llvm-project/clang/lib/CodeGen/CGDecl.cpp

2542 lines
97 KiB
C++

//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Decl nodes as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CGBlocks.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGDebugInfo.h"
#include "CGOpenCLRuntime.h"
#include "CGOpenMPRuntime.h"
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "ConstantEmitter.h"
#include "PatternInit.h"
#include "TargetInfo.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CGFunctionInfo.h"
#include "clang/Sema/Sema.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
using namespace clang;
using namespace CodeGen;
static_assert(clang::Sema::MaximumAlignment <= llvm::Value::MaximumAlignment,
"Clang max alignment greater than what LLVM supports?");
void CodeGenFunction::EmitDecl(const Decl &D) {
switch (D.getKind()) {
case Decl::BuiltinTemplate:
case Decl::TranslationUnit:
case Decl::ExternCContext:
case Decl::Namespace:
case Decl::UnresolvedUsingTypename:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
case Decl::VarTemplateSpecialization:
case Decl::VarTemplatePartialSpecialization:
case Decl::TemplateTypeParm:
case Decl::UnresolvedUsingValue:
case Decl::NonTypeTemplateParm:
case Decl::CXXDeductionGuide:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion:
case Decl::Field:
case Decl::MSProperty:
case Decl::IndirectField:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ParmVar:
case Decl::ImplicitParam:
case Decl::ClassTemplate:
case Decl::VarTemplate:
case Decl::FunctionTemplate:
case Decl::TypeAliasTemplate:
case Decl::TemplateTemplateParm:
case Decl::ObjCMethod:
case Decl::ObjCCategory:
case Decl::ObjCProtocol:
case Decl::ObjCInterface:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::ObjCProperty:
case Decl::ObjCCompatibleAlias:
case Decl::PragmaComment:
case Decl::PragmaDetectMismatch:
case Decl::AccessSpec:
case Decl::LinkageSpec:
case Decl::Export:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::Friend:
case Decl::FriendTemplate:
case Decl::Block:
case Decl::Captured:
case Decl::ClassScopeFunctionSpecialization:
case Decl::UsingShadow:
case Decl::ConstructorUsingShadow:
case Decl::ObjCTypeParam:
case Decl::Binding:
llvm_unreachable("Declaration should not be in declstmts!");
case Decl::Function: // void X();
case Decl::Record: // struct/union/class X;
case Decl::Enum: // enum X;
case Decl::EnumConstant: // enum ? { X = ? }
case Decl::CXXRecord: // struct/union/class X; [C++]
case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
case Decl::Label: // __label__ x;
case Decl::Import:
case Decl::OMPThreadPrivate:
case Decl::OMPAllocate:
case Decl::OMPCapturedExpr:
case Decl::OMPRequires:
case Decl::Empty:
case Decl::Concept:
case Decl::LifetimeExtendedTemporary:
case Decl::RequiresExprBody:
// None of these decls require codegen support.
return;
case Decl::NamespaceAlias:
if (CGDebugInfo *DI = getDebugInfo())
DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
return;
case Decl::Using: // using X; [C++]
if (CGDebugInfo *DI = getDebugInfo())
DI->EmitUsingDecl(cast<UsingDecl>(D));
return;
case Decl::UsingPack:
for (auto *Using : cast<UsingPackDecl>(D).expansions())
EmitDecl(*Using);
return;
case Decl::UsingDirective: // using namespace X; [C++]
if (CGDebugInfo *DI = getDebugInfo())
DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
return;
case Decl::Var:
case Decl::Decomposition: {
const VarDecl &VD = cast<VarDecl>(D);
assert(VD.isLocalVarDecl() &&
"Should not see file-scope variables inside a function!");
EmitVarDecl(VD);
if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
for (auto *B : DD->bindings())
if (auto *HD = B->getHoldingVar())
EmitVarDecl(*HD);
return;
}
case Decl::OMPDeclareReduction:
return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
case Decl::OMPDeclareMapper:
return CGM.EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(&D), this);
case Decl::Typedef: // typedef int X;
case Decl::TypeAlias: { // using X = int; [C++0x]
const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
QualType Ty = TD.getUnderlyingType();
if (Ty->isVariablyModifiedType())
EmitVariablyModifiedType(Ty);
return;
}
}
}
/// EmitVarDecl - This method handles emission of any variable declaration
/// inside a function, including static vars etc.
void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
if (D.hasExternalStorage())
// Don't emit it now, allow it to be emitted lazily on its first use.
return;
// Some function-scope variable does not have static storage but still
// needs to be emitted like a static variable, e.g. a function-scope
// variable in constant address space in OpenCL.
if (D.getStorageDuration() != SD_Automatic) {
// Static sampler variables translated to function calls.
if (D.getType()->isSamplerT())
return;
llvm::GlobalValue::LinkageTypes Linkage =
CGM.getLLVMLinkageVarDefinition(&D, /*IsConstant=*/false);
// FIXME: We need to force the emission/use of a guard variable for
// some variables even if we can constant-evaluate them because
// we can't guarantee every translation unit will constant-evaluate them.
return EmitStaticVarDecl(D, Linkage);
}
if (D.getType().getAddressSpace() == LangAS::opencl_local)
return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
assert(D.hasLocalStorage());
return EmitAutoVarDecl(D);
}
static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
if (CGM.getLangOpts().CPlusPlus)
return CGM.getMangledName(&D).str();
// If this isn't C++, we don't need a mangled name, just a pretty one.
assert(!D.isExternallyVisible() && "name shouldn't matter");
std::string ContextName;
const DeclContext *DC = D.getDeclContext();
if (auto *CD = dyn_cast<CapturedDecl>(DC))
DC = cast<DeclContext>(CD->getNonClosureContext());
if (const auto *FD = dyn_cast<FunctionDecl>(DC))
ContextName = std::string(CGM.getMangledName(FD));
else if (const auto *BD = dyn_cast<BlockDecl>(DC))
ContextName = std::string(CGM.getBlockMangledName(GlobalDecl(), BD));
else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
ContextName = OMD->getSelector().getAsString();
else
llvm_unreachable("Unknown context for static var decl");
ContextName += "." + D.getNameAsString();
return ContextName;
}
llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
// In general, we don't always emit static var decls once before we reference
// them. It is possible to reference them before emitting the function that
// contains them, and it is possible to emit the containing function multiple
// times.
if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
return ExistingGV;
QualType Ty = D.getType();
assert(Ty->isConstantSizeType() && "VLAs can't be static");
// Use the label if the variable is renamed with the asm-label extension.
std::string Name;
if (D.hasAttr<AsmLabelAttr>())
Name = std::string(getMangledName(&D));
else
Name = getStaticDeclName(*this, D);
llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
LangAS AS = GetGlobalVarAddressSpace(&D);
unsigned TargetAS = getContext().getTargetAddressSpace(AS);
// OpenCL variables in local address space and CUDA shared
// variables cannot have an initializer.
llvm::Constant *Init = nullptr;
if (Ty.getAddressSpace() == LangAS::opencl_local ||
D.hasAttr<CUDASharedAttr>())
Init = llvm::UndefValue::get(LTy);
else
Init = EmitNullConstant(Ty);
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
GV->setAlignment(getContext().getDeclAlign(&D).getAsAlign());
if (supportsCOMDAT() && GV->isWeakForLinker())
GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
if (D.getTLSKind())
setTLSMode(GV, D);
setGVProperties(GV, &D);
// Make sure the result is of the correct type.
LangAS ExpectedAS = Ty.getAddressSpace();
llvm::Constant *Addr = GV;
if (AS != ExpectedAS) {
Addr = getTargetCodeGenInfo().performAddrSpaceCast(
*this, GV, AS, ExpectedAS,
LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
}
setStaticLocalDeclAddress(&D, Addr);
// Ensure that the static local gets initialized by making sure the parent
// function gets emitted eventually.
const Decl *DC = cast<Decl>(D.getDeclContext());
// We can't name blocks or captured statements directly, so try to emit their
// parents.
if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
DC = DC->getNonClosureContext();
// FIXME: Ensure that global blocks get emitted.
if (!DC)
return Addr;
}
GlobalDecl GD;
if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
GD = GlobalDecl(CD, Ctor_Base);
else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
GD = GlobalDecl(DD, Dtor_Base);
else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
GD = GlobalDecl(FD);
else {
// Don't do anything for Obj-C method decls or global closures. We should
// never defer them.
assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
}
if (GD.getDecl()) {
// Disable emission of the parent function for the OpenMP device codegen.
CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
(void)GetAddrOfGlobal(GD);
}
return Addr;
}
/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
/// global variable that has already been created for it. If the initializer
/// has a different type than GV does, this may free GV and return a different
/// one. Otherwise it just returns GV.
llvm::GlobalVariable *
CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
llvm::GlobalVariable *GV) {
ConstantEmitter emitter(*this);
llvm::Constant *Init = emitter.tryEmitForInitializer(D);
// If constant emission failed, then this should be a C++ static
// initializer.
if (!Init) {
if (!getLangOpts().CPlusPlus)
CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
else if (HaveInsertPoint()) {
// Since we have a static initializer, this global variable can't
// be constant.
GV->setConstant(false);
EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
}
return GV;
}
// The initializer may differ in type from the global. Rewrite
// the global to match the initializer. (We have to do this
// because some types, like unions, can't be completely represented
// in the LLVM type system.)
if (GV->getType()->getElementType() != Init->getType()) {
llvm::GlobalVariable *OldGV = GV;
GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
OldGV->isConstant(),
OldGV->getLinkage(), Init, "",
/*InsertBefore*/ OldGV,
OldGV->getThreadLocalMode(),
CGM.getContext().getTargetAddressSpace(D.getType()));
GV->setVisibility(OldGV->getVisibility());
GV->setDSOLocal(OldGV->isDSOLocal());
GV->setComdat(OldGV->getComdat());
// Steal the name of the old global
GV->takeName(OldGV);
// Replace all uses of the old global with the new global
llvm::Constant *NewPtrForOldDecl =
llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
OldGV->replaceAllUsesWith(NewPtrForOldDecl);
// Erase the old global, since it is no longer used.
OldGV->eraseFromParent();
}
GV->setConstant(CGM.isTypeConstant(D.getType(), true));
GV->setInitializer(Init);
emitter.finalize(GV);
if (D.needsDestruction(getContext()) == QualType::DK_cxx_destructor &&
HaveInsertPoint()) {
// We have a constant initializer, but a nontrivial destructor. We still
// need to perform a guarded "initialization" in order to register the
// destructor.
EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
}
return GV;
}
void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
llvm::GlobalValue::LinkageTypes Linkage) {
// Check to see if we already have a global variable for this
// declaration. This can happen when double-emitting function
// bodies, e.g. with complete and base constructors.
llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
CharUnits alignment = getContext().getDeclAlign(&D);
// Store into LocalDeclMap before generating initializer to handle
// circular references.
setAddrOfLocalVar(&D, Address(addr, alignment));
// We can't have a VLA here, but we can have a pointer to a VLA,
// even though that doesn't really make any sense.
// Make sure to evaluate VLA bounds now so that we have them for later.
if (D.getType()->isVariablyModifiedType())
EmitVariablyModifiedType(D.getType());
// Save the type in case adding the initializer forces a type change.
llvm::Type *expectedType = addr->getType();
llvm::GlobalVariable *var =
cast<llvm::GlobalVariable>(addr->stripPointerCasts());
// CUDA's local and local static __shared__ variables should not
// have any non-empty initializers. This is ensured by Sema.
// Whatever initializer such variable may have when it gets here is
// a no-op and should not be emitted.
bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
D.hasAttr<CUDASharedAttr>();
// If this value has an initializer, emit it.
if (D.getInit() && !isCudaSharedVar)
var = AddInitializerToStaticVarDecl(D, var);
var->setAlignment(alignment.getAsAlign());
if (D.hasAttr<AnnotateAttr>())
CGM.AddGlobalAnnotations(&D, var);
if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
var->addAttribute("bss-section", SA->getName());
if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
var->addAttribute("data-section", SA->getName());
if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
var->addAttribute("rodata-section", SA->getName());
if (auto *SA = D.getAttr<PragmaClangRelroSectionAttr>())
var->addAttribute("relro-section", SA->getName());
if (const SectionAttr *SA = D.getAttr<SectionAttr>())
var->setSection(SA->getName());
if (D.hasAttr<UsedAttr>())
CGM.addUsedGlobal(var);
// We may have to cast the constant because of the initializer
// mismatch above.
//
// FIXME: It is really dangerous to store this in the map; if anyone
// RAUW's the GV uses of this constant will be invalid.
llvm::Constant *castedAddr =
llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
if (var != castedAddr)
LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
CGM.setStaticLocalDeclAddress(&D, castedAddr);
CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
// Emit global variable debug descriptor for static vars.
CGDebugInfo *DI = getDebugInfo();
if (DI && CGM.getCodeGenOpts().hasReducedDebugInfo()) {
DI->setLocation(D.getLocation());
DI->EmitGlobalVariable(var, &D);
}
}
namespace {
struct DestroyObject final : EHScopeStack::Cleanup {
DestroyObject(Address addr, QualType type,
CodeGenFunction::Destroyer *destroyer,
bool useEHCleanupForArray)
: addr(addr), type(type), destroyer(destroyer),
useEHCleanupForArray(useEHCleanupForArray) {}
Address addr;
QualType type;
CodeGenFunction::Destroyer *destroyer;
bool useEHCleanupForArray;
void Emit(CodeGenFunction &CGF, Flags flags) override {
// Don't use an EH cleanup recursively from an EH cleanup.
bool useEHCleanupForArray =
flags.isForNormalCleanup() && this->useEHCleanupForArray;
CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
}
};
template <class Derived>
struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable(Address addr, QualType type, llvm::Value *NRVOFlag)
: NRVOFlag(NRVOFlag), Loc(addr), Ty(type) {}
llvm::Value *NRVOFlag;
Address Loc;
QualType Ty;
void Emit(CodeGenFunction &CGF, Flags flags) override {
// Along the exceptions path we always execute the dtor.
bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
llvm::BasicBlock *SkipDtorBB = nullptr;
if (NRVO) {
// If we exited via NRVO, we skip the destructor call.
llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
llvm::Value *DidNRVO =
CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
CGF.EmitBlock(RunDtorBB);
}
static_cast<Derived *>(this)->emitDestructorCall(CGF);
if (NRVO) CGF.EmitBlock(SkipDtorBB);
}
virtual ~DestroyNRVOVariable() = default;
};
struct DestroyNRVOVariableCXX final
: DestroyNRVOVariable<DestroyNRVOVariableCXX> {
DestroyNRVOVariableCXX(Address addr, QualType type,
const CXXDestructorDecl *Dtor, llvm::Value *NRVOFlag)
: DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, type, NRVOFlag),
Dtor(Dtor) {}
const CXXDestructorDecl *Dtor;
void emitDestructorCall(CodeGenFunction &CGF) {
CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
/*ForVirtualBase=*/false,
/*Delegating=*/false, Loc, Ty);
}
};
struct DestroyNRVOVariableC final
: DestroyNRVOVariable<DestroyNRVOVariableC> {
DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
: DestroyNRVOVariable<DestroyNRVOVariableC>(addr, Ty, NRVOFlag) {}
void emitDestructorCall(CodeGenFunction &CGF) {
CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
}
};
struct CallStackRestore final : EHScopeStack::Cleanup {
Address Stack;
CallStackRestore(Address Stack) : Stack(Stack) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
llvm::Value *V = CGF.Builder.CreateLoad(Stack);
llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
CGF.Builder.CreateCall(F, V);
}
};
struct ExtendGCLifetime final : EHScopeStack::Cleanup {
const VarDecl &Var;
ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
// Compute the address of the local variable, in case it's a
// byref or something.
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
Var.getType(), VK_LValue, SourceLocation());
llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
SourceLocation());
CGF.EmitExtendGCLifetime(value);
}
};
struct CallCleanupFunction final : EHScopeStack::Cleanup {
llvm::Constant *CleanupFn;
const CGFunctionInfo &FnInfo;
const VarDecl &Var;
CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
const VarDecl *Var)
: CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
Var.getType(), VK_LValue, SourceLocation());
// Compute the address of the local variable, in case it's a byref
// or something.
llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(CGF);
// In some cases, the type of the function argument will be different from
// the type of the pointer. An example of this is
// void f(void* arg);
// __attribute__((cleanup(f))) void *g;
//
// To fix this we insert a bitcast here.
QualType ArgTy = FnInfo.arg_begin()->type;
llvm::Value *Arg =
CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
CallArgList Args;
Args.add(RValue::get(Arg),
CGF.getContext().getPointerType(Var.getType()));
auto Callee = CGCallee::forDirect(CleanupFn);
CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
}
};
} // end anonymous namespace
/// EmitAutoVarWithLifetime - Does the setup required for an automatic
/// variable with lifetime.
static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
Address addr,
Qualifiers::ObjCLifetime lifetime) {
switch (lifetime) {
case Qualifiers::OCL_None:
llvm_unreachable("present but none");
case Qualifiers::OCL_ExplicitNone:
// nothing to do
break;
case Qualifiers::OCL_Strong: {
CodeGenFunction::Destroyer *destroyer =
(var.hasAttr<ObjCPreciseLifetimeAttr>()
? CodeGenFunction::destroyARCStrongPrecise
: CodeGenFunction::destroyARCStrongImprecise);
CleanupKind cleanupKind = CGF.getARCCleanupKind();
CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
cleanupKind & EHCleanup);
break;
}
case Qualifiers::OCL_Autoreleasing:
// nothing to do
break;
case Qualifiers::OCL_Weak:
// __weak objects always get EH cleanups; otherwise, exceptions
// could cause really nasty crashes instead of mere leaks.
CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
CodeGenFunction::destroyARCWeak,
/*useEHCleanup*/ true);
break;
}
}
static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
if (const Expr *e = dyn_cast<Expr>(s)) {
// Skip the most common kinds of expressions that make
// hierarchy-walking expensive.
s = e = e->IgnoreParenCasts();
if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
return (ref->getDecl() == &var);
if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
const BlockDecl *block = be->getBlockDecl();
for (const auto &I : block->captures()) {
if (I.getVariable() == &var)
return true;
}
}
}
for (const Stmt *SubStmt : s->children())
// SubStmt might be null; as in missing decl or conditional of an if-stmt.
if (SubStmt && isAccessedBy(var, SubStmt))
return true;
return false;
}
static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
if (!decl) return false;
if (!isa<VarDecl>(decl)) return false;
const VarDecl *var = cast<VarDecl>(decl);
return isAccessedBy(*var, e);
}
static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
const LValue &destLV, const Expr *init) {
bool needsCast = false;
while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
switch (castExpr->getCastKind()) {
// Look through casts that don't require representation changes.
case CK_NoOp:
case CK_BitCast:
case CK_BlockPointerToObjCPointerCast:
needsCast = true;
break;
// If we find an l-value to r-value cast from a __weak variable,
// emit this operation as a copy or move.
case CK_LValueToRValue: {
const Expr *srcExpr = castExpr->getSubExpr();
if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
return false;
// Emit the source l-value.
LValue srcLV = CGF.EmitLValue(srcExpr);
// Handle a formal type change to avoid asserting.
auto srcAddr = srcLV.getAddress(CGF);
if (needsCast) {
srcAddr = CGF.Builder.CreateElementBitCast(
srcAddr, destLV.getAddress(CGF).getElementType());
}
// If it was an l-value, use objc_copyWeak.
if (srcExpr->getValueKind() == VK_LValue) {
CGF.EmitARCCopyWeak(destLV.getAddress(CGF), srcAddr);
} else {
assert(srcExpr->getValueKind() == VK_XValue);
CGF.EmitARCMoveWeak(destLV.getAddress(CGF), srcAddr);
}
return true;
}
// Stop at anything else.
default:
return false;
}
init = castExpr->getSubExpr();
}
return false;
}
static void drillIntoBlockVariable(CodeGenFunction &CGF,
LValue &lvalue,
const VarDecl *var) {
lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(CGF), var));
}
void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
SourceLocation Loc) {
if (!SanOpts.has(SanitizerKind::NullabilityAssign))
return;
auto Nullability = LHS.getType()->getNullability(getContext());
if (!Nullability || *Nullability != NullabilityKind::NonNull)
return;
// Check if the right hand side of the assignment is nonnull, if the left
// hand side must be nonnull.
SanitizerScope SanScope(this);
llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
llvm::Constant *StaticData[] = {
EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
SanitizerHandler::TypeMismatch, StaticData, RHS);
}
void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
LValue lvalue, bool capturedByInit) {
Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
if (!lifetime) {
llvm::Value *value = EmitScalarExpr(init);
if (capturedByInit)
drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
EmitNullabilityCheck(lvalue, value, init->getExprLoc());
EmitStoreThroughLValue(RValue::get(value), lvalue, true);
return;
}
if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
init = DIE->getExpr();
// If we're emitting a value with lifetime, we have to do the
// initialization *before* we leave the cleanup scopes.
if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
enterFullExpression(fe);
init = fe->getSubExpr();
}
CodeGenFunction::RunCleanupsScope Scope(*this);
// We have to maintain the illusion that the variable is
// zero-initialized. If the variable might be accessed in its
// initializer, zero-initialize before running the initializer, then
// actually perform the initialization with an assign.
bool accessedByInit = false;
if (lifetime != Qualifiers::OCL_ExplicitNone)
accessedByInit = (capturedByInit || isAccessedBy(D, init));
if (accessedByInit) {
LValue tempLV = lvalue;
// Drill down to the __block object if necessary.
if (capturedByInit) {
// We can use a simple GEP for this because it can't have been
// moved yet.
tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(*this),
cast<VarDecl>(D),
/*follow*/ false));
}
auto ty =
cast<llvm::PointerType>(tempLV.getAddress(*this).getElementType());
llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
// If __weak, we want to use a barrier under certain conditions.
if (lifetime == Qualifiers::OCL_Weak)
EmitARCInitWeak(tempLV.getAddress(*this), zero);
// Otherwise just do a simple store.
else
EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
}
// Emit the initializer.
llvm::Value *value = nullptr;
switch (lifetime) {
case Qualifiers::OCL_None:
llvm_unreachable("present but none");
case Qualifiers::OCL_Strong: {
if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
value = EmitARCRetainScalarExpr(init);
break;
}
// If D is pseudo-strong, treat it like __unsafe_unretained here. This means
// that we omit the retain, and causes non-autoreleased return values to be
// immediately released.
LLVM_FALLTHROUGH;
}
case Qualifiers::OCL_ExplicitNone:
value = EmitARCUnsafeUnretainedScalarExpr(init);
break;
case Qualifiers::OCL_Weak: {
// If it's not accessed by the initializer, try to emit the
// initialization with a copy or move.
if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
return;
}
// No way to optimize a producing initializer into this. It's not
// worth optimizing for, because the value will immediately
// disappear in the common case.
value = EmitScalarExpr(init);
if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
if (accessedByInit)
EmitARCStoreWeak(lvalue.getAddress(*this), value, /*ignored*/ true);
else
EmitARCInitWeak(lvalue.getAddress(*this), value);
return;
}
case Qualifiers::OCL_Autoreleasing:
value = EmitARCRetainAutoreleaseScalarExpr(init);
break;
}
if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
EmitNullabilityCheck(lvalue, value, init->getExprLoc());
// If the variable might have been accessed by its initializer, we
// might have to initialize with a barrier. We have to do this for
// both __weak and __strong, but __weak got filtered out above.
if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
EmitARCRelease(oldValue, ARCImpreciseLifetime);
return;
}
EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
}
/// Decide whether we can emit the non-zero parts of the specified initializer
/// with equal or fewer than NumStores scalar stores.
static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
unsigned &NumStores) {
// Zero and Undef never requires any extra stores.
if (isa<llvm::ConstantAggregateZero>(Init) ||
isa<llvm::ConstantPointerNull>(Init) ||
isa<llvm::UndefValue>(Init))
return true;
if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
isa<llvm::ConstantExpr>(Init))
return Init->isNullValue() || NumStores--;
// See if we can emit each element.
if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
return false;
}
return true;
}
if (llvm::ConstantDataSequential *CDS =
dyn_cast<llvm::ConstantDataSequential>(Init)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
llvm::Constant *Elt = CDS->getElementAsConstant(i);
if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
return false;
}
return true;
}
// Anything else is hard and scary.
return false;
}
/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
/// the scalar stores that would be required.
static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
llvm::Constant *Init, Address Loc,
bool isVolatile, CGBuilderTy &Builder) {
assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
"called emitStoresForInitAfterBZero for zero or undef value.");
if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
isa<llvm::ConstantExpr>(Init)) {
Builder.CreateStore(Init, Loc, isVolatile);
return;
}
if (llvm::ConstantDataSequential *CDS =
dyn_cast<llvm::ConstantDataSequential>(Init)) {
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
llvm::Constant *Elt = CDS->getElementAsConstant(i);
// If necessary, get a pointer to the element and emit it.
if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
emitStoresForInitAfterBZero(
CGM, Elt, Builder.CreateConstInBoundsGEP2_32(Loc, 0, i), isVolatile,
Builder);
}
return;
}
assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
"Unknown value type!");
for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
// If necessary, get a pointer to the element and emit it.
if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
emitStoresForInitAfterBZero(CGM, Elt,
Builder.CreateConstInBoundsGEP2_32(Loc, 0, i),
isVolatile, Builder);
}
}
/// Decide whether we should use bzero plus some stores to initialize a local
/// variable instead of using a memcpy from a constant global. It is beneficial
/// to use bzero if the global is all zeros, or mostly zeros and large.
static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
uint64_t GlobalSize) {
// If a global is all zeros, always use a bzero.
if (isa<llvm::ConstantAggregateZero>(Init)) return true;
// If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
// do it if it will require 6 or fewer scalar stores.
// TODO: Should budget depends on the size? Avoiding a large global warrants
// plopping in more stores.
unsigned StoreBudget = 6;
uint64_t SizeLimit = 32;
return GlobalSize > SizeLimit &&
canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
}
/// Decide whether we should use memset to initialize a local variable instead
/// of using a memcpy from a constant global. Assumes we've already decided to
/// not user bzero.
/// FIXME We could be more clever, as we are for bzero above, and generate
/// memset followed by stores. It's unclear that's worth the effort.
static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
uint64_t GlobalSize,
const llvm::DataLayout &DL) {
uint64_t SizeLimit = 32;
if (GlobalSize <= SizeLimit)
return nullptr;
return llvm::isBytewiseValue(Init, DL);
}
/// Decide whether we want to split a constant structure or array store into a
/// sequence of its fields' stores. This may cost us code size and compilation
/// speed, but plays better with store optimizations.
static bool shouldSplitConstantStore(CodeGenModule &CGM,
uint64_t GlobalByteSize) {
// Don't break things that occupy more than one cacheline.
uint64_t ByteSizeLimit = 64;
if (CGM.getCodeGenOpts().OptimizationLevel == 0)
return false;
if (GlobalByteSize <= ByteSizeLimit)
return true;
return false;
}
enum class IsPattern { No, Yes };
/// Generate a constant filled with either a pattern or zeroes.
static llvm::Constant *patternOrZeroFor(CodeGenModule &CGM, IsPattern isPattern,
llvm::Type *Ty) {
if (isPattern == IsPattern::Yes)
return initializationPatternFor(CGM, Ty);
else
return llvm::Constant::getNullValue(Ty);
}
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
llvm::Constant *constant);
/// Helper function for constWithPadding() to deal with padding in structures.
static llvm::Constant *constStructWithPadding(CodeGenModule &CGM,
IsPattern isPattern,
llvm::StructType *STy,
llvm::Constant *constant) {
const llvm::DataLayout &DL = CGM.getDataLayout();
const llvm::StructLayout *Layout = DL.getStructLayout(STy);
llvm::Type *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
unsigned SizeSoFar = 0;
SmallVector<llvm::Constant *, 8> Values;
bool NestedIntact = true;
for (unsigned i = 0, e = STy->getNumElements(); i != e; i++) {
unsigned CurOff = Layout->getElementOffset(i);
if (SizeSoFar < CurOff) {
assert(!STy->isPacked());
auto *PadTy = llvm::ArrayType::get(Int8Ty, CurOff - SizeSoFar);
Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
}
llvm::Constant *CurOp;
if (constant->isZeroValue())
CurOp = llvm::Constant::getNullValue(STy->getElementType(i));
else
CurOp = cast<llvm::Constant>(constant->getAggregateElement(i));
auto *NewOp = constWithPadding(CGM, isPattern, CurOp);
if (CurOp != NewOp)
NestedIntact = false;
Values.push_back(NewOp);
SizeSoFar = CurOff + DL.getTypeAllocSize(CurOp->getType());
}
unsigned TotalSize = Layout->getSizeInBytes();
if (SizeSoFar < TotalSize) {
auto *PadTy = llvm::ArrayType::get(Int8Ty, TotalSize - SizeSoFar);
Values.push_back(patternOrZeroFor(CGM, isPattern, PadTy));
}
if (NestedIntact && Values.size() == STy->getNumElements())
return constant;
return llvm::ConstantStruct::getAnon(Values, STy->isPacked());
}
/// Replace all padding bytes in a given constant with either a pattern byte or
/// 0x00.
static llvm::Constant *constWithPadding(CodeGenModule &CGM, IsPattern isPattern,
llvm::Constant *constant) {
llvm::Type *OrigTy = constant->getType();
if (const auto STy = dyn_cast<llvm::StructType>(OrigTy))
return constStructWithPadding(CGM, isPattern, STy, constant);
if (auto *STy = dyn_cast<llvm::SequentialType>(OrigTy)) {
llvm::SmallVector<llvm::Constant *, 8> Values;
unsigned Size = STy->getNumElements();
if (!Size)
return constant;
llvm::Type *ElemTy = STy->getElementType();
bool ZeroInitializer = constant->isZeroValue();
llvm::Constant *OpValue, *PaddedOp;
if (ZeroInitializer) {
OpValue = llvm::Constant::getNullValue(ElemTy);
PaddedOp = constWithPadding(CGM, isPattern, OpValue);
}
for (unsigned Op = 0; Op != Size; ++Op) {
if (!ZeroInitializer) {
OpValue = constant->getAggregateElement(Op);
PaddedOp = constWithPadding(CGM, isPattern, OpValue);
}
Values.push_back(PaddedOp);
}
auto *NewElemTy = Values[0]->getType();
if (NewElemTy == ElemTy)
return constant;
if (OrigTy->isArrayTy()) {
auto *ArrayTy = llvm::ArrayType::get(NewElemTy, Size);
return llvm::ConstantArray::get(ArrayTy, Values);
} else {
return llvm::ConstantVector::get(Values);
}
}
return constant;
}
Address CodeGenModule::createUnnamedGlobalFrom(const VarDecl &D,
llvm::Constant *Constant,
CharUnits Align) {
auto FunctionName = [&](const DeclContext *DC) -> std::string {
if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
return CC->getNameAsString();
if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
return CD->getNameAsString();
return std::string(getMangledName(FD));
} else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
return OM->getNameAsString();
} else if (isa<BlockDecl>(DC)) {
return "<block>";
} else if (isa<CapturedDecl>(DC)) {
return "<captured>";
} else {
llvm_unreachable("expected a function or method");
}
};
// Form a simple per-variable cache of these values in case we find we
// want to reuse them.
llvm::GlobalVariable *&CacheEntry = InitializerConstants[&D];
if (!CacheEntry || CacheEntry->getInitializer() != Constant) {
auto *Ty = Constant->getType();
bool isConstant = true;
llvm::GlobalVariable *InsertBefore = nullptr;
unsigned AS =
getContext().getTargetAddressSpace(getStringLiteralAddressSpace());
std::string Name;
if (D.hasGlobalStorage())
Name = getMangledName(&D).str() + ".const";
else if (const DeclContext *DC = D.getParentFunctionOrMethod())
Name = ("__const." + FunctionName(DC) + "." + D.getName()).str();
else
llvm_unreachable("local variable has no parent function or method");
llvm::GlobalVariable *GV = new llvm::GlobalVariable(
getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
Constant, Name, InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
GV->setAlignment(Align.getAsAlign());
GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
CacheEntry = GV;
} else if (CacheEntry->getAlignment() < Align.getQuantity()) {
CacheEntry->setAlignment(Align.getAsAlign());
}
return Address(CacheEntry, Align);
}
static Address createUnnamedGlobalForMemcpyFrom(CodeGenModule &CGM,
const VarDecl &D,
CGBuilderTy &Builder,
llvm::Constant *Constant,
CharUnits Align) {
Address SrcPtr = CGM.createUnnamedGlobalFrom(D, Constant, Align);
llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(),
SrcPtr.getAddressSpace());
if (SrcPtr.getType() != BP)
SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
return SrcPtr;
}
static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
Address Loc, bool isVolatile,
CGBuilderTy &Builder,
llvm::Constant *constant) {
auto *Ty = constant->getType();
uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
if (!ConstantSize)
return;
bool canDoSingleStore = Ty->isIntOrIntVectorTy() ||
Ty->isPtrOrPtrVectorTy() || Ty->isFPOrFPVectorTy();
if (canDoSingleStore) {
Builder.CreateStore(constant, Loc, isVolatile);
return;
}
auto *SizeVal = llvm::ConstantInt::get(CGM.IntPtrTy, ConstantSize);
// If the initializer is all or mostly the same, codegen with bzero / memset
// then do a few stores afterward.
if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, 0), SizeVal,
isVolatile);
bool valueAlreadyCorrect =
constant->isNullValue() || isa<llvm::UndefValue>(constant);
if (!valueAlreadyCorrect) {
Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
}
return;
}
// If the initializer is a repeated byte pattern, use memset.
llvm::Value *Pattern =
shouldUseMemSetToInitialize(constant, ConstantSize, CGM.getDataLayout());
if (Pattern) {
uint64_t Value = 0x00;
if (!isa<llvm::UndefValue>(Pattern)) {
const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
assert(AP.getBitWidth() <= 8);
Value = AP.getLimitedValue();
}
Builder.CreateMemSet(Loc, llvm::ConstantInt::get(CGM.Int8Ty, Value), SizeVal,
isVolatile);
return;
}
// If the initializer is small, use a handful of stores.
if (shouldSplitConstantStore(CGM, ConstantSize)) {
if (auto *STy = dyn_cast<llvm::StructType>(Ty)) {
// FIXME: handle the case when STy != Loc.getElementType().
if (STy == Loc.getElementType()) {
for (unsigned i = 0; i != constant->getNumOperands(); i++) {
Address EltPtr = Builder.CreateStructGEP(Loc, i);
emitStoresForConstant(
CGM, D, EltPtr, isVolatile, Builder,
cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
}
return;
}
} else if (auto *ATy = dyn_cast<llvm::ArrayType>(Ty)) {
// FIXME: handle the case when ATy != Loc.getElementType().
if (ATy == Loc.getElementType()) {
for (unsigned i = 0; i != ATy->getNumElements(); i++) {
Address EltPtr = Builder.CreateConstArrayGEP(Loc, i);
emitStoresForConstant(
CGM, D, EltPtr, isVolatile, Builder,
cast<llvm::Constant>(Builder.CreateExtractValue(constant, i)));
}
return;
}
}
}
// Copy from a global.
Builder.CreateMemCpy(Loc,
createUnnamedGlobalForMemcpyFrom(
CGM, D, Builder, constant, Loc.getAlignment()),
SizeVal, isVolatile);
}
static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
Address Loc, bool isVolatile,
CGBuilderTy &Builder) {
llvm::Type *ElTy = Loc.getElementType();
llvm::Constant *constant =
constWithPadding(CGM, IsPattern::No, llvm::Constant::getNullValue(ElTy));
emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}
static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
Address Loc, bool isVolatile,
CGBuilderTy &Builder) {
llvm::Type *ElTy = Loc.getElementType();
llvm::Constant *constant = constWithPadding(
CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
assert(!isa<llvm::UndefValue>(constant));
emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
}
static bool containsUndef(llvm::Constant *constant) {
auto *Ty = constant->getType();
if (isa<llvm::UndefValue>(constant))
return true;
if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
for (llvm::Use &Op : constant->operands())
if (containsUndef(cast<llvm::Constant>(Op)))
return true;
return false;
}
static llvm::Constant *replaceUndef(CodeGenModule &CGM, IsPattern isPattern,
llvm::Constant *constant) {
auto *Ty = constant->getType();
if (isa<llvm::UndefValue>(constant))
return patternOrZeroFor(CGM, isPattern, Ty);
if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
return constant;
if (!containsUndef(constant))
return constant;
llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
Values[Op] = replaceUndef(CGM, isPattern, OpValue);
}
if (Ty->isStructTy())
return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
if (Ty->isArrayTy())
return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
assert(Ty->isVectorTy());
return llvm::ConstantVector::get(Values);
}
/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
/// variable declaration with auto, register, or no storage class specifier.
/// These turn into simple stack objects, or GlobalValues depending on target.
void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
AutoVarEmission emission = EmitAutoVarAlloca(D);
EmitAutoVarInit(emission);
EmitAutoVarCleanups(emission);
}
/// Emit a lifetime.begin marker if some criteria are satisfied.
/// \return a pointer to the temporary size Value if a marker was emitted, null
/// otherwise
llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
llvm::Value *Addr) {
if (!ShouldEmitLifetimeMarkers)
return nullptr;
assert(Addr->getType()->getPointerAddressSpace() ==
CGM.getDataLayout().getAllocaAddrSpace() &&
"Pointer should be in alloca address space");
llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
llvm::CallInst *C =
Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
C->setDoesNotThrow();
return SizeV;
}
void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
assert(Addr->getType()->getPointerAddressSpace() ==
CGM.getDataLayout().getAllocaAddrSpace() &&
"Pointer should be in alloca address space");
Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
llvm::CallInst *C =
Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
C->setDoesNotThrow();
}
void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
// For each dimension stores its QualType and corresponding
// size-expression Value.
SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
SmallVector<IdentifierInfo *, 4> VLAExprNames;
// Break down the array into individual dimensions.
QualType Type1D = D.getType();
while (getContext().getAsVariableArrayType(Type1D)) {
auto VlaSize = getVLAElements1D(Type1D);
if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
else {
// Generate a locally unique name for the size expression.
Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
SmallString<12> Buffer;
StringRef NameRef = Name.toStringRef(Buffer);
auto &Ident = getContext().Idents.getOwn(NameRef);
VLAExprNames.push_back(&Ident);
auto SizeExprAddr =
CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
Dimensions.emplace_back(SizeExprAddr.getPointer(),
Type1D.getUnqualifiedType());
}
Type1D = VlaSize.Type;
}
if (!EmitDebugInfo)
return;
// Register each dimension's size-expression with a DILocalVariable,
// so that it can be used by CGDebugInfo when instantiating a DISubrange
// to describe this array.
unsigned NameIdx = 0;
for (auto &VlaSize : Dimensions) {
llvm::Metadata *MD;
if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
MD = llvm::ConstantAsMetadata::get(C);
else {
// Create an artificial VarDecl to generate debug info for.
IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
auto QT = getContext().getIntTypeForBitwidth(
VlaExprTy->getScalarSizeInBits(), false);
auto *ArtificialDecl = VarDecl::Create(
getContext(), const_cast<DeclContext *>(D.getDeclContext()),
D.getLocation(), D.getLocation(), NameIdent, QT,
getContext().CreateTypeSourceInfo(QT), SC_Auto);
ArtificialDecl->setImplicit();
MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
Builder);
}
assert(MD && "No Size expression debug node created");
DI->registerVLASizeExpression(VlaSize.Type, MD);
}
}
/// EmitAutoVarAlloca - Emit the alloca and debug information for a
/// local variable. Does not emit initialization or destruction.
CodeGenFunction::AutoVarEmission
CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
QualType Ty = D.getType();
assert(
Ty.getAddressSpace() == LangAS::Default ||
(Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
AutoVarEmission emission(D);
bool isEscapingByRef = D.isEscapingByref();
emission.IsEscapingByRef = isEscapingByRef;
CharUnits alignment = getContext().getDeclAlign(&D);
// If the type is variably-modified, emit all the VLA sizes for it.
if (Ty->isVariablyModifiedType())
EmitVariablyModifiedType(Ty);
auto *DI = getDebugInfo();
bool EmitDebugInfo = DI && CGM.getCodeGenOpts().hasReducedDebugInfo();
Address address = Address::invalid();
Address AllocaAddr = Address::invalid();
Address OpenMPLocalAddr =
getLangOpts().OpenMP
? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
: Address::invalid();
bool NRVO = getLangOpts().ElideConstructors && D.isNRVOVariable();
if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
address = OpenMPLocalAddr;
} else if (Ty->isConstantSizeType()) {
// If this value is an array or struct with a statically determinable
// constant initializer, there are optimizations we can do.
//
// TODO: We should constant-evaluate the initializer of any variable,
// as long as it is initialized by a constant expression. Currently,
// isConstantInitializer produces wrong answers for structs with
// reference or bitfield members, and a few other cases, and checking
// for POD-ness protects us from some of these.
if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
(D.isConstexpr() ||
((Ty.isPODType(getContext()) ||
getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
D.getInit()->isConstantInitializer(getContext(), false)))) {
// If the variable's a const type, and it's neither an NRVO
// candidate nor a __block variable and has no mutable members,
// emit it as a global instead.
// Exception is if a variable is located in non-constant address space
// in OpenCL.
if ((!getLangOpts().OpenCL ||
Ty.getAddressSpace() == LangAS::opencl_constant) &&
(CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
!isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
// Signal this condition to later callbacks.
emission.Addr = Address::invalid();
assert(emission.wasEmittedAsGlobal());
return emission;
}
// Otherwise, tell the initialization code that we're in this case.
emission.IsConstantAggregate = true;
}
// A normal fixed sized variable becomes an alloca in the entry block,
// unless:
// - it's an NRVO variable.
// - we are compiling OpenMP and it's an OpenMP local variable.
if (NRVO) {
// The named return value optimization: allocate this variable in the
// return slot, so that we can elide the copy when returning this
// variable (C++0x [class.copy]p34).
address = ReturnValue;
if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
const auto *RD = RecordTy->getDecl();
const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
RD->isNonTrivialToPrimitiveDestroy()) {
// Create a flag that is used to indicate when the NRVO was applied
// to this variable. Set it to zero to indicate that NRVO was not
// applied.
llvm::Value *Zero = Builder.getFalse();
Address NRVOFlag =
CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
EnsureInsertPoint();
Builder.CreateStore(Zero, NRVOFlag);
// Record the NRVO flag for this variable.
NRVOFlags[&D] = NRVOFlag.getPointer();
emission.NRVOFlag = NRVOFlag.getPointer();
}
}
} else {
CharUnits allocaAlignment;
llvm::Type *allocaTy;
if (isEscapingByRef) {
auto &byrefInfo = getBlockByrefInfo(&D);
allocaTy = byrefInfo.Type;
allocaAlignment = byrefInfo.ByrefAlignment;
} else {
allocaTy = ConvertTypeForMem(Ty);
allocaAlignment = alignment;
}
// Create the alloca. Note that we set the name separately from
// building the instruction so that it's there even in no-asserts
// builds.
address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
/*ArraySize=*/nullptr, &AllocaAddr);
// Don't emit lifetime markers for MSVC catch parameters. The lifetime of
// the catch parameter starts in the catchpad instruction, and we can't
// insert code in those basic blocks.
bool IsMSCatchParam =
D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
// Emit a lifetime intrinsic if meaningful. There's no point in doing this
// if we don't have a valid insertion point (?).
if (HaveInsertPoint() && !IsMSCatchParam) {
// If there's a jump into the lifetime of this variable, its lifetime
// gets broken up into several regions in IR, which requires more work
// to handle correctly. For now, just omit the intrinsics; this is a
// rare case, and it's better to just be conservatively correct.
// PR28267.
//
// We have to do this in all language modes if there's a jump past the
// declaration. We also have to do it in C if there's a jump to an
// earlier point in the current block because non-VLA lifetimes begin as
// soon as the containing block is entered, not when its variables
// actually come into scope; suppressing the lifetime annotations
// completely in this case is unnecessarily pessimistic, but again, this
// is rare.
if (!Bypasses.IsBypassed(&D) &&
!(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
emission.SizeForLifetimeMarkers =
EmitLifetimeStart(size, AllocaAddr.getPointer());
}
} else {
assert(!emission.useLifetimeMarkers());
}
}
} else {
EnsureInsertPoint();
if (!DidCallStackSave) {
// Save the stack.
Address Stack =
CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
llvm::Value *V = Builder.CreateCall(F);
Builder.CreateStore(V, Stack);
DidCallStackSave = true;
// Push a cleanup block and restore the stack there.
// FIXME: in general circumstances, this should be an EH cleanup.
pushStackRestore(NormalCleanup, Stack);
}
auto VlaSize = getVLASize(Ty);
llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
// Allocate memory for the array.
address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
&AllocaAddr);
// If we have debug info enabled, properly describe the VLA dimensions for
// this type by registering the vla size expression for each of the
// dimensions.
EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
}
setAddrOfLocalVar(&D, address);
emission.Addr = address;
emission.AllocaAddr = AllocaAddr;
// Emit debug info for local var declaration.
if (EmitDebugInfo && HaveInsertPoint()) {
Address DebugAddr = address;
bool UsePointerValue = NRVO && ReturnValuePointer.isValid();
DI->setLocation(D.getLocation());
// If NRVO, use a pointer to the return address.
if (UsePointerValue)
DebugAddr = ReturnValuePointer;
(void)DI->EmitDeclareOfAutoVariable(&D, DebugAddr.getPointer(), Builder,
UsePointerValue);
}
if (D.hasAttr<AnnotateAttr>() && HaveInsertPoint())
EmitVarAnnotations(&D, address.getPointer());
// Make sure we call @llvm.lifetime.end.
if (emission.useLifetimeMarkers())
EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
emission.getOriginalAllocatedAddress(),
emission.getSizeForLifetimeMarkers());
return emission;
}
static bool isCapturedBy(const VarDecl &, const Expr *);
/// Determines whether the given __block variable is potentially
/// captured by the given statement.
static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
if (const Expr *E = dyn_cast<Expr>(S))
return isCapturedBy(Var, E);
for (const Stmt *SubStmt : S->children())
if (isCapturedBy(Var, SubStmt))
return true;
return false;
}
/// Determines whether the given __block variable is potentially
/// captured by the given expression.
static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
// Skip the most common kinds of expressions that make
// hierarchy-walking expensive.
E = E->IgnoreParenCasts();
if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
const BlockDecl *Block = BE->getBlockDecl();
for (const auto &I : Block->captures()) {
if (I.getVariable() == &Var)
return true;
}
// No need to walk into the subexpressions.
return false;
}
if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
const CompoundStmt *CS = SE->getSubStmt();
for (const auto *BI : CS->body())
if (const auto *BIE = dyn_cast<Expr>(BI)) {
if (isCapturedBy(Var, BIE))
return true;
}
else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
// special case declarations
for (const auto *I : DS->decls()) {
if (const auto *VD = dyn_cast<VarDecl>((I))) {
const Expr *Init = VD->getInit();
if (Init && isCapturedBy(Var, Init))
return true;
}
}
}
else
// FIXME. Make safe assumption assuming arbitrary statements cause capturing.
// Later, provide code to poke into statements for capture analysis.
return true;
return false;
}
for (const Stmt *SubStmt : E->children())
if (isCapturedBy(Var, SubStmt))
return true;
return false;
}
/// Determine whether the given initializer is trivial in the sense
/// that it requires no code to be generated.
bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
if (!Init)
return true;
if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
if (CXXConstructorDecl *Constructor = Construct->getConstructor())
if (Constructor->isTrivial() &&
Constructor->isDefaultConstructor() &&
!Construct->requiresZeroInitialization())
return true;
return false;
}
void CodeGenFunction::emitZeroOrPatternForAutoVarInit(QualType type,
const VarDecl &D,
Address Loc) {
auto trivialAutoVarInit = getContext().getLangOpts().getTrivialAutoVarInit();
CharUnits Size = getContext().getTypeSizeInChars(type);
bool isVolatile = type.isVolatileQualified();
if (!Size.isZero()) {
switch (trivialAutoVarInit) {
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
llvm_unreachable("Uninitialized handled by caller");
case LangOptions::TrivialAutoVarInitKind::Zero:
emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
break;
case LangOptions::TrivialAutoVarInitKind::Pattern:
emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
break;
}
return;
}
// VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
// them, so emit a memcpy with the VLA size to initialize each element.
// Technically zero-sized or negative-sized VLAs are undefined, and UBSan
// will catch that code, but there exists code which generates zero-sized
// VLAs. Be nice and initialize whatever they requested.
const auto *VlaType = getContext().getAsVariableArrayType(type);
if (!VlaType)
return;
auto VlaSize = getVLASize(VlaType);
auto SizeVal = VlaSize.NumElts;
CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
switch (trivialAutoVarInit) {
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
llvm_unreachable("Uninitialized handled by caller");
case LangOptions::TrivialAutoVarInitKind::Zero:
if (!EltSize.isOne())
SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
isVolatile);
break;
case LangOptions::TrivialAutoVarInitKind::Pattern: {
llvm::Type *ElTy = Loc.getElementType();
llvm::Constant *Constant = constWithPadding(
CGM, IsPattern::Yes, initializationPatternFor(CGM, ElTy));
CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
"vla.iszerosized");
Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
EmitBlock(SetupBB);
if (!EltSize.isOne())
SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
llvm::Value *BaseSizeInChars =
llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
llvm::Value *End =
Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
EmitBlock(LoopBB);
llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
Cur->addIncoming(Begin.getPointer(), OriginBB);
CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
Builder.CreateMemCpy(Address(Cur, CurAlign),
createUnnamedGlobalForMemcpyFrom(
CGM, D, Builder, Constant, ConstantAlign),
BaseSizeInChars, isVolatile);
llvm::Value *Next =
Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
Builder.CreateCondBr(Done, ContBB, LoopBB);
Cur->addIncoming(Next, LoopBB);
EmitBlock(ContBB);
} break;
}
}
void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
assert(emission.Variable && "emission was not valid!");
// If this was emitted as a global constant, we're done.
if (emission.wasEmittedAsGlobal()) return;
const VarDecl &D = *emission.Variable;
auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
QualType type = D.getType();
// If this local has an initializer, emit it now.
const Expr *Init = D.getInit();
// If we are at an unreachable point, we don't need to emit the initializer
// unless it contains a label.
if (!HaveInsertPoint()) {
if (!Init || !ContainsLabel(Init)) return;
EnsureInsertPoint();
}
// Initialize the structure of a __block variable.
if (emission.IsEscapingByRef)
emitByrefStructureInit(emission);
// Initialize the variable here if it doesn't have a initializer and it is a
// C struct that is non-trivial to initialize or an array containing such a
// struct.
if (!Init &&
type.isNonTrivialToPrimitiveDefaultInitialize() ==
QualType::PDIK_Struct) {
LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
if (emission.IsEscapingByRef)
drillIntoBlockVariable(*this, Dst, &D);
defaultInitNonTrivialCStructVar(Dst);
return;
}
// Check whether this is a byref variable that's potentially
// captured and moved by its own initializer. If so, we'll need to
// emit the initializer first, then copy into the variable.
bool capturedByInit =
Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
bool locIsByrefHeader = !capturedByInit;
const Address Loc =
locIsByrefHeader ? emission.getObjectAddress(*this) : emission.Addr;
// Note: constexpr already initializes everything correctly.
LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
(D.isConstexpr()
? LangOptions::TrivialAutoVarInitKind::Uninitialized
: (D.getAttr<UninitializedAttr>()
? LangOptions::TrivialAutoVarInitKind::Uninitialized
: getContext().getLangOpts().getTrivialAutoVarInit()));
auto initializeWhatIsTechnicallyUninitialized = [&](Address Loc) {
if (trivialAutoVarInit ==
LangOptions::TrivialAutoVarInitKind::Uninitialized)
return;
// Only initialize a __block's storage: we always initialize the header.
if (emission.IsEscapingByRef && !locIsByrefHeader)
Loc = emitBlockByrefAddress(Loc, &D, /*follow=*/false);
return emitZeroOrPatternForAutoVarInit(type, D, Loc);
};
if (isTrivialInitializer(Init))
return initializeWhatIsTechnicallyUninitialized(Loc);
llvm::Constant *constant = nullptr;
if (emission.IsConstantAggregate ||
D.mightBeUsableInConstantExpressions(getContext())) {
assert(!capturedByInit && "constant init contains a capturing block?");
constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
if (constant && !constant->isZeroValue() &&
(trivialAutoVarInit !=
LangOptions::TrivialAutoVarInitKind::Uninitialized)) {
IsPattern isPattern =
(trivialAutoVarInit == LangOptions::TrivialAutoVarInitKind::Pattern)
? IsPattern::Yes
: IsPattern::No;
// C guarantees that brace-init with fewer initializers than members in
// the aggregate will initialize the rest of the aggregate as-if it were
// static initialization. In turn static initialization guarantees that
// padding is initialized to zero bits. We could instead pattern-init if D
// has any ImplicitValueInitExpr, but that seems to be unintuitive
// behavior.
constant = constWithPadding(CGM, IsPattern::No,
replaceUndef(CGM, isPattern, constant));
}
}
if (!constant) {
initializeWhatIsTechnicallyUninitialized(Loc);
LValue lv = MakeAddrLValue(Loc, type);
lv.setNonGC(true);
return EmitExprAsInit(Init, &D, lv, capturedByInit);
}
if (!emission.IsConstantAggregate) {
// For simple scalar/complex initialization, store the value directly.
LValue lv = MakeAddrLValue(Loc, type);
lv.setNonGC(true);
return EmitStoreThroughLValue(RValue::get(constant), lv, true);
}
llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
emitStoresForConstant(
CGM, D, (Loc.getType() == BP) ? Loc : Builder.CreateBitCast(Loc, BP),
type.isVolatileQualified(), Builder, constant);
}
/// Emit an expression as an initializer for an object (variable, field, etc.)
/// at the given location. The expression is not necessarily the normal
/// initializer for the object, and the address is not necessarily
/// its normal location.
///
/// \param init the initializing expression
/// \param D the object to act as if we're initializing
/// \param loc the address to initialize; its type is a pointer
/// to the LLVM mapping of the object's type
/// \param alignment the alignment of the address
/// \param capturedByInit true if \p D is a __block variable
/// whose address is potentially changed by the initializer
void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
LValue lvalue, bool capturedByInit) {
QualType type = D->getType();
if (type->isReferenceType()) {
RValue rvalue = EmitReferenceBindingToExpr(init);
if (capturedByInit)
drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
EmitStoreThroughLValue(rvalue, lvalue, true);
return;
}
switch (getEvaluationKind(type)) {
case TEK_Scalar:
EmitScalarInit(init, D, lvalue, capturedByInit);
return;
case TEK_Complex: {
ComplexPairTy complex = EmitComplexExpr(init);
if (capturedByInit)
drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
EmitStoreOfComplex(complex, lvalue, /*init*/ true);
return;
}
case TEK_Aggregate:
if (type->isAtomicType()) {
EmitAtomicInit(const_cast<Expr*>(init), lvalue);
} else {
AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
if (isa<VarDecl>(D))
Overlap = AggValueSlot::DoesNotOverlap;
else if (auto *FD = dyn_cast<FieldDecl>(D))
Overlap = getOverlapForFieldInit(FD);
// TODO: how can we delay here if D is captured by its initializer?
EmitAggExpr(init, AggValueSlot::forLValue(
lvalue, *this, AggValueSlot::IsDestructed,
AggValueSlot::DoesNotNeedGCBarriers,
AggValueSlot::IsNotAliased, Overlap));
}
return;
}
llvm_unreachable("bad evaluation kind");
}
/// Enter a destroy cleanup for the given local variable.
void CodeGenFunction::emitAutoVarTypeCleanup(
const CodeGenFunction::AutoVarEmission &emission,
QualType::DestructionKind dtorKind) {
assert(dtorKind != QualType::DK_none);
// Note that for __block variables, we want to destroy the
// original stack object, not the possibly forwarded object.
Address addr = emission.getObjectAddress(*this);
const VarDecl *var = emission.Variable;
QualType type = var->getType();
CleanupKind cleanupKind = NormalAndEHCleanup;
CodeGenFunction::Destroyer *destroyer = nullptr;
switch (dtorKind) {
case QualType::DK_none:
llvm_unreachable("no cleanup for trivially-destructible variable");
case QualType::DK_cxx_destructor:
// If there's an NRVO flag on the emission, we need a different
// cleanup.
if (emission.NRVOFlag) {
assert(!type->isArrayType());
CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, type, dtor,
emission.NRVOFlag);
return;
}
break;
case QualType::DK_objc_strong_lifetime:
// Suppress cleanups for pseudo-strong variables.
if (var->isARCPseudoStrong()) return;
// Otherwise, consider whether to use an EH cleanup or not.
cleanupKind = getARCCleanupKind();
// Use the imprecise destroyer by default.
if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
destroyer = CodeGenFunction::destroyARCStrongImprecise;
break;
case QualType::DK_objc_weak_lifetime:
break;
case QualType::DK_nontrivial_c_struct:
destroyer = CodeGenFunction::destroyNonTrivialCStruct;
if (emission.NRVOFlag) {
assert(!type->isArrayType());
EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
emission.NRVOFlag, type);
return;
}
break;
}
// If we haven't chosen a more specific destroyer, use the default.
if (!destroyer) destroyer = getDestroyer(dtorKind);
// Use an EH cleanup in array destructors iff the destructor itself
// is being pushed as an EH cleanup.
bool useEHCleanup = (cleanupKind & EHCleanup);
EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
useEHCleanup);
}
void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
assert(emission.Variable && "emission was not valid!");
// If this was emitted as a global constant, we're done.
if (emission.wasEmittedAsGlobal()) return;
// If we don't have an insertion point, we're done. Sema prevents
// us from jumping into any of these scopes anyway.
if (!HaveInsertPoint()) return;
const VarDecl &D = *emission.Variable;
// Check the type for a cleanup.
if (QualType::DestructionKind dtorKind = D.needsDestruction(getContext()))
emitAutoVarTypeCleanup(emission, dtorKind);
// In GC mode, honor objc_precise_lifetime.
if (getLangOpts().getGC() != LangOptions::NonGC &&
D.hasAttr<ObjCPreciseLifetimeAttr>()) {
EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
}
// Handle the cleanup attribute.
if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
const FunctionDecl *FD = CA->getFunctionDecl();
llvm::Constant *F = CGM.GetAddrOfFunction(FD);
assert(F && "Could not find function!");
const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
}
// If this is a block variable, call _Block_object_destroy
// (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
// mode.
if (emission.IsEscapingByRef &&
CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
if (emission.Variable->getType().isObjCGCWeak())
Flags |= BLOCK_FIELD_IS_WEAK;
enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
/*LoadBlockVarAddr*/ false,
cxxDestructorCanThrow(emission.Variable->getType()));
}
}
CodeGenFunction::Destroyer *
CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
switch (kind) {
case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
case QualType::DK_cxx_destructor:
return destroyCXXObject;
case QualType::DK_objc_strong_lifetime:
return destroyARCStrongPrecise;
case QualType::DK_objc_weak_lifetime:
return destroyARCWeak;
case QualType::DK_nontrivial_c_struct:
return destroyNonTrivialCStruct;
}
llvm_unreachable("Unknown DestructionKind");
}
/// pushEHDestroy - Push the standard destructor for the given type as
/// an EH-only cleanup.
void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type) {
assert(dtorKind && "cannot push destructor for trivial type");
assert(needsEHCleanup(dtorKind));
pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
}
/// pushDestroy - Push the standard destructor for the given type as
/// at least a normal cleanup.
void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
Address addr, QualType type) {
assert(dtorKind && "cannot push destructor for trivial type");
CleanupKind cleanupKind = getCleanupKind(dtorKind);
pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
cleanupKind & EHCleanup);
}
void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
QualType type, Destroyer *destroyer,
bool useEHCleanupForArray) {
pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
destroyer, useEHCleanupForArray);
}
void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
}
void CodeGenFunction::pushLifetimeExtendedDestroy(
CleanupKind cleanupKind, Address addr, QualType type,
Destroyer *destroyer, bool useEHCleanupForArray) {
// Push an EH-only cleanup for the object now.
// FIXME: When popping normal cleanups, we need to keep this EH cleanup
// around in case a temporary's destructor throws an exception.
if (cleanupKind & EHCleanup)
EHStack.pushCleanup<DestroyObject>(
static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
destroyer, useEHCleanupForArray);
// Remember that we need to push a full cleanup for the object at the
// end of the full-expression.
pushCleanupAfterFullExpr<DestroyObject>(
cleanupKind, addr, type, destroyer, useEHCleanupForArray);
}
/// emitDestroy - Immediately perform the destruction of the given
/// object.
///
/// \param addr - the address of the object; a type*
/// \param type - the type of the object; if an array type, all
/// objects are destroyed in reverse order
/// \param destroyer - the function to call to destroy individual
/// elements
/// \param useEHCleanupForArray - whether an EH cleanup should be
/// used when destroying array elements, in case one of the
/// destructions throws an exception
void CodeGenFunction::emitDestroy(Address addr, QualType type,
Destroyer *destroyer,
bool useEHCleanupForArray) {
const ArrayType *arrayType = getContext().getAsArrayType(type);
if (!arrayType)
return destroyer(*this, addr, type);
llvm::Value *length = emitArrayLength(arrayType, type, addr);
CharUnits elementAlign =
addr.getAlignment()
.alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
// Normally we have to check whether the array is zero-length.
bool checkZeroLength = true;
// But if the array length is constant, we can suppress that.
if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
// ...and if it's constant zero, we can just skip the entire thing.
if (constLength->isZero()) return;
checkZeroLength = false;
}
llvm::Value *begin = addr.getPointer();
llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
emitArrayDestroy(begin, end, type, elementAlign, destroyer,
checkZeroLength, useEHCleanupForArray);
}
/// emitArrayDestroy - Destroys all the elements of the given array,
/// beginning from last to first. The array cannot be zero-length.
///
/// \param begin - a type* denoting the first element of the array
/// \param end - a type* denoting one past the end of the array
/// \param elementType - the element type of the array
/// \param destroyer - the function to call to destroy elements
/// \param useEHCleanup - whether to push an EH cleanup to destroy
/// the remaining elements in case the destruction of a single
/// element throws
void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
llvm::Value *end,
QualType elementType,
CharUnits elementAlign,
Destroyer *destroyer,
bool checkZeroLength,
bool useEHCleanup) {
assert(!elementType->isArrayType());
// The basic structure here is a do-while loop, because we don't
// need to check for the zero-element case.
llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
if (checkZeroLength) {
llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
"arraydestroy.isempty");
Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
}
// Enter the loop body, making that address the current address.
llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
EmitBlock(bodyBB);
llvm::PHINode *elementPast =
Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
elementPast->addIncoming(end, entryBB);
// Shift the address back by one element.
llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
"arraydestroy.element");
if (useEHCleanup)
pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
destroyer);
// Perform the actual destruction there.
destroyer(*this, Address(element, elementAlign), elementType);
if (useEHCleanup)
PopCleanupBlock();
// Check whether we've reached the end.
llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
Builder.CreateCondBr(done, doneBB, bodyBB);
elementPast->addIncoming(element, Builder.GetInsertBlock());
// Done.
EmitBlock(doneBB);
}
/// Perform partial array destruction as if in an EH cleanup. Unlike
/// emitArrayDestroy, the element type here may still be an array type.
static void emitPartialArrayDestroy(CodeGenFunction &CGF,
llvm::Value *begin, llvm::Value *end,
QualType type, CharUnits elementAlign,
CodeGenFunction::Destroyer *destroyer) {
// If the element type is itself an array, drill down.
unsigned arrayDepth = 0;
while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
// VLAs don't require a GEP index to walk into.
if (!isa<VariableArrayType>(arrayType))
arrayDepth++;
type = arrayType->getElementType();
}
if (arrayDepth) {
llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
}
// Destroy the array. We don't ever need an EH cleanup because we
// assume that we're in an EH cleanup ourselves, so a throwing
// destructor causes an immediate terminate.
CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
/*checkZeroLength*/ true, /*useEHCleanup*/ false);
}
namespace {
/// RegularPartialArrayDestroy - a cleanup which performs a partial
/// array destroy where the end pointer is regularly determined and
/// does not need to be loaded from a local.
class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
llvm::Value *ArrayBegin;
llvm::Value *ArrayEnd;
QualType ElementType;
CodeGenFunction::Destroyer *Destroyer;
CharUnits ElementAlign;
public:
RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
QualType elementType, CharUnits elementAlign,
CodeGenFunction::Destroyer *destroyer)
: ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
ElementType(elementType), Destroyer(destroyer),
ElementAlign(elementAlign) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
ElementType, ElementAlign, Destroyer);
}
};
/// IrregularPartialArrayDestroy - a cleanup which performs a
/// partial array destroy where the end pointer is irregularly
/// determined and must be loaded from a local.
class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
llvm::Value *ArrayBegin;
Address ArrayEndPointer;
QualType ElementType;
CodeGenFunction::Destroyer *Destroyer;
CharUnits ElementAlign;
public:
IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
Address arrayEndPointer,
QualType elementType,
CharUnits elementAlign,
CodeGenFunction::Destroyer *destroyer)
: ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
ElementType(elementType), Destroyer(destroyer),
ElementAlign(elementAlign) {}
void Emit(CodeGenFunction &CGF, Flags flags) override {
llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
ElementType, ElementAlign, Destroyer);
}
};
} // end anonymous namespace
/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array. The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
/// possibly still an array type
void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
Address arrayEndPointer,
QualType elementType,
CharUnits elementAlign,
Destroyer *destroyer) {
pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
arrayBegin, arrayEndPointer,
elementType, elementAlign,
destroyer);
}
/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
/// already-constructed elements of the given array. The cleanup
/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
///
/// \param elementType - the immediate element type of the array;
/// possibly still an array type
void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
llvm::Value *arrayEnd,
QualType elementType,
CharUnits elementAlign,
Destroyer *destroyer) {
pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
arrayBegin, arrayEnd,
elementType, elementAlign,
destroyer);
}
/// Lazily declare the @llvm.lifetime.start intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeStartFn() {
if (LifetimeStartFn)
return LifetimeStartFn;
LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
return LifetimeStartFn;
}
/// Lazily declare the @llvm.lifetime.end intrinsic.
llvm::Function *CodeGenModule::getLLVMLifetimeEndFn() {
if (LifetimeEndFn)
return LifetimeEndFn;
LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
return LifetimeEndFn;
}
namespace {
/// A cleanup to perform a release of an object at the end of a
/// function. This is used to balance out the incoming +1 of a
/// ns_consumed argument when we can't reasonably do that just by
/// not doing the initial retain for a __block argument.
struct ConsumeARCParameter final : EHScopeStack::Cleanup {
ConsumeARCParameter(llvm::Value *param,
ARCPreciseLifetime_t precise)
: Param(param), Precise(precise) {}
llvm::Value *Param;
ARCPreciseLifetime_t Precise;
void Emit(CodeGenFunction &CGF, Flags flags) override {
CGF.EmitARCRelease(Param, Precise);
}
};
} // end anonymous namespace
/// Emit an alloca (or GlobalValue depending on target)
/// for the specified parameter and set up LocalDeclMap.
void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
unsigned ArgNo) {
// FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
"Invalid argument to EmitParmDecl");
Arg.getAnyValue()->setName(D.getName());
QualType Ty = D.getType();
// Use better IR generation for certain implicit parameters.
if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
// The only implicit argument a block has is its literal.
// This may be passed as an inalloca'ed value on Windows x86.
if (BlockInfo) {
llvm::Value *V = Arg.isIndirect()
? Builder.CreateLoad(Arg.getIndirectAddress())
: Arg.getDirectValue();
setBlockContextParameter(IPD, ArgNo, V);
return;
}
}
Address DeclPtr = Address::invalid();
bool DoStore = false;
bool IsScalar = hasScalarEvaluationKind(Ty);
// If we already have a pointer to the argument, reuse the input pointer.
if (Arg.isIndirect()) {
DeclPtr = Arg.getIndirectAddress();
// If we have a prettier pointer type at this point, bitcast to that.
unsigned AS = DeclPtr.getType()->getAddressSpace();
llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
if (DeclPtr.getType() != IRTy)
DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
// Indirect argument is in alloca address space, which may be different
// from the default address space.
auto AllocaAS = CGM.getASTAllocaAddressSpace();
auto *V = DeclPtr.getPointer();
auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
auto DestLangAS =
getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
if (SrcLangAS != DestLangAS) {
assert(getContext().getTargetAddressSpace(SrcLangAS) ==
CGM.getDataLayout().getAllocaAddrSpace());
auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
*this, V, SrcLangAS, DestLangAS, T, true),
DeclPtr.getAlignment());
}
// Push a destructor cleanup for this parameter if the ABI requires it.
// Don't push a cleanup in a thunk for a method that will also emit a
// cleanup.
if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
Ty->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
if (QualType::DestructionKind DtorKind =
D.needsDestruction(getContext())) {
assert((DtorKind == QualType::DK_cxx_destructor ||
DtorKind == QualType::DK_nontrivial_c_struct) &&
"unexpected destructor type");
pushDestroy(DtorKind, DeclPtr, Ty);
CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
EHStack.stable_begin();
}
}
} else {
// Check if the parameter address is controlled by OpenMP runtime.
Address OpenMPLocalAddr =
getLangOpts().OpenMP
? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
: Address::invalid();
if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
DeclPtr = OpenMPLocalAddr;
} else {
// Otherwise, create a temporary to hold the value.
DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
D.getName() + ".addr");
}
DoStore = true;
}
llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
LValue lv = MakeAddrLValue(DeclPtr, Ty);
if (IsScalar) {
Qualifiers qs = Ty.getQualifiers();
if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
// We honor __attribute__((ns_consumed)) for types with lifetime.
// For __strong, it's handled by just skipping the initial retain;
// otherwise we have to balance out the initial +1 with an extra
// cleanup to do the release at the end of the function.
bool isConsumed = D.hasAttr<NSConsumedAttr>();
// If a parameter is pseudo-strong then we can omit the implicit retain.
if (D.isARCPseudoStrong()) {
assert(lt == Qualifiers::OCL_Strong &&
"pseudo-strong variable isn't strong?");
assert(qs.hasConst() && "pseudo-strong variable should be const!");
lt = Qualifiers::OCL_ExplicitNone;
}
// Load objects passed indirectly.
if (Arg.isIndirect() && !ArgVal)
ArgVal = Builder.CreateLoad(DeclPtr);
if (lt == Qualifiers::OCL_Strong) {
if (!isConsumed) {
if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
// use objc_storeStrong(&dest, value) for retaining the
// object. But first, store a null into 'dest' because
// objc_storeStrong attempts to release its old value.
llvm::Value *Null = CGM.EmitNullConstant(D.getType());
EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
EmitARCStoreStrongCall(lv.getAddress(*this), ArgVal, true);
DoStore = false;
}
else
// Don't use objc_retainBlock for block pointers, because we
// don't want to Block_copy something just because we got it
// as a parameter.
ArgVal = EmitARCRetainNonBlock(ArgVal);
}
} else {
// Push the cleanup for a consumed parameter.
if (isConsumed) {
ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
? ARCPreciseLifetime : ARCImpreciseLifetime);
EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
precise);
}
if (lt == Qualifiers::OCL_Weak) {
EmitARCInitWeak(DeclPtr, ArgVal);
DoStore = false; // The weak init is a store, no need to do two.
}
}
// Enter the cleanup scope.
EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
}
}
// Store the initial value into the alloca.
if (DoStore)
EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
setAddrOfLocalVar(&D, DeclPtr);
// Emit debug info for param declarations in non-thunk functions.
if (CGDebugInfo *DI = getDebugInfo()) {
if (CGM.getCodeGenOpts().hasReducedDebugInfo() && !CurFuncIsThunk) {
DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
}
}
if (D.hasAttr<AnnotateAttr>())
EmitVarAnnotations(&D, DeclPtr.getPointer());
// We can only check return value nullability if all arguments to the
// function satisfy their nullability preconditions. This makes it necessary
// to emit null checks for args in the function body itself.
if (requiresReturnValueNullabilityCheck()) {
auto Nullability = Ty->getNullability(getContext());
if (Nullability && *Nullability == NullabilityKind::NonNull) {
SanitizerScope SanScope(this);
RetValNullabilityPrecondition =
Builder.CreateAnd(RetValNullabilityPrecondition,
Builder.CreateIsNotNull(Arg.getAnyValue()));
}
}
}
void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
CodeGenFunction *CGF) {
if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
return;
getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
}
void CodeGenModule::EmitOMPDeclareMapper(const OMPDeclareMapperDecl *D,
CodeGenFunction *CGF) {
if (!LangOpts.OpenMP || LangOpts.OpenMPSimd ||
(!LangOpts.EmitAllDecls && !D->isUsed()))
return;
getOpenMPRuntime().emitUserDefinedMapper(D, CGF);
}
void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
getOpenMPRuntime().processRequiresDirective(D);
}