJC_CATEGORY_PROTOCOLS_$_"
+ Interface->getNameAsString() + "_$_"
+ Category->getNameAsString(),
Category->protocol_begin(),
Category->protocol_end());
Values[5] =
EmitPropertyList(std::string("\01l_OBJC_$_PROP_LIST_") + ExtName,
OCD, Category, ObjCTypes);
} else {
Values[4] = llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
Values[5] = llvm::Constant::getNullValue(ObjCTypes.PropertyListPtrTy);
}
llvm::Constant *Init =
llvm::ConstantStruct::get(ObjCTypes.CategorynfABITy,
Values);
llvm::GlobalVariable *GCATV
= new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CategorynfABITy,
false,
llvm::GlobalValue::InternalLinkage,
Init,
ExtCatName);
GCATV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.CategorynfABITy));
GCATV->setSection("__DATA, __objc_const");
CGM.AddUsedGlobal(GCATV);
DefinedCategories.push_back(GCATV);
// Determine if this category is also "non-lazy".
if (ImplementationIsNonLazy(OCD))
DefinedNonLazyCategories.push_back(GCATV);
}
/// GetMethodConstant - Return a struct objc_method constant for the
/// given method if it has been defined. The result is null if the
/// method has not been defined. The return value has type MethodPtrTy.
llvm::Constant *CGObjCNonFragileABIMac::GetMethodConstant(
const ObjCMethodDecl *MD) {
// FIXME: Use DenseMap::lookup
llvm::Function *Fn = MethodDefinitions[MD];
if (!Fn)
return 0;
std::vector<llvm::Constant*> Method(3);
Method[0] =
llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
ObjCTypes.SelectorPtrTy);
Method[1] = GetMethodVarType(MD);
Method[2] = llvm::ConstantExpr::getBitCast(Fn, ObjCTypes.Int8PtrTy);
return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Method);
}
/// EmitMethodList - Build meta-data for method declarations
/// struct _method_list_t {
/// uint32_t entsize; // sizeof(struct _objc_method)
/// uint32_t method_count;
/// struct _objc_method method_list[method_count];
/// }
///
llvm::Constant *CGObjCNonFragileABIMac::EmitMethodList(
const std::string &Name,
const char *Section,
const ConstantVector &Methods) {
// Return null for empty list.
if (Methods.empty())
return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
std::vector<llvm::Constant*> Values(3);
// sizeof(struct _objc_method)
unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.MethodTy);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
// method_count
Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Methods.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.MethodTy,
Methods.size());
Values[2] = llvm::ConstantArray::get(AT, Methods);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::InternalLinkage,
Init,
Name);
GV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(Init->getType()));
GV->setSection(Section);
CGM.AddUsedGlobal(GV);
return llvm::ConstantExpr::getBitCast(GV,
ObjCTypes.MethodListnfABIPtrTy);
}
/// ObjCIvarOffsetVariable - Returns the ivar offset variable for
/// the given ivar.
llvm::GlobalVariable * CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(
const ObjCInterfaceDecl *ID,
const ObjCIvarDecl *Ivar) {
// FIXME: We shouldn't need to do this lookup.
unsigned Index;
const ObjCInterfaceDecl *Container =
FindIvarInterface(CGM.getContext(), ID, Ivar, Index);
assert(Container && "Unable to find ivar container!");
std::string Name = "OBJC_IVAR_$_" + Container->getNameAsString() +
'.' + Ivar->getNameAsString();
llvm::GlobalVariable *IvarOffsetGV =
CGM.getModule().getGlobalVariable(Name);
if (!IvarOffsetGV)
IvarOffsetGV =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.LongTy,
false,
llvm::GlobalValue::ExternalLinkage,
0,
Name);
return IvarOffsetGV;
}
llvm::Constant * CGObjCNonFragileABIMac::EmitIvarOffsetVar(
const ObjCInterfaceDecl *ID,
const ObjCIvarDecl *Ivar,
unsigned long int Offset) {
llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
IvarOffsetGV->setInitializer(llvm::ConstantInt::get(ObjCTypes.LongTy,
Offset));
IvarOffsetGV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.LongTy));
// FIXME: This matches gcc, but shouldn't the visibility be set on the use as
// well (i.e., in ObjCIvarOffsetVariable).
if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
Ivar->getAccessControl() == ObjCIvarDecl::Package ||
CGM.getDeclVisibilityMode(ID) == LangOptions::Hidden)
IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
else
IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
IvarOffsetGV->setSection("__DATA, __objc_const");
return IvarOffsetGV;
}
/// EmitIvarList - Emit the ivar list for the given
/// implementation. The return value has type
/// IvarListnfABIPtrTy.
/// struct _ivar_t {
/// unsigned long int *offset; // pointer to ivar offset location
/// char *name;
/// char *type;
/// uint32_t alignment;
/// uint32_t size;
/// }
/// struct _ivar_list_t {
/// uint32 entsize; // sizeof(struct _ivar_t)
/// uint32 count;
/// struct _iver_t list[count];
/// }
///
llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
const ObjCImplementationDecl *ID) {
std::vector<llvm::Constant*> Ivars, Ivar(5);
const ObjCInterfaceDecl *OID = ID->getClassInterface();
assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
// FIXME. Consolidate this with similar code in GenerateClass.
// Collect declared and synthesized ivars in a small vector.
llvm::SmallVector<ObjCIvarDecl*, 16> OIvars;
CGM.getContext().ShallowCollectObjCIvars(OID, OIvars);
for (unsigned i = 0, e = OIvars.size(); i != e; ++i) {
ObjCIvarDecl *IVD = OIvars[i];
// Ignore unnamed bit-fields.
if (!IVD->getDeclName())
continue;
Ivar[0] = EmitIvarOffsetVar(ID->getClassInterface(), IVD,
ComputeIvarBaseOffset(CGM, ID, IVD));
Ivar[1] = GetMethodVarName(IVD->getIdentifier());
Ivar[2] = GetMethodVarType(IVD);
const llvm::Type *FieldTy =
CGM.getTypes().ConvertTypeForMem(IVD->getType());
unsigned Size = CGM.getTargetData().getTypeAllocSize(FieldTy);
unsigned Align = CGM.getContext().getPreferredTypeAlign(
IVD->getType().getTypePtr()) >> 3;
Align = llvm::Log2_32(Align);
Ivar[3] = llvm::ConstantInt::get(ObjCTypes.IntTy, Align);
// NOTE. Size of a bitfield does not match gcc's, because of the
// way bitfields are treated special in each. But I am told that
// 'size' for bitfield ivars is ignored by the runtime so it does
// not matter. If it matters, there is enough info to get the
// bitfield right!
Ivar[4] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
Ivars.push_back(llvm::ConstantStruct::get(ObjCTypes.IvarnfABITy, Ivar));
}
// Return null for empty list.
if (Ivars.empty())
return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
std::vector<llvm::Constant*> Values(3);
unsigned Size = CGM.getTargetData().getTypeAllocSize(ObjCTypes.IvarnfABITy);
Values[0] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
Values[1] = llvm::ConstantInt::get(ObjCTypes.IntTy, Ivars.size());
llvm::ArrayType *AT = llvm::ArrayType::get(ObjCTypes.IvarnfABITy,
Ivars.size());
Values[2] = llvm::ConstantArray::get(AT, Ivars);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
const char *Prefix = "\01l_OBJC_$_INSTANCE_VARIABLES_";
llvm::GlobalVariable *GV =
new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::InternalLinkage,
Init,
Prefix + OID->getNameAsString());
GV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(Init->getType()));
GV->setSection("__DATA, __objc_const");
CGM.AddUsedGlobal(GV);
return llvm::ConstantExpr::getBitCast(GV, ObjCTypes.IvarListnfABIPtrTy);
}
llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
const ObjCProtocolDecl *PD) {
llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
if (!Entry) {
// We use the initializer as a marker of whether this is a forward
// reference or not. At module finalization we add the empty
// contents for protocols which were referenced but never defined.
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, false,
llvm::GlobalValue::ExternalLinkage,
0,
"\01l_OBJC_PROTOCOL_$_" + PD->getNameAsString());
Entry->setSection("__DATA,__datacoal_nt,coalesced");
}
return Entry;
}
/// GetOrEmitProtocol - Generate the protocol meta-data:
/// @code
/// struct _protocol_t {
/// id isa; // NULL
/// const char * const protocol_name;
/// const struct _protocol_list_t * protocol_list; // super protocols
/// const struct method_list_t * const instance_methods;
/// const struct method_list_t * const class_methods;
/// const struct method_list_t *optionalInstanceMethods;
/// const struct method_list_t *optionalClassMethods;
/// const struct _prop_list_t * properties;
/// const uint32_t size; // sizeof(struct _protocol_t)
/// const uint32_t flags; // = 0
/// }
/// @endcode
///
llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
const ObjCProtocolDecl *PD) {
llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
// Early exit if a defining object has already been generated.
if (Entry && Entry->hasInitializer())
return Entry;
const char *ProtocolName = PD->getNameAsCString();
// Construct method lists.
std::vector<llvm::Constant*> InstanceMethods, ClassMethods;
std::vector<llvm::Constant*> OptInstanceMethods, OptClassMethods;
for (ObjCProtocolDecl::instmeth_iterator
i = PD->instmeth_begin(), e = PD->instmeth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
llvm::Constant *C = GetMethodDescriptionConstant(MD);
if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
OptInstanceMethods.push_back(C);
} else {
InstanceMethods.push_back(C);
}
}
for (ObjCProtocolDecl::classmeth_iterator
i = PD->classmeth_begin(), e = PD->classmeth_end(); i != e; ++i) {
ObjCMethodDecl *MD = *i;
llvm::Constant *C = GetMethodDescriptionConstant(MD);
if (MD->getImplementationControl() == ObjCMethodDecl::Optional) {
OptClassMethods.push_back(C);
} else {
ClassMethods.push_back(C);
}
}
std::vector<llvm::Constant*> Values(10);
// isa is NULL
Values[0] = llvm::Constant::getNullValue(ObjCTypes.ObjectPtrTy);
Values[1] = GetClassName(PD->getIdentifier());
Values[2] = EmitProtocolList(
"\01l_OBJC_$_PROTOCOL_REFS_" + PD->getNameAsString(),
PD->protocol_begin(),
PD->protocol_end());
Values[3] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_"
+ PD->getNameAsString(),
"__DATA, __objc_const",
InstanceMethods);
Values[4] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_"
+ PD->getNameAsString(),
"__DATA, __objc_const",
ClassMethods);
Values[5] = EmitMethodList("\01l_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_"
+ PD->getNameAsString(),
"__DATA, __objc_const",
OptInstanceMethods);
Values[6] = EmitMethodList("\01l_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_"
+ PD->getNameAsString(),
"__DATA, __objc_const",
OptClassMethods);
Values[7] = EmitPropertyList("\01l_OBJC_$_PROP_LIST_" + PD->getNameAsString(),
0, PD, ObjCTypes);
uint32_t Size =
CGM.getTargetData().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
Values[8] = llvm::ConstantInt::get(ObjCTypes.IntTy, Size);
Values[9] = llvm::Constant::getNullValue(ObjCTypes.IntTy);
llvm::Constant *Init = llvm::ConstantStruct::get(ObjCTypes.ProtocolnfABITy,
Values);
if (Entry) {
// Already created, fix the linkage and update the initializer.
Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
Entry->setInitializer(Init);
} else {
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy, false,
llvm::GlobalValue::WeakAnyLinkage,
Init,
std::string("\01l_OBJC_PROTOCOL_$_")+ProtocolName);
Entry->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.ProtocolnfABITy));
Entry->setSection("__DATA,__datacoal_nt,coalesced");
}
Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
CGM.AddUsedGlobal(Entry);
// Use this protocol meta-data to build protocol list table in section
// __DATA, __objc_protolist
llvm::GlobalVariable *PTGV = new llvm::GlobalVariable(
CGM.getModule(),
ObjCTypes.ProtocolnfABIPtrTy, false,
llvm::GlobalValue::WeakAnyLinkage,
Entry,
std::string("\01l_OBJC_LABEL_PROTOCOL_$_")
+ProtocolName);
PTGV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(ObjCTypes.ProtocolnfABIPtrTy));
PTGV->setSection("__DATA, __objc_protolist, coalesced, no_dead_strip");
PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
CGM.AddUsedGlobal(PTGV);
return Entry;
}
/// EmitProtocolList - Generate protocol list meta-data:
/// @code
/// struct _protocol_list_t {
/// long protocol_count; // Note, this is 32/64 bit
/// struct _protocol_t[protocol_count];
/// }
/// @endcode
///
llvm::Constant *
CGObjCNonFragileABIMac::EmitProtocolList(const std::string &Name,
ObjCProtocolDecl::protocol_iterator begin,
ObjCProtocolDecl::protocol_iterator end) {
std::vector<llvm::Constant*> ProtocolRefs;
// Just return null for empty protocol lists
if (begin == end)
return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
// FIXME: We shouldn't need to do this lookup here, should we?
llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, true);
if (GV)
return llvm::ConstantExpr::getBitCast(GV,
ObjCTypes.ProtocolListnfABIPtrTy);
for (; begin != end; ++begin)
ProtocolRefs.push_back(GetProtocolRef(*begin)); // Implemented???
// This list is null terminated.
ProtocolRefs.push_back(llvm::Constant::getNullValue(
ObjCTypes.ProtocolnfABIPtrTy));
std::vector<llvm::Constant*> Values(2);
Values[0] =
llvm::ConstantInt::get(ObjCTypes.LongTy, ProtocolRefs.size() - 1);
Values[1] =
llvm::ConstantArray::get(
llvm::ArrayType::get(ObjCTypes.ProtocolnfABIPtrTy,
ProtocolRefs.size()),
ProtocolRefs);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::InternalLinkage,
Init,
Name);
GV->setSection("__DATA, __objc_const");
GV->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(Init->getType()));
CGM.AddUsedGlobal(GV);
return llvm::ConstantExpr::getBitCast(GV,
ObjCTypes.ProtocolListnfABIPtrTy);
}
/// GetMethodDescriptionConstant - This routine build following meta-data:
/// struct _objc_method {
/// SEL _cmd;
/// char *method_type;
/// char *_imp;
/// }
llvm::Constant *
CGObjCNonFragileABIMac::GetMethodDescriptionConstant(const ObjCMethodDecl *MD) {
std::vector<llvm::Constant*> Desc(3);
Desc[0] =
llvm::ConstantExpr::getBitCast(GetMethodVarName(MD->getSelector()),
ObjCTypes.SelectorPtrTy);
Desc[1] = GetMethodVarType(MD);
// Protocol methods have no implementation. So, this entry is always NULL.
Desc[2] = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
return llvm::ConstantStruct::get(ObjCTypes.MethodTy, Desc);
}
/// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
/// This code gen. amounts to generating code for:
/// @code
/// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
/// @encode
///
LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
CodeGen::CodeGenFunction &CGF,
QualType ObjectTy,
llvm::Value *BaseValue,
const ObjCIvarDecl *Ivar,
unsigned CVRQualifiers) {
const ObjCInterfaceDecl *ID = ObjectTy->getAsObjCInterfaceType()->getDecl();
return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
EmitIvarOffset(CGF, ID, Ivar));
}
llvm::Value *CGObjCNonFragileABIMac::EmitIvarOffset(
CodeGen::CodeGenFunction &CGF,
const ObjCInterfaceDecl *Interface,
const ObjCIvarDecl *Ivar) {
return CGF.Builder.CreateLoad(ObjCIvarOffsetVariable(Interface, Ivar),
false, "ivar");
}
CodeGen::RValue CGObjCNonFragileABIMac::EmitMessageSend(
CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
QualType Arg0Ty,
bool IsSuper,
const CallArgList &CallArgs) {
// FIXME. Even though IsSuper is passes. This function doese not handle calls
// to 'super' receivers.
CodeGenTypes &Types = CGM.getTypes();
llvm::Value *Arg0 = Receiver;
if (!IsSuper)
Arg0 = CGF.Builder.CreateBitCast(Arg0, ObjCTypes.ObjectPtrTy, "tmp");
// Find the message function name.
// FIXME. This is too much work to get the ABI-specific result type needed to
// find the message name.
const CGFunctionInfo &FnInfo = Types.getFunctionInfo(ResultType,
llvm::SmallVector<QualType, 16>());
llvm::Constant *Fn = 0;
std::string Name("\01l_");
if (CGM.ReturnTypeUsesSret(FnInfo)) {
#if 0
// unlike what is documented. gcc never generates this API!!
if (Receiver->getType() == ObjCTypes.ObjectPtrTy) {
Fn = ObjCTypes.getMessageSendIdStretFixupFn();
// FIXME. Is there a better way of getting these names.
// They are available in RuntimeFunctions vector pair.
Name += "objc_msgSendId_stret_fixup";
} else
#endif
if (IsSuper) {
Fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
Name += "objc_msgSendSuper2_stret_fixup";
} else {
Fn = ObjCTypes.getMessageSendStretFixupFn();
Name += "objc_msgSend_stret_fixup";
}
} else if (!IsSuper && ResultType->isFloatingType()) {
if (ResultType->isSpecificBuiltinType(BuiltinType::LongDouble)) {
Fn = ObjCTypes.getMessageSendFpretFixupFn();
Name += "objc_msgSend_fpret_fixup";
} else {
Fn = ObjCTypes.getMessageSendFixupFn();
Name += "objc_msgSend_fixup";
}
} else {
#if 0
// unlike what is documented. gcc never generates this API!!
if (Receiver->getType() == ObjCTypes.ObjectPtrTy) {
Fn = ObjCTypes.getMessageSendIdFixupFn();
Name += "objc_msgSendId_fixup";
} else
#endif
if (IsSuper) {
Fn = ObjCTypes.getMessageSendSuper2FixupFn();
Name += "objc_msgSendSuper2_fixup";
} else {
Fn = ObjCTypes.getMessageSendFixupFn();
Name += "objc_msgSend_fixup";
}
}
assert(Fn && "CGObjCNonFragileABIMac::EmitMessageSend");
Name += '_';
std::string SelName(Sel.getAsString());
// Replace all ':' in selector name with '_' ouch!
for (unsigned i = 0; i < SelName.size(); i++)
if (SelName[i] == ':')
SelName[i] = '_';
Name += SelName;
llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
if (!GV) {
// Build message ref table entry.
std::vector<llvm::Constant*> Values(2);
Values[0] = Fn;
Values[1] = GetMethodVarName(Sel);
llvm::Constant *Init = llvm::ConstantStruct::get(VMContext, Values, false);
GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
llvm::GlobalValue::WeakAnyLinkage,
Init,
Name);
GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
GV->setAlignment(16);
GV->setSection("__DATA, __objc_msgrefs, coalesced");
}
llvm::Value *Arg1 = CGF.Builder.CreateBitCast(GV, ObjCTypes.MessageRefPtrTy);
CallArgList ActualArgs;
ActualArgs.push_back(std::make_pair(RValue::get(Arg0), Arg0Ty));
ActualArgs.push_back(std::make_pair(RValue::get(Arg1),
ObjCTypes.MessageRefCPtrTy));
ActualArgs.insert(ActualArgs.end(), CallArgs.begin(), CallArgs.end());
const CGFunctionInfo &FnInfo1 = Types.getFunctionInfo(ResultType, ActualArgs);
llvm::Value *Callee = CGF.Builder.CreateStructGEP(Arg1, 0);
Callee = CGF.Builder.CreateLoad(Callee);
const llvm::FunctionType *FTy = Types.GetFunctionType(FnInfo1, true);
Callee = CGF.Builder.CreateBitCast(Callee,
llvm::PointerType::getUnqual(FTy));
return CGF.EmitCall(FnInfo1, Callee, ActualArgs);
}
/// Generate code for a message send expression in the nonfragile abi.
CodeGen::RValue
CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
llvm::Value *Receiver,
bool IsClassMessage,
const CallArgList &CallArgs,
const ObjCMethodDecl *Method) {
return LegacyDispatchedSelector(Sel)
? EmitLegacyMessageSend(CGF, ResultType, EmitSelector(CGF.Builder, Sel),
Receiver, CGF.getContext().getObjCIdType(),
false, CallArgs, Method, ObjCTypes)
: EmitMessageSend(CGF, ResultType, Sel,
Receiver, CGF.getContext().getObjCIdType(),
false, CallArgs);
}
llvm::GlobalVariable *
CGObjCNonFragileABIMac::GetClassGlobal(const std::string &Name) {
llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
if (!GV) {
GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABITy,
false, llvm::GlobalValue::ExternalLinkage,
0, Name);
}
return GV;
}
llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
llvm::GlobalVariable *&Entry = ClassReferences[ID->getIdentifier()];
if (!Entry) {
std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString());
llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName);
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
false, llvm::GlobalValue::InternalLinkage,
ClassGV,
"\01L_OBJC_CLASSLIST_REFERENCES_$_");
Entry->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(
ObjCTypes.ClassnfABIPtrTy));
Entry->setSection("__DATA, __objc_classrefs, regular, no_dead_strip");
CGM.AddUsedGlobal(Entry);
}
return Builder.CreateLoad(Entry, false, "tmp");
}
llvm::Value *
CGObjCNonFragileABIMac::EmitSuperClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
if (!Entry) {
std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString());
llvm::GlobalVariable *ClassGV = GetClassGlobal(ClassName);
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
false, llvm::GlobalValue::InternalLinkage,
ClassGV,
"\01L_OBJC_CLASSLIST_SUP_REFS_$_");
Entry->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(
ObjCTypes.ClassnfABIPtrTy));
Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
CGM.AddUsedGlobal(Entry);
}
return Builder.CreateLoad(Entry, false, "tmp");
}
/// EmitMetaClassRef - Return a Value * of the address of _class_t
/// meta-data
///
llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
if (Entry)
return Builder.CreateLoad(Entry, false, "tmp");
std::string MetaClassName(getMetaclassSymbolPrefix() + ID->getNameAsString());
llvm::GlobalVariable *MetaClassGV = GetClassGlobal(MetaClassName);
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy, false,
llvm::GlobalValue::InternalLinkage,
MetaClassGV,
"\01L_OBJC_CLASSLIST_SUP_REFS_$_");
Entry->setAlignment(
CGM.getTargetData().getPrefTypeAlignment(
ObjCTypes.ClassnfABIPtrTy));
Entry->setSection("__DATA, __objc_superrefs, regular, no_dead_strip");
CGM.AddUsedGlobal(Entry);
return Builder.CreateLoad(Entry, false, "tmp");
}
/// GetClass - Return a reference to the class for the given interface
/// decl.
llvm::Value *CGObjCNonFragileABIMac::GetClass(CGBuilderTy &Builder,
const ObjCInterfaceDecl *ID) {
return EmitClassRef(Builder, ID);
}
/// Generates a message send where the super is the receiver. This is
/// a message send to self with special delivery semantics indicating
/// which class's method should be called.
CodeGen::RValue
CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
QualType ResultType,
Selector Sel,
const ObjCInterfaceDecl *Class,
bool isCategoryImpl,
llvm::Value *Receiver,
bool IsClassMessage,
const CodeGen::CallArgList &CallArgs,
const ObjCMethodDecl *Method) {
// ...
// Create and init a super structure; this is a (receiver, class)
// pair we will pass to objc_msgSendSuper.
llvm::Value *ObjCSuper =
CGF.Builder.CreateAlloca(ObjCTypes.SuperTy, 0, "objc_super");
llvm::Value *ReceiverAsObject =
CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
CGF.Builder.CreateStore(ReceiverAsObject,
CGF.Builder.CreateStructGEP(ObjCSuper, 0));
// If this is a class message the metaclass is passed as the target.
llvm::Value *Target;
if (IsClassMessage) {
if (isCategoryImpl) {
// Message sent to "super' in a class method defined in
// a category implementation.
Target = EmitClassRef(CGF.Builder, Class);
Target = CGF.Builder.CreateStructGEP(Target, 0);
Target = CGF.Builder.CreateLoad(Target);
} else
Target = EmitMetaClassRef(CGF.Builder, Class);
} else
Target = EmitSuperClassRef(CGF.Builder, Class);
// FIXME: We shouldn't need to do this cast, rectify the ASTContext and
// ObjCTypes types.
const llvm::Type *ClassTy =
CGM.getTypes().ConvertType(CGF.getContext().getObjCClassType());
Target = CGF.Builder.CreateBitCast(Target, ClassTy);
CGF.Builder.CreateStore(Target,
CGF.Builder.CreateStructGEP(ObjCSuper, 1));
return (LegacyDispatchedSelector(Sel))
? EmitLegacyMessageSend(CGF, ResultType,EmitSelector(CGF.Builder, Sel),
ObjCSuper, ObjCTypes.SuperPtrCTy,
true, CallArgs, Method, ObjCTypes)
: EmitMessageSend(CGF, ResultType, Sel,
ObjCSuper, ObjCTypes.SuperPtrCTy,
true, CallArgs);
}
llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CGBuilderTy &Builder,
Selector Sel) {
llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
if (!Entry) {
llvm::Constant *Casted =
llvm::ConstantExpr::getBitCast(GetMethodVarName(Sel),
ObjCTypes.SelectorPtrTy);
Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.SelectorPtrTy, false,
llvm::GlobalValue::InternalLinkage,
Casted, "\01L_OBJC_SELECTOR_REFERENCES_");
Entry->setSection("__DATA, __objc_selrefs, literal_pointers, no_dead_strip");
CGM.AddUsedGlobal(Entry);
}
return Builder.CreateLoad(Entry, false, "tmp");
}
/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
/// objc_assign_ivar (id src, id *dst)
///
void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src,
llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignIvarFn(),
src, dst, "assignivar");
return;
}
/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
/// objc_assign_strongCast (id src, id *dst)
///
void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignStrongCastFn(),
src, dst, "weakassign");
return;
}
void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
CodeGen::CodeGenFunction &CGF,
llvm::Value *DestPtr,
llvm::Value *SrcPtr,
QualType Ty) {
// Get size info for this aggregate.
std::pair<uint64_t, unsigned> TypeInfo = CGM.getContext().getTypeInfo(Ty);
unsigned long size = TypeInfo.first/8;
SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, ObjCTypes.Int8PtrTy);
DestPtr = CGF.Builder.CreateBitCast(DestPtr, ObjCTypes.Int8PtrTy);
llvm::Value *N = llvm::ConstantInt::get(ObjCTypes.LongTy, size);
CGF.Builder.CreateCall3(ObjCTypes.GcMemmoveCollectableFn(),
DestPtr, SrcPtr, N);
return;
}
/// EmitObjCWeakRead - Code gen for loading value of a __weak
/// object: objc_read_weak (id *src)
///
llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
CodeGen::CodeGenFunction &CGF,
llvm::Value *AddrWeakObj) {
const llvm::Type* DestTy =
cast<llvm::PointerType>(AddrWeakObj->getType())->getElementType();
AddrWeakObj = CGF.Builder.CreateBitCast(AddrWeakObj, ObjCTypes.PtrObjectPtrTy);
llvm::Value *read_weak = CGF.Builder.CreateCall(ObjCTypes.getGcReadWeakFn(),
AddrWeakObj, "weakread");
read_weak = CGF.Builder.CreateBitCast(read_weak, DestTy);
return read_weak;
}
/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
/// objc_assign_weak (id src, id *dst)
///
void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignWeakFn(),
src, dst, "weakassign");
return;
}
/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
/// objc_assign_global (id src, id *dst)
///
void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
llvm::Value *src, llvm::Value *dst) {
const llvm::Type * SrcTy = src->getType();
if (!isa<llvm::PointerType>(SrcTy)) {
unsigned Size = CGM.getTargetData().getTypeAllocSize(SrcTy);
assert(Size <= 8 && "does not support size > 8");
src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
: CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
}
src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
dst = CGF.Builder.CreateBitCast(dst, ObjCTypes.PtrObjectPtrTy);
CGF.Builder.CreateCall2(ObjCTypes.getGcAssignGlobalFn(),
src, dst, "globalassign");
return;
}
void
CGObjCNonFragileABIMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
const Stmt &S) {
bool isTry = isa<ObjCAtTryStmt>(S);
llvm::BasicBlock *TryBlock = CGF.createBasicBlock("try");
llvm::BasicBlock *PrevLandingPad = CGF.getInvokeDest();
llvm::BasicBlock *TryHandler = CGF.createBasicBlock("try.handler");
llvm::BasicBlock *FinallyBlock = CGF.createBasicBlock("finally");
llvm::BasicBlock *FinallyRethrow = CGF.createBasicBlock("finally.throw");
llvm::BasicBlock *FinallyEnd = CGF.createBasicBlock("finally.end");
// For @synchronized, call objc_sync_enter(sync.expr). The
// evaluation of the expression must occur before we enter the
// @synchronized. We can safely avoid a temp here because jumps into
// @synchronized are illegal & this will dominate uses.
llvm::Value *SyncArg = 0;
if (!isTry) {
SyncArg =
CGF.EmitScalarExpr(cast<ObjCAtSynchronizedStmt>(S).getSynchExpr());
SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
CGF.Builder.CreateCall(ObjCTypes.getSyncEnterFn(), SyncArg);
}
// Push an EH context entry, used for handling rethrows and jumps
// through finally.
CGF.PushCleanupBlock(FinallyBlock);
CGF.setInvokeDest(TryHandler);
CGF.EmitBlock(TryBlock);
CGF.EmitStmt(isTry ? cast<ObjCAtTryStmt>(S).getTryBody()
: cast<ObjCAtSynchronizedStmt>(S).getSynchBody());
CGF.EmitBranchThroughCleanup(FinallyEnd);
// Emit the exception handler.
CGF.EmitBlock(TryHandler);
llvm::Value *llvm_eh_exception =
CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_exception);
llvm::Value *llvm_eh_selector_i64 =
CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_selector_i64);
llvm::Value *llvm_eh_typeid_for_i64 =
CGF.CGM.getIntrinsic(llvm::Intrinsic::eh_typeid_for_i64);
llvm::Value *Exc = CGF.Builder.CreateCall(llvm_eh_exception, "exc");
llvm::Value *RethrowPtr = CGF.CreateTempAlloca(Exc->getType(), "_rethrow");
llvm::SmallVector<llvm::Value*, 8> SelectorArgs;
SelectorArgs.push_back(Exc);
SelectorArgs.push_back(ObjCTypes.getEHPersonalityPtr());
// Construct the lists of (type, catch body) to handle.
llvm::SmallVector<std::pair<const ParmVarDecl*, const Stmt*>, 8> Handlers;
bool HasCatchAll = false;
if (isTry) {
if (const ObjCAtCatchStmt* CatchStmt =
cast<ObjCAtTryStmt>(S).getCatchStmts()) {
for (; CatchStmt; CatchStmt = CatchStmt->getNextCatchStmt()) {
const ParmVarDecl *CatchDecl = CatchStmt->getCatchParamDecl();
Handlers.push_back(std::make_pair(CatchDecl, CatchStmt->getCatchBody()));
// catch(...) always matches.
if (!CatchDecl) {
// Use i8* null here to signal this is a catch all, not a cleanup.
llvm::Value *Null = llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy);
SelectorArgs.push_back(Null);
HasCatchAll = true;
break;
}
if (CatchDecl->getType()->isObjCIdType() ||
CatchDecl->getType()->isObjCQualifiedIdType()) {
llvm::Value *IDEHType =
CGM.getModule().getGlobalVariable("OBJC_EHTYPE_id");
if (!IDEHType)
IDEHType =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
false,
llvm::GlobalValue::ExternalLinkage,
0, "OBJC_EHTYPE_id");
SelectorArgs.push_back(IDEHType);
} else {
// All other types should be Objective-C interface pointer types.
const ObjCObjectPointerType *PT =
CatchDecl->getType()->getAsObjCObjectPointerType();
assert(PT && "Invalid @catch type.");
const ObjCInterfaceType *IT = PT->getInterfaceType();
assert(IT && "Invalid @catch type.");
llvm::Value *EHType = GetInterfaceEHType(IT->getDecl(), false);
SelectorArgs.push_back(EHType);
}
}
}
}
// We use a cleanup unless there was already a catch all.
if (!HasCatchAll) {
// Even though this is a cleanup, treat it as a catch all to avoid the C++
// personality behavior of terminating the process if only cleanups are
// found in the exception handling stack.
SelectorArgs.push_back(llvm::Constant::getNullValue(ObjCTypes.Int8PtrTy));
Handlers.push_back(std::make_pair((const ParmVarDecl*) 0, (const Stmt*) 0));
}
llvm::Value *Selector =
CGF.Builder.CreateCall(llvm_eh_selector_i64,
SelectorArgs.begin(), SelectorArgs.end(),
"selector");
for (unsigned i = 0, e = Handlers.size(); i != e; ++i) {
const ParmVarDecl *CatchParam = Handlers[i].first;
const Stmt *CatchBody = Handlers[i].second;
llvm::BasicBlock *Next = 0;
// The last handler always matches.
if (i + 1 != e) {
assert(CatchParam && "Only last handler can be a catch all.");
llvm::BasicBlock *Match = CGF.createBasicBlock("match");
Next = CGF.createBasicBlock("catch.next");
llvm::Value *Id =
CGF.Builder.CreateCall(llvm_eh_typeid_for_i64,
CGF.Builder.CreateBitCast(SelectorArgs[i+2],
ObjCTypes.Int8PtrTy));
CGF.Builder.CreateCondBr(CGF.Builder.CreateICmpEQ(Selector, Id),
Match, Next);
CGF.EmitBlock(Match);
}
if (CatchBody) {
llvm::BasicBlock *MatchEnd = CGF.createBasicBlock("match.end");
llvm::BasicBlock *MatchHandler = CGF.createBasicBlock("match.handler");
// Cleanups must call objc_end_catch.
//
// FIXME: It seems incorrect for objc_begin_catch to be inside this
// context, but this matches gcc.
CGF.PushCleanupBlock(MatchEnd);
CGF.setInvokeDest(MatchHandler);
llvm::Value *ExcObject =
CGF.Builder.CreateCall(ObjCTypes.getObjCBeginCatchFn(), Exc);
// Bind the catch parameter if it exists.
if (CatchParam) {
ExcObject =
CGF.Builder.CreateBitCast(ExcObject,
CGF.ConvertType(CatchParam->getType()));
// CatchParam is a ParmVarDecl because of the grammar
// construction used to handle this, but for codegen purposes
// we treat this as a local decl.
CGF.EmitLocalBlockVarDecl(*CatchParam);
CGF.Builder.CreateStore(ExcObject, CGF.GetAddrOfLocalVar(CatchParam));
}
CGF.ObjCEHValueStack.push_back(ExcObject);
CGF.EmitStmt(CatchBody);
CGF.ObjCEHValueStack.pop_back();
CGF.EmitBranchThroughCleanup(FinallyEnd);
CGF.EmitBlock(MatchHandler);
llvm::Value *Exc = CGF.Builder.CreateCall(llvm_eh_exception, "exc");
// We are required to emit this call to satisfy LLVM, even
// though we don't use the result.
llvm::SmallVector<llvm::Value*, 8> Args;
Args.push_back(Exc);
Args.push_back(ObjCTypes.getEHPersonalityPtr());
Args.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
0));
CGF.Builder.CreateCall(llvm_eh_selector_i64, Args.begin(), Args.end());
CGF.Builder.CreateStore(Exc, RethrowPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
CodeGenFunction::CleanupBlockInfo Info = CGF.PopCleanupBlock();
CGF.EmitBlock(MatchEnd);
// Unfortunately, we also have to generate another EH frame here
// in case this throws.
llvm::BasicBlock *MatchEndHandler =
CGF.createBasicBlock("match.end.handler");
llvm::BasicBlock *Cont = CGF.createBasicBlock("invoke.cont");
CGF.Builder.CreateInvoke(ObjCTypes.getObjCEndCatchFn(),
Cont, MatchEndHandler,
Args.begin(), Args.begin());
CGF.EmitBlock(Cont);
if (Info.SwitchBlock)
CGF.EmitBlock(Info.SwitchBlock);
if (Info.EndBlock)
CGF.EmitBlock(Info.EndBlock);
CGF.EmitBlock(MatchEndHandler);
Exc = CGF.Builder.CreateCall(llvm_eh_exception, "exc");
// We are required to emit this call to satisfy LLVM, even
// though we don't use the result.
Args.clear();
Args.push_back(Exc);
Args.push_back(ObjCTypes.getEHPersonalityPtr());
Args.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
0));
CGF.Builder.CreateCall(llvm_eh_selector_i64, Args.begin(), Args.end());
CGF.Builder.CreateStore(Exc, RethrowPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
if (Next)
CGF.EmitBlock(Next);
} else {
assert(!Next && "catchup should be last handler.");
CGF.Builder.CreateStore(Exc, RethrowPtr);
CGF.EmitBranchThroughCleanup(FinallyRethrow);
}
}
// Pop the cleanup entry, the @finally is outside this cleanup
// scope.
CodeGenFunction::CleanupBlockInfo Info = CGF.PopCleanupBlock();
CGF.setInvokeDest(PrevLandingPad);
CGF.EmitBlock(FinallyBlock);
if (isTry) {
if (const ObjCAtFinallyStmt* FinallyStmt =
cast<ObjCAtTryStmt>(S).getFinallyStmt())
CGF.EmitStmt(FinallyStmt->getFinallyBody());
} else {
// Emit 'objc_sync_exit(expr)' as finally's sole statement for
// @synchronized.
CGF.Builder.CreateCall(ObjCTypes.getSyncExitFn(), SyncArg);
}
if (Info.SwitchBlock)
CGF.EmitBlock(Info.SwitchBlock);
if (Info.EndBlock)
CGF.EmitBlock(Info.EndBlock);
// Branch around the rethrow code.
CGF.EmitBranch(FinallyEnd);
CGF.EmitBlock(FinallyRethrow);
CGF.Builder.CreateCall(ObjCTypes.getUnwindResumeOrRethrowFn(),
CGF.Builder.CreateLoad(RethrowPtr));
CGF.Builder.CreateUnreachable();
CGF.EmitBlock(FinallyEnd);
}
/// EmitThrowStmt - Generate code for a throw statement.
void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
const ObjCAtThrowStmt &S) {
llvm::Value *Exception;
if (const Expr *ThrowExpr = S.getThrowExpr()) {
Exception = CGF.EmitScalarExpr(ThrowExpr);
} else {
assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
"Unexpected rethrow outside @catch block.");
Exception = CGF.ObjCEHValueStack.back();
}
llvm::Value *ExceptionAsObject =
CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy, "tmp");
llvm::BasicBlock *InvokeDest = CGF.getInvokeDest();
if (InvokeDest) {
llvm::BasicBlock *Cont = CGF.createBasicBlock("invoke.cont");
CGF.Builder.CreateInvoke(ObjCTypes.getExceptionThrowFn(),
Cont, InvokeDest,
&ExceptionAsObject, &ExceptionAsObject + 1);
CGF.EmitBlock(Cont);
} else
CGF.Builder.CreateCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject);
CGF.Builder.CreateUnreachable();
// Clear the insertion point to indicate we are in unreachable code.
CGF.Builder.ClearInsertionPoint();
}
llvm::Value *
CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
bool ForDefinition) {
llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
// If we don't need a definition, return the entry if found or check
// if we use an external reference.
if (!ForDefinition) {
if (Entry)
return Entry;
// If this type (or a super class) has the __objc_exception__
// attribute, emit an external reference.
if (hasObjCExceptionAttribute(CGM.getContext(), ID))
return Entry =
new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
llvm::GlobalValue::ExternalLinkage,
0,
(std::string("OBJC_EHTYPE_$_") +
ID->getIdentifier()->getName()));
}
// Otherwise we need to either make a new entry or fill in the
// initializer.
assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
std::string ClassName(getClassSymbolPrefix() + ID->getNameAsString());
std::string VTableName = "objc_ehtype_vtable";
llvm::GlobalVariable *VTableGV =
CGM.getModule().getGlobalVariable(VTableName);
if (!VTableGV)
VTableGV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy,
false,
llvm::GlobalValue::ExternalLinkage,
0, VTableName);
llvm::Value *VTableIdx = llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 2);
std::vector<llvm::Constant*> Values(3);
Values[0] = llvm::ConstantExpr::getGetElementPtr(VTableGV, &VTableIdx, 1);
Values[1] = GetClassName(ID->getIdentifier());
Values[2] = GetClassGlobal(ClassName);
llvm::Constant *Init =
llvm::ConstantStruct::get(ObjCTypes.EHTypeTy, Values);
if (Entry) {
Entry->setInitializer(Init);
} else {
Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
llvm::GlobalValue::WeakAnyLinkage,
Init,
(std::string("OBJC_EHTYPE_$_") +
ID->getIdentifier()->getName()));
}
if (CGM.getLangOptions().getVisibilityMode() == LangOptions::Hidden)
Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
Entry->setAlignment(8);
if (ForDefinition) {
Entry->setSection("__DATA,__objc_const");
Entry->setLinkage(llvm::GlobalValue::ExternalLinkage);
} else {
Entry->setSection("__DATA,__datacoal_nt,coalesced");
}
return Entry;
}
/* *** */
CodeGen::CGObjCRuntime *
CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
return new CGObjCMac(CGM);
}
CodeGen::CGObjCRuntime *
CodeGen::CreateMacNonFragileABIObjCRuntime(CodeGen::CodeGenModule &CGM) {
return new CGObjCNonFragileABIMac(CGM);
}