llvm-project/flang/runtime/derived-type.h

191 lines
6.6 KiB
C++

//===-- runtime/derived-type.h ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//----------------------------------------------------------------------------//
#ifndef FORTRAN_RUNTIME_DERIVED_TYPE_H_
#define FORTRAN_RUNTIME_DERIVED_TYPE_H_
#include "type-code.h"
#include "../include/flang/ISO_Fortran_binding.h"
#include <cinttypes>
#include <cstddef>
namespace Fortran::runtime {
class Descriptor;
// Static type information about derived type specializations,
// suitable for residence in read-only storage.
using TypeParameterValue = ISO::CFI_index_t;
class TypeParameter {
public:
const char *name() const { return name_; }
const TypeCode typeCode() const { return typeCode_; }
bool IsLenTypeParameter() const { return which_ < 0; }
// Returns the static value of a KIND type parameter, or the default
// value of a LEN type parameter.
TypeParameterValue StaticValue() const { return value_; }
// Returns the static value of a KIND type parameter, or an
// instantiated value of LEN type parameter.
TypeParameterValue GetValue(const Descriptor &) const;
private:
const char *name_;
TypeCode typeCode_; // INTEGER, but not necessarily default kind
int which_{-1}; // index into DescriptorAddendum LEN type parameter values
TypeParameterValue value_; // default in the case of LEN type parameter
};
// Components that have any need for a descriptor will either reference
// a static descriptor that applies to all instances, or will *be* a
// descriptor. Be advised: the base addresses in static descriptors
// are null. Most runtime interfaces separate the data address from that
// of the descriptor, and ignore the encapsulated base address in the
// descriptor. Some interfaces, e.g. calls to interoperable procedures,
// cannot pass a separate data address, and any static descriptor being used
// in that kind of situation must be copied and customized.
// Static descriptors are flagged in their attributes.
class Component {
public:
const char *name() const { return name_; }
TypeCode typeCode() const { return typeCode_; }
const Descriptor *staticDescriptor() const { return staticDescriptor_; }
bool IsParent() const { return (flags_ & PARENT) != 0; }
bool IsPrivate() const { return (flags_ & PRIVATE) != 0; }
bool IsDescriptor() const { return (flags_ & IS_DESCRIPTOR) != 0; }
template<typename A> A *Locate(char *dtInstance) const {
return reinterpret_cast<A *>(dtInstance + offset_);
}
template<typename A> const A *Locate(const char *dtInstance) const {
return reinterpret_cast<const A *>(dtInstance + offset_);
}
Descriptor *GetDescriptor(char *dtInstance) const {
if (IsDescriptor()) {
return Locate<Descriptor>(dtInstance);
} else {
return nullptr;
}
}
const Descriptor *GetDescriptor(const char *dtInstance) const {
if (staticDescriptor_) {
return staticDescriptor_;
} else if (IsDescriptor()) {
return Locate<const Descriptor>(dtInstance);
} else {
return nullptr;
}
}
private:
enum Flag { PARENT = 1, PRIVATE = 2, IS_DESCRIPTOR = 4 };
const char *name_{nullptr};
std::uint32_t flags_{0};
TypeCode typeCode_{CFI_type_other};
const Descriptor *staticDescriptor_{nullptr};
std::size_t offset_{0}; // byte offset in derived type instance
};
struct ExecutableCode {
ExecutableCode() {}
ExecutableCode(const ExecutableCode &) = default;
ExecutableCode &operator=(const ExecutableCode &) = default;
std::intptr_t host{0};
std::intptr_t device{0};
};
struct TypeBoundProcedure {
const char *name;
ExecutableCode code;
};
// Represents a specialization of a derived type; i.e., any KIND type
// parameters have values set at compilation time.
// Extended derived types have the EXTENDS flag set and place their base
// component first in the component descriptions, which is significant for
// the execution of FINAL subroutines.
class DerivedType {
public:
DerivedType(const char *n, std::size_t kps, std::size_t lps,
const TypeParameter *tp, std::size_t cs, const Component *ca,
std::size_t tbps, const TypeBoundProcedure *tbp, std::size_t sz)
: name_{n}, kindParameters_{kps}, lenParameters_{lps}, typeParameter_{tp},
components_{cs}, component_{ca}, typeBoundProcedures_{tbps},
typeBoundProcedure_{tbp}, bytes_{sz} {
if (IsNontrivialAnalysis()) {
flags_ |= NONTRIVIAL;
}
}
const char *name() const { return name_; }
std::size_t kindParameters() const { return kindParameters_; }
std::size_t lenParameters() const { return lenParameters_; }
// KIND type parameters come first.
const TypeParameter &typeParameter(int n) const { return typeParameter_[n]; }
std::size_t components() const { return components_; }
// The first few type-bound procedure indices are special.
enum SpecialTBP { InitializerTBP, CopierTBP, FinalTBP };
std::size_t typeBoundProcedures() const { return typeBoundProcedures_; }
const TypeBoundProcedure &typeBoundProcedure(int n) const {
return typeBoundProcedure_[n];
}
DerivedType &set_sequence() {
flags_ |= SEQUENCE;
return *this;
}
DerivedType &set_bind_c() {
flags_ |= BIND_C;
return *this;
}
std::size_t SizeInBytes() const { return bytes_; }
bool Extends() const { return components_ > 0 && component_[0].IsParent(); }
bool AnyPrivate() const;
bool IsSequence() const { return (flags_ & SEQUENCE) != 0; }
bool IsBindC() const { return (flags_ & BIND_C) != 0; }
bool IsNontrivial() const { return (flags_ & NONTRIVIAL) != 0; }
bool IsSameType(const DerivedType &) const;
void Initialize(char *instance) const;
void Destroy(char *instance, bool finalize = true) const;
private:
enum Flag { SEQUENCE = 1, BIND_C = 2, NONTRIVIAL = 4 };
// True when any descriptor of data of this derived type will require
// an addendum pointing to a DerivedType, possibly with values of
// LEN type parameters. Conservative.
bool IsNontrivialAnalysis() const;
const char *name_{""}; // NUL-terminated constant text
std::size_t kindParameters_{0};
std::size_t lenParameters_{0};
const TypeParameter *typeParameter_{nullptr}; // array
std::size_t components_{0}; // *not* including type parameters
const Component *component_{nullptr}; // array
std::size_t typeBoundProcedures_{0};
const TypeBoundProcedure *typeBoundProcedure_{nullptr}; // array
std::uint64_t flags_{0};
std::size_t bytes_{0};
};
}
#endif // FORTRAN_RUNTIME_DERIVED_TYPE_H_