llvm-project/clang/lib/Sema/SemaDeclCXX.cpp

7580 lines
294 KiB
C++

//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for C++ declarations.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/CXXFieldCollector.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include <map>
#include <set>
using namespace clang;
//===----------------------------------------------------------------------===//
// CheckDefaultArgumentVisitor
//===----------------------------------------------------------------------===//
namespace {
/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
/// the default argument of a parameter to determine whether it
/// contains any ill-formed subexpressions. For example, this will
/// diagnose the use of local variables or parameters within the
/// default argument expression.
class CheckDefaultArgumentVisitor
: public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
Expr *DefaultArg;
Sema *S;
public:
CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
: DefaultArg(defarg), S(s) {}
bool VisitExpr(Expr *Node);
bool VisitDeclRefExpr(DeclRefExpr *DRE);
bool VisitCXXThisExpr(CXXThisExpr *ThisE);
};
/// VisitExpr - Visit all of the children of this expression.
bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
bool IsInvalid = false;
for (Stmt::child_iterator I = Node->child_begin(),
E = Node->child_end(); I != E; ++I)
IsInvalid |= Visit(*I);
return IsInvalid;
}
/// VisitDeclRefExpr - Visit a reference to a declaration, to
/// determine whether this declaration can be used in the default
/// argument expression.
bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
NamedDecl *Decl = DRE->getDecl();
if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
// C++ [dcl.fct.default]p9
// Default arguments are evaluated each time the function is
// called. The order of evaluation of function arguments is
// unspecified. Consequently, parameters of a function shall not
// be used in default argument expressions, even if they are not
// evaluated. Parameters of a function declared before a default
// argument expression are in scope and can hide namespace and
// class member names.
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_param)
<< Param->getDeclName() << DefaultArg->getSourceRange();
} else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
// C++ [dcl.fct.default]p7
// Local variables shall not be used in default argument
// expressions.
if (VDecl->isLocalVarDecl())
return S->Diag(DRE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_local)
<< VDecl->getDeclName() << DefaultArg->getSourceRange();
}
return false;
}
/// VisitCXXThisExpr - Visit a C++ "this" expression.
bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
// C++ [dcl.fct.default]p8:
// The keyword this shall not be used in a default argument of a
// member function.
return S->Diag(ThisE->getSourceRange().getBegin(),
diag::err_param_default_argument_references_this)
<< ThisE->getSourceRange();
}
}
bool
Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
SourceLocation EqualLoc) {
if (RequireCompleteType(Param->getLocation(), Param->getType(),
diag::err_typecheck_decl_incomplete_type)) {
Param->setInvalidDecl();
return true;
}
// C++ [dcl.fct.default]p5
// A default argument expression is implicitly converted (clause
// 4) to the parameter type. The default argument expression has
// the same semantic constraints as the initializer expression in
// a declaration of a variable of the parameter type, using the
// copy-initialization semantics (8.5).
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
Param);
InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
EqualLoc);
InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &Arg, 1));
if (Result.isInvalid())
return true;
Arg = Result.takeAs<Expr>();
CheckImplicitConversions(Arg, EqualLoc);
Arg = MaybeCreateExprWithCleanups(Arg);
// Okay: add the default argument to the parameter
Param->setDefaultArg(Arg);
// We have already instantiated this parameter; provide each of the
// instantiations with the uninstantiated default argument.
UnparsedDefaultArgInstantiationsMap::iterator InstPos
= UnparsedDefaultArgInstantiations.find(Param);
if (InstPos != UnparsedDefaultArgInstantiations.end()) {
for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
// We're done tracking this parameter's instantiations.
UnparsedDefaultArgInstantiations.erase(InstPos);
}
return false;
}
/// ActOnParamDefaultArgument - Check whether the default argument
/// provided for a function parameter is well-formed. If so, attach it
/// to the parameter declaration.
void
Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
Expr *DefaultArg) {
if (!param || !DefaultArg)
return;
ParmVarDecl *Param = cast<ParmVarDecl>(param);
UnparsedDefaultArgLocs.erase(Param);
// Default arguments are only permitted in C++
if (!getLangOptions().CPlusPlus) {
Diag(EqualLoc, diag::err_param_default_argument)
<< DefaultArg->getSourceRange();
Param->setInvalidDecl();
return;
}
// Check for unexpanded parameter packs.
if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
Param->setInvalidDecl();
return;
}
// Check that the default argument is well-formed
CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
if (DefaultArgChecker.Visit(DefaultArg)) {
Param->setInvalidDecl();
return;
}
SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
}
/// ActOnParamUnparsedDefaultArgument - We've seen a default
/// argument for a function parameter, but we can't parse it yet
/// because we're inside a class definition. Note that this default
/// argument will be parsed later.
void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
SourceLocation EqualLoc,
SourceLocation ArgLoc) {
if (!param)
return;
ParmVarDecl *Param = cast<ParmVarDecl>(param);
if (Param)
Param->setUnparsedDefaultArg();
UnparsedDefaultArgLocs[Param] = ArgLoc;
}
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
/// the default argument for the parameter param failed.
void Sema::ActOnParamDefaultArgumentError(Decl *param) {
if (!param)
return;
ParmVarDecl *Param = cast<ParmVarDecl>(param);
Param->setInvalidDecl();
UnparsedDefaultArgLocs.erase(Param);
}
/// CheckExtraCXXDefaultArguments - Check for any extra default
/// arguments in the declarator, which is not a function declaration
/// or definition and therefore is not permitted to have default
/// arguments. This routine should be invoked for every declarator
/// that is not a function declaration or definition.
void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
// C++ [dcl.fct.default]p3
// A default argument expression shall be specified only in the
// parameter-declaration-clause of a function declaration or in a
// template-parameter (14.1). It shall not be specified for a
// parameter pack. If it is specified in a
// parameter-declaration-clause, it shall not occur within a
// declarator or abstract-declarator of a parameter-declaration.
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
DeclaratorChunk &chunk = D.getTypeObject(i);
if (chunk.Kind == DeclaratorChunk::Function) {
for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
ParmVarDecl *Param =
cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
if (Param->hasUnparsedDefaultArg()) {
CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
<< SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
delete Toks;
chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
} else if (Param->getDefaultArg()) {
Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
<< Param->getDefaultArg()->getSourceRange();
Param->setDefaultArg(0);
}
}
}
}
}
// MergeCXXFunctionDecl - Merge two declarations of the same C++
// function, once we already know that they have the same
// type. Subroutine of MergeFunctionDecl. Returns true if there was an
// error, false otherwise.
bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
bool Invalid = false;
// C++ [dcl.fct.default]p4:
// For non-template functions, default arguments can be added in
// later declarations of a function in the same
// scope. Declarations in different scopes have completely
// distinct sets of default arguments. That is, declarations in
// inner scopes do not acquire default arguments from
// declarations in outer scopes, and vice versa. In a given
// function declaration, all parameters subsequent to a
// parameter with a default argument shall have default
// arguments supplied in this or previous declarations. A
// default argument shall not be redefined by a later
// declaration (not even to the same value).
//
// C++ [dcl.fct.default]p6:
// Except for member functions of class templates, the default arguments
// in a member function definition that appears outside of the class
// definition are added to the set of default arguments provided by the
// member function declaration in the class definition.
for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *OldParam = Old->getParamDecl(p);
ParmVarDecl *NewParam = New->getParamDecl(p);
if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
// FIXME: If we knew where the '=' was, we could easily provide a fix-it
// hint here. Alternatively, we could walk the type-source information
// for NewParam to find the last source location in the type... but it
// isn't worth the effort right now. This is the kind of test case that
// is hard to get right:
// int f(int);
// void g(int (*fp)(int) = f);
// void g(int (*fp)(int) = &f);
Diag(NewParam->getLocation(),
diag::err_param_default_argument_redefinition)
<< NewParam->getDefaultArgRange();
// Look for the function declaration where the default argument was
// actually written, which may be a declaration prior to Old.
for (FunctionDecl *Older = Old->getPreviousDeclaration();
Older; Older = Older->getPreviousDeclaration()) {
if (!Older->getParamDecl(p)->hasDefaultArg())
break;
OldParam = Older->getParamDecl(p);
}
Diag(OldParam->getLocation(), diag::note_previous_definition)
<< OldParam->getDefaultArgRange();
Invalid = true;
} else if (OldParam->hasDefaultArg()) {
// Merge the old default argument into the new parameter.
// It's important to use getInit() here; getDefaultArg()
// strips off any top-level ExprWithCleanups.
NewParam->setHasInheritedDefaultArg();
if (OldParam->hasUninstantiatedDefaultArg())
NewParam->setUninstantiatedDefaultArg(
OldParam->getUninstantiatedDefaultArg());
else
NewParam->setDefaultArg(OldParam->getInit());
} else if (NewParam->hasDefaultArg()) {
if (New->getDescribedFunctionTemplate()) {
// Paragraph 4, quoted above, only applies to non-template functions.
Diag(NewParam->getLocation(),
diag::err_param_default_argument_template_redecl)
<< NewParam->getDefaultArgRange();
Diag(Old->getLocation(), diag::note_template_prev_declaration)
<< false;
} else if (New->getTemplateSpecializationKind()
!= TSK_ImplicitInstantiation &&
New->getTemplateSpecializationKind() != TSK_Undeclared) {
// C++ [temp.expr.spec]p21:
// Default function arguments shall not be specified in a declaration
// or a definition for one of the following explicit specializations:
// - the explicit specialization of a function template;
// - the explicit specialization of a member function template;
// - the explicit specialization of a member function of a class
// template where the class template specialization to which the
// member function specialization belongs is implicitly
// instantiated.
Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
<< (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
<< New->getDeclName()
<< NewParam->getDefaultArgRange();
} else if (New->getDeclContext()->isDependentContext()) {
// C++ [dcl.fct.default]p6 (DR217):
// Default arguments for a member function of a class template shall
// be specified on the initial declaration of the member function
// within the class template.
//
// Reading the tea leaves a bit in DR217 and its reference to DR205
// leads me to the conclusion that one cannot add default function
// arguments for an out-of-line definition of a member function of a
// dependent type.
int WhichKind = 2;
if (CXXRecordDecl *Record
= dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
if (Record->getDescribedClassTemplate())
WhichKind = 0;
else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
WhichKind = 1;
else
WhichKind = 2;
}
Diag(NewParam->getLocation(),
diag::err_param_default_argument_member_template_redecl)
<< WhichKind
<< NewParam->getDefaultArgRange();
}
}
}
if (CheckEquivalentExceptionSpec(Old, New))
Invalid = true;
return Invalid;
}
/// CheckCXXDefaultArguments - Verify that the default arguments for a
/// function declaration are well-formed according to C++
/// [dcl.fct.default].
void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
unsigned NumParams = FD->getNumParams();
unsigned p;
// Find first parameter with a default argument
for (p = 0; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->hasDefaultArg())
break;
}
// C++ [dcl.fct.default]p4:
// In a given function declaration, all parameters
// subsequent to a parameter with a default argument shall
// have default arguments supplied in this or previous
// declarations. A default argument shall not be redefined
// by a later declaration (not even to the same value).
unsigned LastMissingDefaultArg = 0;
for (; p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (!Param->hasDefaultArg()) {
if (Param->isInvalidDecl())
/* We already complained about this parameter. */;
else if (Param->getIdentifier())
Diag(Param->getLocation(),
diag::err_param_default_argument_missing_name)
<< Param->getIdentifier();
else
Diag(Param->getLocation(),
diag::err_param_default_argument_missing);
LastMissingDefaultArg = p;
}
}
if (LastMissingDefaultArg > 0) {
// Some default arguments were missing. Clear out all of the
// default arguments up to (and including) the last missing
// default argument, so that we leave the function parameters
// in a semantically valid state.
for (p = 0; p <= LastMissingDefaultArg; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
if (Param->hasDefaultArg()) {
Param->setDefaultArg(0);
}
}
}
}
/// isCurrentClassName - Determine whether the identifier II is the
/// name of the class type currently being defined. In the case of
/// nested classes, this will only return true if II is the name of
/// the innermost class.
bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
const CXXScopeSpec *SS) {
assert(getLangOptions().CPlusPlus && "No class names in C!");
CXXRecordDecl *CurDecl;
if (SS && SS->isSet() && !SS->isInvalid()) {
DeclContext *DC = computeDeclContext(*SS, true);
CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
} else
CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
if (CurDecl && CurDecl->getIdentifier())
return &II == CurDecl->getIdentifier();
else
return false;
}
/// \brief Check the validity of a C++ base class specifier.
///
/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
/// and returns NULL otherwise.
CXXBaseSpecifier *
Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeSourceInfo *TInfo,
SourceLocation EllipsisLoc) {
QualType BaseType = TInfo->getType();
// C++ [class.union]p1:
// A union shall not have base classes.
if (Class->isUnion()) {
Diag(Class->getLocation(), diag::err_base_clause_on_union)
<< SpecifierRange;
return 0;
}
if (EllipsisLoc.isValid() &&
!TInfo->getType()->containsUnexpandedParameterPack()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< TInfo->getTypeLoc().getSourceRange();
EllipsisLoc = SourceLocation();
}
if (BaseType->isDependentType())
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
Class->getTagKind() == TTK_Class,
Access, TInfo, EllipsisLoc);
SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
// Base specifiers must be record types.
if (!BaseType->isRecordType()) {
Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
return 0;
}
// C++ [class.union]p1:
// A union shall not be used as a base class.
if (BaseType->isUnionType()) {
Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
return 0;
}
// C++ [class.derived]p2:
// The class-name in a base-specifier shall not be an incompletely
// defined class.
if (RequireCompleteType(BaseLoc, BaseType,
PDiag(diag::err_incomplete_base_class)
<< SpecifierRange)) {
Class->setInvalidDecl();
return 0;
}
// If the base class is polymorphic or isn't empty, the new one is/isn't, too.
RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
assert(BaseDecl && "Record type has no declaration");
BaseDecl = BaseDecl->getDefinition();
assert(BaseDecl && "Base type is not incomplete, but has no definition");
CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
assert(CXXBaseDecl && "Base type is not a C++ type");
// C++ [class.derived]p2:
// If a class is marked with the class-virt-specifier final and it appears
// as a base-type-specifier in a base-clause (10 class.derived), the program
// is ill-formed.
if (CXXBaseDecl->hasAttr<FinalAttr>()) {
Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
<< CXXBaseDecl->getDeclName();
Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
<< CXXBaseDecl->getDeclName();
return 0;
}
if (BaseDecl->isInvalidDecl())
Class->setInvalidDecl();
// Create the base specifier.
return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
Class->getTagKind() == TTK_Class,
Access, TInfo, EllipsisLoc);
}
/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
/// one entry in the base class list of a class specifier, for
/// example:
/// class foo : public bar, virtual private baz {
/// 'public bar' and 'virtual private baz' are each base-specifiers.
BaseResult
Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
ParsedType basetype, SourceLocation BaseLoc,
SourceLocation EllipsisLoc) {
if (!classdecl)
return true;
AdjustDeclIfTemplate(classdecl);
CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
if (!Class)
return true;
TypeSourceInfo *TInfo = 0;
GetTypeFromParser(basetype, &TInfo);
if (EllipsisLoc.isInvalid() &&
DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
UPPC_BaseType))
return true;
if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
Virtual, Access, TInfo,
EllipsisLoc))
return BaseSpec;
return true;
}
/// \brief Performs the actual work of attaching the given base class
/// specifiers to a C++ class.
bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
unsigned NumBases) {
if (NumBases == 0)
return false;
// Used to keep track of which base types we have already seen, so
// that we can properly diagnose redundant direct base types. Note
// that the key is always the unqualified canonical type of the base
// class.
std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
// Copy non-redundant base specifiers into permanent storage.
unsigned NumGoodBases = 0;
bool Invalid = false;
for (unsigned idx = 0; idx < NumBases; ++idx) {
QualType NewBaseType
= Context.getCanonicalType(Bases[idx]->getType());
NewBaseType = NewBaseType.getLocalUnqualifiedType();
if (!Class->hasObjectMember()) {
if (const RecordType *FDTTy =
NewBaseType.getTypePtr()->getAs<RecordType>())
if (FDTTy->getDecl()->hasObjectMember())
Class->setHasObjectMember(true);
}
if (KnownBaseTypes[NewBaseType]) {
// C++ [class.mi]p3:
// A class shall not be specified as a direct base class of a
// derived class more than once.
Diag(Bases[idx]->getSourceRange().getBegin(),
diag::err_duplicate_base_class)
<< KnownBaseTypes[NewBaseType]->getType()
<< Bases[idx]->getSourceRange();
// Delete the duplicate base class specifier; we're going to
// overwrite its pointer later.
Context.Deallocate(Bases[idx]);
Invalid = true;
} else {
// Okay, add this new base class.
KnownBaseTypes[NewBaseType] = Bases[idx];
Bases[NumGoodBases++] = Bases[idx];
}
}
// Attach the remaining base class specifiers to the derived class.
Class->setBases(Bases, NumGoodBases);
// Delete the remaining (good) base class specifiers, since their
// data has been copied into the CXXRecordDecl.
for (unsigned idx = 0; idx < NumGoodBases; ++idx)
Context.Deallocate(Bases[idx]);
return Invalid;
}
/// ActOnBaseSpecifiers - Attach the given base specifiers to the
/// class, after checking whether there are any duplicate base
/// classes.
void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
unsigned NumBases) {
if (!ClassDecl || !Bases || !NumBases)
return;
AdjustDeclIfTemplate(ClassDecl);
AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
(CXXBaseSpecifier**)(Bases), NumBases);
}
static CXXRecordDecl *GetClassForType(QualType T) {
if (const RecordType *RT = T->getAs<RecordType>())
return cast<CXXRecordDecl>(RT->getDecl());
else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
return ICT->getDecl();
else
return 0;
}
/// \brief Determine whether the type \p Derived is a C++ class that is
/// derived from the type \p Base.
bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
if (!getLangOptions().CPlusPlus)
return false;
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
if (!DerivedRD)
return false;
CXXRecordDecl *BaseRD = GetClassForType(Base);
if (!BaseRD)
return false;
// FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
}
/// \brief Determine whether the type \p Derived is a C++ class that is
/// derived from the type \p Base.
bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
if (!getLangOptions().CPlusPlus)
return false;
CXXRecordDecl *DerivedRD = GetClassForType(Derived);
if (!DerivedRD)
return false;
CXXRecordDecl *BaseRD = GetClassForType(Base);
if (!BaseRD)
return false;
return DerivedRD->isDerivedFrom(BaseRD, Paths);
}
void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
CXXCastPath &BasePathArray) {
assert(BasePathArray.empty() && "Base path array must be empty!");
assert(Paths.isRecordingPaths() && "Must record paths!");
const CXXBasePath &Path = Paths.front();
// We first go backward and check if we have a virtual base.
// FIXME: It would be better if CXXBasePath had the base specifier for
// the nearest virtual base.
unsigned Start = 0;
for (unsigned I = Path.size(); I != 0; --I) {
if (Path[I - 1].Base->isVirtual()) {
Start = I - 1;
break;
}
}
// Now add all bases.
for (unsigned I = Start, E = Path.size(); I != E; ++I)
BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
}
/// \brief Determine whether the given base path includes a virtual
/// base class.
bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
for (CXXCastPath::const_iterator B = BasePath.begin(),
BEnd = BasePath.end();
B != BEnd; ++B)
if ((*B)->isVirtual())
return true;
return false;
}
/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
/// conversion (where Derived and Base are class types) is
/// well-formed, meaning that the conversion is unambiguous (and
/// that all of the base classes are accessible). Returns true
/// and emits a diagnostic if the code is ill-formed, returns false
/// otherwise. Loc is the location where this routine should point to
/// if there is an error, and Range is the source range to highlight
/// if there is an error.
bool
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
unsigned InaccessibleBaseID,
unsigned AmbigiousBaseConvID,
SourceLocation Loc, SourceRange Range,
DeclarationName Name,
CXXCastPath *BasePath) {
// First, determine whether the path from Derived to Base is
// ambiguous. This is slightly more expensive than checking whether
// the Derived to Base conversion exists, because here we need to
// explore multiple paths to determine if there is an ambiguity.
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
assert(DerivationOkay &&
"Can only be used with a derived-to-base conversion");
(void)DerivationOkay;
if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
if (InaccessibleBaseID) {
// Check that the base class can be accessed.
switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
InaccessibleBaseID)) {
case AR_inaccessible:
return true;
case AR_accessible:
case AR_dependent:
case AR_delayed:
break;
}
}
// Build a base path if necessary.
if (BasePath)
BuildBasePathArray(Paths, *BasePath);
return false;
}
// We know that the derived-to-base conversion is ambiguous, and
// we're going to produce a diagnostic. Perform the derived-to-base
// search just one more time to compute all of the possible paths so
// that we can print them out. This is more expensive than any of
// the previous derived-to-base checks we've done, but at this point
// performance isn't as much of an issue.
Paths.clear();
Paths.setRecordingPaths(true);
bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
assert(StillOkay && "Can only be used with a derived-to-base conversion");
(void)StillOkay;
// Build up a textual representation of the ambiguous paths, e.g.,
// D -> B -> A, that will be used to illustrate the ambiguous
// conversions in the diagnostic. We only print one of the paths
// to each base class subobject.
std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
Diag(Loc, AmbigiousBaseConvID)
<< Derived << Base << PathDisplayStr << Range << Name;
return true;
}
bool
Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
SourceLocation Loc, SourceRange Range,
CXXCastPath *BasePath,
bool IgnoreAccess) {
return CheckDerivedToBaseConversion(Derived, Base,
IgnoreAccess ? 0
: diag::err_upcast_to_inaccessible_base,
diag::err_ambiguous_derived_to_base_conv,
Loc, Range, DeclarationName(),
BasePath);
}
/// @brief Builds a string representing ambiguous paths from a
/// specific derived class to different subobjects of the same base
/// class.
///
/// This function builds a string that can be used in error messages
/// to show the different paths that one can take through the
/// inheritance hierarchy to go from the derived class to different
/// subobjects of a base class. The result looks something like this:
/// @code
/// struct D -> struct B -> struct A
/// struct D -> struct C -> struct A
/// @endcode
std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
std::string PathDisplayStr;
std::set<unsigned> DisplayedPaths;
for (CXXBasePaths::paths_iterator Path = Paths.begin();
Path != Paths.end(); ++Path) {
if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
// We haven't displayed a path to this particular base
// class subobject yet.
PathDisplayStr += "\n ";
PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
for (CXXBasePath::const_iterator Element = Path->begin();
Element != Path->end(); ++Element)
PathDisplayStr += " -> " + Element->Base->getType().getAsString();
}
}
return PathDisplayStr;
}
//===----------------------------------------------------------------------===//
// C++ class member Handling
//===----------------------------------------------------------------------===//
/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
SourceLocation ASLoc,
SourceLocation ColonLoc) {
assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
ASLoc, ColonLoc);
CurContext->addHiddenDecl(ASDecl);
return ASDecl;
}
/// CheckOverrideControl - Check C++0x override control semantics.
void Sema::CheckOverrideControl(const Decl *D) {
const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
if (!MD || !MD->isVirtual())
return;
if (MD->isDependentContext())
return;
// C++0x [class.virtual]p3:
// If a virtual function is marked with the virt-specifier override and does
// not override a member function of a base class,
// the program is ill-formed.
bool HasOverriddenMethods =
MD->begin_overridden_methods() != MD->end_overridden_methods();
if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
Diag(MD->getLocation(),
diag::err_function_marked_override_not_overriding)
<< MD->getDeclName();
return;
}
// C++0x [class.derived]p8:
// In a class definition marked with the class-virt-specifier explicit,
// if a virtual member function that is neither implicitly-declared nor a
// destructor overrides a member function of a base class and it is not
// marked with the virt-specifier override, the program is ill-formed.
if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
llvm::SmallVector<const CXXMethodDecl*, 4>
OverriddenMethods(MD->begin_overridden_methods(),
MD->end_overridden_methods());
Diag(MD->getLocation(), diag::err_function_overriding_without_override)
<< MD->getDeclName()
<< (unsigned)OverriddenMethods.size();
for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
Diag(OverriddenMethods[I]->getLocation(),
diag::note_overridden_virtual_function);
}
}
/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
/// function overrides a virtual member function marked 'final', according to
/// C++0x [class.virtual]p3.
bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
const CXXMethodDecl *Old) {
if (!Old->hasAttr<FinalAttr>())
return false;
Diag(New->getLocation(), diag::err_final_function_overridden)
<< New->getDeclName();
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
}
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
/// bitfield width if there is one and 'InitExpr' specifies the initializer if
/// any.
Decl *
Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
ExprTy *BW, const VirtSpecifiers &VS,
ExprTy *InitExpr, bool IsDefinition,
bool Deleted) {
const DeclSpec &DS = D.getDeclSpec();
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
DeclarationName Name = NameInfo.getName();
SourceLocation Loc = NameInfo.getLoc();
// For anonymous bitfields, the location should point to the type.
if (Loc.isInvalid())
Loc = D.getSourceRange().getBegin();
Expr *BitWidth = static_cast<Expr*>(BW);
Expr *Init = static_cast<Expr*>(InitExpr);
assert(isa<CXXRecordDecl>(CurContext));
assert(!DS.isFriendSpecified());
bool isFunc = false;
if (D.isFunctionDeclarator())
isFunc = true;
else if (D.getNumTypeObjects() == 0 &&
D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
QualType TDType = GetTypeFromParser(DS.getRepAsType());
isFunc = TDType->isFunctionType();
}
// C++ 9.2p6: A member shall not be declared to have automatic storage
// duration (auto, register) or with the extern storage-class-specifier.
// C++ 7.1.1p8: The mutable specifier can be applied only to names of class
// data members and cannot be applied to names declared const or static,
// and cannot be applied to reference members.
switch (DS.getStorageClassSpec()) {
case DeclSpec::SCS_unspecified:
case DeclSpec::SCS_typedef:
case DeclSpec::SCS_static:
// FALL THROUGH.
break;
case DeclSpec::SCS_mutable:
if (isFunc) {
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
else
Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
// FIXME: It would be nicer if the keyword was ignored only for this
// declarator. Otherwise we could get follow-up errors.
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
break;
default:
if (DS.getStorageClassSpecLoc().isValid())
Diag(DS.getStorageClassSpecLoc(),
diag::err_storageclass_invalid_for_member);
else
Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
!isFunc);
Decl *Member;
if (isInstField) {
CXXScopeSpec &SS = D.getCXXScopeSpec();
if (SS.isSet() && !SS.isInvalid()) {
// The user provided a superfluous scope specifier inside a class
// definition:
//
// class X {
// int X::member;
// };
DeclContext *DC = 0;
if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
<< Name << FixItHint::CreateRemoval(SS.getRange());
else
Diag(D.getIdentifierLoc(), diag::err_member_qualification)
<< Name << SS.getRange();
SS.clear();
}
// FIXME: Check for template parameters!
// FIXME: Check that the name is an identifier!
Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
AS);
assert(Member && "HandleField never returns null");
} else {
Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
if (!Member) {
return 0;
}
// Non-instance-fields can't have a bitfield.
if (BitWidth) {
if (Member->isInvalidDecl()) {
// don't emit another diagnostic.
} else if (isa<VarDecl>(Member)) {
// C++ 9.6p3: A bit-field shall not be a static member.
// "static member 'A' cannot be a bit-field"
Diag(Loc, diag::err_static_not_bitfield)
<< Name << BitWidth->getSourceRange();
} else if (isa<TypedefDecl>(Member)) {
// "typedef member 'x' cannot be a bit-field"
Diag(Loc, diag::err_typedef_not_bitfield)
<< Name << BitWidth->getSourceRange();
} else {
// A function typedef ("typedef int f(); f a;").
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
Diag(Loc, diag::err_not_integral_type_bitfield)
<< Name << cast<ValueDecl>(Member)->getType()
<< BitWidth->getSourceRange();
}
BitWidth = 0;
Member->setInvalidDecl();
}
Member->setAccess(AS);
// If we have declared a member function template, set the access of the
// templated declaration as well.
if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
FunTmpl->getTemplatedDecl()->setAccess(AS);
}
if (VS.isOverrideSpecified()) {
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
if (!MD || !MD->isVirtual()) {
Diag(Member->getLocStart(),
diag::override_keyword_only_allowed_on_virtual_member_functions)
<< "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
} else
MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
}
if (VS.isFinalSpecified()) {
CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
if (!MD || !MD->isVirtual()) {
Diag(Member->getLocStart(),
diag::override_keyword_only_allowed_on_virtual_member_functions)
<< "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
} else
MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
}
CheckOverrideControl(Member);
assert((Name || isInstField) && "No identifier for non-field ?");
if (Init)
AddInitializerToDecl(Member, Init, false);
if (Deleted) // FIXME: Source location is not very good.
SetDeclDeleted(Member, D.getSourceRange().getBegin());
if (isInstField) {
FieldCollector->Add(cast<FieldDecl>(Member));
return 0;
}
return Member;
}
/// \brief Find the direct and/or virtual base specifiers that
/// correspond to the given base type, for use in base initialization
/// within a constructor.
static bool FindBaseInitializer(Sema &SemaRef,
CXXRecordDecl *ClassDecl,
QualType BaseType,
const CXXBaseSpecifier *&DirectBaseSpec,
const CXXBaseSpecifier *&VirtualBaseSpec) {
// First, check for a direct base class.
DirectBaseSpec = 0;
for (CXXRecordDecl::base_class_const_iterator Base
= ClassDecl->bases_begin();
Base != ClassDecl->bases_end(); ++Base) {
if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
// We found a direct base of this type. That's what we're
// initializing.
DirectBaseSpec = &*Base;
break;
}
}
// Check for a virtual base class.
// FIXME: We might be able to short-circuit this if we know in advance that
// there are no virtual bases.
VirtualBaseSpec = 0;
if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
// We haven't found a base yet; search the class hierarchy for a
// virtual base class.
CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
/*DetectVirtual=*/false);
if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
BaseType, Paths)) {
for (CXXBasePaths::paths_iterator Path = Paths.begin();
Path != Paths.end(); ++Path) {
if (Path->back().Base->isVirtual()) {
VirtualBaseSpec = Path->back().Base;
break;
}
}
}
}
return DirectBaseSpec || VirtualBaseSpec;
}
/// ActOnMemInitializer - Handle a C++ member initializer.
MemInitResult
Sema::ActOnMemInitializer(Decl *ConstructorD,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
ParsedType TemplateTypeTy,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation RParenLoc,
SourceLocation EllipsisLoc) {
if (!ConstructorD)
return true;
AdjustDeclIfTemplate(ConstructorD);
CXXConstructorDecl *Constructor
= dyn_cast<CXXConstructorDecl>(ConstructorD);
if (!Constructor) {
// The user wrote a constructor initializer on a function that is
// not a C++ constructor. Ignore the error for now, because we may
// have more member initializers coming; we'll diagnose it just
// once in ActOnMemInitializers.
return true;
}
CXXRecordDecl *ClassDecl = Constructor->getParent();
// C++ [class.base.init]p2:
// Names in a mem-initializer-id are looked up in the scope of the
// constructor's class and, if not found in that scope, are looked
// up in the scope containing the constructor's definition.
// [Note: if the constructor's class contains a member with the
// same name as a direct or virtual base class of the class, a
// mem-initializer-id naming the member or base class and composed
// of a single identifier refers to the class member. A
// mem-initializer-id for the hidden base class may be specified
// using a qualified name. ]
if (!SS.getScopeRep() && !TemplateTypeTy) {
// Look for a member, first.
FieldDecl *Member = 0;
DeclContext::lookup_result Result
= ClassDecl->lookup(MemberOrBase);
if (Result.first != Result.second) {
Member = dyn_cast<FieldDecl>(*Result.first);
if (Member) {
if (EllipsisLoc.isValid())
Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
LParenLoc, RParenLoc);
}
// Handle anonymous union case.
if (IndirectFieldDecl* IndirectField
= dyn_cast<IndirectFieldDecl>(*Result.first)) {
if (EllipsisLoc.isValid())
Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
return BuildMemberInitializer(IndirectField, (Expr**)Args,
NumArgs, IdLoc,
LParenLoc, RParenLoc);
}
}
}
// It didn't name a member, so see if it names a class.
QualType BaseType;
TypeSourceInfo *TInfo = 0;
if (TemplateTypeTy) {
BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
} else {
LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
LookupParsedName(R, S, &SS);
TypeDecl *TyD = R.getAsSingle<TypeDecl>();
if (!TyD) {
if (R.isAmbiguous()) return true;
// We don't want access-control diagnostics here.
R.suppressDiagnostics();
if (SS.isSet() && isDependentScopeSpecifier(SS)) {
bool NotUnknownSpecialization = false;
DeclContext *DC = computeDeclContext(SS, false);
if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
NotUnknownSpecialization = !Record->hasAnyDependentBases();
if (!NotUnknownSpecialization) {
// When the scope specifier can refer to a member of an unknown
// specialization, we take it as a type name.
BaseType = CheckTypenameType(ETK_None,
(NestedNameSpecifier *)SS.getScopeRep(),
*MemberOrBase, SourceLocation(),
SS.getRange(), IdLoc);
if (BaseType.isNull())
return true;
R.clear();
R.setLookupName(MemberOrBase);
}
}
// If no results were found, try to correct typos.
if (R.empty() && BaseType.isNull() &&
CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
R.isSingleResult()) {
if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
// We have found a non-static data member with a similar
// name to what was typed; complain and initialize that
// member.
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
<< MemberOrBase << true << R.getLookupName()
<< FixItHint::CreateReplacement(R.getNameLoc(),
R.getLookupName().getAsString());
Diag(Member->getLocation(), diag::note_previous_decl)
<< Member->getDeclName();
return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
LParenLoc, RParenLoc);
}
} else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
const CXXBaseSpecifier *DirectBaseSpec;
const CXXBaseSpecifier *VirtualBaseSpec;
if (FindBaseInitializer(*this, ClassDecl,
Context.getTypeDeclType(Type),
DirectBaseSpec, VirtualBaseSpec)) {
// We have found a direct or virtual base class with a
// similar name to what was typed; complain and initialize
// that base class.
Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
<< MemberOrBase << false << R.getLookupName()
<< FixItHint::CreateReplacement(R.getNameLoc(),
R.getLookupName().getAsString());
const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
: VirtualBaseSpec;
Diag(BaseSpec->getSourceRange().getBegin(),
diag::note_base_class_specified_here)
<< BaseSpec->getType()
<< BaseSpec->getSourceRange();
TyD = Type;
}
}
}
if (!TyD && BaseType.isNull()) {
Diag(IdLoc, diag::err_mem_init_not_member_or_class)
<< MemberOrBase << SourceRange(IdLoc, RParenLoc);
return true;
}
}
if (BaseType.isNull()) {
BaseType = Context.getTypeDeclType(TyD);
if (SS.isSet()) {
NestedNameSpecifier *Qualifier =
static_cast<NestedNameSpecifier*>(SS.getScopeRep());
// FIXME: preserve source range information
BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
}
}
}
if (!TInfo)
TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
}
/// Checks an initializer expression for use of uninitialized fields, such as
/// containing the field that is being initialized. Returns true if there is an
/// uninitialized field was used an updates the SourceLocation parameter; false
/// otherwise.
static bool InitExprContainsUninitializedFields(const Stmt *S,
const ValueDecl *LhsField,
SourceLocation *L) {
assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
if (isa<CallExpr>(S)) {
// Do not descend into function calls or constructors, as the use
// of an uninitialized field may be valid. One would have to inspect
// the contents of the function/ctor to determine if it is safe or not.
// i.e. Pass-by-value is never safe, but pass-by-reference and pointers
// may be safe, depending on what the function/ctor does.
return false;
}
if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
const NamedDecl *RhsField = ME->getMemberDecl();
if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
// The member expression points to a static data member.
assert(VD->isStaticDataMember() &&
"Member points to non-static data member!");
(void)VD;
return false;
}
if (isa<EnumConstantDecl>(RhsField)) {
// The member expression points to an enum.
return false;
}
if (RhsField == LhsField) {
// Initializing a field with itself. Throw a warning.
// But wait; there are exceptions!
// Exception #1: The field may not belong to this record.
// e.g. Foo(const Foo& rhs) : A(rhs.A) {}
const Expr *base = ME->getBase();
if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
// Even though the field matches, it does not belong to this record.
return false;
}
// None of the exceptions triggered; return true to indicate an
// uninitialized field was used.
*L = ME->getMemberLoc();
return true;
}
} else if (isa<SizeOfAlignOfExpr>(S)) {
// sizeof/alignof doesn't reference contents, do not warn.
return false;
} else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
// address-of doesn't reference contents (the pointer may be dereferenced
// in the same expression but it would be rare; and weird).
if (UOE->getOpcode() == UO_AddrOf)
return false;
}
for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
it != e; ++it) {
if (!*it) {
// An expression such as 'member(arg ?: "")' may trigger this.
continue;
}
if (InitExprContainsUninitializedFields(*it, LhsField, L))
return true;
}
return false;
}
MemInitResult
Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
unsigned NumArgs, SourceLocation IdLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
assert((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl");
if (Member->isInvalidDecl())
return true;
// Diagnose value-uses of fields to initialize themselves, e.g.
// foo(foo)
// where foo is not also a parameter to the constructor.
// TODO: implement -Wuninitialized and fold this into that framework.
for (unsigned i = 0; i < NumArgs; ++i) {
SourceLocation L;
if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
// FIXME: Return true in the case when other fields are used before being
// uninitialized. For example, let this field be the i'th field. When
// initializing the i'th field, throw a warning if any of the >= i'th
// fields are used, as they are not yet initialized.
// Right now we are only handling the case where the i'th field uses
// itself in its initializer.
Diag(L, diag::warn_field_is_uninit);
}
}
bool HasDependentArg = false;
for (unsigned i = 0; i < NumArgs; i++)
HasDependentArg |= Args[i]->isTypeDependent();
Expr *Init;
if (Member->getType()->isDependentType() || HasDependentArg) {
// Can't check initialization for a member of dependent type or when
// any of the arguments are type-dependent expressions.
Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
RParenLoc);
// Erase any temporaries within this evaluation context; we're not
// going to track them in the AST, since we'll be rebuilding the
// ASTs during template instantiation.
ExprTemporaries.erase(
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
ExprTemporaries.end());
} else {
// Initialize the member.
InitializedEntity MemberEntity =
DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
: InitializedEntity::InitializeMember(IndirectMember, 0);
InitializationKind Kind =
InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
ExprResult MemberInit =
InitSeq.Perform(*this, MemberEntity, Kind,
MultiExprArg(*this, Args, NumArgs), 0);
if (MemberInit.isInvalid())
return true;
CheckImplicitConversions(MemberInit.get(), LParenLoc);
// C++0x [class.base.init]p7:
// The initialization of each base and member constitutes a
// full-expression.
MemberInit = MaybeCreateExprWithCleanups(MemberInit);
if (MemberInit.isInvalid())
return true;
// If we are in a dependent context, template instantiation will
// perform this type-checking again. Just save the arguments that we
// received in a ParenListExpr.
// FIXME: This isn't quite ideal, since our ASTs don't capture all
// of the information that we have about the member
// initializer. However, deconstructing the ASTs is a dicey process,
// and this approach is far more likely to get the corner cases right.
if (CurContext->isDependentContext())
Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
RParenLoc);
else
Init = MemberInit.get();
}
if (DirectMember) {
return new (Context) CXXCtorInitializer(Context, DirectMember,
IdLoc, LParenLoc, Init,
RParenLoc);
} else {
return new (Context) CXXCtorInitializer(Context, IndirectMember,
IdLoc, LParenLoc, Init,
RParenLoc);
}
}
MemInitResult
Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
Expr **Args, unsigned NumArgs,
SourceLocation LParenLoc,
SourceLocation RParenLoc,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc) {
SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
if (!LangOpts.CPlusPlus0x)
return Diag(Loc, diag::err_delegation_0x_only)
<< TInfo->getTypeLoc().getLocalSourceRange();
return Diag(Loc, diag::err_delegation_unimplemented)
<< TInfo->getTypeLoc().getLocalSourceRange();
}
MemInitResult
Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
Expr **Args, unsigned NumArgs,
SourceLocation LParenLoc, SourceLocation RParenLoc,
CXXRecordDecl *ClassDecl,
SourceLocation EllipsisLoc) {
bool HasDependentArg = false;
for (unsigned i = 0; i < NumArgs; i++)
HasDependentArg |= Args[i]->isTypeDependent();
SourceLocation BaseLoc
= BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
if (!BaseType->isDependentType() && !BaseType->isRecordType())
return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
// C++ [class.base.init]p2:
// [...] Unless the mem-initializer-id names a nonstatic data
// member of the constructor's class or a direct or virtual base
// of that class, the mem-initializer is ill-formed. A
// mem-initializer-list can initialize a base class using any
// name that denotes that base class type.
bool Dependent = BaseType->isDependentType() || HasDependentArg;
if (EllipsisLoc.isValid()) {
// This is a pack expansion.
if (!BaseType->containsUnexpandedParameterPack()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< SourceRange(BaseLoc, RParenLoc);
EllipsisLoc = SourceLocation();
}
} else {
// Check for any unexpanded parameter packs.
if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
return true;
for (unsigned I = 0; I != NumArgs; ++I)
if (DiagnoseUnexpandedParameterPack(Args[I]))
return true;
}
// Check for direct and virtual base classes.
const CXXBaseSpecifier *DirectBaseSpec = 0;
const CXXBaseSpecifier *VirtualBaseSpec = 0;
if (!Dependent) {
if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
BaseType))
return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
LParenLoc, RParenLoc, ClassDecl,
EllipsisLoc);
FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
VirtualBaseSpec);
// C++ [base.class.init]p2:
// Unless the mem-initializer-id names a nonstatic data member of the
// constructor's class or a direct or virtual base of that class, the
// mem-initializer is ill-formed.
if (!DirectBaseSpec && !VirtualBaseSpec) {
// If the class has any dependent bases, then it's possible that
// one of those types will resolve to the same type as
// BaseType. Therefore, just treat this as a dependent base
// class initialization. FIXME: Should we try to check the
// initialization anyway? It seems odd.
if (ClassDecl->hasAnyDependentBases())
Dependent = true;
else
return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
<< BaseType << Context.getTypeDeclType(ClassDecl)
<< BaseTInfo->getTypeLoc().getLocalSourceRange();
}
}
if (Dependent) {
// Can't check initialization for a base of dependent type or when
// any of the arguments are type-dependent expressions.
ExprResult BaseInit
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
RParenLoc));
// Erase any temporaries within this evaluation context; we're not
// going to track them in the AST, since we'll be rebuilding the
// ASTs during template instantiation.
ExprTemporaries.erase(
ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
ExprTemporaries.end());
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
/*IsVirtual=*/false,
LParenLoc,
BaseInit.takeAs<Expr>(),
RParenLoc,
EllipsisLoc);
}
// C++ [base.class.init]p2:
// If a mem-initializer-id is ambiguous because it designates both
// a direct non-virtual base class and an inherited virtual base
// class, the mem-initializer is ill-formed.
if (DirectBaseSpec && VirtualBaseSpec)
return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
<< BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
CXXBaseSpecifier *BaseSpec
= const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
if (!BaseSpec)
BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
// Initialize the base.
InitializedEntity BaseEntity =
InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
InitializationKind Kind =
InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
ExprResult BaseInit =
InitSeq.Perform(*this, BaseEntity, Kind,
MultiExprArg(*this, Args, NumArgs), 0);
if (BaseInit.isInvalid())
return true;
CheckImplicitConversions(BaseInit.get(), LParenLoc);
// C++0x [class.base.init]p7:
// The initialization of each base and member constitutes a
// full-expression.
BaseInit = MaybeCreateExprWithCleanups(BaseInit);
if (BaseInit.isInvalid())
return true;
// If we are in a dependent context, template instantiation will
// perform this type-checking again. Just save the arguments that we
// received in a ParenListExpr.
// FIXME: This isn't quite ideal, since our ASTs don't capture all
// of the information that we have about the base
// initializer. However, deconstructing the ASTs is a dicey process,
// and this approach is far more likely to get the corner cases right.
if (CurContext->isDependentContext()) {
ExprResult Init
= Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
RParenLoc));
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
BaseSpec->isVirtual(),
LParenLoc,
Init.takeAs<Expr>(),
RParenLoc,
EllipsisLoc);
}
return new (Context) CXXCtorInitializer(Context, BaseTInfo,
BaseSpec->isVirtual(),
LParenLoc,
BaseInit.takeAs<Expr>(),
RParenLoc,
EllipsisLoc);
}
/// ImplicitInitializerKind - How an implicit base or member initializer should
/// initialize its base or member.
enum ImplicitInitializerKind {
IIK_Default,
IIK_Copy,
IIK_Move
};
static bool
BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
ImplicitInitializerKind ImplicitInitKind,
CXXBaseSpecifier *BaseSpec,
bool IsInheritedVirtualBase,
CXXCtorInitializer *&CXXBaseInit) {
InitializedEntity InitEntity
= InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
IsInheritedVirtualBase);
ExprResult BaseInit;
switch (ImplicitInitKind) {
case IIK_Default: {
InitializationKind InitKind
= InitializationKind::CreateDefault(Constructor->getLocation());
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
MultiExprArg(SemaRef, 0, 0));
break;
}
case IIK_Copy: {
ParmVarDecl *Param = Constructor->getParamDecl(0);
QualType ParamType = Param->getType().getNonReferenceType();
Expr *CopyCtorArg =
DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
Constructor->getLocation(), ParamType,
VK_LValue, 0);
// Cast to the base class to avoid ambiguities.
QualType ArgTy =
SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
ParamType.getQualifiers());
CXXCastPath BasePath;
BasePath.push_back(BaseSpec);
SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
CK_UncheckedDerivedToBase,
VK_LValue, &BasePath);
InitializationKind InitKind
= InitializationKind::CreateDirect(Constructor->getLocation(),
SourceLocation(), SourceLocation());
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
&CopyCtorArg, 1);
BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
MultiExprArg(&CopyCtorArg, 1));
break;
}
case IIK_Move:
assert(false && "Unhandled initializer kind!");
}
BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
if (BaseInit.isInvalid())
return true;
CXXBaseInit =
new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
SourceLocation()),
BaseSpec->isVirtual(),
SourceLocation(),
BaseInit.takeAs<Expr>(),
SourceLocation(),
SourceLocation());
return false;
}
static bool
BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
ImplicitInitializerKind ImplicitInitKind,
FieldDecl *Field,
CXXCtorInitializer *&CXXMemberInit) {
if (Field->isInvalidDecl())
return true;
SourceLocation Loc = Constructor->getLocation();
if (ImplicitInitKind == IIK_Copy) {
ParmVarDecl *Param = Constructor->getParamDecl(0);
QualType ParamType = Param->getType().getNonReferenceType();
Expr *MemberExprBase =
DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
Loc, ParamType, VK_LValue, 0);
// Build a reference to this field within the parameter.
CXXScopeSpec SS;
LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
Sema::LookupMemberName);
MemberLookup.addDecl(Field, AS_public);
MemberLookup.resolveKind();
ExprResult CopyCtorArg
= SemaRef.BuildMemberReferenceExpr(MemberExprBase,
ParamType, Loc,
/*IsArrow=*/false,
SS,
/*FirstQualifierInScope=*/0,
MemberLookup,
/*TemplateArgs=*/0);
if (CopyCtorArg.isInvalid())
return true;
// When the field we are copying is an array, create index variables for
// each dimension of the array. We use these index variables to subscript
// the source array, and other clients (e.g., CodeGen) will perform the
// necessary iteration with these index variables.
llvm::SmallVector<VarDecl *, 4> IndexVariables;
QualType BaseType = Field->getType();
QualType SizeType = SemaRef.Context.getSizeType();
while (const ConstantArrayType *Array
= SemaRef.Context.getAsConstantArrayType(BaseType)) {
// Create the iteration variable for this array index.
IdentifierInfo *IterationVarName = 0;
{
llvm::SmallString<8> Str;
llvm::raw_svector_ostream OS(Str);
OS << "__i" << IndexVariables.size();
IterationVarName = &SemaRef.Context.Idents.get(OS.str());
}
VarDecl *IterationVar
= VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
IterationVarName, SizeType,
SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
SC_None, SC_None);
IndexVariables.push_back(IterationVar);
// Create a reference to the iteration variable.
ExprResult IterationVarRef
= SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
assert(!IterationVarRef.isInvalid() &&
"Reference to invented variable cannot fail!");
// Subscript the array with this iteration variable.
CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
Loc,
IterationVarRef.take(),
Loc);
if (CopyCtorArg.isInvalid())
return true;
BaseType = Array->getElementType();
}
// Construct the entity that we will be initializing. For an array, this
// will be first element in the array, which may require several levels
// of array-subscript entities.
llvm::SmallVector<InitializedEntity, 4> Entities;
Entities.reserve(1 + IndexVariables.size());
Entities.push_back(InitializedEntity::InitializeMember(Field));
for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
0,
Entities.back()));
// Direct-initialize to use the copy constructor.
InitializationKind InitKind =
InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
&CopyCtorArgE, 1);
ExprResult MemberInit
= InitSeq.Perform(SemaRef, Entities.back(), InitKind,
MultiExprArg(&CopyCtorArgE, 1));
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
if (MemberInit.isInvalid())
return true;
CXXMemberInit
= CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
MemberInit.takeAs<Expr>(), Loc,
IndexVariables.data(),
IndexVariables.size());
return false;
}
assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
QualType FieldBaseElementType =
SemaRef.Context.getBaseElementType(Field->getType());
if (FieldBaseElementType->isRecordType()) {
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
InitializationKind InitKind =
InitializationKind::CreateDefault(Loc);
InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
ExprResult MemberInit =
InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
if (MemberInit.isInvalid())
return true;
CXXMemberInit =
new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
Field, Loc, Loc,
MemberInit.get(),
Loc);
return false;
}
if (FieldBaseElementType->isReferenceType()) {
SemaRef.Diag(Constructor->getLocation(),
diag::err_uninitialized_member_in_ctor)
<< (int)Constructor->isImplicit()
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
<< 0 << Field->getDeclName();
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
return true;
}
if (FieldBaseElementType.isConstQualified()) {
SemaRef.Diag(Constructor->getLocation(),
diag::err_uninitialized_member_in_ctor)
<< (int)Constructor->isImplicit()
<< SemaRef.Context.getTagDeclType(Constructor->getParent())
<< 1 << Field->getDeclName();
SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
return true;
}
// Nothing to initialize.
CXXMemberInit = 0;
return false;
}
namespace {
struct BaseAndFieldInfo {
Sema &S;
CXXConstructorDecl *Ctor;
bool AnyErrorsInInits;
ImplicitInitializerKind IIK;
llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
: S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
// FIXME: Handle implicit move constructors.
if (Ctor->isImplicit() && Ctor->isCopyConstructor())
IIK = IIK_Copy;
else
IIK = IIK_Default;
}
};
}
static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
FieldDecl *Top, FieldDecl *Field) {
// Overwhelmingly common case: we have a direct initializer for this field.
if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
Info.AllToInit.push_back(Init);
return false;
}
if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
assert(FieldClassType && "anonymous struct/union without record type");
CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
// Even though union members never have non-trivial default
// constructions in C++03, we still build member initializers for aggregate
// record types which can be union members, and C++0x allows non-trivial
// default constructors for union members, so we ensure that only one
// member is initialized for these.
if (FieldClassDecl->isUnion()) {
// First check for an explicit initializer for one field.
for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
EA = FieldClassDecl->field_end(); FA != EA; FA++) {
if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
Info.AllToInit.push_back(Init);
// Once we've initialized a field of an anonymous union, the union
// field in the class is also initialized, so exit immediately.
return false;
} else if ((*FA)->isAnonymousStructOrUnion()) {
if (CollectFieldInitializer(Info, Top, *FA))
return true;
}
}
// Fallthrough and construct a default initializer for the union as
// a whole, which can call its default constructor if such a thing exists
// (C++0x perhaps). FIXME: It's not clear that this is the correct
// behavior going forward with C++0x, when anonymous unions there are
// finalized, we should revisit this.
} else {
// For structs, we simply descend through to initialize all members where
// necessary.
for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
EA = FieldClassDecl->field_end(); FA != EA; FA++) {
if (CollectFieldInitializer(Info, Top, *FA))
return true;
}
}
}
// Don't try to build an implicit initializer if there were semantic
// errors in any of the initializers (and therefore we might be
// missing some that the user actually wrote).
if (Info.AnyErrorsInInits)
return false;
CXXCtorInitializer *Init = 0;
if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
return true;
if (Init)
Info.AllToInit.push_back(Init);
return false;
}
bool
Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
CXXCtorInitializer **Initializers,
unsigned NumInitializers,
bool AnyErrors) {
if (Constructor->getDeclContext()->isDependentContext()) {
// Just store the initializers as written, they will be checked during
// instantiation.
if (NumInitializers > 0) {
Constructor->setNumCtorInitializers(NumInitializers);
CXXCtorInitializer **baseOrMemberInitializers =
new (Context) CXXCtorInitializer*[NumInitializers];
memcpy(baseOrMemberInitializers, Initializers,
NumInitializers * sizeof(CXXCtorInitializer*));
Constructor->setCtorInitializers(baseOrMemberInitializers);
}
return false;
}
BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
// We need to build the initializer AST according to order of construction
// and not what user specified in the Initializers list.
CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
if (!ClassDecl)
return true;
bool HadError = false;
for (unsigned i = 0; i < NumInitializers; i++) {
CXXCtorInitializer *Member = Initializers[i];
if (Member->isBaseInitializer())
Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
else
Info.AllBaseFields[Member->getAnyMember()] = Member;
}
// Keep track of the direct virtual bases.
llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
E = ClassDecl->bases_end(); I != E; ++I) {
if (I->isVirtual())
DirectVBases.insert(I);
}
// Push virtual bases before others.
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
if (CXXCtorInitializer *Value
= Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
Info.AllToInit.push_back(Value);
} else if (!AnyErrors) {
bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
CXXCtorInitializer *CXXBaseInit;
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
VBase, IsInheritedVirtualBase,
CXXBaseInit)) {
HadError = true;
continue;
}
Info.AllToInit.push_back(CXXBaseInit);
}
}
// Non-virtual bases.
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
E = ClassDecl->bases_end(); Base != E; ++Base) {
// Virtuals are in the virtual base list and already constructed.
if (Base->isVirtual())
continue;
if (CXXCtorInitializer *Value
= Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
Info.AllToInit.push_back(Value);
} else if (!AnyErrors) {
CXXCtorInitializer *CXXBaseInit;
if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
Base, /*IsInheritedVirtualBase=*/false,
CXXBaseInit)) {
HadError = true;
continue;
}
Info.AllToInit.push_back(CXXBaseInit);
}
}
// Fields.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
E = ClassDecl->field_end(); Field != E; ++Field) {
if ((*Field)->getType()->isIncompleteArrayType()) {
assert(ClassDecl->hasFlexibleArrayMember() &&
"Incomplete array type is not valid");
continue;
}
if (CollectFieldInitializer(Info, *Field, *Field))
HadError = true;
}
NumInitializers = Info.AllToInit.size();
if (NumInitializers > 0) {
Constructor->setNumCtorInitializers(NumInitializers);
CXXCtorInitializer **baseOrMemberInitializers =
new (Context) CXXCtorInitializer*[NumInitializers];
memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
NumInitializers * sizeof(CXXCtorInitializer*));
Constructor->setCtorInitializers(baseOrMemberInitializers);
// Constructors implicitly reference the base and member
// destructors.
MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
Constructor->getParent());
}
return HadError;
}
static void *GetKeyForTopLevelField(FieldDecl *Field) {
// For anonymous unions, use the class declaration as the key.
if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
if (RT->getDecl()->isAnonymousStructOrUnion())
return static_cast<void *>(RT->getDecl());
}
return static_cast<void *>(Field);
}
static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
}
static void *GetKeyForMember(ASTContext &Context,
CXXCtorInitializer *Member) {
if (!Member->isAnyMemberInitializer())
return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
// For fields injected into the class via declaration of an anonymous union,
// use its anonymous union class declaration as the unique key.
FieldDecl *Field = Member->getAnyMember();
// If the field is a member of an anonymous struct or union, our key
// is the anonymous record decl that's a direct child of the class.
RecordDecl *RD = Field->getParent();
if (RD->isAnonymousStructOrUnion()) {
while (true) {
RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
if (Parent->isAnonymousStructOrUnion())
RD = Parent;
else
break;
}
return static_cast<void *>(RD);
}
return static_cast<void *>(Field);
}
static void
DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
const CXXConstructorDecl *Constructor,
CXXCtorInitializer **Inits,
unsigned NumInits) {
if (Constructor->getDeclContext()->isDependentContext())
return;
// Don't check initializers order unless the warning is enabled at the
// location of at least one initializer.
bool ShouldCheckOrder = false;
for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
CXXCtorInitializer *Init = Inits[InitIndex];
if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
Init->getSourceLocation())
!= Diagnostic::Ignored) {
ShouldCheckOrder = true;
break;
}
}
if (!ShouldCheckOrder)
return;
// Build the list of bases and members in the order that they'll
// actually be initialized. The explicit initializers should be in
// this same order but may be missing things.
llvm::SmallVector<const void*, 32> IdealInitKeys;
const CXXRecordDecl *ClassDecl = Constructor->getParent();
// 1. Virtual bases.
for (CXXRecordDecl::base_class_const_iterator VBase =
ClassDecl->vbases_begin(),
E = ClassDecl->vbases_end(); VBase != E; ++VBase)
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
// 2. Non-virtual bases.
for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
E = ClassDecl->bases_end(); Base != E; ++Base) {
if (Base->isVirtual())
continue;
IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
}
// 3. Direct fields.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
E = ClassDecl->field_end(); Field != E; ++Field)
IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
unsigned NumIdealInits = IdealInitKeys.size();
unsigned IdealIndex = 0;
CXXCtorInitializer *PrevInit = 0;
for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
CXXCtorInitializer *Init = Inits[InitIndex];
void *InitKey = GetKeyForMember(SemaRef.Context, Init);
// Scan forward to try to find this initializer in the idealized
// initializers list.
for (; IdealIndex != NumIdealInits; ++IdealIndex)
if (InitKey == IdealInitKeys[IdealIndex])
break;
// If we didn't find this initializer, it must be because we
// scanned past it on a previous iteration. That can only
// happen if we're out of order; emit a warning.
if (IdealIndex == NumIdealInits && PrevInit) {
Sema::SemaDiagnosticBuilder D =
SemaRef.Diag(PrevInit->getSourceLocation(),
diag::warn_initializer_out_of_order);
if (PrevInit->isAnyMemberInitializer())
D << 0 << PrevInit->getAnyMember()->getDeclName();
else
D << 1 << PrevInit->getBaseClassInfo()->getType();
if (Init->isAnyMemberInitializer())
D << 0 << Init->getAnyMember()->getDeclName();
else
D << 1 << Init->getBaseClassInfo()->getType();
// Move back to the initializer's location in the ideal list.
for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
if (InitKey == IdealInitKeys[IdealIndex])
break;
assert(IdealIndex != NumIdealInits &&
"initializer not found in initializer list");
}
PrevInit = Init;
}
}
namespace {
bool CheckRedundantInit(Sema &S,
CXXCtorInitializer *Init,
CXXCtorInitializer *&PrevInit) {
if (!PrevInit) {
PrevInit = Init;
return false;
}
if (FieldDecl *Field = Init->getMember())
S.Diag(Init->getSourceLocation(),
diag::err_multiple_mem_initialization)
<< Field->getDeclName()
<< Init->getSourceRange();
else {
const Type *BaseClass = Init->getBaseClass();
assert(BaseClass && "neither field nor base");
S.Diag(Init->getSourceLocation(),
diag::err_multiple_base_initialization)
<< QualType(BaseClass, 0)
<< Init->getSourceRange();
}
S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
<< 0 << PrevInit->getSourceRange();
return true;
}
typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
bool CheckRedundantUnionInit(Sema &S,
CXXCtorInitializer *Init,
RedundantUnionMap &Unions) {
FieldDecl *Field = Init->getAnyMember();
RecordDecl *Parent = Field->getParent();
if (!Parent->isAnonymousStructOrUnion())
return false;
NamedDecl *Child = Field;
do {
if (Parent->isUnion()) {
UnionEntry &En = Unions[Parent];
if (En.first && En.first != Child) {
S.Diag(Init->getSourceLocation(),
diag::err_multiple_mem_union_initialization)
<< Field->getDeclName()
<< Init->getSourceRange();
S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
<< 0 << En.second->getSourceRange();
return true;
} else if (!En.first) {
En.first = Child;
En.second = Init;
}
}
Child = Parent;
Parent = cast<RecordDecl>(Parent->getDeclContext());
} while (Parent->isAnonymousStructOrUnion());
return false;
}
}
/// ActOnMemInitializers - Handle the member initializers for a constructor.
void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
SourceLocation ColonLoc,
MemInitTy **meminits, unsigned NumMemInits,
bool AnyErrors) {
if (!ConstructorDecl)
return;
AdjustDeclIfTemplate(ConstructorDecl);
CXXConstructorDecl *Constructor
= dyn_cast<CXXConstructorDecl>(ConstructorDecl);
if (!Constructor) {
Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
return;
}
CXXCtorInitializer **MemInits =
reinterpret_cast<CXXCtorInitializer **>(meminits);
// Mapping for the duplicate initializers check.
// For member initializers, this is keyed with a FieldDecl*.
// For base initializers, this is keyed with a Type*.
llvm::DenseMap<void*, CXXCtorInitializer *> Members;
// Mapping for the inconsistent anonymous-union initializers check.
RedundantUnionMap MemberUnions;
bool HadError = false;
for (unsigned i = 0; i < NumMemInits; i++) {
CXXCtorInitializer *Init = MemInits[i];
// Set the source order index.
Init->setSourceOrder(i);
if (Init->isAnyMemberInitializer()) {
FieldDecl *Field = Init->getAnyMember();
if (CheckRedundantInit(*this, Init, Members[Field]) ||
CheckRedundantUnionInit(*this, Init, MemberUnions))
HadError = true;
} else {
void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
if (CheckRedundantInit(*this, Init, Members[Key]))
HadError = true;
}
}
if (HadError)
return;
DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
}
void
Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
CXXRecordDecl *ClassDecl) {
// Ignore dependent contexts.
if (ClassDecl->isDependentContext())
return;
// FIXME: all the access-control diagnostics are positioned on the
// field/base declaration. That's probably good; that said, the
// user might reasonably want to know why the destructor is being
// emitted, and we currently don't say.
// Non-static data members.
for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
E = ClassDecl->field_end(); I != E; ++I) {
FieldDecl *Field = *I;
if (Field->isInvalidDecl())
continue;
QualType FieldType = Context.getBaseElementType(Field->getType());
const RecordType* RT = FieldType->getAs<RecordType>();
if (!RT)
continue;
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
if (FieldClassDecl->hasTrivialDestructor())
continue;
CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
CheckDestructorAccess(Field->getLocation(), Dtor,
PDiag(diag::err_access_dtor_field)
<< Field->getDeclName()
<< FieldType);
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
}
llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
// Bases.
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
E = ClassDecl->bases_end(); Base != E; ++Base) {
// Bases are always records in a well-formed non-dependent class.
const RecordType *RT = Base->getType()->getAs<RecordType>();
// Remember direct virtual bases.
if (Base->isVirtual())
DirectVirtualBases.insert(RT);
// Ignore trivial destructors.
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
if (BaseClassDecl->hasTrivialDestructor())
continue;
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
// FIXME: caret should be on the start of the class name
CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
PDiag(diag::err_access_dtor_base)
<< Base->getType()
<< Base->getSourceRange());
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
}
// Virtual bases.
for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
// Bases are always records in a well-formed non-dependent class.
const RecordType *RT = VBase->getType()->getAs<RecordType>();
// Ignore direct virtual bases.
if (DirectVirtualBases.count(RT))
continue;
// Ignore trivial destructors.
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
if (BaseClassDecl->hasTrivialDestructor())
continue;
CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
PDiag(diag::err_access_dtor_vbase)
<< VBase->getType());
MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
}
}
void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
if (!CDtorDecl)
return;
if (CXXConstructorDecl *Constructor
= dyn_cast<CXXConstructorDecl>(CDtorDecl))
SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
}
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
unsigned DiagID, AbstractDiagSelID SelID) {
if (SelID == -1)
return RequireNonAbstractType(Loc, T, PDiag(DiagID));
else
return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
}
bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
const PartialDiagnostic &PD) {
if (!getLangOptions().CPlusPlus)
return false;
if (const ArrayType *AT = Context.getAsArrayType(T))
return RequireNonAbstractType(Loc, AT->getElementType(), PD);
if (const PointerType *PT = T->getAs<PointerType>()) {
// Find the innermost pointer type.
while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
PT = T;
if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
return RequireNonAbstractType(Loc, AT->getElementType(), PD);
}
const RecordType *RT = T->getAs<RecordType>();
if (!RT)
return false;
const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
// We can't answer whether something is abstract until it has a
// definition. If it's currently being defined, we'll walk back
// over all the declarations when we have a full definition.
const CXXRecordDecl *Def = RD->getDefinition();
if (!Def || Def->isBeingDefined())
return false;
if (!RD->isAbstract())
return false;
Diag(Loc, PD) << RD->getDeclName();
DiagnoseAbstractType(RD);
return true;
}
void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
// Check if we've already emitted the list of pure virtual functions
// for this class.
if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
return;
CXXFinalOverriderMap FinalOverriders;
RD->getFinalOverriders(FinalOverriders);
// Keep a set of seen pure methods so we won't diagnose the same method
// more than once.
llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
MEnd = FinalOverriders.end();
M != MEnd;
++M) {
for (OverridingMethods::iterator SO = M->second.begin(),
SOEnd = M->second.end();
SO != SOEnd; ++SO) {
// C++ [class.abstract]p4:
// A class is abstract if it contains or inherits at least one
// pure virtual function for which the final overrider is pure
// virtual.
//
if (SO->second.size() != 1)
continue;
if (!SO->second.front().Method->isPure())
continue;
if (!SeenPureMethods.insert(SO->second.front().Method))
continue;
Diag(SO->second.front().Method->getLocation(),
diag::note_pure_virtual_function)
<< SO->second.front().Method->getDeclName();
}
}
if (!PureVirtualClassDiagSet)
PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
PureVirtualClassDiagSet->insert(RD);
}
namespace {
struct AbstractUsageInfo {
Sema &S;
CXXRecordDecl *Record;
CanQualType AbstractType;
bool Invalid;
AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
: S(S), Record(Record),
AbstractType(S.Context.getCanonicalType(
S.Context.getTypeDeclType(Record))),
Invalid(false) {}
void DiagnoseAbstractType() {
if (Invalid) return;
S.DiagnoseAbstractType(Record);
Invalid = true;
}
void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
};
struct CheckAbstractUsage {
AbstractUsageInfo &Info;
const NamedDecl *Ctx;
CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
: Info(Info), Ctx(Ctx) {}
void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
switch (TL.getTypeLocClass()) {
#define ABSTRACT_TYPELOC(CLASS, PARENT)
#define TYPELOC(CLASS, PARENT) \
case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
#include "clang/AST/TypeLocNodes.def"
}
}
void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getResultLoc(), Sema::AbstractReturnType);
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
}
}
void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getElementLoc(), Sema::AbstractArrayType);
}
void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
// Visit the type parameters from a permissive context.
for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
TemplateArgumentLoc TAL = TL.getArgLoc(I);
if (TAL.getArgument().getKind() == TemplateArgument::Type)
if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
Visit(TSI->getTypeLoc(), Sema::AbstractNone);
// TODO: other template argument types?
}
}
// Visit pointee types from a permissive context.
#define CheckPolymorphic(Type) \
void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
}
CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic(ReferenceTypeLoc)
CheckPolymorphic(MemberPointerTypeLoc)
CheckPolymorphic(BlockPointerTypeLoc)
/// Handle all the types we haven't given a more specific
/// implementation for above.
void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
// Every other kind of type that we haven't called out already
// that has an inner type is either (1) sugar or (2) contains that
// inner type in some way as a subobject.
if (TypeLoc Next = TL.getNextTypeLoc())
return Visit(Next, Sel);
// If there's no inner type and we're in a permissive context,
// don't diagnose.
if (Sel == Sema::AbstractNone) return;
// Check whether the type matches the abstract type.
QualType T = TL.getType();
if (T->isArrayType()) {
Sel = Sema::AbstractArrayType;
T = Info.S.Context.getBaseElementType(T);
}
CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
if (CT != Info.AbstractType) return;
// It matched; do some magic.
if (Sel == Sema::AbstractArrayType) {
Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
<< T << TL.getSourceRange();
} else {
Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
<< Sel << T << TL.getSourceRange();
}
Info.DiagnoseAbstractType();
}
};
void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
Sema::AbstractDiagSelID Sel) {
CheckAbstractUsage(*this, D).Visit(TL, Sel);
}
}
/// Check for invalid uses of an abstract type in a method declaration.
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
CXXMethodDecl *MD) {
// No need to do the check on definitions, which require that
// the return/param types be complete.
if (MD->isThisDeclarationADefinition())
return;
// For safety's sake, just ignore it if we don't have type source
// information. This should never happen for non-implicit methods,
// but...
if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
}
/// Check for invalid uses of an abstract type within a class definition.
static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
CXXRecordDecl *RD) {
for (CXXRecordDecl::decl_iterator
I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
Decl *D = *I;
if (D->isImplicit()) continue;
// Methods and method templates.
if (isa<CXXMethodDecl>(D)) {
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
} else if (isa<FunctionTemplateDecl>(D)) {
FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
// Fields and static variables.
} else if (isa<FieldDecl>(D)) {
FieldDecl *FD = cast<FieldDecl>(D);
if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
} else if (isa<VarDecl>(D)) {
VarDecl *VD = cast<VarDecl>(D);
if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
// Nested classes and class templates.
} else if (isa<CXXRecordDecl>(D)) {
CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
} else if (isa<ClassTemplateDecl>(D)) {
CheckAbstractClassUsage(Info,
cast<ClassTemplateDecl>(D)->getTemplatedDecl());
}
}
}
/// \brief Perform semantic checks on a class definition that has been
/// completing, introducing implicitly-declared members, checking for
/// abstract types, etc.
void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
if (!Record)
return;
if (Record->isAbstract() && !Record->isInvalidDecl()) {
AbstractUsageInfo Info(*this, Record);
CheckAbstractClassUsage(Info, Record);
}
// If this is not an aggregate type and has no user-declared constructor,
// complain about any non-static data members of reference or const scalar
// type, since they will never get initializers.
if (!Record->isInvalidDecl() && !Record->isDependentType() &&
!Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
bool Complained = false;
for (RecordDecl::field_iterator F = Record->field_begin(),
FEnd = Record->field_end();
F != FEnd; ++F) {
if (F->getType()->isReferenceType() ||
(F->getType().isConstQualified() && F->getType()->isScalarType())) {
if (!Complained) {
Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
<< Record->getTagKind() << Record;
Complained = true;
}
Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
<< F->getType()->isReferenceType()
<< F->getDeclName();
}
}
}
if (Record->isDynamicClass() && !Record->isDependentType())
DynamicClasses.push_back(Record);
if (Record->getIdentifier()) {
// C++ [class.mem]p13:
// If T is the name of a class, then each of the following shall have a
// name different from T:
// - every member of every anonymous union that is a member of class T.
//
// C++ [class.mem]p14:
// In addition, if class T has a user-declared constructor (12.1), every
// non-static data member of class T shall have a name different from T.
for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
R.first != R.second; ++R.first) {
NamedDecl *D = *R.first;
if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
isa<IndirectFieldDecl>(D)) {
Diag(D->getLocation(), diag::err_member_name_of_class)
<< D->getDeclName();
break;
}
}
}
// Warn if the class has virtual methods but non-virtual public destructor.
if (Record->isDynamicClass() && !Record->isDependentType()) {
CXXDestructorDecl *dtor = Record->getDestructor();
if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
Diag(dtor ? dtor->getLocation() : Record->getLocation(),
diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
}
// See if a method overloads virtual methods in a base
/// class without overriding any.
if (!Record->isDependentType()) {
for (CXXRecordDecl::method_iterator M = Record->method_begin(),
MEnd = Record->method_end();
M != MEnd; ++M) {
DiagnoseHiddenVirtualMethods(Record, *M);
}
}
// Declare inherited constructors. We do this eagerly here because:
// - The standard requires an eager diagnostic for conflicting inherited
// constructors from different classes.
// - The lazy declaration of the other implicit constructors is so as to not
// waste space and performance on classes that are not meant to be
// instantiated (e.g. meta-functions). This doesn't apply to classes that
// have inherited constructors.
DeclareInheritedConstructors(Record);
}
/// \brief Data used with FindHiddenVirtualMethod
struct FindHiddenVirtualMethodData {
Sema *S;
CXXMethodDecl *Method;
llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
};
/// \brief Member lookup function that determines whether a given C++
/// method overloads virtual methods in a base class without overriding any,
/// to be used with CXXRecordDecl::lookupInBases().
static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
CXXBasePath &Path,
void *UserData) {
RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
FindHiddenVirtualMethodData &Data
= *static_cast<FindHiddenVirtualMethodData*>(UserData);
DeclarationName Name = Data.Method->getDeclName();
assert(Name.getNameKind() == DeclarationName::Identifier);
bool foundSameNameMethod = false;
llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
for (Path.Decls = BaseRecord->lookup(Name);
Path.Decls.first != Path.Decls.second;
++Path.Decls.first) {
NamedDecl *D = *Path.Decls.first;
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
foundSameNameMethod = true;
// Interested only in hidden virtual methods.
if (!MD->isVirtual())
continue;
// If the method we are checking overrides a method from its base
// don't warn about the other overloaded methods.
if (!Data.S->IsOverload(Data.Method, MD, false))
return true;
// Collect the overload only if its hidden.
if (!Data.OverridenAndUsingBaseMethods.count(MD))
overloadedMethods.push_back(MD);
}
}
if (foundSameNameMethod)
Data.OverloadedMethods.append(overloadedMethods.begin(),
overloadedMethods.end());
return foundSameNameMethod;
}
/// \brief See if a method overloads virtual methods in a base class without
/// overriding any.
void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
MD->getLocation()) == Diagnostic::Ignored)
return;
if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
return;
CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
/*bool RecordPaths=*/false,
/*bool DetectVirtual=*/false);
FindHiddenVirtualMethodData Data;
Data.Method = MD;
Data.S = this;
// Keep the base methods that were overriden or introduced in the subclass
// by 'using' in a set. A base method not in this set is hidden.
for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
res.first != res.second; ++res.first) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
E = MD->end_overridden_methods();
I != E; ++I)
Data.OverridenAndUsingBaseMethods.insert(*I);
if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
Data.OverridenAndUsingBaseMethods.insert(MD);
}
if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
!Data.OverloadedMethods.empty()) {
Diag(MD->getLocation(), diag::warn_overloaded_virtual)
<< MD << (Data.OverloadedMethods.size() > 1);
for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
Diag(overloadedMD->getLocation(),
diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
}
}
}
void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
Decl *TagDecl,
SourceLocation LBrac,
SourceLocation RBrac,
AttributeList *AttrList) {
if (!TagDecl)
return;
AdjustDeclIfTemplate(TagDecl);
ActOnFields(S, RLoc, TagDecl,
// strict aliasing violation!
reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
CheckCompletedCXXClass(
dyn_cast_or_null<CXXRecordDecl>(TagDecl));
}
namespace {
/// \brief Helper class that collects exception specifications for
/// implicitly-declared special member functions.
class ImplicitExceptionSpecification {
ASTContext &Context;
bool AllowsAllExceptions;
llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
llvm::SmallVector<QualType, 4> Exceptions;
public:
explicit ImplicitExceptionSpecification(ASTContext &Context)
: Context(Context), AllowsAllExceptions(false) { }
/// \brief Whether the special member function should have any
/// exception specification at all.
bool hasExceptionSpecification() const {
return !AllowsAllExceptions;
}
/// \brief Whether the special member function should have a
/// throw(...) exception specification (a Microsoft extension).
bool hasAnyExceptionSpecification() const {
return false;
}
/// \brief The number of exceptions in the exception specification.
unsigned size() const { return Exceptions.size(); }
/// \brief The set of exceptions in the exception specification.
const QualType *data() const { return Exceptions.data(); }
/// \brief Note that
void CalledDecl(CXXMethodDecl *Method) {
// If we already know that we allow all exceptions, do nothing.
if (AllowsAllExceptions || !Method)
return;
const FunctionProtoType *Proto
= Method->getType()->getAs<FunctionProtoType>();
// If this function can throw any exceptions, make a note of that.
if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
AllowsAllExceptions = true;
ExceptionsSeen.clear();
Exceptions.clear();
return;
}
// Record the exceptions in this function's exception specification.
for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
EEnd = Proto->exception_end();
E != EEnd; ++E)
if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
Exceptions.push_back(*E);
}
};
}
/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
/// special functions, such as the default constructor, copy
/// constructor, or destructor, to the given C++ class (C++
/// [special]p1). This routine can only be executed just before the
/// definition of the class is complete.
void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
if (!ClassDecl->hasUserDeclaredConstructor())
++ASTContext::NumImplicitDefaultConstructors;
if (!ClassDecl->hasUserDeclaredCopyConstructor())
++ASTContext::NumImplicitCopyConstructors;
if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
++ASTContext::NumImplicitCopyAssignmentOperators;
// If we have a dynamic class, then the copy assignment operator may be
// virtual, so we have to declare it immediately. This ensures that, e.g.,
// it shows up in the right place in the vtable and that we diagnose
// problems with the implicit exception specification.
if (ClassDecl->isDynamicClass())
DeclareImplicitCopyAssignment(ClassDecl);
}
if (!ClassDecl->hasUserDeclaredDestructor()) {
++ASTContext::NumImplicitDestructors;
// If we have a dynamic class, then the destructor may be virtual, so we
// have to declare the destructor immediately. This ensures that, e.g., it
// shows up in the right place in the vtable and that we diagnose problems
// with the implicit exception specification.
if (ClassDecl->isDynamicClass())
DeclareImplicitDestructor(ClassDecl);
}
}
void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
if (!D)
return;
TemplateParameterList *Params = 0;
if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
Params = Template->getTemplateParameters();
else if (ClassTemplatePartialSpecializationDecl *PartialSpec
= dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
Params = PartialSpec->getTemplateParameters();
else
return;
for (TemplateParameterList::iterator Param = Params->begin(),
ParamEnd = Params->end();
Param != ParamEnd; ++Param) {
NamedDecl *Named = cast<NamedDecl>(*Param);
if (Named->getDeclName()) {
S->AddDecl(Named);
IdResolver.AddDecl(Named);
}
}
}
void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
if (!RecordD) return;
AdjustDeclIfTemplate(RecordD);
CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
PushDeclContext(S, Record);
}
void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
if (!RecordD) return;
PopDeclContext();
}
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
/// parsing a top-level (non-nested) C++ class, and we are now
/// parsing those parts of the given Method declaration that could
/// not be parsed earlier (C++ [class.mem]p2), such as default
/// arguments. This action should enter the scope of the given
/// Method declaration as if we had just parsed the qualified method
/// name. However, it should not bring the parameters into scope;
/// that will be performed by ActOnDelayedCXXMethodParameter.
void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
}
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
/// C++ method declaration. We're (re-)introducing the given
/// function parameter into scope for use in parsing later parts of
/// the method declaration. For example, we could see an
/// ActOnParamDefaultArgument event for this parameter.
void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
if (!ParamD)
return;
ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
// If this parameter has an unparsed default argument, clear it out
// to make way for the parsed default argument.
if (Param->hasUnparsedDefaultArg())
Param->setDefaultArg(0);
S->AddDecl(Param);
if (Param->getDeclName())
IdResolver.AddDecl(Param);
}
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
/// processing the delayed method declaration for Method. The method
/// declaration is now considered finished. There may be a separate
/// ActOnStartOfFunctionDef action later (not necessarily
/// immediately!) for this method, if it was also defined inside the
/// class body.
void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
if (!MethodD)
return;
AdjustDeclIfTemplate(MethodD);
FunctionDecl *Method = cast<FunctionDecl>(MethodD);
// Now that we have our default arguments, check the constructor
// again. It could produce additional diagnostics or affect whether
// the class has implicitly-declared destructors, among other
// things.
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
CheckConstructor(Constructor);
// Check the default arguments, which we may have added.
if (!Method->isInvalidDecl())
CheckCXXDefaultArguments(Method);
}
/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
/// the well-formedness of the constructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the invalid bit to true. In any case, the type
/// will be updated to reflect a well-formed type for the constructor and
/// returned.
QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
StorageClass &SC) {
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
// C++ [class.ctor]p3:
// A constructor shall not be virtual (10.3) or static (9.4). A
// constructor can be invoked for a const, volatile or const
// volatile object. A constructor shall not be declared const,
// volatile, or const volatile (9.3.2).
if (isVirtual) {
if (!D.isInvalidType())
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
<< "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
<< SourceRange(D.getIdentifierLoc());
D.setInvalidType();
}
if (SC == SC_Static) {
if (!D.isInvalidType())
Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc());
D.setInvalidType();
SC = SC_None;
}
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
if (FTI.TypeQuals != 0) {
if (FTI.TypeQuals & Qualifiers::Const)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "const" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & Qualifiers::Volatile)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "volatile" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & Qualifiers::Restrict)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
<< "restrict" << SourceRange(D.getIdentifierLoc());
D.setInvalidType();
}
// C++0x [class.ctor]p4:
// A constructor shall not be declared with a ref-qualifier.
if (FTI.hasRefQualifier()) {
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
<< FTI.RefQualifierIsLValueRef
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
D.setInvalidType();
}
// Rebuild the function type "R" without any type qualifiers (in
// case any of the errors above fired) and with "void" as the
// return type, since constructors don't have return types.
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
return R;
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
EPI.TypeQuals = 0;
EPI.RefQualifier = RQ_None;
return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
Proto->getNumArgs(), EPI);
}
/// CheckConstructor - Checks a fully-formed constructor for
/// well-formedness, issuing any diagnostics required. Returns true if
/// the constructor declarator is invalid.
void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
CXXRecordDecl *ClassDecl
= dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
if (!ClassDecl)
return Constructor->setInvalidDecl();
// C++ [class.copy]p3:
// A declaration of a constructor for a class X is ill-formed if
// its first parameter is of type (optionally cv-qualified) X and
// either there are no other parameters or else all other
// parameters have default arguments.
if (!Constructor->isInvalidDecl() &&
((Constructor->getNumParams() == 1) ||
(Constructor->getNumParams() > 1 &&
Constructor->getParamDecl(1)->hasDefaultArg())) &&
Constructor->getTemplateSpecializationKind()
!= TSK_ImplicitInstantiation) {
QualType ParamType = Constructor->getParamDecl(0)->getType();
QualType ClassTy = Context.getTagDeclType(ClassDecl);
if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
const char *ConstRef
= Constructor->getParamDecl(0)->getIdentifier() ? "const &"
: " const &";
Diag(ParamLoc, diag::err_constructor_byvalue_arg)
<< FixItHint::CreateInsertion(ParamLoc, ConstRef);
// FIXME: Rather that making the constructor invalid, we should endeavor
// to fix the type.
Constructor->setInvalidDecl();
}
}
}
/// CheckDestructor - Checks a fully-formed destructor definition for
/// well-formedness, issuing any diagnostics required. Returns true
/// on error.
bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
CXXRecordDecl *RD = Destructor->getParent();
if (Destructor->isVirtual()) {
SourceLocation Loc;
if (!Destructor->isImplicit())
Loc = Destructor->getLocation();
else
Loc = RD->getLocation();
// If we have a virtual destructor, look up the deallocation function
FunctionDecl *OperatorDelete = 0;
DeclarationName Name =
Context.DeclarationNames.getCXXOperatorName(OO_Delete);
if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
return true;
MarkDeclarationReferenced(Loc, OperatorDelete);
Destructor->setOperatorDelete(OperatorDelete);
}
return false;
}
static inline bool
FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
FTI.ArgInfo[0].Param &&
cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
}
/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
/// the well-formednes of the destructor declarator @p D with type @p
/// R. If there are any errors in the declarator, this routine will
/// emit diagnostics and set the declarator to invalid. Even if this happens,
/// will be updated to reflect a well-formed type for the destructor and
/// returned.
QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
StorageClass& SC) {
// C++ [class.dtor]p1:
// [...] A typedef-name that names a class is a class-name
// (7.1.3); however, a typedef-name that names a class shall not
// be used as the identifier in the declarator for a destructor
// declaration.
QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
if (isa<TypedefType>(DeclaratorType))
Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
<< DeclaratorType;
// C++ [class.dtor]p2:
// A destructor is used to destroy objects of its class type. A
// destructor takes no parameters, and no return type can be
// specified for it (not even void). The address of a destructor
// shall not be taken. A destructor shall not be static. A
// destructor can be invoked for a const, volatile or const
// volatile object. A destructor shall not be declared const,
// volatile or const volatile (9.3.2).
if (SC == SC_Static) {
if (!D.isInvalidType())
Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc())
<< FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
SC = SC_None;
}
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
// Destructors don't have return types, but the parser will
// happily parse something like:
//
// class X {
// float ~X();
// };
//
// The return type will be eliminated later.
Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
<< SourceRange(D.getIdentifierLoc());
}
DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
if (FTI.TypeQuals & Qualifiers::Const)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "const" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & Qualifiers::Volatile)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "volatile" << SourceRange(D.getIdentifierLoc());
if (FTI.TypeQuals & Qualifiers::Restrict)
Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
<< "restrict" << SourceRange(D.getIdentifierLoc());
D.setInvalidType();
}
// C++0x [class.dtor]p2:
// A destructor shall not be declared with a ref-qualifier.
if (FTI.hasRefQualifier()) {
Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
<< FTI.RefQualifierIsLValueRef
<< FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
D.setInvalidType();
}
// Make sure we don't have any parameters.
if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
// Delete the parameters.
FTI.freeArgs();
D.setInvalidType();
}
// Make sure the destructor isn't variadic.
if (FTI.isVariadic) {
Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
D.setInvalidType();
}
// Rebuild the function type "R" without any type qualifiers or
// parameters (in case any of the errors above fired) and with
// "void" as the return type, since destructors don't have return
// types.
if (!D.isInvalidType())
return R;
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
EPI.Variadic = false;
EPI.TypeQuals = 0;
EPI.RefQualifier = RQ_None;
return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
}
/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
/// well-formednes of the conversion function declarator @p D with
/// type @p R. If there are any errors in the declarator, this routine
/// will emit diagnostics and return true. Otherwise, it will return
/// false. Either way, the type @p R will be updated to reflect a
/// well-formed type for the conversion operator.
void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
StorageClass& SC) {
// C++ [class.conv.fct]p1:
// Neither parameter types nor return type can be specified. The
// type of a conversion function (8.3.5) is "function taking no
// parameter returning conversion-type-id."
if (SC == SC_Static) {
if (!D.isInvalidType())
Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
<< "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
<< SourceRange(D.getIdentifierLoc());
D.setInvalidType();
SC = SC_None;
}
QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
// Conversion functions don't have return types, but the parser will
// happily parse something like:
//
// class X {
// float operator bool();
// };
//
// The return type will be changed later anyway.
Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
<< SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
<< SourceRange(D.getIdentifierLoc());
D.setInvalidType();
}
const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
// Make sure we don't have any parameters.
if (Proto->getNumArgs() > 0) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
// Delete the parameters.
D.getFunctionTypeInfo().freeArgs();
D.setInvalidType();
} else if (Proto->isVariadic()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
D.setInvalidType();
}
// Diagnose "&operator bool()" and other such nonsense. This
// is actually a gcc extension which we don't support.
if (Proto->getResultType() != ConvType) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
<< Proto->getResultType();
D.setInvalidType();
ConvType = Proto->getResultType();
}
// C++ [class.conv.fct]p4:
// The conversion-type-id shall not represent a function type nor
// an array type.
if (ConvType->isArrayType()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
ConvType = Context.getPointerType(ConvType);
D.setInvalidType();
} else if (ConvType->isFunctionType()) {
Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
ConvType = Context.getPointerType(ConvType);
D.setInvalidType();
}
// Rebuild the function type "R" without any parameters (in case any
// of the errors above fired) and with the conversion type as the
// return type.
if (D.isInvalidType())
R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
// C++0x explicit conversion operators.
if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
Diag(D.getDeclSpec().getExplicitSpecLoc(),
diag::warn_explicit_conversion_functions)
<< SourceRange(D.getDeclSpec().getExplicitSpecLoc());
}
/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
/// the declaration of the given C++ conversion function. This routine
/// is responsible for recording the conversion function in the C++
/// class, if possible.
Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
assert(Conversion && "Expected to receive a conversion function declaration");
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
// Make sure we aren't redeclaring the conversion function.
QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
// C++ [class.conv.fct]p1:
// [...] A conversion function is never used to convert a
// (possibly cv-qualified) object to the (possibly cv-qualified)
// same object type (or a reference to it), to a (possibly
// cv-qualified) base class of that type (or a reference to it),
// or to (possibly cv-qualified) void.
// FIXME: Suppress this warning if the conversion function ends up being a
// virtual function that overrides a virtual function in a base class.
QualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
ConvType = ConvTypeRef->getPointeeType();
if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
/* Suppress diagnostics for instantiations. */;
else if (ConvType->isRecordType()) {
ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
if (ConvType == ClassType)
Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
<< ClassType;
else if (IsDerivedFrom(ClassType, ConvType))
Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
<< ClassType << ConvType;
} else if (ConvType->isVoidType()) {
Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
<< ClassType << ConvType;
}
if (FunctionTemplateDecl *ConversionTemplate
= Conversion->getDescribedFunctionTemplate())
return ConversionTemplate;
return Conversion;
}
//===----------------------------------------------------------------------===//
// Namespace Handling
//===----------------------------------------------------------------------===//
/// ActOnStartNamespaceDef - This is called at the start of a namespace
/// definition.
Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
SourceLocation InlineLoc,
SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation LBrace,
AttributeList *AttrList) {
// anonymous namespace starts at its left brace
NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
(II ? IdentLoc : LBrace) , II);
Namespc->setLBracLoc(LBrace);
Namespc->setInline(InlineLoc.isValid());
Scope *DeclRegionScope = NamespcScope->getParent();
ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
PushNamespaceVisibilityAttr(Attr);
if (II) {
// C++ [namespace.def]p2:
// The identifier in an original-namespace-definition shall not
// have been previously defined in the declarative region in
// which the original-namespace-definition appears. The
// identifier in an original-namespace-definition is the name of
// the namespace. Subsequently in that declarative region, it is
// treated as an original-namespace-name.
//
// Since namespace names are unique in their scope, and we don't
// look through using directives, just
DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
// This is an extended namespace definition.
if (Namespc->isInline() != OrigNS->isInline()) {
// inline-ness must match
Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
<< Namespc->isInline();
Diag(OrigNS->getLocation(), diag::note_previous_definition);
Namespc->setInvalidDecl();
// Recover by ignoring the new namespace's inline status.
Namespc->setInline(OrigNS->isInline());
}
// Attach this namespace decl to the chain of extended namespace
// definitions.
OrigNS->setNextNamespace(Namespc);
Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
// Remove the previous declaration from the scope.
if (DeclRegionScope->isDeclScope(OrigNS)) {
IdResolver.RemoveDecl(OrigNS);
DeclRegionScope->RemoveDecl(OrigNS);
}
} else if (PrevDecl) {
// This is an invalid name redefinition.
Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
<< Namespc->getDeclName();
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
Namespc->setInvalidDecl();
// Continue on to push Namespc as current DeclContext and return it.
} else if (II->isStr("std") &&
CurContext->getRedeclContext()->isTranslationUnit()) {
// This is the first "real" definition of the namespace "std", so update
// our cache of the "std" namespace to point at this definition.
if (NamespaceDecl *StdNS = getStdNamespace()) {
// We had already defined a dummy namespace "std". Link this new
// namespace definition to the dummy namespace "std".
StdNS->setNextNamespace(Namespc);
StdNS->setLocation(IdentLoc);
Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
}
// Make our StdNamespace cache point at the first real definition of the
// "std" namespace.
StdNamespace = Namespc;
}
PushOnScopeChains(Namespc, DeclRegionScope);
} else {
// Anonymous namespaces.
assert(Namespc->isAnonymousNamespace());
// Link the anonymous namespace into its parent.
NamespaceDecl *PrevDecl;
DeclContext *Parent = CurContext->getRedeclContext();
if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
PrevDecl = TU->getAnonymousNamespace();
TU->setAnonymousNamespace(Namespc);
} else {
NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
PrevDecl = ND->getAnonymousNamespace();
ND->setAnonymousNamespace(Namespc);
}
// Link the anonymous namespace with its previous declaration.
if (PrevDecl) {
assert(PrevDecl->isAnonymousNamespace());
assert(!PrevDecl->getNextNamespace());
Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
PrevDecl->setNextNamespace(Namespc);
if (Namespc->isInline() != PrevDecl->isInline()) {
// inline-ness must match
Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
<< Namespc->isInline();
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
Namespc->setInvalidDecl();
// Recover by ignoring the new namespace's inline status.
Namespc->setInline(PrevDecl->isInline());
}
}
CurContext->addDecl(Namespc);
// C++ [namespace.unnamed]p1. An unnamed-namespace-definition
// behaves as if it were replaced by
// namespace unique { /* empty body */ }
// using namespace unique;
// namespace unique { namespace-body }
// where all occurrences of 'unique' in a translation unit are
// replaced by the same identifier and this identifier differs
// from all other identifiers in the entire program.
// We just create the namespace with an empty name and then add an
// implicit using declaration, just like the standard suggests.
//
// CodeGen enforces the "universally unique" aspect by giving all
// declarations semantically contained within an anonymous
// namespace internal linkage.
if (!PrevDecl) {
UsingDirectiveDecl* UD
= UsingDirectiveDecl::Create(Context, CurContext,
/* 'using' */ LBrace,
/* 'namespace' */ SourceLocation(),
/* qualifier */ SourceRange(),
/* NNS */ NULL,
/* identifier */ SourceLocation(),
Namespc,
/* Ancestor */ CurContext);
UD->setImplicit();
CurContext->addDecl(UD);
}
}
// Although we could have an invalid decl (i.e. the namespace name is a
// redefinition), push it as current DeclContext and try to continue parsing.
// FIXME: We should be able to push Namespc here, so that the each DeclContext
// for the namespace has the declarations that showed up in that particular
// namespace definition.
PushDeclContext(NamespcScope, Namespc);
return Namespc;
}
/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
/// is a namespace alias, returns the namespace it points to.
static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
return AD->getNamespace();
return dyn_cast_or_null<NamespaceDecl>(D);
}
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
assert(Namespc && "Invalid parameter, expected NamespaceDecl");
Namespc->setRBracLoc(RBrace);
PopDeclContext();
if (Namespc->hasAttr<VisibilityAttr>())
PopPragmaVisibility();
}
CXXRecordDecl *Sema::getStdBadAlloc() const {
return cast_or_null<CXXRecordDecl>(
StdBadAlloc.get(Context.getExternalSource()));
}
NamespaceDecl *Sema::getStdNamespace() const {
return cast_or_null<NamespaceDecl>(
StdNamespace.get(Context.getExternalSource()));
}
/// \brief Retrieve the special "std" namespace, which may require us to
/// implicitly define the namespace.
NamespaceDecl *Sema::getOrCreateStdNamespace() {
if (!StdNamespace) {
// The "std" namespace has not yet been defined, so build one implicitly.
StdNamespace = NamespaceDecl::Create(Context,
Context.getTranslationUnitDecl(),
SourceLocation(),
&PP.getIdentifierTable().get("std"));
getStdNamespace()->setImplicit(true);
}
return getStdNamespace();
}
Decl *Sema::ActOnUsingDirective(Scope *S,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList) {
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
assert(NamespcName && "Invalid NamespcName.");
assert(IdentLoc.isValid() && "Invalid NamespceName location.");
// This can only happen along a recovery path.
while (S->getFlags() & Scope::TemplateParamScope)
S = S->getParent();
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
UsingDirectiveDecl *UDir = 0;
NestedNameSpecifier *Qualifier = 0;
if (SS.isSet())
Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
// Lookup namespace name.
LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
LookupParsedName(R, S, &SS);
if (R.isAmbiguous())
return 0;
if (R.empty()) {
// Allow "using namespace std;" or "using namespace ::std;" even if
// "std" hasn't been defined yet, for GCC compatibility.
if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
NamespcName->isStr("std")) {
Diag(IdentLoc, diag::ext_using_undefined_std);
R.addDecl(getOrCreateStdNamespace());
R.resolveKind();
}
// Otherwise, attempt typo correction.
else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
CTC_NoKeywords, 0)) {
if (R.getAsSingle<NamespaceDecl>() ||
R.getAsSingle<NamespaceAliasDecl>()) {
if (DeclContext *DC = computeDeclContext(SS, false))
Diag(IdentLoc, diag::err_using_directive_member_suggest)
<< NamespcName << DC << Corrected << SS.getRange()
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
else
Diag(IdentLoc, diag::err_using_directive_suggest)
<< NamespcName << Corrected
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
<< Corrected;
NamespcName = Corrected.getAsIdentifierInfo();
} else {
R.clear();
R.setLookupName(NamespcName);
}
}
}
if (!R.empty()) {
NamedDecl *Named = R.getFoundDecl();
assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
&& "expected namespace decl");
// C++ [namespace.udir]p1:
// A using-directive specifies that the names in the nominated
// namespace can be used in the scope in which the
// using-directive appears after the using-directive. During
// unqualified name lookup (3.4.1), the names appear as if they
// were declared in the nearest enclosing namespace which
// contains both the using-directive and the nominated
// namespace. [Note: in this context, "contains" means "contains
// directly or indirectly". ]
// Find enclosing context containing both using-directive and
// nominated namespace.
NamespaceDecl *NS = getNamespaceDecl(Named);
DeclContext *CommonAncestor = cast<DeclContext>(NS);
while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
CommonAncestor = CommonAncestor->getParent();
UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
SS.getRange(),
(NestedNameSpecifier *)SS.getScopeRep(),
IdentLoc, Named, CommonAncestor);
PushUsingDirective(S, UDir);
} else {
Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
}
// FIXME: We ignore attributes for now.
return UDir;
}
void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
// If scope has associated entity, then using directive is at namespace
// or translation unit scope. We add UsingDirectiveDecls, into
// it's lookup structure.
if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
Ctx->addDecl(UDir);
else
// Otherwise it is block-sope. using-directives will affect lookup
// only to the end of scope.
S->PushUsingDirective(UDir);
}
Decl *Sema::ActOnUsingDeclaration(Scope *S,
AccessSpecifier AS,
bool HasUsingKeyword,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
AttributeList *AttrList,
bool IsTypeName,
SourceLocation TypenameLoc) {
assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
switch (Name.getKind()) {
case UnqualifiedId::IK_Identifier:
case UnqualifiedId::IK_OperatorFunctionId:
case UnqualifiedId::IK_LiteralOperatorId:
case UnqualifiedId::IK_ConversionFunctionId:
break;
case UnqualifiedId::IK_ConstructorName:
case UnqualifiedId::IK_ConstructorTemplateId:
// C++0x inherited constructors.
if (getLangOptions().CPlusPlus0x) break;
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
<< SS.getRange();
return 0;
case UnqualifiedId::IK_DestructorName:
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
<< SS.getRange();
return 0;
case UnqualifiedId::IK_TemplateId:
Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
<< SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
return 0;
}
DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
DeclarationName TargetName = TargetNameInfo.getName();
if (!TargetName)
return 0;
// Warn about using declarations.
// TODO: store that the declaration was written without 'using' and
// talk about access decls instead of using decls in the
// diagnostics.
if (!HasUsingKeyword) {
UsingLoc = Name.getSourceRange().getBegin();
Diag(UsingLoc, diag::warn_access_decl_deprecated)
<< FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
}
if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
return 0;
NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
TargetNameInfo, AttrList,
/* IsInstantiation */ false,
IsTypeName, TypenameLoc);
if (UD)
PushOnScopeChains(UD, S, /*AddToContext*/ false);
return UD;
}
/// \brief Determine whether a using declaration considers the given
/// declarations as "equivalent", e.g., if they are redeclarations of
/// the same entity or are both typedefs of the same type.
static bool
IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
bool &SuppressRedeclaration) {
if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
SuppressRedeclaration = false;
return true;
}
if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
SuppressRedeclaration = true;
return Context.hasSameType(TD1->getUnderlyingType(),
TD2->getUnderlyingType());
}
return false;
}
/// Determines whether to create a using shadow decl for a particular
/// decl, given the set of decls existing prior to this using lookup.
bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
const LookupResult &Previous) {
// Diagnose finding a decl which is not from a base class of the
// current class. We do this now because there are cases where this
// function will silently decide not to build a shadow decl, which
// will pre-empt further diagnostics.
//
// We don't need to do this in C++0x because we do the check once on
// the qualifier.
//
// FIXME: diagnose the following if we care enough:
// struct A { int foo; };
// struct B : A { using A::foo; };
// template <class T> struct C : A {};
// template <class T> struct D : C<T> { using B::foo; } // <---
// This is invalid (during instantiation) in C++03 because B::foo
// resolves to the using decl in B, which is not a base class of D<T>.
// We can't diagnose it immediately because C<T> is an unknown
// specialization. The UsingShadowDecl in D<T> then points directly
// to A::foo, which will look well-formed when we instantiate.
// The right solution is to not collapse the shadow-decl chain.
if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
DeclContext *OrigDC = Orig->getDeclContext();
// Handle enums and anonymous structs.
if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
while (OrigRec->isAnonymousStructOrUnion())
OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
if (OrigDC == CurContext) {
Diag(Using->getLocation(),
diag::err_using_decl_nested_name_specifier_is_current_class)
<< Using->getNestedNameRange();
Diag(Orig->getLocation(), diag::note_using_decl_target);
return true;
}
Diag(Using->getNestedNameRange().getBegin(),
diag::err_using_decl_nested_name_specifier_is_not_base_class)
<< Using->getTargetNestedNameDecl()
<< cast<CXXRecordDecl>(CurContext)
<< Using->getNestedNameRange();
Diag(Orig->getLocation(), diag::note_using_decl_target);
return true;
}
}
if (Previous.empty()) return false;
NamedDecl *Target = Orig;
if (isa<UsingShadowDecl>(Target))
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
// If the target happens to be one of the previous declarations, we
// don't have a conflict.
//
// FIXME: but we might be increasing its access, in which case we
// should redeclare it.
NamedDecl *NonTag = 0, *Tag = 0;
for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
I != E; ++I) {
NamedDecl *D = (*I)->getUnderlyingDecl();
bool Result;
if (IsEquivalentForUsingDecl(Context, D, Target, Result))
return Result;
(isa<TagDecl>(D) ? Tag : NonTag) = D;
}
if (Target->isFunctionOrFunctionTemplate()) {
FunctionDecl *FD;
if (isa<FunctionTemplateDecl>(Target))
FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
else
FD = cast<FunctionDecl>(Target);
NamedDecl *OldDecl = 0;
switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
case Ovl_Overload:
return false;
case Ovl_NonFunction:
Diag(Using->getLocation(), diag::err_using_decl_conflict);
break;
// We found a decl with the exact signature.
case Ovl_Match:
// If we're in a record, we want to hide the target, so we
// return true (without a diagnostic) to tell the caller not to
// build a shadow decl.
if (CurContext->isRecord())
return true;
// If we're not in a record, this is an error.
Diag(Using->getLocation(), diag::err_using_decl_conflict);
break;
}
Diag(Target->getLocation(), diag::note_using_decl_target);
Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
return true;
}
// Target is not a function.
if (isa<TagDecl>(Target)) {
// No conflict between a tag and a non-tag.
if (!Tag) return false;
Diag(Using->getLocation(), diag::err_using_decl_conflict);
Diag(Target->getLocation(), diag::note_using_decl_target);
Diag(Tag->getLocation(), diag::note_using_decl_conflict);
return true;
}
// No conflict between a tag and a non-tag.
if (!NonTag) return false;
Diag(Using->getLocation(), diag::err_using_decl_conflict);
Diag(Target->getLocation(), diag::note_using_decl_target);
Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
return true;
}
/// Builds a shadow declaration corresponding to a 'using' declaration.
UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
UsingDecl *UD,
NamedDecl *Orig) {
// If we resolved to another shadow declaration, just coalesce them.
NamedDecl *Target = Orig;
if (isa<UsingShadowDecl>(Target)) {
Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
}
UsingShadowDecl *Shadow
= UsingShadowDecl::Create(Context, CurContext,
UD->getLocation(), UD, Target);
UD->addShadowDecl(Shadow);
Shadow->setAccess(UD->getAccess());
if (Orig->isInvalidDecl() || UD->isInvalidDecl())
Shadow->setInvalidDecl();
if (S)
PushOnScopeChains(Shadow, S);
else
CurContext->addDecl(Shadow);
return Shadow;
}
/// Hides a using shadow declaration. This is required by the current
/// using-decl implementation when a resolvable using declaration in a
/// class is followed by a declaration which would hide or override
/// one or more of the using decl's targets; for example:
///
/// struct Base { void foo(int); };
/// struct Derived : Base {
/// using Base::foo;
/// void foo(int);
/// };
///
/// The governing language is C++03 [namespace.udecl]p12:
///
/// When a using-declaration brings names from a base class into a
/// derived class scope, member functions in the derived class
/// override and/or hide member functions with the same name and
/// parameter types in a base class (rather than conflicting).
///
/// There are two ways to implement this:
/// (1) optimistically create shadow decls when they're not hidden
/// by existing declarations, or
/// (2) don't create any shadow decls (or at least don't make them
/// visible) until we've fully parsed/instantiated the class.
/// The problem with (1) is that we might have to retroactively remove
/// a shadow decl, which requires several O(n) operations because the
/// decl structures are (very reasonably) not designed for removal.
/// (2) avoids this but is very fiddly and phase-dependent.
void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
if (Shadow->getDeclName().getNameKind() ==
DeclarationName::CXXConversionFunctionName)
cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
// Remove it from the DeclContext...
Shadow->getDeclContext()->removeDecl(Shadow);
// ...and the scope, if applicable...
if (S) {
S->RemoveDecl(Shadow);
IdResolver.RemoveDecl(Shadow);
}
// ...and the using decl.
Shadow->getUsingDecl()->removeShadowDecl(Shadow);
// TODO: complain somehow if Shadow was used. It shouldn't
// be possible for this to happen, because...?
}
/// Builds a using declaration.
///
/// \param IsInstantiation - Whether this call arises from an
/// instantiation of an unresolved using declaration. We treat
/// the lookup differently for these declarations.
NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
const DeclarationNameInfo &NameInfo,
AttributeList *AttrList,
bool IsInstantiation,
bool IsTypeName,
SourceLocation TypenameLoc) {
assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
SourceLocation IdentLoc = NameInfo.getLoc();
assert(IdentLoc.isValid() && "Invalid TargetName location.");
// FIXME: We ignore attributes for now.
if (SS.isEmpty()) {
Diag(IdentLoc, diag::err_using_requires_qualname);
return 0;
}
// Do the redeclaration lookup in the current scope.
LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
ForRedeclaration);
Previous.setHideTags(false);
if (S) {
LookupName(Previous, S);
// It is really dumb that we have to do this.
LookupResult::Filter F = Previous.makeFilter();
while (F.hasNext()) {
NamedDecl *D = F.next();
if (!isDeclInScope(D, CurContext, S))
F.erase();
}
F.done();
} else {
assert(IsInstantiation && "no scope in non-instantiation");
assert(CurContext->isRecord() && "scope not record in instantiation");
LookupQualifiedName(Previous, CurContext);
}
NestedNameSpecifier *NNS = SS.getScopeRep();
// Check for invalid redeclarations.
if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
return 0;
// Check for bad qualifiers.
if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
return 0;
DeclContext *LookupContext = computeDeclContext(SS);
NamedDecl *D;
if (!LookupContext) {
if (IsTypeName) {
// FIXME: not all declaration name kinds are legal here
D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
UsingLoc, TypenameLoc,
SS.getRange(), NNS,
IdentLoc, NameInfo.getName());
} else {
D = UnresolvedUsingValueDecl::Create(Context, CurContext,
UsingLoc, SS.getRange(),
NNS, NameInfo);
}
} else {
D = UsingDecl::Create(Context, CurContext,
SS.getRange(), UsingLoc, NNS, NameInfo,
IsTypeName);
}
D->setAccess(AS);
CurContext->addDecl(D);
if (!LookupContext) return D;
UsingDecl *UD = cast<UsingDecl>(D);
if (RequireCompleteDeclContext(SS, LookupContext)) {
UD->setInvalidDecl();
return UD;
}
// Constructor inheriting using decls get special treatment.
if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
if (CheckInheritedConstructorUsingDecl(UD))
UD->setInvalidDecl();
return UD;
}
// Otherwise, look up the target name.
LookupResult R(*this, NameInfo, LookupOrdinaryName);
// Unlike most lookups, we don't always want to hide tag
// declarations: tag names are visible through the using declaration
// even if hidden by ordinary names, *except* in a dependent context
// where it's important for the sanity of two-phase lookup.
if (!IsInstantiation)
R.setHideTags(false);
LookupQualifiedName(R, LookupContext);
if (R.empty()) {
Diag(IdentLoc, diag::err_no_member)
<< NameInfo.getName() << LookupContext << SS.getRange();
UD->setInvalidDecl();
return UD;
}
if (R.isAmbiguous()) {
UD->setInvalidDecl();
return UD;
}
if (IsTypeName) {
// If we asked for a typename and got a non-type decl, error out.
if (!R.getAsSingle<TypeDecl>()) {
Diag(IdentLoc, diag::err_using_typename_non_type);
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
Diag((*I)->getUnderlyingDecl()->getLocation(),
diag::note_using_decl_target);
UD->setInvalidDecl();
return UD;
}
} else {
// If we asked for a non-typename and we got a type, error out,
// but only if this is an instantiation of an unresolved using
// decl. Otherwise just silently find the type name.
if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
Diag(IdentLoc, diag::err_using_dependent_value_is_type);
Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
UD->setInvalidDecl();
return UD;
}
}
// C++0x N2914 [namespace.udecl]p6:
// A using-declaration shall not name a namespace.
if (R.getAsSingle<NamespaceDecl>()) {
Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
<< SS.getRange();
UD->setInvalidDecl();
return UD;
}
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
if (!CheckUsingShadowDecl(UD, *I, Previous))
BuildUsingShadowDecl(S, UD, *I);
}
return UD;
}
/// Additional checks for a using declaration referring to a constructor name.
bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
if (UD->isTypeName()) {
// FIXME: Cannot specify typename when specifying constructor
return true;
}
const Type *SourceType = UD->getTargetNestedNameDecl()->getAsType();
assert(SourceType &&
"Using decl naming constructor doesn't have type in scope spec.");
CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
// Check whether the named type is a direct base class.
CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
CXXRecordDecl::base_class_iterator BaseIt, BaseE;
for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
BaseIt != BaseE; ++BaseIt) {
CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
if (CanonicalSourceType == BaseType)
break;
}
if (BaseIt == BaseE) {
// Did not find SourceType in the bases.
Diag(UD->getUsingLocation(),
diag::err_using_decl_constructor_not_in_direct_base)
<< UD->getNameInfo().getSourceRange()
<< QualType(SourceType, 0) << TargetClass;
return true;
}
BaseIt->setInheritConstructors();
return false;
}
/// Checks that the given using declaration is not an invalid
/// redeclaration. Note that this is checking only for the using decl
/// itself, not for any ill-formedness among the UsingShadowDecls.
bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
bool isTypeName,
const CXXScopeSpec &SS,
SourceLocation NameLoc,
const LookupResult &Prev) {
// C++03 [namespace.udecl]p8:
// C++0x [namespace.udecl]p10:
// A using-declaration is a declaration and can therefore be used
// repeatedly where (and only where) multiple declarations are
// allowed.
//
// That's in non-member contexts.
if (!CurContext->getRedeclContext()->isRecord())
return false;
NestedNameSpecifier *Qual
= static_cast<NestedNameSpecifier*>(SS.getScopeRep());
for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
NamedDecl *D = *I;
bool DTypename;
NestedNameSpecifier *DQual;
if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
DTypename = UD->isTypeName();
DQual = UD->getTargetNestedNameDecl();
} else if (UnresolvedUsingValueDecl *UD
= dyn_cast<UnresolvedUsingValueDecl>(D)) {
DTypename = false;
DQual = UD->getTargetNestedNameSpecifier();
} else if (UnresolvedUsingTypenameDecl *UD
= dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
DTypename = true;
DQual = UD->getTargetNestedNameSpecifier();
} else continue;
// using decls differ if one says 'typename' and the other doesn't.
// FIXME: non-dependent using decls?
if (isTypeName != DTypename) continue;
// using decls differ if they name different scopes (but note that
// template instantiation can cause this check to trigger when it
// didn't before instantiation).
if (Context.getCanonicalNestedNameSpecifier(Qual) !=
Context.getCanonicalNestedNameSpecifier(DQual))
continue;
Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
Diag(D->getLocation(), diag::note_using_decl) << 1;
return true;
}
return false;
}
/// Checks that the given nested-name qualifier used in a using decl
/// in the current context is appropriately related to the current
/// scope. If an error is found, diagnoses it and returns true.
bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
const CXXScopeSpec &SS,
SourceLocation NameLoc) {
DeclContext *NamedContext = computeDeclContext(SS);
if (!CurContext->isRecord()) {
// C++03 [namespace.udecl]p3:
// C++0x [namespace.udecl]p8:
// A using-declaration for a class member shall be a member-declaration.
// If we weren't able to compute a valid scope, it must be a
// dependent class scope.
if (!NamedContext || NamedContext->isRecord()) {
Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
<< SS.getRange();
return true;
}
// Otherwise, everything is known to be fine.
return false;
}
// The current scope is a record.
// If the named context is dependent, we can't decide much.
if (!NamedContext) {
// FIXME: in C++0x, we can diagnose if we can prove that the
// nested-name-specifier does not refer to a base class, which is
// still possible in some cases.
// Otherwise we have to conservatively report that things might be
// okay.
return false;
}
if (!NamedContext->isRecord()) {
// Ideally this would point at the last name in the specifier,
// but we don't have that level of source info.
Diag(SS.getRange().getBegin(),
diag::err_using_decl_nested_name_specifier_is_not_class)
<< (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
return true;
}
if (!NamedContext->isDependentContext() &&
RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
return true;
if (getLangOptions().CPlusPlus0x) {
// C++0x [namespace.udecl]p3:
// In a using-declaration used as a member-declaration, the
// nested-name-specifier shall name a base class of the class
// being defined.
if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
cast<CXXRecordDecl>(NamedContext))) {
if (CurContext == NamedContext) {
Diag(NameLoc,
diag::err_using_decl_nested_name_specifier_is_current_class)
<< SS.getRange();
return true;
}
Diag(SS.getRange().getBegin(),
diag::err_using_decl_nested_name_specifier_is_not_base_class)
<< (NestedNameSpecifier*) SS.getScopeRep()
<< cast<CXXRecordDecl>(CurContext)
<< SS.getRange();
return true;
}
return false;
}
// C++03 [namespace.udecl]p4:
// A using-declaration used as a member-declaration shall refer
// to a member of a base class of the class being defined [etc.].
// Salient point: SS doesn't have to name a base class as long as
// lookup only finds members from base classes. Therefore we can
// diagnose here only if we can prove that that can't happen,
// i.e. if the class hierarchies provably don't intersect.
// TODO: it would be nice if "definitely valid" results were cached
// in the UsingDecl and UsingShadowDecl so that these checks didn't
// need to be repeated.
struct UserData {
llvm::DenseSet<const CXXRecordDecl*> Bases;
static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
Data->Bases.insert(Base);
return true;
}
bool hasDependentBases(const CXXRecordDecl *Class) {
return !Class->forallBases(collect, this);
}
/// Returns true if the base is dependent or is one of the
/// accumulated base classes.
static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
return !Data->Bases.count(Base);
}
bool mightShareBases(const CXXRecordDecl *Class) {
return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
}
};
UserData Data;
// Returns false if we find a dependent base.
if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
return false;
// Returns false if the class has a dependent base or if it or one
// of its bases is present in the base set of the current context.
if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
return false;
Diag(SS.getRange().getBegin(),
diag::err_using_decl_nested_name_specifier_is_not_base_class)
<< (NestedNameSpecifier*) SS.getScopeRep()
<< cast<CXXRecordDecl>(CurContext)
<< SS.getRange();
return true;
}
Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident) {
// Lookup the namespace name.
LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
LookupParsedName(R, S, &SS);
// Check if we have a previous declaration with the same name.
NamedDecl *PrevDecl
= LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
ForRedeclaration);
if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
PrevDecl = 0;
if (PrevDecl) {
if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
// We already have an alias with the same name that points to the same
// namespace, so don't create a new one.
// FIXME: At some point, we'll want to create the (redundant)
// declaration to maintain better source information.
if (!R.isAmbiguous() && !R.empty() &&
AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
return 0;
}
unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
diag::err_redefinition_different_kind;
Diag(AliasLoc, DiagID) << Alias;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
return 0;
}
if (R.isAmbiguous())
return 0;
if (R.empty()) {
if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
CTC_NoKeywords, 0)) {
if (R.getAsSingle<NamespaceDecl>() ||
R.getAsSingle<NamespaceAliasDecl>()) {
if (DeclContext *DC = computeDeclContext(SS, false))
Diag(IdentLoc, diag::err_using_directive_member_suggest)
<< Ident << DC << Corrected << SS.getRange()
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
else
Diag(IdentLoc, diag::err_using_directive_suggest)
<< Ident << Corrected
<< FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
<< Corrected;
Ident = Corrected.getAsIdentifierInfo();
} else {
R.clear();
R.setLookupName(Ident);
}
}
if (R.empty()) {
Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
return 0;
}
}
NamespaceAliasDecl *AliasDecl =
NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
Alias, SS.getRange(),
(NestedNameSpecifier *)SS.getScopeRep(),
IdentLoc, R.getFoundDecl());
PushOnScopeChains(AliasDecl, S);
return AliasDecl;
}
namespace {
/// \brief Scoped object used to handle the state changes required in Sema
/// to implicitly define the body of a C++ member function;
class ImplicitlyDefinedFunctionScope {
Sema &S;
DeclContext *PreviousContext;
public:
ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
: S(S), PreviousContext(S.CurContext)
{
S.CurContext = Method;
S.PushFunctionScope();
S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
}
~ImplicitlyDefinedFunctionScope() {
S.PopExpressionEvaluationContext();
S.PopFunctionOrBlockScope();
S.CurContext = PreviousContext;
}
};
}
static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
CXXRecordDecl *D) {
ASTContext &Context = Self.Context;
QualType ClassType = Context.getTypeDeclType(D);
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType.getUnqualifiedType()));
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
Con != ConEnd; ++Con) {
// FIXME: In C++0x, a constructor template can be a default constructor.
if (isa<FunctionTemplateDecl>(*Con))
continue;
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
if (Constructor->isDefaultConstructor())
return Constructor;
}
return 0;
}
CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
CXXRecordDecl *ClassDecl) {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class X
// that can be called without an argument. If there is no
// user-declared constructor for class X, a default constructor is
// implicitly declared. An implicitly-declared default constructor
// is an inline public member of its class.
assert(!ClassDecl->hasUserDeclaredConstructor() &&
"Should not build implicit default constructor!");
// C++ [except.spec]p14:
// An implicitly declared special member function (Clause 12) shall have an
// exception-specification. [...]
ImplicitExceptionSpecification ExceptSpec(Context);
// Direct base-class destructors.
for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
BEnd = ClassDecl->bases_end();
B != BEnd; ++B) {
if (B->isVirtual()) // Handled below.
continue;
if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
if (!BaseClassDecl->hasDeclaredDefaultConstructor())
ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
else if (CXXConstructorDecl *Constructor
= getDefaultConstructorUnsafe(*this, BaseClassDecl))
ExceptSpec.CalledDecl(Constructor);
}
}
// Virtual base-class destructors.
for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
BEnd = ClassDecl->vbases_end();
B != BEnd; ++B) {
if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
if (!BaseClassDecl->hasDeclaredDefaultConstructor())
ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
else if (CXXConstructorDecl *Constructor
= getDefaultConstructorUnsafe(*this, BaseClassDecl))
ExceptSpec.CalledDecl(Constructor);
}
}
// Field destructors.
for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
FEnd = ClassDecl->field_end();
F != FEnd; ++F) {
if (const RecordType *RecordTy
= Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
if (!FieldClassDecl->hasDeclaredDefaultConstructor())
ExceptSpec.CalledDecl(
DeclareImplicitDefaultConstructor(FieldClassDecl));
else if (CXXConstructorDecl *Constructor
= getDefaultConstructorUnsafe(*this, FieldClassDecl))
ExceptSpec.CalledDecl(Constructor);
}
}
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
EPI.NumExceptions = ExceptSpec.size();
EPI.Exceptions = ExceptSpec.data();
// Create the actual constructor declaration.
CanQualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
DeclarationName Name
= Context.DeclarationNames.getCXXConstructorName(ClassType);
DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
CXXConstructorDecl *DefaultCon
= CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
Context.getFunctionType(Context.VoidTy,
0, 0, EPI),
/*TInfo=*/0,
/*isExplicit=*/false,
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
DefaultCon->setAccess(AS_public);
DefaultCon->setImplicit();
DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
// Note that we have declared this constructor.
++ASTContext::NumImplicitDefaultConstructorsDeclared;
if (Scope *S = getScopeForContext(ClassDecl))
PushOnScopeChains(DefaultCon, S, false);
ClassDecl->addDecl(DefaultCon);
return DefaultCon;
}
void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *Constructor) {
assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
!Constructor->isUsed(false)) &&
"DefineImplicitDefaultConstructor - call it for implicit default ctor");
CXXRecordDecl *ClassDecl = Constructor->getParent();
assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
DiagnosticErrorTrap Trap(Diags);
if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
Trap.hasErrorOccurred()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXConstructor << Context.getTagDeclType(ClassDecl);
Constructor->setInvalidDecl();
return;
}
SourceLocation Loc = Constructor->getLocation();
Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
Constructor->setUsed();
MarkVTableUsed(CurrentLocation, ClassDecl);
}
void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
// We start with an initial pass over the base classes to collect those that
// inherit constructors from. If there are none, we can forgo all further
// processing.
typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
BasesVector BasesToInheritFrom;
for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
BaseE = ClassDecl->bases_end();
BaseIt != BaseE; ++BaseIt) {
if (BaseIt->getInheritConstructors()) {
QualType Base = BaseIt->getType();
if (Base->isDependentType()) {
// If we inherit constructors from anything that is dependent, just
// abort processing altogether. We'll get another chance for the
// instantiations.
return;
}
BasesToInheritFrom.push_back(Base->castAs<RecordType>());
}
}
if (BasesToInheritFrom.empty())
return;
// Now collect the constructors that we already have in the current class.
// Those take precedence over inherited constructors.
// C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
// unless there is a user-declared constructor with the same signature in
// the class where the using-declaration appears.
llvm::SmallSet<const Type *, 8> ExistingConstructors;
for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
CtorE = ClassDecl->ctor_end();
CtorIt != CtorE; ++CtorIt) {
ExistingConstructors.insert(
Context.getCanonicalType(CtorIt->getType()).getTypePtr());
}
Scope *S = getScopeForContext(ClassDecl);
DeclarationName CreatedCtorName =
Context.DeclarationNames.getCXXConstructorName(
ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
// Now comes the true work.
// First, we keep a map from constructor types to the base that introduced
// them. Needed for finding conflicting constructors. We also keep the
// actually inserted declarations in there, for pretty diagnostics.
typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
ConstructorToSourceMap InheritedConstructors;
for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
BaseE = BasesToInheritFrom.end();
BaseIt != BaseE; ++BaseIt) {
const RecordType *Base = *BaseIt;
CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
CtorE = BaseDecl->ctor_end();
CtorIt != CtorE; ++CtorIt) {
// Find the using declaration for inheriting this base's constructors.
DeclarationName Name =
Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
SourceLocation UsingLoc = UD ? UD->getLocation() :
ClassDecl->getLocation();
// C++0x [class.inhctor]p1: The candidate set of inherited constructors
// from the class X named in the using-declaration consists of actual
// constructors and notional constructors that result from the
// transformation of defaulted parameters as follows:
// - all non-template default constructors of X, and
// - for each non-template constructor of X that has at least one
// parameter with a default argument, the set of constructors that
// results from omitting any ellipsis parameter specification and
// successively omitting parameters with a default argument from the
// end of the parameter-type-list.
CXXConstructorDecl *BaseCtor = *CtorIt;
bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
const FunctionProtoType *BaseCtorType =
BaseCtor->getType()->getAs<FunctionProtoType>();
for (unsigned params = BaseCtor->getMinRequiredArguments(),
maxParams = BaseCtor->getNumParams();
params <= maxParams; ++params) {
// Skip default constructors. They're never inherited.
if (params == 0)
continue;
// Skip copy and move constructors for the same reason.
if (CanBeCopyOrMove && params == 1)
continue;
// Build up a function type for this particular constructor.
// FIXME: The working paper does not consider that the exception spec
// for the inheriting constructor might be larger than that of the
// source. This code doesn't yet, either.
const Type *NewCtorType;
if (params == maxParams)
NewCtorType = BaseCtorType;
else {
llvm::SmallVector<QualType, 16> Args;
for (unsigned i = 0; i < params; ++i) {
Args.push_back(BaseCtorType->getArgType(i));
}
FunctionProtoType::ExtProtoInfo ExtInfo =
BaseCtorType->getExtProtoInfo();
ExtInfo.Variadic = false;
NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
Args.data(), params, ExtInfo)
.getTypePtr();
}
const Type *CanonicalNewCtorType =
Context.getCanonicalType(NewCtorType);
// Now that we have the type, first check if the class already has a
// constructor with this signature.
if (ExistingConstructors.count(CanonicalNewCtorType))
continue;
// Then we check if we have already declared an inherited constructor
// with this signature.
std::pair<ConstructorToSourceMap::iterator, bool> result =
InheritedConstructors.insert(std::make_pair(
CanonicalNewCtorType,
std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
if (!result.second) {
// Already in the map. If it came from a different class, that's an
// error. Not if it's from the same.
CanQualType PreviousBase = result.first->second.first;
if (CanonicalBase != PreviousBase) {
const CXXConstructorDecl *PrevCtor = result.first->second.second;
const CXXConstructorDecl *PrevBaseCtor =
PrevCtor->getInheritedConstructor();
assert(PrevBaseCtor && "Conflicting constructor was not inherited");
Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
Diag(BaseCtor->getLocation(),
diag::note_using_decl_constructor_conflict_current_ctor);
Diag(PrevBaseCtor->getLocation(),
diag::note_using_decl_constructor_conflict_previous_ctor);
Diag(PrevCtor->getLocation(),
diag::note_using_decl_constructor_conflict_previous_using);
}
continue;
}
// OK, we're there, now add the constructor.
// C++0x [class.inhctor]p8: [...] that would be performed by a
// user-writtern inline constructor [...]
DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0,
BaseCtor->isExplicit(), /*Inline=*/true,
/*ImplicitlyDeclared=*/true);
NewCtor->setAccess(BaseCtor->getAccess());
// Build up the parameter decls and add them.
llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
for (unsigned i = 0; i < params; ++i) {
ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc,
/*IdentifierInfo=*/0,
BaseCtorType->getArgType(i),
/*TInfo=*/0, SC_None,
SC_None, /*DefaultArg=*/0));
}
NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
NewCtor->setInheritedConstructor(BaseCtor);
PushOnScopeChains(NewCtor, S, false);
ClassDecl->addDecl(NewCtor);
result.first->second.second = NewCtor;
}
}
}
}
CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
// C++ [class.dtor]p2:
// If a class has no user-declared destructor, a destructor is
// declared implicitly. An implicitly-declared destructor is an
// inline public member of its class.
// C++ [except.spec]p14:
// An implicitly declared special member function (Clause 12) shall have
// an exception-specification.
ImplicitExceptionSpecification ExceptSpec(Context);
// Direct base-class destructors.
for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
BEnd = ClassDecl->bases_end();
B != BEnd; ++B) {
if (B->isVirtual()) // Handled below.
continue;
if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
ExceptSpec.CalledDecl(
LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
}
// Virtual base-class destructors.
for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
BEnd = ClassDecl->vbases_end();
B != BEnd; ++B) {
if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
ExceptSpec.CalledDecl(
LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
}
// Field destructors.
for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
FEnd = ClassDecl->field_end();
F != FEnd; ++F) {
if (const RecordType *RecordTy
= Context.getBaseElementType(F->getType())->getAs<RecordType>())
ExceptSpec.CalledDecl(
LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
}
// Create the actual destructor declaration.
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
EPI.NumExceptions = ExceptSpec.size();
EPI.Exceptions = ExceptSpec.data();
QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
CanQualType ClassType
= Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
DeclarationName Name
= Context.DeclarationNames.getCXXDestructorName(ClassType);
DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
CXXDestructorDecl *Destructor
= CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
Destructor->setAccess(AS_public);
Destructor->setImplicit();
Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
// Note that we have declared this destructor.
++ASTContext::NumImplicitDestructorsDeclared;
// Introduce this destructor into its scope.
if (Scope *S = getScopeForContext(ClassDecl))
PushOnScopeChains(Destructor, S, false);
ClassDecl->addDecl(Destructor);
// This could be uniqued if it ever proves significant.
Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
AddOverriddenMethods(ClassDecl, Destructor);
return Destructor;
}
void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
CXXDestructorDecl *Destructor) {
assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
"DefineImplicitDestructor - call it for implicit default dtor");
CXXRecordDecl *ClassDecl = Destructor->getParent();
assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
if (Destructor->isInvalidDecl())
return;
ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
DiagnosticErrorTrap Trap(Diags);
MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
Destructor->getParent());
if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXDestructor << Context.getTagDeclType(ClassDecl);
Destructor->setInvalidDecl();
return;
}
SourceLocation Loc = Destructor->getLocation();
Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
Destructor->setUsed();
MarkVTableUsed(CurrentLocation, ClassDecl);
}
/// \brief Builds a statement that copies the given entity from \p From to
/// \c To.
///
/// This routine is used to copy the members of a class with an
/// implicitly-declared copy assignment operator. When the entities being
/// copied are arrays, this routine builds for loops to copy them.
///
/// \param S The Sema object used for type-checking.
///
/// \param Loc The location where the implicit copy is being generated.
///
/// \param T The type of the expressions being copied. Both expressions must
/// have this type.
///
/// \param To The expression we are copying to.
///
/// \param From The expression we are copying from.
///
/// \param CopyingBaseSubobject Whether we're copying a base subobject.
/// Otherwise, it's a non-static member subobject.
///
/// \param Depth Internal parameter recording the depth of the recursion.
///
/// \returns A statement or a loop that copies the expressions.
static StmtResult
BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
Expr *To, Expr *From,
bool CopyingBaseSubobject, unsigned Depth = 0) {
// C++0x [class.copy]p30:
// Each subobject is assigned in the manner appropriate to its type:
//
// - if the subobject is of class type, the copy assignment operator
// for the class is used (as if by explicit qualification; that is,
// ignoring any possible virtual overriding functions in more derived
// classes);
if (const RecordType *RecordTy = T->getAs<RecordType>()) {
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
// Look for operator=.
DeclarationName Name
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
S.LookupQualifiedName(OpLookup, ClassDecl, false);
// Filter out any result that isn't a copy-assignment operator.
LookupResult::Filter F = OpLookup.makeFilter();
while (F.hasNext()) {
NamedDecl *D = F.next();
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
if (Method->isCopyAssignmentOperator())
continue;
F.erase();
}
F.done();
// Suppress the protected check (C++ [class.protected]) for each of the
// assignment operators we found. This strange dance is required when
// we're assigning via a base classes's copy-assignment operator. To
// ensure that we're getting the right base class subobject (without
// ambiguities), we need to cast "this" to that subobject type; to
// ensure that we don't go through the virtual call mechanism, we need
// to qualify the operator= name with the base class (see below). However,
// this means that if the base class has a protected copy assignment
// operator, the protected member access check will fail. So, we
// rewrite "protected" access to "public" access in this case, since we
// know by construction that we're calling from a derived class.
if (CopyingBaseSubobject) {
for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
L != LEnd; ++L) {
if (L.getAccess() == AS_protected)
L.setAccess(AS_public);
}
}
// Create the nested-name-specifier that will be used to qualify the
// reference to operator=; this is required to suppress the virtual
// call mechanism.
CXXScopeSpec SS;
SS.setRange(Loc);
SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
T.getTypePtr()));
// Create the reference to operator=.
ExprResult OpEqualRef
= S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
/*FirstQualifierInScope=*/0, OpLookup,
/*TemplateArgs=*/0,
/*SuppressQualifierCheck=*/true);
if (OpEqualRef.isInvalid())
return StmtError();
// Build the call to the assignment operator.
ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
OpEqualRef.takeAs<Expr>(),
Loc, &From, 1, Loc);
if (Call.isInvalid())
return StmtError();
return S.Owned(Call.takeAs<Stmt>());
}
// - if the subobject is of scalar type, the built-in assignment
// operator is used.
const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
if (!ArrayTy) {
ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
if (Assignment.isInvalid())
return StmtError();
return S.Owned(Assignment.takeAs<Stmt>());
}
// - if the subobject is an array, each element is assigned, in the
// manner appropriate to the element type;
// Construct a loop over the array bounds, e.g.,
//
// for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
//
// that will copy each of the array elements.
QualType SizeType = S.Context.getSizeType();
// Create the iteration variable.
IdentifierInfo *IterationVarName = 0;
{
llvm::SmallString<8> Str;
llvm::raw_svector_ostream OS(Str);
OS << "__i" << Depth;
IterationVarName = &S.Context.Idents.get(OS.str());
}
VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
IterationVarName, SizeType,
S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
SC_None, SC_None);
// Initialize the iteration variable to zero.
llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
// Create a reference to the iteration variable; we'll use this several
// times throughout.
Expr *IterationVarRef
= S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
assert(IterationVarRef && "Reference to invented variable cannot fail!");
// Create the DeclStmt that holds the iteration variable.
Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
// Create the comparison against the array bound.
llvm::APInt Upper
= ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
Expr *Comparison
= new (S.Context) BinaryOperator(IterationVarRef,
IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
BO_NE, S.Context.BoolTy,
VK_RValue, OK_Ordinary, Loc);
// Create the pre-increment of the iteration variable.
Expr *Increment
= new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
VK_LValue, OK_Ordinary, Loc);
// Subscript the "from" and "to" expressions with the iteration variable.
From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
IterationVarRef, Loc));
To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
IterationVarRef, Loc));
// Build the copy for an individual element of the array.
StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
To, From, CopyingBaseSubobject,
Depth + 1);
if (Copy.isInvalid())
return StmtError();
// Construct the loop that copies all elements of this array.
return S.ActOnForStmt(Loc, Loc, InitStmt,
S.MakeFullExpr(Comparison),
0, S.MakeFullExpr(Increment),
Loc, Copy.take());
}
/// \brief Determine whether the given class has a copy assignment operator
/// that accepts a const-qualified argument.
static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
if (!Class->hasDeclaredCopyAssignment())
S.DeclareImplicitCopyAssignment(Class);
QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
DeclarationName OpName
= S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
DeclContext::lookup_const_iterator Op, OpEnd;
for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
// C++ [class.copy]p9:
// A user-declared copy assignment operator is a non-static non-template
// member function of class X with exactly one parameter of type X, X&,
// const X&, volatile X& or const volatile X&.
const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
if (!Method)
continue;
if (Method->isStatic())
continue;
if (Method->getPrimaryTemplate())
continue;
const FunctionProtoType *FnType =
Method->getType()->getAs<FunctionProtoType>();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
continue;
bool AcceptsConst = true;
QualType ArgType = FnType->getArgType(0);
if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
ArgType = Ref->getPointeeType();
// Is it a non-const lvalue reference?
if (!ArgType.isConstQualified())
AcceptsConst = false;
}
if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
continue;
// We have a single argument of type cv X or cv X&, i.e. we've found the
// copy assignment operator. Return whether it accepts const arguments.
return AcceptsConst;
}
assert(Class->isInvalidDecl() &&
"No copy assignment operator declared in valid code.");
return false;
}
CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
// Note: The following rules are largely analoguous to the copy
// constructor rules. Note that virtual bases are not taken into account
// for determining the argument type of the operator. Note also that
// operators taking an object instead of a reference are allowed.
// C++ [class.copy]p10:
// If the class definition does not explicitly declare a copy
// assignment operator, one is declared implicitly.
// The implicitly-defined copy assignment operator for a class X
// will have the form
//
// X& X::operator=(const X&)
//
// if
bool HasConstCopyAssignment = true;
// -- each direct base class B of X has a copy assignment operator
// whose parameter is of type const B&, const volatile B& or B,
// and
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
BaseEnd = ClassDecl->bases_end();
HasConstCopyAssignment && Base != BaseEnd; ++Base) {
assert(!Base->getType()->isDependentType() &&
"Cannot generate implicit members for class with dependent bases.");
const CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
}
// -- for all the nonstatic data members of X that are of a class
// type M (or array thereof), each such class type has a copy
// assignment operator whose parameter is of type const M&,
// const volatile M& or M.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
FieldEnd = ClassDecl->field_end();
HasConstCopyAssignment && Field != FieldEnd;
++Field) {
QualType FieldType = Context.getBaseElementType((*Field)->getType());
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
const CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
}
}
// Otherwise, the implicitly declared copy assignment operator will
// have the form
//
// X& X::operator=(X&)
QualType ArgType = Context.getTypeDeclType(ClassDecl);
QualType RetType = Context.getLValueReferenceType(ArgType);
if (HasConstCopyAssignment)
ArgType = ArgType.withConst();
ArgType = Context.getLValueReferenceType(ArgType);
// C++ [except.spec]p14:
// An implicitly declared special member function (Clause 12) shall have an
// exception-specification. [...]
ImplicitExceptionSpecification ExceptSpec(Context);
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
BaseEnd = ClassDecl->bases_end();
Base != BaseEnd; ++Base) {
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseClassDecl->hasDeclaredCopyAssignment())
DeclareImplicitCopyAssignment(BaseClassDecl);
if (CXXMethodDecl *CopyAssign
= BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
ExceptSpec.CalledDecl(CopyAssign);
}
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
FieldEnd = ClassDecl->field_end();
Field != FieldEnd;
++Field) {
QualType FieldType = Context.getBaseElementType((*Field)->getType());
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
if (!FieldClassDecl->hasDeclaredCopyAssignment())
DeclareImplicitCopyAssignment(FieldClassDecl);
if (CXXMethodDecl *CopyAssign
= FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
ExceptSpec.CalledDecl(CopyAssign);
}
}
// An implicitly-declared copy assignment operator is an inline public
// member of its class.
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
EPI.NumExceptions = ExceptSpec.size();
EPI.Exceptions = ExceptSpec.data();
DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
CXXMethodDecl *CopyAssignment
= CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
Context.getFunctionType(RetType, &ArgType, 1, EPI),
/*TInfo=*/0, /*isStatic=*/false,
/*StorageClassAsWritten=*/SC_None,
/*isInline=*/true);
CopyAssignment->setAccess(AS_public);
CopyAssignment->setImplicit();
CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
// Add the parameter to the operator.
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
ClassDecl->getLocation(),
/*Id=*/0,
ArgType, /*TInfo=*/0,
SC_None,
SC_None, 0);
CopyAssignment->setParams(&FromParam, 1);
// Note that we have added this copy-assignment operator.
++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
if (Scope *S = getScopeForContext(ClassDecl))
PushOnScopeChains(CopyAssignment, S, false);
ClassDecl->addDecl(CopyAssignment);
AddOverriddenMethods(ClassDecl, CopyAssignment);
return CopyAssignment;
}
void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
CXXMethodDecl *CopyAssignOperator) {
assert((CopyAssignOperator->isImplicit() &&
CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->isUsed(false)) &&
"DefineImplicitCopyAssignment called for wrong function");
CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
CopyAssignOperator->setInvalidDecl();
return;
}
CopyAssignOperator->setUsed();
ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
DiagnosticErrorTrap Trap(Diags);
// C++0x [class.copy]p30:
// The implicitly-defined or explicitly-defaulted copy assignment operator
// for a non-union class X performs memberwise copy assignment of its
// subobjects. The direct base classes of X are assigned first, in the
// order of their declaration in the base-specifier-list, and then the
// immediate non-static data members of X are assigned, in the order in
// which they were declared in the class definition.
// The statements that form the synthesized function body.
ASTOwningVector<Stmt*> Statements(*this);
// The parameter for the "other" object, which we are copying from.
ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
Qualifiers OtherQuals = Other->getType().getQualifiers();
QualType OtherRefType = Other->getType();
if (const LValueReferenceType *OtherRef
= OtherRefType->getAs<LValueReferenceType>()) {
OtherRefType = OtherRef->getPointeeType();
OtherQuals = OtherRefType.getQualifiers();
}
// Our location for everything implicitly-generated.
SourceLocation Loc = CopyAssignOperator->getLocation();
// Construct a reference to the "other" object. We'll be using this
// throughout the generated ASTs.
Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
assert(OtherRef && "Reference to parameter cannot fail!");
// Construct the "this" pointer. We'll be using this throughout the generated
// ASTs.
Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
assert(This && "Reference to this cannot fail!");
// Assign base classes.
bool Invalid = false;
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
E = ClassDecl->bases_end(); Base != E; ++Base) {
// Form the assignment:
// static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
QualType BaseType = Base->getType().getUnqualifiedType();
if (!BaseType->isRecordType()) {
Invalid = true;
continue;
}
CXXCastPath BasePath;
BasePath.push_back(Base);
// Construct the "from" expression, which is an implicit cast to the
// appropriately-qualified base type.
Expr *From = OtherRef;
ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
CK_UncheckedDerivedToBase,
VK_LValue, &BasePath);
// Dereference "this".
ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
// Implicitly cast "this" to the appropriately-qualified base type.
Expr *ToE = To.takeAs<Expr>();
ImpCastExprToType(ToE,
Context.getCVRQualifiedType(BaseType,
CopyAssignOperator->getTypeQualifiers()),
CK_UncheckedDerivedToBase,
VK_LValue, &BasePath);
To = Owned(ToE);
// Build the copy.
StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
To.get(), From,
/*CopyingBaseSubobject=*/true);
if (Copy.isInvalid()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
CopyAssignOperator->setInvalidDecl();
return;
}
// Success! Record the copy.
Statements.push_back(Copy.takeAs<Expr>());
}
// \brief Reference to the __builtin_memcpy function.
Expr *BuiltinMemCpyRef = 0;
// \brief Reference to the __builtin_objc_memmove_collectable function.
Expr *CollectableMemCpyRef = 0;
// Assign non-static members.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
FieldEnd = ClassDecl->field_end();
Field != FieldEnd; ++Field) {
// Check for members of reference type; we can't copy those.
if (Field->getType()->isReferenceType()) {
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
<< Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
Diag(Field->getLocation(), diag::note_declared_at);
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
Invalid = true;
continue;
}
// Check for members of const-qualified, non-class type.
QualType BaseType = Context.getBaseElementType(Field->getType());
if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
<< Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
Diag(Field->getLocation(), diag::note_declared_at);
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
Invalid = true;
continue;
}
QualType FieldType = Field->getType().getNonReferenceType();
if (FieldType->isIncompleteArrayType()) {
assert(ClassDecl->hasFlexibleArrayMember() &&
"Incomplete array type is not valid");
continue;
}
// Build references to the field in the object we're copying from and to.
CXXScopeSpec SS; // Intentionally empty
LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
LookupMemberName);
MemberLookup.addDecl(*Field);
MemberLookup.resolveKind();
ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
Loc, /*IsArrow=*/false,
SS, 0, MemberLookup, 0);
ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
Loc, /*IsArrow=*/true,
SS, 0, MemberLookup, 0);
assert(!From.isInvalid() && "Implicit field reference cannot fail");
assert(!To.isInvalid() && "Implicit field reference cannot fail");
// If the field should be copied with __builtin_memcpy rather than via
// explicit assignments, do so. This optimization only applies for arrays
// of scalars and arrays of class type with trivial copy-assignment
// operators.
if (FieldType->isArrayType() &&
(!BaseType->isRecordType() ||
cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
->hasTrivialCopyAssignment())) {
// Compute the size of the memory buffer to be copied.
QualType SizeType = Context.getSizeType();
llvm::APInt Size(Context.getTypeSize(SizeType),
Context.getTypeSizeInChars(BaseType).getQuantity());
for (const ConstantArrayType *Array
= Context.getAsConstantArrayType(FieldType);
Array;
Array = Context.getAsConstantArrayType(Array->getElementType())) {
llvm::APInt ArraySize
= Array->getSize().zextOrTrunc(Size.getBitWidth());
Size *= ArraySize;
}
// Take the address of the field references for "from" and "to".
From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
bool NeedsCollectableMemCpy =
(BaseType->isRecordType() &&
BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
if (NeedsCollectableMemCpy) {
if (!CollectableMemCpyRef) {
// Create a reference to the __builtin_objc_memmove_collectable function.
LookupResult R(*this,
&Context.Idents.get("__builtin_objc_memmove_collectable"),
Loc, LookupOrdinaryName);
LookupName(R, TUScope, true);
FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
if (!CollectableMemCpy) {
// Something went horribly wrong earlier, and we will have
// complained about it.
Invalid = true;
continue;
}
CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
CollectableMemCpy->getType(),
VK_LValue, Loc, 0).take();
assert(CollectableMemCpyRef && "Builtin reference cannot fail");
}
}
// Create a reference to the __builtin_memcpy builtin function.
else if (!BuiltinMemCpyRef) {
LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
LookupOrdinaryName);
LookupName(R, TUScope, true);
FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
if (!BuiltinMemCpy) {
// Something went horribly wrong earlier, and we will have complained
// about it.
Invalid = true;
continue;
}
BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
BuiltinMemCpy->getType(),
VK_LValue, Loc, 0).take();
assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
}
ASTOwningVector<Expr*> CallArgs(*this);
CallArgs.push_back(To.takeAs<Expr>());
CallArgs.push_back(From.takeAs<Expr>());
CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
ExprResult Call = ExprError();
if (NeedsCollectableMemCpy)
Call = ActOnCallExpr(/*Scope=*/0,
CollectableMemCpyRef,
Loc, move_arg(CallArgs),
Loc);
else
Call = ActOnCallExpr(/*Scope=*/0,
BuiltinMemCpyRef,
Loc, move_arg(CallArgs),
Loc);
assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
Statements.push_back(Call.takeAs<Expr>());
continue;
}
// Build the copy of this field.
StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
To.get(), From.get(),
/*CopyingBaseSubobject=*/false);
if (Copy.isInvalid()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
CopyAssignOperator->setInvalidDecl();
return;
}
// Success! Record the copy.
Statements.push_back(Copy.takeAs<Stmt>());
}
if (!Invalid) {
// Add a "return *this;"
ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
if (Return.isInvalid())
Invalid = true;
else {
Statements.push_back(Return.takeAs<Stmt>());
if (Trap.hasErrorOccurred()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
Invalid = true;
}
}
}
if (Invalid) {
CopyAssignOperator->setInvalidDecl();
return;
}
StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
/*isStmtExpr=*/false);
assert(!Body.isInvalid() && "Compound statement creation cannot fail");
CopyAssignOperator->setBody(Body.takeAs<Stmt>());
}
CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
CXXRecordDecl *ClassDecl) {
// C++ [class.copy]p4:
// If the class definition does not explicitly declare a copy
// constructor, one is declared implicitly.
// C++ [class.copy]p5:
// The implicitly-declared copy constructor for a class X will
// have the form
//
// X::X(const X&)
//
// if
bool HasConstCopyConstructor = true;
// -- each direct or virtual base class B of X has a copy
// constructor whose first parameter is of type const B& or
// const volatile B&, and
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
BaseEnd = ClassDecl->bases_end();
HasConstCopyConstructor && Base != BaseEnd;
++Base) {
// Virtual bases are handled below.
if (Base->isVirtual())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(BaseClassDecl);
HasConstCopyConstructor
= BaseClassDecl->hasConstCopyConstructor(Context);
}
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
BaseEnd = ClassDecl->vbases_end();
HasConstCopyConstructor && Base != BaseEnd;
++Base) {
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(BaseClassDecl);
HasConstCopyConstructor
= BaseClassDecl->hasConstCopyConstructor(Context);
}
// -- for all the nonstatic data members of X that are of a
// class type M (or array thereof), each such class type
// has a copy constructor whose first parameter is of type
// const M& or const volatile M&.
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
FieldEnd = ClassDecl->field_end();
HasConstCopyConstructor && Field != FieldEnd;
++Field) {
QualType FieldType = Context.getBaseElementType((*Field)->getType());
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
if (!FieldClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(FieldClassDecl);
HasConstCopyConstructor
= FieldClassDecl->hasConstCopyConstructor(Context);
}
}
// Otherwise, the implicitly declared copy constructor will have
// the form
//
// X::X(X&)
QualType ClassType = Context.getTypeDeclType(ClassDecl);
QualType ArgType = ClassType;
if (HasConstCopyConstructor)
ArgType = ArgType.withConst();
ArgType = Context.getLValueReferenceType(ArgType);
// C++ [except.spec]p14:
// An implicitly declared special member function (Clause 12) shall have an
// exception-specification. [...]
ImplicitExceptionSpecification ExceptSpec(Context);
unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
BaseEnd = ClassDecl->bases_end();
Base != BaseEnd;
++Base) {
// Virtual bases are handled below.
if (Base->isVirtual())
continue;
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(BaseClassDecl);
if (CXXConstructorDecl *CopyConstructor
= BaseClassDecl->getCopyConstructor(Context, Quals))
ExceptSpec.CalledDecl(CopyConstructor);
}
for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
BaseEnd = ClassDecl->vbases_end();
Base != BaseEnd;
++Base) {
CXXRecordDecl *BaseClassDecl
= cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
if (!BaseClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(BaseClassDecl);
if (CXXConstructorDecl *CopyConstructor
= BaseClassDecl->getCopyConstructor(Context, Quals))
ExceptSpec.CalledDecl(CopyConstructor);
}
for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
FieldEnd = ClassDecl->field_end();
Field != FieldEnd;
++Field) {
QualType FieldType = Context.getBaseElementType((*Field)->getType());
if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
CXXRecordDecl *FieldClassDecl
= cast<CXXRecordDecl>(FieldClassType->getDecl());
if (!FieldClassDecl->hasDeclaredCopyConstructor())
DeclareImplicitCopyConstructor(FieldClassDecl);
if (CXXConstructorDecl *CopyConstructor
= FieldClassDecl->getCopyConstructor(Context, Quals))
ExceptSpec.CalledDecl(CopyConstructor);
}
}
// An implicitly-declared copy constructor is an inline public
// member of its class.
FunctionProtoType::ExtProtoInfo EPI;
EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
EPI.NumExceptions = ExceptSpec.size();
EPI.Exceptions = ExceptSpec.data();
DeclarationName Name
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType));
DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
CXXConstructorDecl *CopyConstructor
= CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
Context.getFunctionType(Context.VoidTy,
&ArgType, 1, EPI),
/*TInfo=*/0,
/*isExplicit=*/false,
/*isInline=*/true,
/*isImplicitlyDeclared=*/true);
CopyConstructor->setAccess(AS_public);
CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
// Note that we have declared this constructor.
++ASTContext::NumImplicitCopyConstructorsDeclared;
// Add the parameter to the constructor.
ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
ClassDecl->getLocation(),
/*IdentifierInfo=*/0,
ArgType, /*TInfo=*/0,
SC_None,
SC_None, 0);
CopyConstructor->setParams(&FromParam, 1);
if (Scope *S = getScopeForContext(ClassDecl))
PushOnScopeChains(CopyConstructor, S, false);
ClassDecl->addDecl(CopyConstructor);
return CopyConstructor;
}
void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
CXXConstructorDecl *CopyConstructor,
unsigned TypeQuals) {
assert((CopyConstructor->isImplicit() &&
CopyConstructor->isCopyConstructor(TypeQuals) &&
!CopyConstructor->isUsed(false)) &&
"DefineImplicitCopyConstructor - call it for implicit copy ctor");
CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
DiagnosticErrorTrap Trap(Diags);
if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
Trap.hasErrorOccurred()) {
Diag(CurrentLocation, diag::note_member_synthesized_at)
<< CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
CopyConstructor->setInvalidDecl();
} else {
CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
CopyConstructor->getLocation(),
MultiStmtArg(*this, 0, 0),
/*isStmtExpr=*/false)
.takeAs<Stmt>());
}
CopyConstructor->setUsed();
}
ExprResult
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor,
MultiExprArg ExprArgs,
bool RequiresZeroInit,
unsigned ConstructKind,
SourceRange ParenRange) {
bool Elidable = false;
// C++0x [class.copy]p34:
// When certain criteria are met, an implementation is allowed to
// omit the copy/move construction of a class object, even if the
// copy/move constructor and/or destructor for the object have
// side effects. [...]
// - when a temporary class object that has not been bound to a
// reference (12.2) would be copied/moved to a class object
// with the same cv-unqualified type, the copy/move operation
// can be omitted by constructing the temporary object
// directly into the target of the omitted copy/move
if (ConstructKind == CXXConstructExpr::CK_Complete &&
Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
}
return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
Elidable, move(ExprArgs), RequiresZeroInit,
ConstructKind, ParenRange);
}
/// BuildCXXConstructExpr - Creates a complete call to a constructor,
/// including handling of its default argument expressions.
ExprResult
Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
CXXConstructorDecl *Constructor, bool Elidable,
MultiExprArg ExprArgs,
bool RequiresZeroInit,
unsigned ConstructKind,
SourceRange ParenRange) {
unsigned NumExprs = ExprArgs.size();
Expr **Exprs = (Expr **)ExprArgs.release();
MarkDeclarationReferenced(ConstructLoc, Constructor);
return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
Constructor, Elidable, Exprs, NumExprs,
RequiresZeroInit,
static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
ParenRange));
}
bool Sema::InitializeVarWithConstructor(VarDecl *VD,
CXXConstructorDecl *Constructor,
MultiExprArg Exprs) {
// FIXME: Provide the correct paren SourceRange when available.
ExprResult TempResult =
BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
move(Exprs), false, CXXConstructExpr::CK_Complete,
SourceRange());
if (TempResult.isInvalid())
return true;
Expr *Temp = TempResult.takeAs<Expr>();
CheckImplicitConversions(Temp, VD->getLocation());
MarkDeclarationReferenced(VD->getLocation(), Constructor);
Temp = MaybeCreateExprWithCleanups(Temp);
VD->setInit(Temp);
return false;
}
void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
!ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
MarkDeclarationReferenced(VD->getLocation(), Destructor);
CheckDestructorAccess(VD->getLocation(), Destructor,
PDiag(diag::err_access_dtor_var)
<< VD->getDeclName()
<< VD->getType());
// TODO: this should be re-enabled for static locals by !CXAAtExit
if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
Diag(VD->getLocation(), diag::warn_global_destructor);
}
}
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation RParenLoc) {
assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
// If there is no declaration, there was an error parsing it. Just ignore
// the initializer.
if (RealDecl == 0)
return;
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
if (!VDecl) {
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
RealDecl->setInvalidDecl();
return;
}
// We will represent direct-initialization similarly to copy-initialization:
// int x(1); -as-> int x = 1;
// ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
//
// Clients that want to distinguish between the two forms, can check for
// direct initializer using VarDecl::hasCXXDirectInitializer().
// A major benefit is that clients that don't particularly care about which
// exactly form was it (like the CodeGen) can handle both cases without
// special case code.
// C++ 8.5p11:
// The form of initialization (using parentheses or '=') is generally
// insignificant, but does matter when the entity being initialized has a
// class type.
if (!VDecl->getType()->isDependentType() &&
RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
diag::err_typecheck_decl_incomplete_type)) {
VDecl->setInvalidDecl();
return;
}
// The variable can not have an abstract class type.
if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
diag::err_abstract_type_in_decl,
AbstractVariableType))
VDecl->setInvalidDecl();
const VarDecl *Def;
if ((Def = VDecl->getDefinition()) && Def != VDecl) {
Diag(VDecl->getLocation(), diag::err_redefinition)
<< VDecl->getDeclName();
Diag(Def->getLocation(), diag::note_previous_definition);
VDecl->setInvalidDecl();
return;
}
// C++ [class.static.data]p4
// If a static data member is of const integral or const
// enumeration type, its declaration in the class definition can
// specify a constant-initializer which shall be an integral
// constant expression (5.19). In that case, the member can appear
// in integral constant expressions. The member shall still be
// defined in a namespace scope if it is used in the program and the
// namespace scope definition shall not contain an initializer.
//
// We already performed a redefinition check above, but for static
// data members we also need to check whether there was an in-class
// declaration with an initializer.
const VarDecl* PrevInit = 0;
if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
Diag(PrevInit->getLocation(), diag::note_previous_definition);
return;
}
bool IsDependent = false;
for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
VDecl->setInvalidDecl();
return;
}
if (Exprs.get()[I]->isTypeDependent())
IsDependent = true;
}
// If either the declaration has a dependent type or if any of the
// expressions is type-dependent, we represent the initialization
// via a ParenListExpr for later use during template instantiation.
if (VDecl->getType()->isDependentType() || IsDependent) {
// Let clients know that initialization was done with a direct initializer.
VDecl->setCXXDirectInitializer(true);
// Store the initialization expressions as a ParenListExpr.
unsigned NumExprs = Exprs.size();
VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
(Expr **)Exprs.release(),
NumExprs, RParenLoc));
return;
}
// Capture the variable that is being initialized and the style of
// initialization.
InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
// FIXME: Poor source location information.
InitializationKind Kind
= InitializationKind::CreateDirect(VDecl->getLocation(),
LParenLoc, RParenLoc);
InitializationSequence InitSeq(*this, Entity, Kind,
Exprs.get(), Exprs.size());
ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
if (Result.isInvalid()) {
VDecl->setInvalidDecl();
return;
}
CheckImplicitConversions(Result.get(), LParenLoc);
Result = MaybeCreateExprWithCleanups(Result);
VDecl->setInit(Result.takeAs<Expr>());
VDecl->setCXXDirectInitializer(true);
CheckCompleteVariableDeclaration(VDecl);
}
/// \brief Given a constructor and the set of arguments provided for the
/// constructor, convert the arguments and add any required default arguments
/// to form a proper call to this constructor.
///
/// \returns true if an error occurred, false otherwise.
bool
Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
MultiExprArg ArgsPtr,
SourceLocation Loc,
ASTOwningVector<Expr*> &ConvertedArgs) {
// FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
unsigned NumArgs = ArgsPtr.size();
Expr **Args = (Expr **)ArgsPtr.get();
const FunctionProtoType *Proto
= Constructor->getType()->getAs<FunctionProtoType>();
assert(Proto && "Constructor without a prototype?");
unsigned NumArgsInProto = Proto->getNumArgs();
// If too few arguments are available, we'll fill in the rest with defaults.
if (NumArgs < NumArgsInProto)
ConvertedArgs.reserve(NumArgsInProto);
else
ConvertedArgs.reserve(NumArgs);
VariadicCallType CallType =
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
llvm::SmallVector<Expr *, 8> AllArgs;
bool Invalid = GatherArgumentsForCall(Loc, Constructor,
Proto, 0, Args, NumArgs, AllArgs,
CallType);
for (unsigned i =0, size = AllArgs.size(); i < size; i++)
ConvertedArgs.push_back(AllArgs[i]);
return Invalid;
}
static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
const FunctionDecl *FnDecl) {
const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
if (isa<NamespaceDecl>(DC)) {
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_declared_in_namespace)
<< FnDecl->getDeclName();
}
if (isa<TranslationUnitDecl>(DC) &&
FnDecl->getStorageClass() == SC_Static) {
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_declared_static)
<< FnDecl->getDeclName();
}
return false;
}
static inline bool
CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
CanQualType ExpectedResultType,
CanQualType ExpectedFirstParamType,
unsigned DependentParamTypeDiag,
unsigned InvalidParamTypeDiag) {
QualType ResultType =
FnDecl->getType()->getAs<FunctionType>()->getResultType();
// Check that the result type is not dependent.
if (ResultType->isDependentType())
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_dependent_result_type)
<< FnDecl->getDeclName() << ExpectedResultType;
// Check that the result type is what we expect.
if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_invalid_result_type)
<< FnDecl->getDeclName() << ExpectedResultType;
// A function template must have at least 2 parameters.
if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_template_too_few_parameters)
<< FnDecl->getDeclName();
// The function decl must have at least 1 parameter.
if (FnDecl->getNumParams() == 0)
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_delete_too_few_parameters)
<< FnDecl->getDeclName();
// Check the the first parameter type is not dependent.
QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
if (FirstParamType->isDependentType())
return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
<< FnDecl->getDeclName() << ExpectedFirstParamType;
// Check that the first parameter type is what we expect.
if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
ExpectedFirstParamType)
return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
<< FnDecl->getDeclName() << ExpectedFirstParamType;
return false;
}
static bool
CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
// C++ [basic.stc.dynamic.allocation]p1:
// A program is ill-formed if an allocation function is declared in a
// namespace scope other than global scope or declared static in global
// scope.
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
return true;
CanQualType SizeTy =
SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
// C++ [basic.stc.dynamic.allocation]p1:
// The return type shall be void*. The first parameter shall have type
// std::size_t.
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
SizeTy,
diag::err_operator_new_dependent_param_type,
diag::err_operator_new_param_type))
return true;
// C++ [basic.stc.dynamic.allocation]p1:
// The first parameter shall not have an associated default argument.
if (FnDecl->getParamDecl(0)->hasDefaultArg())
return SemaRef.Diag(FnDecl->getLocation(),
diag::err_operator_new_default_arg)
<< FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
return false;
}
static bool
CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
// C++ [basic.stc.dynamic.deallocation]p1:
// A program is ill-formed if deallocation functions are declared in a
// namespace scope other than global scope or declared static in global
// scope.
if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
return true;
// C++ [basic.stc.dynamic.deallocation]p2:
// Each deallocation function shall return void and its first parameter
// shall be void*.
if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
SemaRef.Context.VoidPtrTy,
diag::err_operator_delete_dependent_param_type,
diag::err_operator_delete_param_type))
return true;
return false;
}
/// CheckOverloadedOperatorDeclaration - Check whether the declaration
/// of this overloaded operator is well-formed. If so, returns false;
/// otherwise, emits appropriate diagnostics and returns true.
bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
assert(FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration");
OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
// C++ [over.oper]p5:
// The allocation and deallocation functions, operator new,
// operator new[], operator delete and operator delete[], are
// described completely in 3.7.3. The attributes and restrictions
// found in the rest of this subclause do not apply to them unless
// explicitly stated in 3.7.3.
if (Op == OO_Delete || Op == OO_Array_Delete)
return CheckOperatorDeleteDeclaration(*this, FnDecl);
if (Op == OO_New || Op == OO_Array_New)
return CheckOperatorNewDeclaration(*this, FnDecl);
// C++ [over.oper]p6:
// An operator function shall either be a non-static member
// function or be a non-member function and have at least one
// parameter whose type is a class, a reference to a class, an
// enumeration, or a reference to an enumeration.
if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
if (MethodDecl->isStatic())
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_static) << FnDecl->getDeclName();
} else {
bool ClassOrEnumParam = false;
for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
ParamEnd = FnDecl->param_end();
Param != ParamEnd; ++Param) {
QualType ParamType = (*Param)->getType().getNonReferenceType();
if (ParamType->isDependentType() || ParamType->isRecordType() ||
ParamType->isEnumeralType()) {
ClassOrEnumParam = true;
break;
}
}
if (!ClassOrEnumParam)
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_needs_class_or_enum)
<< FnDecl->getDeclName();
}
// C++ [over.oper]p8:
// An operator function cannot have default arguments (8.3.6),
// except where explicitly stated below.
//
// Only the function-call operator allows default arguments
// (C++ [over.call]p1).
if (Op != OO_Call) {
for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
Param != FnDecl->param_end(); ++Param) {
if ((*Param)->hasDefaultArg())
return Diag((*Param)->getLocation(),
diag::err_operator_overload_default_arg)
<< FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
}
}
static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
{ false, false, false }
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
, { Unary, Binary, MemberOnly }
#include "clang/Basic/OperatorKinds.def"
};
bool CanBeUnaryOperator = OperatorUses[Op][0];
bool CanBeBinaryOperator = OperatorUses[Op][1];
bool MustBeMemberOperator = OperatorUses[Op][2];
// C++ [over.oper]p8:
// [...] Operator functions cannot have more or fewer parameters
// than the number required for the corresponding operator, as
// described in the rest of this subclause.
unsigned NumParams = FnDecl->getNumParams()
+ (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
if (Op != OO_Call &&
((NumParams == 1 && !CanBeUnaryOperator) ||
(NumParams == 2 && !CanBeBinaryOperator) ||
(NumParams < 1) || (NumParams > 2))) {
// We have the wrong number of parameters.
unsigned ErrorKind;
if (CanBeUnaryOperator && CanBeBinaryOperator) {
ErrorKind = 2; // 2 -> unary or binary.
} else if (CanBeUnaryOperator) {
ErrorKind = 0; // 0 -> unary
} else {
assert(CanBeBinaryOperator &&
"All non-call overloaded operators are unary or binary!");
ErrorKind = 1; // 1 -> binary
}
return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
<< FnDecl->getDeclName() << NumParams << ErrorKind;
}
// Overloaded operators other than operator() cannot be variadic.
if (Op != OO_Call &&
FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
<< FnDecl->getDeclName();
}
// Some operators must be non-static member functions.
if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
return Diag(FnDecl->getLocation(),
diag::err_operator_overload_must_be_member)
<< FnDecl->getDeclName();
}
// C++ [over.inc]p1:
// The user-defined function called operator++ implements the
// prefix and postfix ++ operator. If this function is a member
// function with no parameters, or a non-member function with one
// parameter of class or enumeration type, it defines the prefix
// increment operator ++ for objects of that type. If the function
// is a member function with one parameter (which shall be of type
// int) or a non-member function with two parameters (the second
// of which shall be of type int), it defines the postfix
// increment operator ++ for objects of that type.
if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
bool ParamIsInt = false;
if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
ParamIsInt = BT->getKind() == BuiltinType::Int;
if (!ParamIsInt)
return Diag(LastParam->getLocation(),
diag::err_operator_overload_post_incdec_must_be_int)
<< LastParam->getType() << (Op == OO_MinusMinus);
}
return false;
}
/// CheckLiteralOperatorDeclaration - Check whether the declaration
/// of this literal operator function is well-formed. If so, returns
/// false; otherwise, emits appropriate diagnostics and returns true.
bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
DeclContext *DC = FnDecl->getDeclContext();
Decl::Kind Kind = DC->getDeclKind();
if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
Kind != Decl::LinkageSpec) {
Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
<< FnDecl->getDeclName();
return true;
}
bool Valid = false;
// template <char...> type operator "" name() is the only valid template
// signature, and the only valid signature with no parameters.
if (FnDecl->param_size() == 0) {
if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
// Must have only one template parameter
TemplateParameterList *Params = TpDecl->getTemplateParameters();
if (Params->size() == 1) {
NonTypeTemplateParmDecl *PmDecl =
cast<NonTypeTemplateParmDecl>(Params->getParam(0));
// The template parameter must be a char parameter pack.
if (PmDecl && PmDecl->isTemplateParameterPack() &&
Context.hasSameType(PmDecl->getType(), Context.CharTy))
Valid = true;
}
}
} else {
// Check the first parameter
FunctionDecl::param_iterator Param = FnDecl->param_begin();
QualType T = (*Param)->getType();
// unsigned long long int, long double, and any character type are allowed
// as the only parameters.
if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
Context.hasSameType(T, Context.LongDoubleTy) ||
Context.hasSameType(T, Context.CharTy) ||
Context.hasSameType(T, Context.WCharTy) ||
Context.hasSameType(T, Context.Char16Ty) ||
Context.hasSameType(T, Context.Char32Ty)) {
if (++Param == FnDecl->param_end())
Valid = true;
goto FinishedParams;
}
// Otherwise it must be a pointer to const; let's strip those qualifiers.
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
goto FinishedParams;
T = PT->getPointeeType();
if (!T.isConstQualified())
goto FinishedParams;
T = T.getUnqualifiedType();
// Move on to the second parameter;
++Param;
// If there is no second parameter, the first must be a const char *
if (Param == FnDecl->param_end()) {
if (Context.hasSameType(T, Context.CharTy))
Valid = true;
goto FinishedParams;
}
// const char *, const wchar_t*, const char16_t*, and const char32_t*
// are allowed as the first parameter to a two-parameter function
if (!(Context.hasSameType(T, Context.CharTy) ||
Context.hasSameType(T, Context.WCharTy) ||
Context.hasSameType(T, Context.Char16Ty) ||
Context.hasSameType(T, Context.Char32Ty)))
goto FinishedParams;
// The second and final parameter must be an std::size_t
T = (*Param)->getType().getUnqualifiedType();
if (Context.hasSameType(T, Context.getSizeType()) &&
++Param == FnDecl->param_end())
Valid = true;
}
// FIXME: This diagnostic is absolutely terrible.
FinishedParams:
if (!Valid) {
Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
<< FnDecl->getDeclName();
return true;
}
return false;
}
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
/// linkage specification, including the language and (if present)
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
/// the location of the language string literal, which is provided
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
/// the '{' brace. Otherwise, this linkage specification does not
/// have any braces.
Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
SourceLocation LangLoc,
llvm::StringRef Lang,
SourceLocation LBraceLoc) {
LinkageSpecDecl::LanguageIDs Language;
if (Lang == "\"C\"")
Language = LinkageSpecDecl::lang_c;
else if (Lang == "\"C++\"")
Language = LinkageSpecDecl::lang_cxx;
else {
Diag(LangLoc, diag::err_bad_language);
return 0;
}
// FIXME: Add all the various semantics of linkage specifications
LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
LangLoc, Language,
LBraceLoc.isValid());
CurContext->addDecl(D);
PushDeclContext(S, D);
return D;
}
/// ActOnFinishLinkageSpecification - Complete the definition of
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
/// valid, it's the position of the closing '}' brace in a linkage
/// specification that uses braces.
Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
Decl *LinkageSpec,
SourceLocation RBraceLoc) {
if (LinkageSpec)
PopDeclContext();
return LinkageSpec;
}
/// \brief Perform semantic analysis for the variable declaration that
/// occurs within a C++ catch clause, returning the newly-created
/// variable.
VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
TypeSourceInfo *TInfo,
IdentifierInfo *Name,
SourceLocation Loc) {
bool Invalid = false;
QualType ExDeclType = TInfo->getType();
// Arrays and functions decay.
if (ExDeclType->isArrayType())
ExDeclType = Context.getArrayDecayedType(ExDeclType);
else if (ExDeclType->isFunctionType())
ExDeclType = Context.getPointerType(ExDeclType);
// C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
// The exception-declaration shall not denote a pointer or reference to an
// incomplete type, other than [cv] void*.
// N2844 forbids rvalue references.
if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
Diag(Loc, diag::err_catch_rvalue_ref);
Invalid = true;
}
// GCC allows catching pointers and references to incomplete types
// as an extension; so do we, but we warn by default.
QualType BaseType = ExDeclType;
int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
unsigned DK = diag::err_catch_incomplete;
bool IncompleteCatchIsInvalid = true;
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
BaseType = Ptr->getPointeeType();
Mode = 1;
DK = diag::ext_catch_incomplete_ptr;
IncompleteCatchIsInvalid = false;
} else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
// For the purpose of error recovery, we treat rvalue refs like lvalue refs.
BaseType = Ref->getPointeeType();
Mode = 2;
DK = diag::ext_catch_incomplete_ref;
IncompleteCatchIsInvalid = false;
}
if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
!BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
IncompleteCatchIsInvalid)
Invalid = true;
if (!Invalid && !ExDeclType->isDependentType() &&
RequireNonAbstractType(Loc, ExDeclType,
diag::err_abstract_type_in_decl,
AbstractVariableType))
Invalid = true;
// Only the non-fragile NeXT runtime currently supports C++ catches
// of ObjC types, and no runtime supports catching ObjC types by value.
if (!Invalid && getLangOptions().ObjC1) {
QualType T = ExDeclType;
if (const ReferenceType *RT = T->getAs<ReferenceType>())
T = RT->getPointeeType();
if (T->isObjCObjectType()) {
Diag(Loc, diag::err_objc_object_catch);
Invalid = true;
} else if (T->isObjCObjectPointerType()) {
if (!getLangOptions().NeXTRuntime) {
Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
Invalid = true;
} else if (!getLangOptions().ObjCNonFragileABI) {
Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
Invalid = true;
}
}
}
VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
Name, ExDeclType, TInfo, SC_None,
SC_None);
ExDecl->setExceptionVariable(true);
if (!Invalid) {
if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
// C++ [except.handle]p16:
// The object declared in an exception-declaration or, if the
// exception-declaration does not specify a name, a temporary (12.2) is
// copy-initialized (8.5) from the exception object. [...]
// The object is destroyed when the handler exits, after the destruction
// of any automatic objects initialized within the handler.
//
// We just pretend to initialize the object with itself, then make sure
// it can be destroyed later.
InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
Loc, ExDeclType, VK_LValue, 0);
InitializationKind Kind = InitializationKind::CreateCopy(Loc,
SourceLocation());
InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
MultiExprArg(*this, &ExDeclRef, 1));
if (Result.isInvalid())
Invalid = true;
else
FinalizeVarWithDestructor(ExDecl, RecordTy);
}
}
if (Invalid)
ExDecl->setInvalidDecl();
return ExDecl;
}
/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
/// handler.
Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
bool Invalid = D.isInvalidType();
// Check for unexpanded parameter packs.
if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
UPPC_ExceptionType)) {
TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
D.getIdentifierLoc());
Invalid = true;
}
IdentifierInfo *II = D.getIdentifier();
if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
LookupOrdinaryName,
ForRedeclaration)) {
// The scope should be freshly made just for us. There is just no way
// it contains any previous declaration.
assert(!S->isDeclScope(PrevDecl));
if (PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
}
}
if (D.getCXXScopeSpec().isSet() && !Invalid) {
Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
<< D.getCXXScopeSpec().getRange();
Invalid = true;
}
VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
D.getIdentifier(),
D.getIdentifierLoc());
if (Invalid)
ExDecl->setInvalidDecl();
// Add the exception declaration into this scope.
if (II)
PushOnScopeChains(ExDecl, S);
else
CurContext->addDecl(ExDecl);
ProcessDeclAttributes(S, ExDecl, D);
return ExDecl;
}
Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
Expr *AssertExpr,
Expr *AssertMessageExpr_) {
StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
llvm::APSInt Value(32);
if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
AssertExpr->getSourceRange();
return 0;
}
if (Value == 0) {
Diag(AssertLoc, diag::err_static_assert_failed)
<< AssertMessage->getString() << AssertExpr->getSourceRange();
}
}
if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
return 0;
Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
AssertExpr, AssertMessage);
CurContext->addDecl(Decl);
return Decl;
}
/// \brief Perform semantic analysis of the given friend type declaration.
///
/// \returns A friend declaration that.
FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
TypeSourceInfo *TSInfo) {
assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
QualType T = TSInfo->getType();
SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
if (!getLangOptions().CPlusPlus0x) {
// C++03 [class.friend]p2:
// An elaborated-type-specifier shall be used in a friend declaration
// for a class.*
//
// * The class-key of the elaborated-type-specifier is required.
if (!ActiveTemplateInstantiations.empty()) {
// Do not complain about the form of friend template types during
// template instantiation; we will already have complained when the
// template was declared.
} else if (!T->isElaboratedTypeSpecifier()) {
// If we evaluated the type to a record type, suggest putting
// a tag in front.
if (const RecordType *RT = T->getAs<RecordType>()) {
RecordDecl *RD = RT->getDecl();
std::string InsertionText = std::string(" ") + RD->getKindName();
Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
<< (unsigned) RD->getTagKind()
<< T
<< FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
InsertionText);
} else {
Diag(FriendLoc, diag::ext_nonclass_type_friend)
<< T
<< SourceRange(FriendLoc, TypeRange.getEnd());
}
} else if (T->getAs<EnumType>()) {
Diag(FriendLoc, diag::ext_enum_friend)
<< T
<< SourceRange(FriendLoc, TypeRange.getEnd());
}
}
// C++0x [class.friend]p3:
// If the type specifier in a friend declaration designates a (possibly
// cv-qualified) class type, that class is declared as a friend; otherwise,
// the friend declaration is ignored.
// FIXME: C++0x has some syntactic restrictions on friend type declarations
// in [class.friend]p3 that we do not implement.
return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
}
/// Handle a friend tag declaration where the scope specifier was
/// templated.
Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
unsigned TagSpec, SourceLocation TagLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr,
MultiTemplateParamsArg TempParamLists) {
TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
bool isExplicitSpecialization = false;
unsigned NumMatchedTemplateParamLists = TempParamLists.size();
bool Invalid = false;
if (TemplateParameterList *TemplateParams
= MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
TempParamLists.get(),
TempParamLists.size(),
/*friend*/ true,
isExplicitSpecialization,
Invalid)) {
--NumMatchedTemplateParamLists;
if (TemplateParams->size() > 0) {
// This is a declaration of a class template.
if (Invalid)
return 0;
return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
SS, Name, NameLoc, Attr,
TemplateParams, AS_public).take();
} else {
// The "template<>" header is extraneous.
Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
<< TypeWithKeyword::getTagTypeKindName(Kind) << Name;
isExplicitSpecialization = true;
}
}
if (Invalid) return 0;
assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
bool isAllExplicitSpecializations = true;
for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
if (TempParamLists.get()[I]->size()) {
isAllExplicitSpecializations = false;
break;
}
}
// FIXME: don't ignore attributes.
// If it's explicit specializations all the way down, just forget
// about the template header and build an appropriate non-templated
// friend. TODO: for source fidelity, remember the headers.
if (isAllExplicitSpecializations) {
ElaboratedTypeKeyword Keyword
= TypeWithKeyword::getKeywordForTagTypeKind(Kind);
QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
TagLoc, SS.getRange(), NameLoc);
if (T.isNull())
return 0;
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
if (isa<DependentNameType>(T)) {
DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
TL.setKeywordLoc(TagLoc);
TL.setQualifierRange(SS.getRange());
TL.setNameLoc(NameLoc);
} else {
ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
TL.setKeywordLoc(TagLoc);
TL.setQualifierRange(SS.getRange());
cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
}
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
TSI, FriendLoc);
Friend->setAccess(AS_public);
CurContext->addDecl(Friend);
return Friend;
}
// Handle the case of a templated-scope friend class. e.g.
// template <class T> class A<T>::B;
// FIXME: we don't support these right now.
ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
TL.setKeywordLoc(TagLoc);
TL.setQualifierRange(SS.getRange());
TL.setNameLoc(NameLoc);
FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
TSI, FriendLoc);
Friend->setAccess(AS_public);
Friend->setUnsupportedFriend(true);
CurContext->addDecl(Friend);
return Friend;
}
/// Handle a friend type declaration. This works in tandem with
/// ActOnTag.
///
/// Notes on friend class templates:
///
/// We generally treat friend class declarations as if they were
/// declaring a class. So, for example, the elaborated type specifier
/// in a friend declaration is required to obey the restrictions of a
/// class-head (i.e. no typedefs in the scope chain), template
/// parameters are required to match up with simple template-ids, &c.
/// However, unlike when declaring a template specialization, it's
/// okay to refer to a template specialization without an empty
/// template parameter declaration, e.g.
/// friend class A<T>::B<unsigned>;
/// We permit this as a special case; if there are any template
/// parameters present at all, require proper matching, i.e.
/// template <> template <class T> friend class A<int>::B;
Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TempParams) {
SourceLocation Loc = DS.getSourceRange().getBegin();
assert(DS.isFriendSpecified());
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
// Try to convert the decl specifier to a type. This works for
// friend templates because ActOnTag never produces a ClassTemplateDecl
// for a TUK_Friend.
Declarator TheDeclarator(DS, Declarator::MemberContext);
TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
QualType T = TSI->getType();
if (TheDeclarator.isInvalidType())
return 0;
if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
return 0;
// This is definitely an error in C++98. It's probably meant to
// be forbidden in C++0x, too, but the specification is just
// poorly written.
//
// The problem is with declarations like the following:
// template <T> friend A<T>::foo;
// where deciding whether a class C is a friend or not now hinges
// on whether there exists an instantiation of A that causes
// 'foo' to equal C. There are restrictions on class-heads
// (which we declare (by fiat) elaborated friend declarations to
// be) that makes this tractable.
//
// FIXME: handle "template <> friend class A<T>;", which
// is possibly well-formed? Who even knows?
if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
Diag(Loc, diag::err_tagless_friend_type_template)
<< DS.getSourceRange();
return 0;
}
// C++98 [class.friend]p1: A friend of a class is a function
// or class that is not a member of the class . . .
// This is fixed in DR77, which just barely didn't make the C++03
// deadline. It's also a very silly restriction that seriously
// affects inner classes and which nobody else seems to implement;
// thus we never diagnose it, not even in -pedantic.
//
// But note that we could warn about it: it's always useless to
// friend one of your own members (it's not, however, worthless to
// friend a member of an arbitrary specialization of your template).
Decl *D;
if (unsigned NumTempParamLists = TempParams.size())
D = FriendTemplateDecl::Create(Context, CurContext, Loc,
NumTempParamLists,
TempParams.release(),
TSI,
DS.getFriendSpecLoc());
else
D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
if (!D)
return 0;
D->setAccess(AS_public);
CurContext->addDecl(D);
return D;
}
Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
MultiTemplateParamsArg TemplateParams) {
const DeclSpec &DS = D.getDeclSpec();
assert(DS.isFriendSpecified());
assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
SourceLocation Loc = D.getIdentifierLoc();
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
QualType T = TInfo->getType();
// C++ [class.friend]p1
// A friend of a class is a function or class....
// Note that this sees through typedefs, which is intended.
// It *doesn't* see through dependent types, which is correct
// according to [temp.arg.type]p3:
// If a declaration acquires a function type through a
// type dependent on a template-parameter and this causes
// a declaration that does not use the syntactic form of a
// function declarator to have a function type, the program
// is ill-formed.
if (!T->isFunctionType()) {
Diag(Loc, diag::err_unexpected_friend);
// It might be worthwhile to try to recover by creating an
// appropriate declaration.
return 0;
}
// C++ [namespace.memdef]p3
// - If a friend declaration in a non-local class first declares a
// class or function, the friend class or function is a member
// of the innermost enclosing namespace.
// - The name of the friend is not found by simple name lookup
// until a matching declaration is provided in that namespace
// scope (either before or after the class declaration granting
// friendship).
// - If a friend function is called, its name may be found by the
// name lookup that considers functions from namespaces and
// classes associated with the types of the function arguments.
// - When looking for a prior declaration of a class or a function
// declared as a friend, scopes outside the innermost enclosing
// namespace scope are not considered.
CXXScopeSpec &SS = D.getCXXScopeSpec();
DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
DeclarationName Name = NameInfo.getName();
assert(Name);
// Check for unexpanded parameter packs.
if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
return 0;
// The context we found the declaration in, or in which we should
// create the declaration.
DeclContext *DC;
Scope *DCScope = S;
LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
ForRedeclaration);
// FIXME: there are different rules in local classes
// There are four cases here.
// - There's no scope specifier, in which case we just go to the
// appropriate scope and look for a function or function template
// there as appropriate.
// Recover from invalid scope qualifiers as if they just weren't there.
if (SS.isInvalid() || !SS.isSet()) {
// C++0x [namespace.memdef]p3:
// If the name in a friend declaration is neither qualified nor
// a template-id and the declaration is a function or an
// elaborated-type-specifier, the lookup to determine whether
// the entity has been previously declared shall not consider
// any scopes outside the innermost enclosing namespace.
// C++0x [class.friend]p11:
// If a friend declaration appears in a local class and the name
// specified is an unqualified name, a prior declaration is
// looked up without considering scopes that are outside the
// innermost enclosing non-class scope. For a friend function
// declaration, if there is no prior declaration, the program is
// ill-formed.
bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
// Find the appropriate context according to the above.
DC = CurContext;
while (true) {
// Skip class contexts. If someone can cite chapter and verse
// for this behavior, that would be nice --- it's what GCC and
// EDG do, and it seems like a reasonable intent, but the spec
// really only says that checks for unqualified existing
// declarations should stop at the nearest enclosing namespace,
// not that they should only consider the nearest enclosing
// namespace.
while (DC->isRecord())
DC = DC->getParent();
LookupQualifiedName(Previous, DC);
// TODO: decide what we think about using declarations.
if (isLocal || !Previous.empty())
break;
if (isTemplateId) {
if (isa<TranslationUnitDecl>(DC)) break;
} else {
if (DC->isFileContext()) break;
}
DC = DC->getParent();
}
// C++ [class.friend]p1: A friend of a class is a function or
// class that is not a member of the class . . .
// C++0x changes this for both friend types and functions.
// Most C++ 98 compilers do seem to give an error here, so
// we do, too.
if (!Previous.empty() && DC->Equals(CurContext)
&& !getLangOptions().CPlusPlus0x)
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
DCScope = getScopeForDeclContext(S, DC);
// - There's a non-dependent scope specifier, in which case we
// compute it and do a previous lookup there for a function
// or function template.
} else if (!SS.getScopeRep()->isDependent()) {
DC = computeDeclContext(SS);
if (!DC) return 0;
if (RequireCompleteDeclContext(SS, DC)) return 0;
LookupQualifiedName(Previous, DC);
// Ignore things found implicitly in the wrong scope.
// TODO: better diagnostics for this case. Suggesting the right
// qualified scope would be nice...
LookupResult::Filter F = Previous.makeFilter();
while (F.hasNext()) {
NamedDecl *D = F.next();
if (!DC->InEnclosingNamespaceSetOf(
D->getDeclContext()->getRedeclContext()))
F.erase();
}
F.done();
if (Previous.empty()) {
D.setInvalidType();
Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
return 0;
}
// C++ [class.friend]p1: A friend of a class is a function or
// class that is not a member of the class . . .
if (DC->Equals(CurContext))
Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
// - There's a scope specifier that does not match any template
// parameter lists, in which case we use some arbitrary context,
// create a method or method template, and wait for instantiation.
// - There's a scope specifier that does match some template
// parameter lists, which we don't handle right now.
} else {
DC = CurContext;
assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
}
if (!DC->isRecord()) {
// This implies that it has to be an operator or function.
if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
Diag(Loc, diag::err_introducing_special_friend) <<
(D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
return 0;
}
}
bool Redeclaration = false;
NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
move(TemplateParams),
IsDefinition,
Redeclaration);
if (!ND) return 0;
assert(ND->getDeclContext() == DC);
assert(ND->getLexicalDeclContext() == CurContext);
// Add the function declaration to the appropriate lookup tables,
// adjusting the redeclarations list as necessary. We don't
// want to do this yet if the friending class is dependent.
//
// Also update the scope-based lookup if the target context's
// lookup context is in lexical scope.
if (!CurContext->isDependentContext()) {
DC = DC->getRedeclContext();
DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
}
FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
D.getIdentifierLoc(), ND,
DS.getFriendSpecLoc());
FrD->setAccess(AS_public);
CurContext->addDecl(FrD);
if (ND->isInvalidDecl())
FrD->setInvalidDecl();
else {
FunctionDecl *FD;
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
FD = FTD->getTemplatedDecl();
else
FD = cast<FunctionDecl>(ND);
// Mark templated-scope function declarations as unsupported.
if (FD->getNumTemplateParameterLists())
FrD->setUnsupportedFriend(true);
}
return ND;
}
void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
AdjustDeclIfTemplate(Dcl);
FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
if (!Fn) {
Diag(DelLoc, diag::err_deleted_non_function);
return;
}
if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
Diag(DelLoc, diag::err_deleted_decl_not_first);
Diag(Prev->getLocation(), diag::note_previous_declaration);
// If the declaration wasn't the first, we delete the function anyway for
// recovery.
}
Fn->setDeleted();
}
static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
++CI) {
Stmt *SubStmt = *CI;
if (!SubStmt)
continue;
if (isa<ReturnStmt>(SubStmt))
Self.Diag(SubStmt->getSourceRange().getBegin(),
diag::err_return_in_constructor_handler);
if (!isa<Expr>(SubStmt))
SearchForReturnInStmt(Self, SubStmt);
}
}
void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
CXXCatchStmt *Handler = TryBlock->getHandler(I);
SearchForReturnInStmt(*this, Handler);
}
}
bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
const CXXMethodDecl *Old) {
QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
if (Context.hasSameType(NewTy, OldTy) ||
NewTy->isDependentType() || OldTy->isDependentType())
return false;
// Check if the return types are covariant
QualType NewClassTy, OldClassTy;
/// Both types must be pointers or references to classes.
if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
NewClassTy = NewPT->getPointeeType();
OldClassTy = OldPT->getPointeeType();
}
} else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
NewClassTy = NewRT->getPointeeType();
OldClassTy = OldRT->getPointeeType();
}
}
}
// The return types aren't either both pointers or references to a class type.
if (NewClassTy.isNull()) {
Diag(New->getLocation(),
diag::err_different_return_type_for_overriding_virtual_function)
<< New->getDeclName() << NewTy << OldTy;
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
}
// C++ [class.virtual]p6:
// If the return type of D::f differs from the return type of B::f, the
// class type in the return type of D::f shall be complete at the point of
// declaration of D::f or shall be the class type D.
if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
if (!RT->isBeingDefined() &&
RequireCompleteType(New->getLocation(), NewClassTy,
PDiag(diag::err_covariant_return_incomplete)
<< New->getDeclName()))
return true;
}
if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
// Check if the new class derives from the old class.
if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
Diag(New->getLocation(),
diag::err_covariant_return_not_derived)
<< New->getDeclName() << NewTy << OldTy;
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
}
// Check if we the conversion from derived to base is valid.
if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
diag::err_covariant_return_inaccessible_base,
diag::err_covariant_return_ambiguous_derived_to_base_conv,
// FIXME: Should this point to the return type?
New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
}
}
// The qualifiers of the return types must be the same.
if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
Diag(New->getLocation(),
diag::err_covariant_return_type_different_qualifications)
<< New->getDeclName() << NewTy << OldTy;
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
};
// The new class type must have the same or less qualifiers as the old type.
if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
Diag(New->getLocation(),
diag::err_covariant_return_type_class_type_more_qualified)
<< New->getDeclName() << NewTy << OldTy;
Diag(Old->getLocation(), diag::note_overridden_virtual_function);
return true;
};
return false;
}
/// \brief Mark the given method pure.
///
/// \param Method the method to be marked pure.
///
/// \param InitRange the source range that covers the "0" initializer.
bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
Method->setPure();
return false;
}
if (!Method->isInvalidDecl())
Diag(Method->getLocation(), diag::err_non_virtual_pure)
<< Method->getDeclName() << InitRange;
return true;
}
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
/// an initializer for the out-of-line declaration 'Dcl'. The scope
/// is a fresh scope pushed for just this purpose.
///
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
// If there is no declaration, there was an error parsing it.
if (D == 0) return;
// We should only get called for declarations with scope specifiers, like:
// int foo::bar;
assert(D->isOutOfLine());
EnterDeclaratorContext(S, D->getDeclContext());
}
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the out-of-line declaration 'D'.
void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
// If there is no declaration, there was an error parsing it.
if (D == 0) return;
assert(D->isOutOfLine());
ExitDeclaratorContext(S);
}
/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
/// C++ if/switch/while/for statement.
/// e.g: "if (int x = f()) {...}"
DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
// C++ 6.4p2:
// The declarator shall not specify a function or an array.
// The type-specifier-seq shall not contain typedef and shall not declare a
// new class or enumeration.
assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
"Parser allowed 'typedef' as storage class of condition decl.");
TagDecl *OwnedTag = 0;
TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
QualType Ty = TInfo->getType();
if (Ty->isFunctionType()) { // The declarator shall not specify a function...
// We exit without creating a CXXConditionDeclExpr because a FunctionDecl
// would be created and CXXConditionDeclExpr wants a VarDecl.
Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
<< D.getSourceRange();
return DeclResult();
} else if (OwnedTag && OwnedTag->isDefinition()) {
// The type-specifier-seq shall not declare a new class or enumeration.
Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
}
Decl *Dcl = ActOnDeclarator(S, D);
if (!Dcl)
return DeclResult();
return Dcl;
}
void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
bool DefinitionRequired) {
// Ignore any vtable uses in unevaluated operands or for classes that do
// not have a vtable.
if (!Class->isDynamicClass() || Class->isDependentContext() ||
CurContext->isDependentContext() ||
ExprEvalContexts.back().Context == Unevaluated)
return;
// Try to insert this class into the map.
Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
if (!Pos.second) {
// If we already had an entry, check to see if we are promoting this vtable
// to required a definition. If so, we need to reappend to the VTableUses
// list, since we may have already processed the first entry.
if (DefinitionRequired && !Pos.first->second) {
Pos.first->second = true;
} else {
// Otherwise, we can early exit.
return;
}
}
// Local classes need to have their virtual members marked
// immediately. For all other classes, we mark their virtual members
// at the end of the translation unit.
if (Class->isLocalClass())
MarkVirtualMembersReferenced(Loc, Class);
else
VTableUses.push_back(std::make_pair(Class, Loc));
}
bool Sema::DefineUsedVTables() {
if (VTableUses.empty())
return false;
// Note: The VTableUses vector could grow as a result of marking
// the members of a class as "used", so we check the size each
// time through the loop and prefer indices (with are stable) to
// iterators (which are not).
for (unsigned I = 0; I != VTableUses.size(); ++I) {
CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
if (!Class)
continue;
SourceLocation Loc = VTableUses[I].second;
// If this class has a key function, but that key function is
// defined in another translation unit, we don't need to emit the
// vtable even though we're using it.
const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
if (KeyFunction && !KeyFunction->hasBody()) {
switch (KeyFunction->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
case TSK_ExplicitInstantiationDeclaration:
// The key function is in another translation unit.
continue;
case TSK_ExplicitInstantiationDefinition:
case TSK_ImplicitInstantiation:
// We will be instantiating the key function.
break;
}
} else if (!KeyFunction) {
// If we have a class with no key function that is the subject
// of an explicit instantiation declaration, suppress the
// vtable; it will live with the explicit instantiation
// definition.
bool IsExplicitInstantiationDeclaration
= Class->getTemplateSpecializationKind()
== TSK_ExplicitInstantiationDeclaration;
for (TagDecl::redecl_iterator R = Class->redecls_begin(),
REnd = Class->redecls_end();
R != REnd; ++R) {
TemplateSpecializationKind TSK
= cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
if (TSK == TSK_ExplicitInstantiationDeclaration)
IsExplicitInstantiationDeclaration = true;
else if (TSK == TSK_ExplicitInstantiationDefinition) {
IsExplicitInstantiationDeclaration = false;
break;
}
}
if (IsExplicitInstantiationDeclaration)
continue;
}
// Mark all of the virtual members of this class as referenced, so
// that we can build a vtable. Then, tell the AST consumer that a
// vtable for this class is required.
MarkVirtualMembersReferenced(Loc, Class);
CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
// Optionally warn if we're emitting a weak vtable.
if (Class->getLinkage() == ExternalLinkage &&
Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
}
}
VTableUses.clear();
return true;
}
void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
const CXXRecordDecl *RD) {
for (CXXRecordDecl::method_iterator i = RD->method_begin(),
e = RD->method_end(); i != e; ++i) {
CXXMethodDecl *MD = *i;
// C++ [basic.def.odr]p2:
// [...] A virtual member function is used if it is not pure. [...]
if (MD->isVirtual() && !MD->isPure())
MarkDeclarationReferenced(Loc, MD);
}
// Only classes that have virtual bases need a VTT.
if (RD->getNumVBases() == 0)
return;
for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
e = RD->bases_end(); i != e; ++i) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
if (Base->getNumVBases() == 0)
continue;
MarkVirtualMembersReferenced(Loc, Base);
}
}
/// SetIvarInitializers - This routine builds initialization ASTs for the
/// Objective-C implementation whose ivars need be initialized.
void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
if (!getLangOptions().CPlusPlus)
return;
if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
CollectIvarsToConstructOrDestruct(OID, ivars);
if (ivars.empty())
return;
llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
for (unsigned i = 0; i < ivars.size(); i++) {
FieldDecl *Field = ivars[i];
if (Field->isInvalidDecl())
continue;
CXXCtorInitializer *Member;
InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
InitializationKind InitKind =
InitializationKind::CreateDefault(ObjCImplementation->getLocation());
InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
ExprResult MemberInit =
InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
MemberInit = MaybeCreateExprWithCleanups(MemberInit);
// Note, MemberInit could actually come back empty if no initialization
// is required (e.g., because it would call a trivial default constructor)
if (!MemberInit.get() || MemberInit.isInvalid())
continue;
Member =
new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
SourceLocation(),
MemberInit.takeAs<Expr>(),
SourceLocation());
AllToInit.push_back(Member);
// Be sure that the destructor is accessible and is marked as referenced.
if (const RecordType *RecordTy
= Context.getBaseElementType(Field->getType())
->getAs<RecordType>()) {
CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
MarkDeclarationReferenced(Field->getLocation(), Destructor);
CheckDestructorAccess(Field->getLocation(), Destructor,
PDiag(diag::err_access_dtor_ivar)
<< Context.getBaseElementType(Field->getType()));
}
}
}
ObjCImplementation->setIvarInitializers(Context,
AllToInit.data(), AllToInit.size());
}
}