llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp

12086 lines
505 KiB
C++

//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntime.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/BitmaskEnum.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace clang;
using namespace CodeGen;
using namespace llvm::omp;
namespace {
/// Base class for handling code generation inside OpenMP regions.
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
public:
/// Kinds of OpenMP regions used in codegen.
enum CGOpenMPRegionKind {
/// Region with outlined function for standalone 'parallel'
/// directive.
ParallelOutlinedRegion,
/// Region with outlined function for standalone 'task' directive.
TaskOutlinedRegion,
/// Region for constructs that do not require function outlining,
/// like 'for', 'sections', 'atomic' etc. directives.
InlinedRegion,
/// Region with outlined function for standalone 'target' directive.
TargetRegion,
};
CGOpenMPRegionInfo(const CapturedStmt &CS,
const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
Kind(Kind), HasCancel(HasCancel) {}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
virtual const VarDecl *getThreadIDVariable() const = 0;
/// Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
/// Get an LValue for the current ThreadID variable.
/// \return LValue for thread id variable. This LValue always has type int32*.
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
bool hasCancel() const { return HasCancel; }
static bool classof(const CGCapturedStmtInfo *Info) {
return Info->getKind() == CR_OpenMP;
}
~CGOpenMPRegionInfo() override = default;
protected:
CGOpenMPRegionKind RegionKind;
RegionCodeGenTy CodeGen;
OpenMPDirectiveKind Kind;
bool HasCancel;
};
/// API for captured statement code generation in OpenMP constructs.
class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
StringRef HelperName)
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
HasCancel),
ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// Get the name of the capture helper.
StringRef getHelperName() const override { return HelperName; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
ParallelOutlinedRegion;
}
private:
/// A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
StringRef HelperName;
};
/// API for captured statement code generation in OpenMP constructs.
class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
class UntiedTaskActionTy final : public PrePostActionTy {
bool Untied;
const VarDecl *PartIDVar;
const RegionCodeGenTy UntiedCodeGen;
llvm::SwitchInst *UntiedSwitch = nullptr;
public:
UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
const RegionCodeGenTy &UntiedCodeGen)
: Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
void Enter(CodeGenFunction &CGF) override {
if (Untied) {
// Emit task switching point.
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
llvm::Value *Res =
CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
CGF.EmitBlock(DoneBB);
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(0),
CGF.Builder.GetInsertBlock());
emitUntiedSwitch(CGF);
}
}
void emitUntiedSwitch(CodeGenFunction &CGF) const {
if (Untied) {
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
PartIdLVal);
UntiedCodeGen(CGF);
CodeGenFunction::JumpDest CurPoint =
CGF.getJumpDestInCurrentScope(".untied.next.");
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
CGF.Builder.GetInsertBlock());
CGF.EmitBranchThroughCleanup(CurPoint);
CGF.EmitBlock(CurPoint.getBlock());
}
}
unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
};
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
const UntiedTaskActionTy &Action)
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
ThreadIDVar(ThreadIDVar), Action(Action) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
/// Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
void emitUntiedSwitch(CodeGenFunction &CGF) override {
Action.emitUntiedSwitch(CGF);
}
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
TaskOutlinedRegion;
}
private:
/// A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
/// Action for emitting code for untied tasks.
const UntiedTaskActionTy &Action;
};
/// API for inlined captured statement code generation in OpenMP
/// constructs.
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
OldCSI(OldCSI),
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
// Retrieve the value of the context parameter.
llvm::Value *getContextValue() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getContextValue();
llvm_unreachable("No context value for inlined OpenMP region");
}
void setContextValue(llvm::Value *V) override {
if (OuterRegionInfo) {
OuterRegionInfo->setContextValue(V);
return;
}
llvm_unreachable("No context value for inlined OpenMP region");
}
/// Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (OuterRegionInfo)
return OuterRegionInfo->lookup(VD);
// If there is no outer outlined region,no need to lookup in a list of
// captured variables, we can use the original one.
return nullptr;
}
FieldDecl *getThisFieldDecl() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThisFieldDecl();
return nullptr;
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariable();
return nullptr;
}
/// Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariableLValue(CGF);
llvm_unreachable("No LValue for inlined OpenMP construct");
}
/// Get the name of the capture helper.
StringRef getHelperName() const override {
if (auto *OuterRegionInfo = getOldCSI())
return OuterRegionInfo->getHelperName();
llvm_unreachable("No helper name for inlined OpenMP construct");
}
void emitUntiedSwitch(CodeGenFunction &CGF) override {
if (OuterRegionInfo)
OuterRegionInfo->emitUntiedSwitch(CGF);
}
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
}
~CGOpenMPInlinedRegionInfo() override = default;
private:
/// CodeGen info about outer OpenMP region.
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
CGOpenMPRegionInfo *OuterRegionInfo;
};
/// API for captured statement code generation in OpenMP target
/// constructs. For this captures, implicit parameters are used instead of the
/// captured fields. The name of the target region has to be unique in a given
/// application so it is provided by the client, because only the client has
/// the information to generate that.
class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
const RegionCodeGenTy &CodeGen, StringRef HelperName)
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
/*HasCancel=*/false),
HelperName(HelperName) {}
/// This is unused for target regions because each starts executing
/// with a single thread.
const VarDecl *getThreadIDVariable() const override { return nullptr; }
/// Get the name of the capture helper.
StringRef getHelperName() const override { return HelperName; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
}
private:
StringRef HelperName;
};
static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
llvm_unreachable("No codegen for expressions");
}
/// API for generation of expressions captured in a innermost OpenMP
/// region.
class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
public:
CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
: CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
OMPD_unknown,
/*HasCancel=*/false),
PrivScope(CGF) {
// Make sure the globals captured in the provided statement are local by
// using the privatization logic. We assume the same variable is not
// captured more than once.
for (const auto &C : CS.captures()) {
if (!C.capturesVariable() && !C.capturesVariableByCopy())
continue;
const VarDecl *VD = C.getCapturedVar();
if (VD->isLocalVarDeclOrParm())
continue;
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
/*RefersToEnclosingVariableOrCapture=*/false,
VD->getType().getNonReferenceType(), VK_LValue,
C.getLocation());
PrivScope.addPrivate(
VD, [&CGF, &DRE]() { return CGF.EmitLValue(&DRE).getAddress(CGF); });
}
(void)PrivScope.Privatize();
}
/// Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
return FD;
return nullptr;
}
/// Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
llvm_unreachable("No body for expressions");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
llvm_unreachable("No thread id for expressions");
}
/// Get the name of the capture helper.
StringRef getHelperName() const override {
llvm_unreachable("No helper name for expressions");
}
static bool classof(const CGCapturedStmtInfo *Info) { return false; }
private:
/// Private scope to capture global variables.
CodeGenFunction::OMPPrivateScope PrivScope;
};
/// RAII for emitting code of OpenMP constructs.
class InlinedOpenMPRegionRAII {
CodeGenFunction &CGF;
llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField = nullptr;
const CodeGen::CGBlockInfo *BlockInfo = nullptr;
public:
/// Constructs region for combined constructs.
/// \param CodeGen Code generation sequence for combined directives. Includes
/// a list of functions used for code generation of implicitly inlined
/// regions.
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGF(CGF) {
// Start emission for the construct.
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
LambdaThisCaptureField = CGF.LambdaThisCaptureField;
CGF.LambdaThisCaptureField = nullptr;
BlockInfo = CGF.BlockInfo;
CGF.BlockInfo = nullptr;
}
~InlinedOpenMPRegionRAII() {
// Restore original CapturedStmtInfo only if we're done with code emission.
auto *OldCSI =
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
delete CGF.CapturedStmtInfo;
CGF.CapturedStmtInfo = OldCSI;
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
CGF.LambdaThisCaptureField = LambdaThisCaptureField;
CGF.BlockInfo = BlockInfo;
}
};
/// Values for bit flags used in the ident_t to describe the fields.
/// All enumeric elements are named and described in accordance with the code
/// from https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
enum OpenMPLocationFlags : unsigned {
/// Use trampoline for internal microtask.
OMP_IDENT_IMD = 0x01,
/// Use c-style ident structure.
OMP_IDENT_KMPC = 0x02,
/// Atomic reduction option for kmpc_reduce.
OMP_ATOMIC_REDUCE = 0x10,
/// Explicit 'barrier' directive.
OMP_IDENT_BARRIER_EXPL = 0x20,
/// Implicit barrier in code.
OMP_IDENT_BARRIER_IMPL = 0x40,
/// Implicit barrier in 'for' directive.
OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
/// Implicit barrier in 'sections' directive.
OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
/// Implicit barrier in 'single' directive.
OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
/// Call of __kmp_for_static_init for static loop.
OMP_IDENT_WORK_LOOP = 0x200,
/// Call of __kmp_for_static_init for sections.
OMP_IDENT_WORK_SECTIONS = 0x400,
/// Call of __kmp_for_static_init for distribute.
OMP_IDENT_WORK_DISTRIBUTE = 0x800,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
};
namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
/// Values for bit flags for marking which requires clauses have been used.
enum OpenMPOffloadingRequiresDirFlags : int64_t {
/// flag undefined.
OMP_REQ_UNDEFINED = 0x000,
/// no requires clause present.
OMP_REQ_NONE = 0x001,
/// reverse_offload clause.
OMP_REQ_REVERSE_OFFLOAD = 0x002,
/// unified_address clause.
OMP_REQ_UNIFIED_ADDRESS = 0x004,
/// unified_shared_memory clause.
OMP_REQ_UNIFIED_SHARED_MEMORY = 0x008,
/// dynamic_allocators clause.
OMP_REQ_DYNAMIC_ALLOCATORS = 0x010,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_REQ_DYNAMIC_ALLOCATORS)
};
enum OpenMPOffloadingReservedDeviceIDs {
/// Device ID if the device was not defined, runtime should get it
/// from environment variables in the spec.
OMP_DEVICEID_UNDEF = -1,
};
} // anonymous namespace
/// Describes ident structure that describes a source location.
/// All descriptions are taken from
/// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h
/// Original structure:
/// typedef struct ident {
/// kmp_int32 reserved_1; /**< might be used in Fortran;
/// see above */
/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
/// KMP_IDENT_KMPC identifies this union
/// member */
/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
/// see above */
///#if USE_ITT_BUILD
/// /* but currently used for storing
/// region-specific ITT */
/// /* contextual information. */
///#endif /* USE_ITT_BUILD */
/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
/// C++ */
/// char const *psource; /**< String describing the source location.
/// The string is composed of semi-colon separated
// fields which describe the source file,
/// the function and a pair of line numbers that
/// delimit the construct.
/// */
/// } ident_t;
enum IdentFieldIndex {
/// might be used in Fortran
IdentField_Reserved_1,
/// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
IdentField_Flags,
/// Not really used in Fortran any more
IdentField_Reserved_2,
/// Source[4] in Fortran, do not use for C++
IdentField_Reserved_3,
/// String describing the source location. The string is composed of
/// semi-colon separated fields which describe the source file, the function
/// and a pair of line numbers that delimit the construct.
IdentField_PSource
};
/// Schedule types for 'omp for' loops (these enumerators are taken from
/// the enum sched_type in kmp.h).
enum OpenMPSchedType {
/// Lower bound for default (unordered) versions.
OMP_sch_lower = 32,
OMP_sch_static_chunked = 33,
OMP_sch_static = 34,
OMP_sch_dynamic_chunked = 35,
OMP_sch_guided_chunked = 36,
OMP_sch_runtime = 37,
OMP_sch_auto = 38,
/// static with chunk adjustment (e.g., simd)
OMP_sch_static_balanced_chunked = 45,
/// Lower bound for 'ordered' versions.
OMP_ord_lower = 64,
OMP_ord_static_chunked = 65,
OMP_ord_static = 66,
OMP_ord_dynamic_chunked = 67,
OMP_ord_guided_chunked = 68,
OMP_ord_runtime = 69,
OMP_ord_auto = 70,
OMP_sch_default = OMP_sch_static,
/// dist_schedule types
OMP_dist_sch_static_chunked = 91,
OMP_dist_sch_static = 92,
/// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
/// Set if the monotonic schedule modifier was present.
OMP_sch_modifier_monotonic = (1 << 29),
/// Set if the nonmonotonic schedule modifier was present.
OMP_sch_modifier_nonmonotonic = (1 << 30),
};
enum OpenMPRTLFunction {
/// Call to void __kmpc_fork_call(ident_t *loc, kmp_int32 argc,
/// kmpc_micro microtask, ...);
OMPRTL__kmpc_fork_call,
/// Call to void *__kmpc_threadprivate_cached(ident_t *loc,
/// kmp_int32 global_tid, void *data, size_t size, void ***cache);
OMPRTL__kmpc_threadprivate_cached,
/// Call to void __kmpc_threadprivate_register( ident_t *,
/// void *data, kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
OMPRTL__kmpc_threadprivate_register,
// Call to __kmpc_int32 kmpc_global_thread_num(ident_t *loc);
OMPRTL__kmpc_global_thread_num,
// Call to void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
OMPRTL__kmpc_critical,
// Call to void __kmpc_critical_with_hint(ident_t *loc, kmp_int32
// global_tid, kmp_critical_name *crit, uintptr_t hint);
OMPRTL__kmpc_critical_with_hint,
// Call to void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
OMPRTL__kmpc_end_critical,
// Call to kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_cancel_barrier,
// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_barrier,
// Call to void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_for_static_fini,
// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_serialized_parallel,
// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_end_serialized_parallel,
// Call to void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_threads);
OMPRTL__kmpc_push_num_threads,
// Call to void __kmpc_flush(ident_t *loc);
OMPRTL__kmpc_flush,
// Call to kmp_int32 __kmpc_master(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_master,
// Call to void __kmpc_end_master(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_end_master,
// Call to kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
// int end_part);
OMPRTL__kmpc_omp_taskyield,
// Call to kmp_int32 __kmpc_single(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_single,
// Call to void __kmpc_end_single(ident_t *, kmp_int32 global_tid);
OMPRTL__kmpc_end_single,
// Call to kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
OMPRTL__kmpc_omp_task_alloc,
// Call to kmp_task_t * __kmpc_omp_target_task_alloc(ident_t *,
// kmp_int32 gtid, kmp_int32 flags, size_t sizeof_kmp_task_t,
// size_t sizeof_shareds, kmp_routine_entry_t *task_entry,
// kmp_int64 device_id);
OMPRTL__kmpc_omp_target_task_alloc,
// Call to kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t *
// new_task);
OMPRTL__kmpc_omp_task,
// Call to void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
// kmp_int32 didit);
OMPRTL__kmpc_copyprivate,
// Call to kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
OMPRTL__kmpc_reduce,
// Call to kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
// *lck);
OMPRTL__kmpc_reduce_nowait,
// Call to void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
OMPRTL__kmpc_end_reduce,
// Call to void __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
OMPRTL__kmpc_end_reduce_nowait,
// Call to void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t * new_task);
OMPRTL__kmpc_omp_task_begin_if0,
// Call to void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t * new_task);
OMPRTL__kmpc_omp_task_complete_if0,
// Call to void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_ordered,
// Call to void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_end_ordered,
// Call to kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
OMPRTL__kmpc_omp_taskwait,
// Call to void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_taskgroup,
// Call to void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
OMPRTL__kmpc_end_taskgroup,
// Call to void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
// int proc_bind);
OMPRTL__kmpc_push_proc_bind,
// Call to kmp_int32 __kmpc_omp_task_with_deps(ident_t *loc_ref, kmp_int32
// gtid, kmp_task_t * new_task, kmp_int32 ndeps, kmp_depend_info_t
// *dep_list, kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
OMPRTL__kmpc_omp_task_with_deps,
// Call to void __kmpc_omp_wait_deps(ident_t *loc_ref, kmp_int32
// gtid, kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
OMPRTL__kmpc_omp_wait_deps,
// Call to kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
OMPRTL__kmpc_cancellationpoint,
// Call to kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
OMPRTL__kmpc_cancel,
// Call to void __kmpc_push_num_teams(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_teams, kmp_int32 thread_limit);
OMPRTL__kmpc_push_num_teams,
// Call to void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
OMPRTL__kmpc_fork_teams,
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
OMPRTL__kmpc_taskloop,
// Call to void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
// num_dims, struct kmp_dim *dims);
OMPRTL__kmpc_doacross_init,
// Call to void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
OMPRTL__kmpc_doacross_fini,
// Call to void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
OMPRTL__kmpc_doacross_post,
// Call to void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
OMPRTL__kmpc_doacross_wait,
// Call to void *__kmpc_task_reduction_init(int gtid, int num_data, void
// *data);
OMPRTL__kmpc_task_reduction_init,
// Call to void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
// *d);
OMPRTL__kmpc_task_reduction_get_th_data,
// Call to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t al);
OMPRTL__kmpc_alloc,
// Call to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t al);
OMPRTL__kmpc_free,
//
// Offloading related calls
//
// Call to void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
// size);
OMPRTL__kmpc_push_target_tripcount,
// Call to int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
OMPRTL__tgt_target,
// Call to int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
OMPRTL__tgt_target_nowait,
// Call to int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types, int32_t num_teams, int32_t thread_limit);
OMPRTL__tgt_target_teams,
// Call to int32_t __tgt_target_teams_nowait(int64_t device_id, void
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
OMPRTL__tgt_target_teams_nowait,
// Call to void __tgt_register_requires(int64_t flags);
OMPRTL__tgt_register_requires,
// Call to void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
OMPRTL__tgt_target_data_begin,
// Call to void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
OMPRTL__tgt_target_data_begin_nowait,
// Call to void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, size_t *arg_sizes, int64_t *arg_types);
OMPRTL__tgt_target_data_end,
// Call to void __tgt_target_data_end_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
OMPRTL__tgt_target_data_end_nowait,
// Call to void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
OMPRTL__tgt_target_data_update,
// Call to void __tgt_target_data_update_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
OMPRTL__tgt_target_data_update_nowait,
// Call to int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
OMPRTL__tgt_mapper_num_components,
// Call to void __tgt_push_mapper_component(void *rt_mapper_handle, void
// *base, void *begin, int64_t size, int64_t type);
OMPRTL__tgt_push_mapper_component,
};
/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
/// region.
class CleanupTy final : public EHScopeStack::Cleanup {
PrePostActionTy *Action;
public:
explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
Action->Exit(CGF);
}
};
} // anonymous namespace
void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (PrePostAction) {
CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
Callback(CodeGen, CGF, *PrePostAction);
} else {
PrePostActionTy Action;
Callback(CodeGen, CGF, Action);
}
}
/// Check if the combiner is a call to UDR combiner and if it is so return the
/// UDR decl used for reduction.
static const OMPDeclareReductionDecl *
getReductionInit(const Expr *ReductionOp) {
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
if (const auto *DRE =
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
return DRD;
return nullptr;
}
static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
const OMPDeclareReductionDecl *DRD,
const Expr *InitOp,
Address Private, Address Original,
QualType Ty) {
if (DRD->getInitializer()) {
std::pair<llvm::Function *, llvm::Function *> Reduction =
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
const auto *CE = cast<CallExpr>(InitOp);
const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
const auto *LHSDRE =
cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
const auto *RHSDRE =
cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()),
[=]() { return Private; });
PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()),
[=]() { return Original; });
(void)PrivateScope.Privatize();
RValue Func = RValue::get(Reduction.second);
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
CGF.EmitIgnoredExpr(InitOp);
} else {
llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
auto *GV = new llvm::GlobalVariable(
CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage, Init, Name);
LValue LV = CGF.MakeNaturalAlignAddrLValue(GV, Ty);
RValue InitRVal;
switch (CGF.getEvaluationKind(Ty)) {
case TEK_Scalar:
InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
break;
case TEK_Complex:
InitRVal =
RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
break;
case TEK_Aggregate:
InitRVal = RValue::getAggregate(LV.getAddress(CGF));
break;
}
OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_RValue);
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
/*IsInitializer=*/false);
}
}
/// Emit initialization of arrays of complex types.
/// \param DestAddr Address of the array.
/// \param Type Type of array.
/// \param Init Initial expression of array.
/// \param SrcAddr Address of the original array.
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
QualType Type, bool EmitDeclareReductionInit,
const Expr *Init,
const OMPDeclareReductionDecl *DRD,
Address SrcAddr = Address::invalid()) {
// Perform element-by-element initialization.
QualType ElementTy;
// Drill down to the base element type on both arrays.
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
DestAddr =
CGF.Builder.CreateElementBitCast(DestAddr, DestAddr.getElementType());
if (DRD)
SrcAddr =
CGF.Builder.CreateElementBitCast(SrcAddr, DestAddr.getElementType());
llvm::Value *SrcBegin = nullptr;
if (DRD)
SrcBegin = SrcAddr.getPointer();
llvm::Value *DestBegin = DestAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
llvm::Value *DestEnd = CGF.Builder.CreateGEP(DestBegin, NumElements);
// The basic structure here is a while-do loop.
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
llvm::Value *IsEmpty =
CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *SrcElementPHI = nullptr;
Address SrcElementCurrent = Address::invalid();
if (DRD) {
SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
"omp.arraycpy.srcElementPast");
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
SrcElementCurrent =
Address(SrcElementPHI,
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
}
llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
DestElementPHI->addIncoming(DestBegin, EntryBB);
Address DestElementCurrent =
Address(DestElementPHI,
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
{
CodeGenFunction::RunCleanupsScope InitScope(CGF);
if (EmitDeclareReductionInit) {
emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
SrcElementCurrent, ElementTy);
} else
CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
/*IsInitializer=*/false);
}
if (DRD) {
// Shift the address forward by one element.
llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
SrcElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
}
// Shift the address forward by one element.
llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
DestElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
// Check whether we've reached the end.
llvm::Value *Done =
CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
return CGF.EmitOMPSharedLValue(E);
}
LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
const Expr *E) {
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(E))
return CGF.EmitOMPArraySectionExpr(OASE, /*IsLowerBound=*/false);
return LValue();
}
void ReductionCodeGen::emitAggregateInitialization(
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
const OMPDeclareReductionDecl *DRD) {
// Emit VarDecl with copy init for arrays.
// Get the address of the original variable captured in current
// captured region.
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
bool EmitDeclareReductionInit =
DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
EmitDeclareReductionInit,
EmitDeclareReductionInit ? ClausesData[N].ReductionOp
: PrivateVD->getInit(),
DRD, SharedLVal.getAddress(CGF));
}
ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> ReductionOps) {
ClausesData.reserve(Shareds.size());
SharedAddresses.reserve(Shareds.size());
Sizes.reserve(Shareds.size());
BaseDecls.reserve(Shareds.size());
auto IPriv = Privates.begin();
auto IRed = ReductionOps.begin();
for (const Expr *Ref : Shareds) {
ClausesData.emplace_back(Ref, *IPriv, *IRed);
std::advance(IPriv, 1);
std::advance(IRed, 1);
}
}
void ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, unsigned N) {
assert(SharedAddresses.size() == N &&
"Number of generated lvalues must be exactly N.");
LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
SharedAddresses.emplace_back(First, Second);
}
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
QualType PrivateType = PrivateVD->getType();
bool AsArraySection = isa<OMPArraySectionExpr>(ClausesData[N].Ref);
if (!PrivateType->isVariablyModifiedType()) {
Sizes.emplace_back(
CGF.getTypeSize(
SharedAddresses[N].first.getType().getNonReferenceType()),
nullptr);
return;
}
llvm::Value *Size;
llvm::Value *SizeInChars;
auto *ElemType = cast<llvm::PointerType>(
SharedAddresses[N].first.getPointer(CGF)->getType())
->getElementType();
auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
if (AsArraySection) {
Size = CGF.Builder.CreatePtrDiff(SharedAddresses[N].second.getPointer(CGF),
SharedAddresses[N].first.getPointer(CGF));
Size = CGF.Builder.CreateNUWAdd(
Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
} else {
SizeInChars = CGF.getTypeSize(
SharedAddresses[N].first.getType().getNonReferenceType());
Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
}
Sizes.emplace_back(SizeInChars, Size);
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF,
cast<OpaqueValueExpr>(
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
RValue::get(Size));
CGF.EmitVariablyModifiedType(PrivateType);
}
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
llvm::Value *Size) {
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
QualType PrivateType = PrivateVD->getType();
if (!PrivateType->isVariablyModifiedType()) {
assert(!Size && !Sizes[N].second &&
"Size should be nullptr for non-variably modified reduction "
"items.");
return;
}
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF,
cast<OpaqueValueExpr>(
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
RValue::get(Size));
CGF.EmitVariablyModifiedType(PrivateType);
}
void ReductionCodeGen::emitInitialization(
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, LValue SharedLVal,
llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
assert(SharedAddresses.size() > N && "No variable was generated");
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
const OMPDeclareReductionDecl *DRD =
getReductionInit(ClausesData[N].ReductionOp);
QualType PrivateType = PrivateVD->getType();
PrivateAddr = CGF.Builder.CreateElementBitCast(
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
QualType SharedType = SharedAddresses[N].first.getType();
SharedLVal = CGF.MakeAddrLValue(
CGF.Builder.CreateElementBitCast(SharedLVal.getAddress(CGF),
CGF.ConvertTypeForMem(SharedType)),
SharedType, SharedAddresses[N].first.getBaseInfo(),
CGF.CGM.getTBAAInfoForSubobject(SharedAddresses[N].first, SharedType));
if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
emitAggregateInitialization(CGF, N, PrivateAddr, SharedLVal, DRD);
} else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
PrivateAddr, SharedLVal.getAddress(CGF),
SharedLVal.getType());
} else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
!CGF.isTrivialInitializer(PrivateVD->getInit())) {
CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
PrivateVD->getType().getQualifiers(),
/*IsInitializer=*/false);
}
}
bool ReductionCodeGen::needCleanups(unsigned N) {
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
QualType PrivateType = PrivateVD->getType();
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
return DTorKind != QualType::DK_none;
}
void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
Address PrivateAddr) {
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
QualType PrivateType = PrivateVD->getType();
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
if (needCleanups(N)) {
PrivateAddr = CGF.Builder.CreateElementBitCast(
PrivateAddr, CGF.ConvertTypeForMem(PrivateType));
CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
}
}
static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
LValue BaseLV) {
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(CGF), PtrTy);
} else {
LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(CGF), BaseTy);
BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
}
BaseTy = BaseTy->getPointeeType();
}
return CGF.MakeAddrLValue(
CGF.Builder.CreateElementBitCast(BaseLV.getAddress(CGF),
CGF.ConvertTypeForMem(ElTy)),
BaseLV.getType(), BaseLV.getBaseInfo(),
CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
}
static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
llvm::Type *BaseLVType, CharUnits BaseLVAlignment,
llvm::Value *Addr) {
Address Tmp = Address::invalid();
Address TopTmp = Address::invalid();
Address MostTopTmp = Address::invalid();
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
Tmp = CGF.CreateMemTemp(BaseTy);
if (TopTmp.isValid())
CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
else
MostTopTmp = Tmp;
TopTmp = Tmp;
BaseTy = BaseTy->getPointeeType();
}
llvm::Type *Ty = BaseLVType;
if (Tmp.isValid())
Ty = Tmp.getElementType();
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, Ty);
if (Tmp.isValid()) {
CGF.Builder.CreateStore(Addr, Tmp);
return MostTopTmp;
}
return Address(Addr, BaseLVAlignment);
}
static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
const VarDecl *OrigVD = nullptr;
if (const auto *OASE = dyn_cast<OMPArraySectionExpr>(Ref)) {
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
Base = TempOASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
DE = cast<DeclRefExpr>(Base);
OrigVD = cast<VarDecl>(DE->getDecl());
} else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
DE = cast<DeclRefExpr>(Base);
OrigVD = cast<VarDecl>(DE->getDecl());
}
return OrigVD;
}
Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
Address PrivateAddr) {
const DeclRefExpr *DE;
if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
BaseDecls.emplace_back(OrigVD);
LValue OriginalBaseLValue = CGF.EmitLValue(DE);
LValue BaseLValue =
loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
OriginalBaseLValue);
llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
BaseLValue.getPointer(CGF), SharedAddresses[N].first.getPointer(CGF));
llvm::Value *PrivatePointer =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivateAddr.getPointer(),
SharedAddresses[N].first.getAddress(CGF).getType());
llvm::Value *Ptr = CGF.Builder.CreateGEP(PrivatePointer, Adjustment);
return castToBase(CGF, OrigVD->getType(),
SharedAddresses[N].first.getType(),
OriginalBaseLValue.getAddress(CGF).getType(),
OriginalBaseLValue.getAlignment(), Ptr);
}
BaseDecls.emplace_back(
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
return PrivateAddr;
}
bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
const OMPDeclareReductionDecl *DRD =
getReductionInit(ClausesData[N].ReductionOp);
return DRD && DRD->getInitializer();
}
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
return CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType()->castAs<PointerType>());
}
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt * /*S*/) {
if (!CGF.HaveInsertPoint())
return;
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CGF.EHStack.pushTerminate();
CodeGen(CGF);
CGF.EHStack.popTerminate();
}
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
CodeGenFunction &CGF) {
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType(),
AlignmentSource::Decl);
}
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
QualType FieldTy) {
auto *Field = FieldDecl::Create(
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
DC->addDecl(Field);
return Field;
}
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM, StringRef FirstSeparator,
StringRef Separator)
: CGM(CGM), FirstSeparator(FirstSeparator), Separator(Separator),
OffloadEntriesInfoManager(CGM) {
ASTContext &C = CGM.getContext();
RecordDecl *RD = C.buildImplicitRecord("ident_t");
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
RD->startDefinition();
// reserved_1
addFieldToRecordDecl(C, RD, KmpInt32Ty);
// flags
addFieldToRecordDecl(C, RD, KmpInt32Ty);
// reserved_2
addFieldToRecordDecl(C, RD, KmpInt32Ty);
// reserved_3
addFieldToRecordDecl(C, RD, KmpInt32Ty);
// psource
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
RD->completeDefinition();
IdentQTy = C.getRecordType(RD);
IdentTy = CGM.getTypes().ConvertRecordDeclType(RD);
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
loadOffloadInfoMetadata();
}
bool CGOpenMPRuntime::tryEmitDeclareVariant(const GlobalDecl &NewGD,
const GlobalDecl &OldGD,
llvm::GlobalValue *OrigAddr,
bool IsForDefinition) {
// Emit at least a definition for the aliasee if the the address of the
// original function is requested.
if (IsForDefinition || OrigAddr)
(void)CGM.GetAddrOfGlobal(NewGD);
StringRef NewMangledName = CGM.getMangledName(NewGD);
llvm::GlobalValue *Addr = CGM.GetGlobalValue(NewMangledName);
if (Addr && !Addr->isDeclaration()) {
const auto *D = cast<FunctionDecl>(OldGD.getDecl());
const CGFunctionInfo &FI = CGM.getTypes().arrangeGlobalDeclaration(NewGD);
llvm::Type *DeclTy = CGM.getTypes().GetFunctionType(FI);
// Create a reference to the named value. This ensures that it is emitted
// if a deferred decl.
llvm::GlobalValue::LinkageTypes LT = CGM.getFunctionLinkage(OldGD);
// Create the new alias itself, but don't set a name yet.
auto *GA =
llvm::GlobalAlias::create(DeclTy, 0, LT, "", Addr, &CGM.getModule());
if (OrigAddr) {
assert(OrigAddr->isDeclaration() && "Expected declaration");
GA->takeName(OrigAddr);
OrigAddr->replaceAllUsesWith(
llvm::ConstantExpr::getBitCast(GA, OrigAddr->getType()));
OrigAddr->eraseFromParent();
} else {
GA->setName(CGM.getMangledName(OldGD));
}
// Set attributes which are particular to an alias; this is a
// specialization of the attributes which may be set on a global function.
if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
D->isWeakImported())
GA->setLinkage(llvm::Function::WeakAnyLinkage);
CGM.SetCommonAttributes(OldGD, GA);
return true;
}
return false;
}
void CGOpenMPRuntime::clear() {
InternalVars.clear();
// Clean non-target variable declarations possibly used only in debug info.
for (const auto &Data : EmittedNonTargetVariables) {
if (!Data.getValue().pointsToAliveValue())
continue;
auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
if (!GV)
continue;
if (!GV->isDeclaration() || GV->getNumUses() > 0)
continue;
GV->eraseFromParent();
}
// Emit aliases for the deferred aliasees.
for (const auto &Pair : DeferredVariantFunction) {
StringRef MangledName = CGM.getMangledName(Pair.second.second);
llvm::GlobalValue *Addr = CGM.GetGlobalValue(MangledName);
// If not able to emit alias, just emit original declaration.
(void)tryEmitDeclareVariant(Pair.second.first, Pair.second.second, Addr,
/*IsForDefinition=*/false);
}
}
std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
SmallString<128> Buffer;
llvm::raw_svector_ostream OS(Buffer);
StringRef Sep = FirstSeparator;
for (StringRef Part : Parts) {
OS << Sep << Part;
Sep = Separator;
}
return std::string(OS.str());
}
static llvm::Function *
emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
const Expr *CombinerInitializer, const VarDecl *In,
const VarDecl *Out, bool IsCombiner) {
// void .omp_combiner.(Ty *in, Ty *out);
ASTContext &C = CGM.getContext();
QualType PtrTy = C.getPointerType(Ty).withRestrict();
FunctionArgList Args;
ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
/*Id=*/nullptr, PtrTy, ImplicitParamDecl::Other);
Args.push_back(&OmpOutParm);
Args.push_back(&OmpInParm);
const CGFunctionInfo &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName(
{IsCombiner ? "omp_combiner" : "omp_initializer", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
if (CGM.getLangOpts().Optimize) {
Fn->removeFnAttr(llvm::Attribute::NoInline);
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
}
CodeGenFunction CGF(CGM);
// Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
// Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
Out->getLocation());
CodeGenFunction::OMPPrivateScope Scope(CGF);
Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
Scope.addPrivate(In, [&CGF, AddrIn, PtrTy]() {
return CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
.getAddress(CGF);
});
Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
Scope.addPrivate(Out, [&CGF, AddrOut, PtrTy]() {
return CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
.getAddress(CGF);
});
(void)Scope.Privatize();
if (!IsCombiner && Out->hasInit() &&
!CGF.isTrivialInitializer(Out->getInit())) {
CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
Out->getType().getQualifiers(),
/*IsInitializer=*/true);
}
if (CombinerInitializer)
CGF.EmitIgnoredExpr(CombinerInitializer);
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitUserDefinedReduction(
CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
if (UDRMap.count(D) > 0)
return;
llvm::Function *Combiner = emitCombinerOrInitializer(
CGM, D->getType(), D->getCombiner(),
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
/*IsCombiner=*/true);
llvm::Function *Initializer = nullptr;
if (const Expr *Init = D->getInitializer()) {
Initializer = emitCombinerOrInitializer(
CGM, D->getType(),
D->getInitializerKind() == OMPDeclareReductionDecl::CallInit ? Init
: nullptr,
cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
/*IsCombiner=*/false);
}
UDRMap.try_emplace(D, Combiner, Initializer);
if (CGF) {
auto &Decls = FunctionUDRMap.FindAndConstruct(CGF->CurFn);
Decls.second.push_back(D);
}
}
std::pair<llvm::Function *, llvm::Function *>
CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
auto I = UDRMap.find(D);
if (I != UDRMap.end())
return I->second;
emitUserDefinedReduction(/*CGF=*/nullptr, D);
return UDRMap.lookup(D);
}
namespace {
// Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
// Builder if one is present.
struct PushAndPopStackRAII {
PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
bool HasCancel)
: OMPBuilder(OMPBuilder) {
if (!OMPBuilder)
return;
// The following callback is the crucial part of clangs cleanup process.
//
// NOTE:
// Once the OpenMPIRBuilder is used to create parallel regions (and
// similar), the cancellation destination (Dest below) is determined via
// IP. That means if we have variables to finalize we split the block at IP,
// use the new block (=BB) as destination to build a JumpDest (via
// getJumpDestInCurrentScope(BB)) which then is fed to
// EmitBranchThroughCleanup. Furthermore, there will not be the need
// to push & pop an FinalizationInfo object.
// The FiniCB will still be needed but at the point where the
// OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
assert(IP.getBlock()->end() == IP.getPoint() &&
"Clang CG should cause non-terminated block!");
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.restoreIP(IP);
CodeGenFunction::JumpDest Dest =
CGF.getOMPCancelDestination(OMPD_parallel);
CGF.EmitBranchThroughCleanup(Dest);
};
// TODO: Remove this once we emit parallel regions through the
// OpenMPIRBuilder as it can do this setup internally.
llvm::OpenMPIRBuilder::FinalizationInfo FI(
{FiniCB, OMPD_parallel, HasCancel});
OMPBuilder->pushFinalizationCB(std::move(FI));
}
~PushAndPopStackRAII() {
if (OMPBuilder)
OMPBuilder->popFinalizationCB();
}
llvm::OpenMPIRBuilder *OMPBuilder;
};
} // namespace
static llvm::Function *emitParallelOrTeamsOutlinedFunction(
CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
assert(ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 *");
CodeGenFunction CGF(CGM, true);
bool HasCancel = false;
if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
HasCancel = OPD->hasCancel();
else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
HasCancel = OPSD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD =
dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD =
dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
// TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
// parallel region to make cancellation barriers work properly.
llvm::OpenMPIRBuilder *OMPBuilder = CGM.getOpenMPIRBuilder();
PushAndPopStackRAII PSR(OMPBuilder, CGF, HasCancel);
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
HasCancel, OutlinedHelperName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
}
llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
return emitParallelOrTeamsOutlinedFunction(
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
}
llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
return emitParallelOrTeamsOutlinedFunction(
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(), CodeGen);
}
llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
bool Tied, unsigned &NumberOfParts) {
auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
PrePostActionTy &) {
llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
llvm::Value *TaskArgs[] = {
UpLoc, ThreadID,
CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
TaskTVar->getType()->castAs<PointerType>())
.getPointer(CGF)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task), TaskArgs);
};
CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
UntiedCodeGen);
CodeGen.setAction(Action);
assert(!ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 for tasks");
const OpenMPDirectiveKind Region =
isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
: OMPD_task;
const CapturedStmt *CS = D.getCapturedStmt(Region);
const auto *TD = dyn_cast<OMPTaskDirective>(&D);
CodeGenFunction CGF(CGM, true);
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
InnermostKind,
TD ? TD->hasCancel() : false, Action);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
if (!Tied)
NumberOfParts = Action.getNumberOfParts();
return Res;
}
static void buildStructValue(ConstantStructBuilder &Fields, CodeGenModule &CGM,
const RecordDecl *RD, const CGRecordLayout &RL,
ArrayRef<llvm::Constant *> Data) {
llvm::StructType *StructTy = RL.getLLVMType();
unsigned PrevIdx = 0;
ConstantInitBuilder CIBuilder(CGM);
auto DI = Data.begin();
for (const FieldDecl *FD : RD->fields()) {
unsigned Idx = RL.getLLVMFieldNo(FD);
// Fill the alignment.
for (unsigned I = PrevIdx; I < Idx; ++I)
Fields.add(llvm::Constant::getNullValue(StructTy->getElementType(I)));
PrevIdx = Idx + 1;
Fields.add(*DI);
++DI;
}
}
template <class... As>
static llvm::GlobalVariable *
createGlobalStruct(CodeGenModule &CGM, QualType Ty, bool IsConstant,
ArrayRef<llvm::Constant *> Data, const Twine &Name,
As &&... Args) {
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
ConstantInitBuilder CIBuilder(CGM);
ConstantStructBuilder Fields = CIBuilder.beginStruct(RL.getLLVMType());
buildStructValue(Fields, CGM, RD, RL, Data);
return Fields.finishAndCreateGlobal(
Name, CGM.getContext().getAlignOfGlobalVarInChars(Ty), IsConstant,
std::forward<As>(Args)...);
}
template <typename T>
static void
createConstantGlobalStructAndAddToParent(CodeGenModule &CGM, QualType Ty,
ArrayRef<llvm::Constant *> Data,
T &Parent) {
const auto *RD = cast<RecordDecl>(Ty->getAsTagDecl());
const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(RD);
ConstantStructBuilder Fields = Parent.beginStruct(RL.getLLVMType());
buildStructValue(Fields, CGM, RD, RL, Data);
Fields.finishAndAddTo(Parent);
}
Address CGOpenMPRuntime::getOrCreateDefaultLocation(unsigned Flags) {
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
FlagsTy FlagsKey(Flags, Reserved2Flags);
llvm::Value *Entry = OpenMPDefaultLocMap.lookup(FlagsKey);
if (!Entry) {
if (!DefaultOpenMPPSource) {
// Initialize default location for psource field of ident_t structure of
// all ident_t objects. Format is ";file;function;line;column;;".
// Taken from
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp_str.cpp
DefaultOpenMPPSource =
CGM.GetAddrOfConstantCString(";unknown;unknown;0;0;;").getPointer();
DefaultOpenMPPSource =
llvm::ConstantExpr::getBitCast(DefaultOpenMPPSource, CGM.Int8PtrTy);
}
llvm::Constant *Data[] = {
llvm::ConstantInt::getNullValue(CGM.Int32Ty),
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
llvm::ConstantInt::get(CGM.Int32Ty, Reserved2Flags),
llvm::ConstantInt::getNullValue(CGM.Int32Ty), DefaultOpenMPPSource};
llvm::GlobalValue *DefaultOpenMPLocation =
createGlobalStruct(CGM, IdentQTy, isDefaultLocationConstant(), Data, "",
llvm::GlobalValue::PrivateLinkage);
DefaultOpenMPLocation->setUnnamedAddr(
llvm::GlobalValue::UnnamedAddr::Global);
OpenMPDefaultLocMap[FlagsKey] = Entry = DefaultOpenMPLocation;
}
return Address(Entry, Align);
}
void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
bool AtCurrentPoint) {
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
assert(!Elem.second.ServiceInsertPt && "Insert point is set already.");
llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
if (AtCurrentPoint) {
Elem.second.ServiceInsertPt = new llvm::BitCastInst(
Undef, CGF.Int32Ty, "svcpt", CGF.Builder.GetInsertBlock());
} else {
Elem.second.ServiceInsertPt =
new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
Elem.second.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt);
}
}
void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
if (Elem.second.ServiceInsertPt) {
llvm::Instruction *Ptr = Elem.second.ServiceInsertPt;
Elem.second.ServiceInsertPt = nullptr;
Ptr->eraseFromParent();
}
}
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned Flags) {
Flags |= OMP_IDENT_KMPC;
// If no debug info is generated - return global default location.
if (CGM.getCodeGenOpts().getDebugInfo() == codegenoptions::NoDebugInfo ||
Loc.isInvalid())
return getOrCreateDefaultLocation(Flags).getPointer();
assert(CGF.CurFn && "No function in current CodeGenFunction.");
CharUnits Align = CGM.getContext().getTypeAlignInChars(IdentQTy);
Address LocValue = Address::invalid();
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end())
LocValue = Address(I->second.DebugLoc, Align);
// OpenMPLocThreadIDMap may have null DebugLoc and non-null ThreadID, if
// GetOpenMPThreadID was called before this routine.
if (!LocValue.isValid()) {
// Generate "ident_t .kmpc_loc.addr;"
Address AI = CGF.CreateMemTemp(IdentQTy, ".kmpc_loc.addr");
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.DebugLoc = AI.getPointer();
LocValue = AI;
if (!Elem.second.ServiceInsertPt)
setLocThreadIdInsertPt(CGF);
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
CGF.Builder.CreateMemCpy(LocValue, getOrCreateDefaultLocation(Flags),
CGF.getTypeSize(IdentQTy));
}
// char **psource = &.kmpc_loc_<flags>.addr.psource;
LValue Base = CGF.MakeAddrLValue(LocValue, IdentQTy);
auto Fields = cast<RecordDecl>(IdentQTy->getAsTagDecl())->field_begin();
LValue PSource =
CGF.EmitLValueForField(Base, *std::next(Fields, IdentField_PSource));
llvm::Value *OMPDebugLoc = OpenMPDebugLocMap.lookup(Loc.getRawEncoding());
if (OMPDebugLoc == nullptr) {
SmallString<128> Buffer2;
llvm::raw_svector_ostream OS2(Buffer2);
// Build debug location
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
OS2 << ";" << PLoc.getFilename() << ";";
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
OS2 << FD->getQualifiedNameAsString();
OS2 << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
OMPDebugLoc = CGF.Builder.CreateGlobalStringPtr(OS2.str());
OpenMPDebugLocMap[Loc.getRawEncoding()] = OMPDebugLoc;
}
// *psource = ";<File>;<Function>;<Line>;<Column>;;";
CGF.EmitStoreOfScalar(OMPDebugLoc, PSource);
// Our callers always pass this to a runtime function, so for
// convenience, go ahead and return a naked pointer.
return LocValue.getPointer();
}
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
SourceLocation Loc) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
llvm::Value *ThreadID = nullptr;
// Check whether we've already cached a load of the thread id in this
// function.
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end()) {
ThreadID = I->second.ThreadID;
if (ThreadID != nullptr)
return ThreadID;
}
// If exceptions are enabled, do not use parameter to avoid possible crash.
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getThreadIDVariable()) {
// Check if this an outlined function with thread id passed as argument.
LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
!CGF.getLangOpts().CXXExceptions ||
CGF.Builder.GetInsertBlock() == TopBlock ||
!isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
TopBlock ||
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
CGF.Builder.GetInsertBlock()) {
ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
// If value loaded in entry block, cache it and use it everywhere in
// function.
if (CGF.Builder.GetInsertBlock() == TopBlock) {
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
Elem.second.ThreadID = ThreadID;
}
return ThreadID;
}
}
}
// This is not an outlined function region - need to call __kmpc_int32
// kmpc_global_thread_num(ident_t *loc).
// Generate thread id value and cache this value for use across the
// function.
auto &Elem = OpenMPLocThreadIDMap.FindAndConstruct(CGF.CurFn);
if (!Elem.second.ServiceInsertPt)
setLocThreadIdInsertPt(CGF);
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(Elem.second.ServiceInsertPt);
llvm::CallInst *Call = CGF.Builder.CreateCall(
createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
emitUpdateLocation(CGF, Loc));
Call->setCallingConv(CGF.getRuntimeCC());
Elem.second.ThreadID = Call;
return Call;
}
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
clearLocThreadIdInsertPt(CGF);
OpenMPLocThreadIDMap.erase(CGF.CurFn);
}
if (FunctionUDRMap.count(CGF.CurFn) > 0) {
for(const auto *D : FunctionUDRMap[CGF.CurFn])
UDRMap.erase(D);
FunctionUDRMap.erase(CGF.CurFn);
}
auto I = FunctionUDMMap.find(CGF.CurFn);
if (I != FunctionUDMMap.end()) {
for(const auto *D : I->second)
UDMMap.erase(D);
FunctionUDMMap.erase(I);
}
LastprivateConditionalToTypes.erase(CGF.CurFn);
}
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
return IdentTy->getPointerTo();
}
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
if (!Kmpc_MicroTy) {
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
llvm::PointerType::getUnqual(CGM.Int32Ty)};
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
}
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
}
llvm::FunctionCallee CGOpenMPRuntime::createRuntimeFunction(unsigned Function) {
llvm::FunctionCallee RTLFn = nullptr;
switch (static_cast<OpenMPRTLFunction>(Function)) {
case OMPRTL__kmpc_fork_call: {
// Build void __kmpc_fork_call(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
getKmpc_MicroPointerTy()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_call");
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
llvm::LLVMContext &Ctx = F->getContext();
llvm::MDBuilder MDB(Ctx);
// Annotate the callback behavior of the __kmpc_fork_call:
// - The callback callee is argument number 2 (microtask).
// - The first two arguments of the callback callee are unknown (-1).
// - All variadic arguments to the __kmpc_fork_call are passed to the
// callback callee.
F->addMetadata(
llvm::LLVMContext::MD_callback,
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2, {-1, -1},
/* VarArgsArePassed */ true)}));
}
}
break;
}
case OMPRTL__kmpc_global_thread_num: {
// Build kmp_int32 __kmpc_global_thread_num(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_global_thread_num");
break;
}
case OMPRTL__kmpc_threadprivate_cached: {
// Build void *__kmpc_threadprivate_cached(ident_t *loc,
// kmp_int32 global_tid, void *data, size_t size, void ***cache);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy, CGM.SizeTy,
CGM.VoidPtrTy->getPointerTo()->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_cached");
break;
}
case OMPRTL__kmpc_critical: {
// Build void __kmpc_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical");
break;
}
case OMPRTL__kmpc_critical_with_hint: {
// Build void __kmpc_critical_with_hint(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit, uintptr_t hint);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy),
CGM.IntPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_critical_with_hint");
break;
}
case OMPRTL__kmpc_threadprivate_register: {
// Build void __kmpc_threadprivate_register(ident_t *, void *data,
// kmpc_ctor ctor, kmpc_cctor cctor, kmpc_dtor dtor);
// typedef void *(*kmpc_ctor)(void *);
auto *KmpcCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg*/ false)->getPointerTo();
// typedef void *(*kmpc_cctor)(void *, void *);
llvm::Type *KmpcCopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *KmpcCopyCtorTy =
llvm::FunctionType::get(CGM.VoidPtrTy, KmpcCopyCtorTyArgs,
/*isVarArg*/ false)
->getPointerTo();
// typedef void (*kmpc_dtor)(void *);
auto *KmpcDtorTy =
llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy, /*isVarArg*/ false)
->getPointerTo();
llvm::Type *FnTyArgs[] = {getIdentTyPointerTy(), CGM.VoidPtrTy, KmpcCtorTy,
KmpcCopyCtorTy, KmpcDtorTy};
auto *FnTy = llvm::FunctionType::get(CGM.VoidTy, FnTyArgs,
/*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_threadprivate_register");
break;
}
case OMPRTL__kmpc_end_critical: {
// Build void __kmpc_end_critical(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *crit);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_critical");
break;
}
case OMPRTL__kmpc_cancel_barrier: {
// Build kmp_int32 __kmpc_cancel_barrier(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_cancel_barrier");
break;
}
case OMPRTL__kmpc_barrier: {
// Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
break;
}
case OMPRTL__kmpc_for_static_fini: {
// Build void __kmpc_for_static_fini(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_for_static_fini");
break;
}
case OMPRTL__kmpc_push_num_threads: {
// Build void __kmpc_push_num_threads(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_threads)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_threads");
break;
}
case OMPRTL__kmpc_serialized_parallel: {
// Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
break;
}
case OMPRTL__kmpc_end_serialized_parallel: {
// Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
// global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
break;
}
case OMPRTL__kmpc_flush: {
// Build void __kmpc_flush(ident_t *loc);
llvm::Type *TypeParams[] = {getIdentTyPointerTy()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_flush");
break;
}
case OMPRTL__kmpc_master: {
// Build kmp_int32 __kmpc_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_master");
break;
}
case OMPRTL__kmpc_end_master: {
// Build void __kmpc_end_master(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_master");
break;
}
case OMPRTL__kmpc_omp_taskyield: {
// Build kmp_int32 __kmpc_omp_taskyield(ident_t *, kmp_int32 global_tid,
// int end_part);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_taskyield");
break;
}
case OMPRTL__kmpc_single: {
// Build kmp_int32 __kmpc_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_single");
break;
}
case OMPRTL__kmpc_end_single: {
// Build void __kmpc_end_single(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_single");
break;
}
case OMPRTL__kmpc_omp_task_alloc: {
// Build kmp_task_t *__kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
assert(KmpRoutineEntryPtrTy != nullptr &&
"Type kmp_routine_entry_t must be created.");
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy};
// Return void * and then cast to particular kmp_task_t type.
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_alloc");
break;
}
case OMPRTL__kmpc_omp_target_task_alloc: {
// Build kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry, kmp_int64 device_id);
assert(KmpRoutineEntryPtrTy != nullptr &&
"Type kmp_routine_entry_t must be created.");
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.SizeTy, CGM.SizeTy, KmpRoutineEntryPtrTy,
CGM.Int64Ty};
// Return void * and then cast to particular kmp_task_t type.
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_target_task_alloc");
break;
}
case OMPRTL__kmpc_omp_task: {
// Build kmp_int32 __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task");
break;
}
case OMPRTL__kmpc_copyprivate: {
// Build void __kmpc_copyprivate(ident_t *loc, kmp_int32 global_tid,
// size_t cpy_size, void *cpy_data, void(*cpy_func)(void *, void *),
// kmp_int32 didit);
llvm::Type *CpyTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *CpyFnTy =
llvm::FunctionType::get(CGM.VoidTy, CpyTypeParams, /*isVarArg=*/false);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, CpyFnTy->getPointerTo(),
CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_copyprivate");
break;
}
case OMPRTL__kmpc_reduce: {
// Build kmp_int32 __kmpc_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 num_vars, size_t reduce_size, void *reduce_data, void
// (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce");
break;
}
case OMPRTL__kmpc_reduce_nowait: {
// Build kmp_int32 __kmpc_reduce_nowait(ident_t *loc, kmp_int32
// global_tid, kmp_int32 num_vars, size_t reduce_size, void *reduce_data,
// void (*reduce_func)(void *lhs_data, void *rhs_data), kmp_critical_name
// *lck);
llvm::Type *ReduceTypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *ReduceFnTy = llvm::FunctionType::get(CGM.VoidTy, ReduceTypeParams,
/*isVarArg=*/false);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty, CGM.SizeTy,
CGM.VoidPtrTy, ReduceFnTy->getPointerTo(),
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_reduce_nowait");
break;
}
case OMPRTL__kmpc_end_reduce: {
// Build void __kmpc_end_reduce(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce");
break;
}
case OMPRTL__kmpc_end_reduce_nowait: {
// Build __kmpc_end_reduce_nowait(ident_t *loc, kmp_int32 global_tid,
// kmp_critical_name *lck);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty,
llvm::PointerType::getUnqual(KmpCriticalNameTy)};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_end_reduce_nowait");
break;
}
case OMPRTL__kmpc_omp_task_begin_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_begin_if0");
break;
}
case OMPRTL__kmpc_omp_task_complete_if0: {
// Build void __kmpc_omp_task(ident_t *, kmp_int32 gtid, kmp_task_t
// *new_task);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy,
/*Name=*/"__kmpc_omp_task_complete_if0");
break;
}
case OMPRTL__kmpc_ordered: {
// Build void __kmpc_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_ordered");
break;
}
case OMPRTL__kmpc_end_ordered: {
// Build void __kmpc_end_ordered(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_ordered");
break;
}
case OMPRTL__kmpc_omp_taskwait: {
// Build kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_omp_taskwait");
break;
}
case OMPRTL__kmpc_taskgroup: {
// Build void __kmpc_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_taskgroup");
break;
}
case OMPRTL__kmpc_end_taskgroup: {
// Build void __kmpc_end_taskgroup(ident_t *loc, kmp_int32 global_tid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_taskgroup");
break;
}
case OMPRTL__kmpc_push_proc_bind: {
// Build void __kmpc_push_proc_bind(ident_t *loc, kmp_int32 global_tid,
// int proc_bind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_proc_bind");
break;
}
case OMPRTL__kmpc_omp_task_with_deps: {
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), CGM.Int32Ty, CGM.VoidPtrTy, CGM.Int32Ty,
CGM.VoidPtrTy, CGM.Int32Ty, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_task_with_deps");
break;
}
case OMPRTL__kmpc_omp_wait_deps: {
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32 ndeps_noalias,
// kmp_depend_info_t *noalias_dep_list);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int32Ty, CGM.VoidPtrTy,
CGM.Int32Ty, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_omp_wait_deps");
break;
}
case OMPRTL__kmpc_cancellationpoint: {
// Build kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancellationpoint");
break;
}
case OMPRTL__kmpc_cancel: {
// Build kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.IntTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_cancel");
break;
}
case OMPRTL__kmpc_push_num_teams: {
// Build void kmpc_push_num_teams (ident_t loc, kmp_int32 global_tid,
// kmp_int32 num_teams, kmp_int32 num_threads)
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty, CGM.Int32Ty,
CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_num_teams");
break;
}
case OMPRTL__kmpc_fork_teams: {
// Build void __kmpc_fork_teams(ident_t *loc, kmp_int32 argc, kmpc_micro
// microtask, ...);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
getKmpc_MicroPointerTy()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ true);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_fork_teams");
if (auto *F = dyn_cast<llvm::Function>(RTLFn.getCallee())) {
if (!F->hasMetadata(llvm::LLVMContext::MD_callback)) {
llvm::LLVMContext &Ctx = F->getContext();
llvm::MDBuilder MDB(Ctx);
// Annotate the callback behavior of the __kmpc_fork_teams:
// - The callback callee is argument number 2 (microtask).
// - The first two arguments of the callback callee are unknown (-1).
// - All variadic arguments to the __kmpc_fork_teams are passed to the
// callback callee.
F->addMetadata(
llvm::LLVMContext::MD_callback,
*llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2, {-1, -1},
/* VarArgsArePassed */ true)}));
}
}
break;
}
case OMPRTL__kmpc_taskloop: {
// Build void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.IntTy,
CGM.VoidPtrTy,
CGM.IntTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty,
CGM.IntTy,
CGM.IntTy,
CGM.Int64Ty,
CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_taskloop");
break;
}
case OMPRTL__kmpc_doacross_init: {
// Build void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid, kmp_int32
// num_dims, struct kmp_dim *dims);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
CGM.Int32Ty,
CGM.Int32Ty,
CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_init");
break;
}
case OMPRTL__kmpc_doacross_fini: {
// Build void __kmpc_doacross_fini(ident_t *loc, kmp_int32 gtid);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_fini");
break;
}
case OMPRTL__kmpc_doacross_post: {
// Build void __kmpc_doacross_post(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_post");
break;
}
case OMPRTL__kmpc_doacross_wait: {
// Build void __kmpc_doacross_wait(ident_t *loc, kmp_int32 gtid, kmp_int64
// *vec);
llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty,
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_doacross_wait");
break;
}
case OMPRTL__kmpc_task_reduction_init: {
// Build void *__kmpc_task_reduction_init(int gtid, int num_data, void
// *data);
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.IntTy, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn =
CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_task_reduction_init");
break;
}
case OMPRTL__kmpc_task_reduction_get_th_data: {
// Build void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
// *d);
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(
FnTy, /*Name=*/"__kmpc_task_reduction_get_th_data");
break;
}
case OMPRTL__kmpc_alloc: {
// Build to void *__kmpc_alloc(int gtid, size_t sz, omp_allocator_handle_t
// al); omp_allocator_handle_t type is void *.
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.SizeTy, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_alloc");
break;
}
case OMPRTL__kmpc_free: {
// Build to void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t
// al); omp_allocator_handle_t type is void *.
llvm::Type *TypeParams[] = {CGM.IntTy, CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name=*/"__kmpc_free");
break;
}
case OMPRTL__kmpc_push_target_tripcount: {
// Build void __kmpc_push_target_tripcount(int64_t device_id, kmp_uint64
// size);
llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int64Ty};
llvm::FunctionType *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_push_target_tripcount");
break;
}
case OMPRTL__tgt_target: {
// Build int32_t __tgt_target(int64_t device_id, void *host_ptr, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target");
break;
}
case OMPRTL__tgt_target_nowait: {
// Build int32_t __tgt_target_nowait(int64_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
// int64_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_nowait");
break;
}
case OMPRTL__tgt_target_teams: {
// Build int32_t __tgt_target_teams(int64_t device_id, void *host_ptr,
// int32_t arg_num, void** args_base, void **args, int64_t *arg_sizes,
// int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo(),
CGM.Int32Ty,
CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams");
break;
}
case OMPRTL__tgt_target_teams_nowait: {
// Build int32_t __tgt_target_teams_nowait(int64_t device_id, void
// *host_ptr, int32_t arg_num, void** args_base, void **args, int64_t
// *arg_sizes, int64_t *arg_types, int32_t num_teams, int32_t thread_limit);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.VoidPtrTy,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo(),
CGM.Int32Ty,
CGM.Int32Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_teams_nowait");
break;
}
case OMPRTL__tgt_register_requires: {
// Build void __tgt_register_requires(int64_t flags);
llvm::Type *TypeParams[] = {CGM.Int64Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_register_requires");
break;
}
case OMPRTL__tgt_target_data_begin: {
// Build void __tgt_target_data_begin(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin");
break;
}
case OMPRTL__tgt_target_data_begin_nowait: {
// Build void __tgt_target_data_begin_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_begin_nowait");
break;
}
case OMPRTL__tgt_target_data_end: {
// Build void __tgt_target_data_end(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end");
break;
}
case OMPRTL__tgt_target_data_end_nowait: {
// Build void __tgt_target_data_end_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_end_nowait");
break;
}
case OMPRTL__tgt_target_data_update: {
// Build void __tgt_target_data_update(int64_t device_id, int32_t arg_num,
// void** args_base, void **args, int64_t *arg_sizes, int64_t *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update");
break;
}
case OMPRTL__tgt_target_data_update_nowait: {
// Build void __tgt_target_data_update_nowait(int64_t device_id, int32_t
// arg_num, void** args_base, void **args, int64_t *arg_sizes, int64_t
// *arg_types);
llvm::Type *TypeParams[] = {CGM.Int64Ty,
CGM.Int32Ty,
CGM.VoidPtrPtrTy,
CGM.VoidPtrPtrTy,
CGM.Int64Ty->getPointerTo(),
CGM.Int64Ty->getPointerTo()};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_target_data_update_nowait");
break;
}
case OMPRTL__tgt_mapper_num_components: {
// Build int64_t __tgt_mapper_num_components(void *rt_mapper_handle);
llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
auto *FnTy =
llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_mapper_num_components");
break;
}
case OMPRTL__tgt_push_mapper_component: {
// Build void __tgt_push_mapper_component(void *rt_mapper_handle, void
// *base, void *begin, int64_t size, int64_t type);
llvm::Type *TypeParams[] = {CGM.VoidPtrTy, CGM.VoidPtrTy, CGM.VoidPtrTy,
CGM.Int64Ty, CGM.Int64Ty};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
RTLFn = CGM.CreateRuntimeFunction(FnTy, "__tgt_push_mapper_component");
break;
}
}
assert(RTLFn && "Unable to find OpenMP runtime function");
return RTLFn;
}
llvm::FunctionCallee
CGOpenMPRuntime::createForStaticInitFunction(unsigned IVSize, bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
StringRef Name = IVSize == 32 ? (IVSigned ? "__kmpc_for_static_init_4"
: "__kmpc_for_static_init_4u")
: (IVSigned ? "__kmpc_for_static_init_8"
: "__kmpc_for_static_init_8u");
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy, // p_stride
ITy, // incr
ITy // chunk
};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::FunctionCallee
CGOpenMPRuntime::createDispatchInitFunction(unsigned IVSize, bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
StringRef Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_init_4" : "__kmpc_dispatch_init_4u")
: (IVSigned ? "__kmpc_dispatch_init_8" : "__kmpc_dispatch_init_8u");
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
llvm::Type *TypeParams[] = { getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
CGM.Int32Ty, // schedtype
ITy, // lower
ITy, // upper
ITy, // stride
ITy // chunk
};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::FunctionCallee
CGOpenMPRuntime::createDispatchFiniFunction(unsigned IVSize, bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
StringRef Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_fini_4" : "__kmpc_dispatch_fini_4u")
: (IVSigned ? "__kmpc_dispatch_fini_8" : "__kmpc_dispatch_fini_8u");
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
};
auto *FnTy =
llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
llvm::FunctionCallee
CGOpenMPRuntime::createDispatchNextFunction(unsigned IVSize, bool IVSigned) {
assert((IVSize == 32 || IVSize == 64) &&
"IV size is not compatible with the omp runtime");
StringRef Name =
IVSize == 32
? (IVSigned ? "__kmpc_dispatch_next_4" : "__kmpc_dispatch_next_4u")
: (IVSigned ? "__kmpc_dispatch_next_8" : "__kmpc_dispatch_next_8u");
llvm::Type *ITy = IVSize == 32 ? CGM.Int32Ty : CGM.Int64Ty;
auto *PtrTy = llvm::PointerType::getUnqual(ITy);
llvm::Type *TypeParams[] = {
getIdentTyPointerTy(), // loc
CGM.Int32Ty, // tid
llvm::PointerType::getUnqual(CGM.Int32Ty), // p_lastiter
PtrTy, // p_lower
PtrTy, // p_upper
PtrTy // p_stride
};
auto *FnTy =
llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
return CGM.CreateRuntimeFunction(FnTy, Name);
}
/// Obtain information that uniquely identifies a target entry. This
/// consists of the file and device IDs as well as line number associated with
/// the relevant entry source location.
static void getTargetEntryUniqueInfo(ASTContext &C, SourceLocation Loc,
unsigned &DeviceID, unsigned &FileID,
unsigned &LineNum) {
SourceManager &SM = C.getSourceManager();
// The loc should be always valid and have a file ID (the user cannot use
// #pragma directives in macros)
assert(Loc.isValid() && "Source location is expected to be always valid.");
PresumedLoc PLoc = SM.getPresumedLoc(Loc);
assert(PLoc.isValid() && "Source location is expected to be always valid.");
llvm::sys::fs::UniqueID ID;
if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
SM.getDiagnostics().Report(diag::err_cannot_open_file)
<< PLoc.getFilename() << EC.message();
DeviceID = ID.getDevice();
FileID = ID.getFile();
LineNum = PLoc.getLine();
}
Address CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
if (CGM.getLangOpts().OpenMPSimd)
return Address::invalid();
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (Res && (*Res == OMPDeclareTargetDeclAttr::MT_Link ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
HasRequiresUnifiedSharedMemory))) {
SmallString<64> PtrName;
{
llvm::raw_svector_ostream OS(PtrName);
OS << CGM.getMangledName(GlobalDecl(VD));
if (!VD->isExternallyVisible()) {
unsigned DeviceID, FileID, Line;
getTargetEntryUniqueInfo(CGM.getContext(),
VD->getCanonicalDecl()->getBeginLoc(),
DeviceID, FileID, Line);
OS << llvm::format("_%x", FileID);
}
OS << "_decl_tgt_ref_ptr";
}
llvm::Value *Ptr = CGM.getModule().getNamedValue(PtrName);
if (!Ptr) {
QualType PtrTy = CGM.getContext().getPointerType(VD->getType());
Ptr = getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(PtrTy),
PtrName);
auto *GV = cast<llvm::GlobalVariable>(Ptr);
GV->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
if (!CGM.getLangOpts().OpenMPIsDevice)
GV->setInitializer(CGM.GetAddrOfGlobal(VD));
registerTargetGlobalVariable(VD, cast<llvm::Constant>(Ptr));
}
return Address(Ptr, CGM.getContext().getDeclAlign(VD));
}
return Address::invalid();
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
assert(!CGM.getLangOpts().OpenMPUseTLS ||
!CGM.getContext().getTargetInfo().isTLSSupported());
// Lookup the entry, lazily creating it if necessary.
std::string Suffix = getName({"cache", ""});
return getOrCreateInternalVariable(
CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix));
}
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return VDAddr;
llvm::Type *VarTy = VDAddr.getElementType();
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreatePointerCast(VDAddr.getPointer(),
CGM.Int8PtrTy),
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
getOrCreateThreadPrivateCache(VD)};
return Address(CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
VDAddr.getAlignment());
}
void CGOpenMPRuntime::emitThreadPrivateVarInit(
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
// library.
llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_global_thread_num),
OMPLoc);
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
// to register constructor/destructor for variable.
llvm::Value *Args[] = {
OMPLoc, CGF.Builder.CreatePointerCast(VDAddr.getPointer(), CGM.VoidPtrTy),
Ctor, CopyCtor, Dtor};
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_register), Args);
}
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
bool PerformInit, CodeGenFunction *CGF) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return nullptr;
VD = VD->getDefinition(CGM.getContext());
if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
QualType ASTTy = VD->getType();
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
const Expr *Init = VD->getAnyInitializer();
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
// Generate function that re-emits the declaration's initializer into the
// threadprivate copy of the variable VD
CodeGenFunction CtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
ImplicitParamDecl::Other);
Args.push_back(&Dst);
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidPtrTy, Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
std::string Name = getName({"__kmpc_global_ctor_", ""});
llvm::Function *Fn =
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
Args, Loc, Loc);
llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
Address Arg = Address(ArgVal, VDAddr.getAlignment());
Arg = CtorCGF.Builder.CreateElementBitCast(
Arg, CtorCGF.ConvertTypeForMem(ASTTy));
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
/*IsInitializer=*/true);
ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
CtorCGF.FinishFunction();
Ctor = Fn;
}
if (VD->getType().isDestructedType() != QualType::DK_none) {
// Generate function that emits destructor call for the threadprivate copy
// of the variable VD
CodeGenFunction DtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
ImplicitParamDecl::Other);
Args.push_back(&Dst);
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidTy, Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
std::string Name = getName({"__kmpc_global_dtor_", ""});
llvm::Function *Fn =
CGM.CreateGlobalInitOrDestructFunction(FTy, Name, FI, Loc);
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
Loc, Loc);
// Create a scope with an artificial location for the body of this function.
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
DtorCGF.GetAddrOfLocalVar(&Dst),
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
DtorCGF.emitDestroy(Address(ArgVal, VDAddr.getAlignment()), ASTTy,
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
DtorCGF.FinishFunction();
Dtor = Fn;
}
// Do not emit init function if it is not required.
if (!Ctor && !Dtor)
return nullptr;
llvm::Type *CopyCtorTyArgs[] = {CGM.VoidPtrTy, CGM.VoidPtrTy};
auto *CopyCtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CopyCtorTyArgs,
/*isVarArg=*/false)
->getPointerTo();
// Copying constructor for the threadprivate variable.
// Must be NULL - reserved by runtime, but currently it requires that this
// parameter is always NULL. Otherwise it fires assertion.
CopyCtor = llvm::Constant::getNullValue(CopyCtorTy);
if (Ctor == nullptr) {
auto *CtorTy = llvm::FunctionType::get(CGM.VoidPtrTy, CGM.VoidPtrTy,
/*isVarArg=*/false)
->getPointerTo();
Ctor = llvm::Constant::getNullValue(CtorTy);
}
if (Dtor == nullptr) {
auto *DtorTy = llvm::FunctionType::get(CGM.VoidTy, CGM.VoidPtrTy,
/*isVarArg=*/false)
->getPointerTo();
Dtor = llvm::Constant::getNullValue(DtorTy);
}
if (!CGF) {
auto *InitFunctionTy =
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
std::string Name = getName({"__omp_threadprivate_init_", ""});
llvm::Function *InitFunction = CGM.CreateGlobalInitOrDestructFunction(
InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
CodeGenFunction InitCGF(CGM);
FunctionArgList ArgList;
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
CGM.getTypes().arrangeNullaryFunction(), ArgList,
Loc, Loc);
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
InitCGF.FinishFunction();
return InitFunction;
}
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
}
return nullptr;
}
bool CGOpenMPRuntime::emitDeclareTargetVarDefinition(const VarDecl *VD,
llvm::GlobalVariable *Addr,
bool PerformInit) {
if (CGM.getLangOpts().OMPTargetTriples.empty() &&
!CGM.getLangOpts().OpenMPIsDevice)
return false;
Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
HasRequiresUnifiedSharedMemory))
return CGM.getLangOpts().OpenMPIsDevice;
VD = VD->getDefinition(CGM.getContext());
if (VD && !DeclareTargetWithDefinition.insert(CGM.getMangledName(VD)).second)
return CGM.getLangOpts().OpenMPIsDevice;
QualType ASTTy = VD->getType();
SourceLocation Loc = VD->getCanonicalDecl()->getBeginLoc();
// Produce the unique prefix to identify the new target regions. We use
// the source location of the variable declaration which we know to not
// conflict with any target region.
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), Loc, DeviceID, FileID, Line);
SmallString<128> Buffer, Out;
{
llvm::raw_svector_ostream OS(Buffer);
OS << "__omp_offloading_" << llvm::format("_%x", DeviceID)
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
}
const Expr *Init = VD->getAnyInitializer();
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
llvm::Constant *Ctor;
llvm::Constant *ID;
if (CGM.getLangOpts().OpenMPIsDevice) {
// Generate function that re-emits the declaration's initializer into
// the threadprivate copy of the variable VD
CodeGenFunction CtorCGF(CGM);
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, Twine(Buffer, "_ctor"), FI, Loc);
auto NL = ApplyDebugLocation::CreateEmpty(CtorCGF);
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
FunctionArgList(), Loc, Loc);
auto AL = ApplyDebugLocation::CreateArtificial(CtorCGF);
CtorCGF.EmitAnyExprToMem(Init,
Address(Addr, CGM.getContext().getDeclAlign(VD)),
Init->getType().getQualifiers(),
/*IsInitializer=*/true);
CtorCGF.FinishFunction();
Ctor = Fn;
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Ctor));
} else {
Ctor = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage,
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_ctor"));
ID = Ctor;
}
// Register the information for the entry associated with the constructor.
Out.clear();
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
DeviceID, FileID, Twine(Buffer, "_ctor").toStringRef(Out), Line, Ctor,
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryCtor);
}
if (VD->getType().isDestructedType() != QualType::DK_none) {
llvm::Constant *Dtor;
llvm::Constant *ID;
if (CGM.getLangOpts().OpenMPIsDevice) {
// Generate function that emits destructor call for the threadprivate
// copy of the variable VD
CodeGenFunction DtorCGF(CGM);
const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction();
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
llvm::Function *Fn = CGM.CreateGlobalInitOrDestructFunction(
FTy, Twine(Buffer, "_dtor"), FI, Loc);
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI,
FunctionArgList(), Loc, Loc);
// Create a scope with an artificial location for the body of this
// function.
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
DtorCGF.emitDestroy(Address(Addr, CGM.getContext().getDeclAlign(VD)),
ASTTy, DtorCGF.getDestroyer(ASTTy.isDestructedType()),
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
DtorCGF.FinishFunction();
Dtor = Fn;
ID = llvm::ConstantExpr::getBitCast(Fn, CGM.Int8PtrTy);
CGM.addUsedGlobal(cast<llvm::GlobalValue>(Dtor));
} else {
Dtor = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage,
llvm::Constant::getNullValue(CGM.Int8Ty), Twine(Buffer, "_dtor"));
ID = Dtor;
}
// Register the information for the entry associated with the destructor.
Out.clear();
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
DeviceID, FileID, Twine(Buffer, "_dtor").toStringRef(Out), Line, Dtor,
ID, OffloadEntriesInfoManagerTy::OMPTargetRegionEntryDtor);
}
return CGM.getLangOpts().OpenMPIsDevice;
}
Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
QualType VarType,
StringRef Name) {
std::string Suffix = getName({"artificial", ""});
llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
llvm::Value *GAddr =
getOrCreateInternalVariable(VarLVType, Twine(Name).concat(Suffix));
if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
CGM.getTarget().isTLSSupported()) {
cast<llvm::GlobalVariable>(GAddr)->setThreadLocal(/*Val=*/true);
return Address(GAddr, CGM.getContext().getTypeAlignInChars(VarType));
}
std::string CacheSuffix = getName({"cache", ""});
llvm::Value *Args[] = {
emitUpdateLocation(CGF, SourceLocation()),
getThreadID(CGF, SourceLocation()),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
/*isSigned=*/false),
getOrCreateInternalVariable(
CGM.VoidPtrPtrTy, Twine(Name).concat(Suffix).concat(CacheSuffix))};
return Address(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_threadprivate_cached), Args),
VarLVType->getPointerTo(/*AddrSpace=*/0)),
CGM.getContext().getTypeAlignInChars(VarType));
}
void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
const RegionCodeGenTy &ThenGen,
const RegionCodeGenTy &ElseGen) {
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
bool CondConstant;
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
if (CondConstant)
ThenGen(CGF);
else
ElseGen(CGF);
return;
}
// Otherwise, the condition did not fold, or we couldn't elide it. Just
// emit the conditional branch.
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
// Emit the 'then' code.
CGF.EmitBlock(ThenBlock);
ThenGen(CGF);
CGF.EmitBranch(ContBlock);
// Emit the 'else' code if present.
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ElseBlock);
ElseGen(CGF);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBranch(ContBlock);
// Emit the continuation block for code after the if.
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
auto &&ThenGen = [OutlinedFn, CapturedVars, RTLoc](CodeGenFunction &CGF,
PrePostActionTy &) {
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
llvm::FunctionCallee RTLFn =
RT.createRuntimeFunction(OMPRTL__kmpc_fork_call);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
};
auto &&ElseGen = [OutlinedFn, CapturedVars, RTLoc, Loc](CodeGenFunction &CGF,
PrePostActionTy &) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
// Build calls:
// __kmpc_serialized_parallel(&Loc, GTid);
llvm::Value *Args[] = {RTLoc, ThreadID};
CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_serialized_parallel), Args);
// OutlinedFn(&GTid, &zero_bound, CapturedStruct);
Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
Address ZeroAddrBound =
CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".bound.zero.addr");
CGF.InitTempAlloca(ZeroAddrBound, CGF.Builder.getInt32(/*C*/ 0));
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
// ThreadId for serialized parallels is 0.
OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
// __kmpc_end_serialized_parallel(&Loc, GTid);
llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_end_serialized_parallel),
EndArgs);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenGen, ElseGen);
} else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
// If we're inside an (outlined) parallel region, use the region info's
// thread-ID variable (it is passed in a first argument of the outlined function
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
// regular serial code region, get thread ID by calling kmp_int32
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
// return the address of that temp.
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
SourceLocation Loc) {
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
if (OMPRegionInfo->getThreadIDVariable())
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress(CGF);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
QualType Int32Ty =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
CGF.EmitStoreOfScalar(ThreadID,
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
return ThreadIDTemp;
}
llvm::Constant *CGOpenMPRuntime::getOrCreateInternalVariable(
llvm::Type *Ty, const llvm::Twine &Name, unsigned AddressSpace) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Name;
StringRef RuntimeName = Out.str();
auto &Elem = *InternalVars.try_emplace(RuntimeName, nullptr).first;
if (Elem.second) {
assert(Elem.second->getType()->getPointerElementType() == Ty &&
"OMP internal variable has different type than requested");
return &*Elem.second;
}
return Elem.second = new llvm::GlobalVariable(
CGM.getModule(), Ty, /*IsConstant*/ false,
llvm::GlobalValue::CommonLinkage, llvm::Constant::getNullValue(Ty),
Elem.first(), /*InsertBefore=*/nullptr,
llvm::GlobalValue::NotThreadLocal, AddressSpace);
}
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
std::string Name = getName({Prefix, "var"});
return getOrCreateInternalVariable(KmpCriticalNameTy, Name);
}
namespace {
/// Common pre(post)-action for different OpenMP constructs.
class CommonActionTy final : public PrePostActionTy {
llvm::FunctionCallee EnterCallee;
ArrayRef<llvm::Value *> EnterArgs;
llvm::FunctionCallee ExitCallee;
ArrayRef<llvm::Value *> ExitArgs;
bool Conditional;
llvm::BasicBlock *ContBlock = nullptr;
public:
CommonActionTy(llvm::FunctionCallee EnterCallee,
ArrayRef<llvm::Value *> EnterArgs,
llvm::FunctionCallee ExitCallee,
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
ExitArgs(ExitArgs), Conditional(Conditional) {}
void Enter(CodeGenFunction &CGF) override {
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
if (Conditional) {
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
ContBlock = CGF.createBasicBlock("omp_if.end");
// Generate the branch (If-stmt)
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
CGF.EmitBlock(ThenBlock);
}
}
void Done(CodeGenFunction &CGF) {
// Emit the rest of blocks/branches
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
void Exit(CodeGenFunction &CGF) override {
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
}
};
} // anonymous namespace
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen,
SourceLocation Loc, const Expr *Hint) {
// __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
// CriticalOpGen();
// __kmpc_end_critical(ident_t *, gtid, Lock);
// Prepare arguments and build a call to __kmpc_critical
if (!CGF.HaveInsertPoint())
return;
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
getCriticalRegionLock(CriticalName)};
llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
std::end(Args));
if (Hint) {
EnterArgs.push_back(CGF.Builder.CreateIntCast(
CGF.EmitScalarExpr(Hint), CGM.IntPtrTy, /*isSigned=*/false));
}
CommonActionTy Action(
createRuntimeFunction(Hint ? OMPRTL__kmpc_critical_with_hint
: OMPRTL__kmpc_critical),
EnterArgs, createRuntimeFunction(OMPRTL__kmpc_end_critical), Args);
CriticalOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
}
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// if(__kmpc_master(ident_t *, gtid)) {
// MasterOpGen();
// __kmpc_end_master(ident_t *, gtid);
// }
// Prepare arguments and build a call to __kmpc_master
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_master), Args,
createRuntimeFunction(OMPRTL__kmpc_end_master), Args,
/*Conditional=*/true);
MasterOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
Action.Done(CGF);
}
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskyield), Args);
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_taskgroup(ident_t *, gtid);
// TaskgroupOpGen();
// __kmpc_end_taskgroup(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_taskgroup
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_taskgroup), Args,
createRuntimeFunction(OMPRTL__kmpc_end_taskgroup),
Args);
TaskgroupOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
}
/// Given an array of pointers to variables, project the address of a
/// given variable.
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
unsigned Index, const VarDecl *Var) {
// Pull out the pointer to the variable.
Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
Address Addr = Address(Ptr, CGF.getContext().getDeclAlign(Var));
Addr = CGF.Builder.CreateElementBitCast(
Addr, CGF.ConvertTypeForMem(Var->getType()));
return Addr;
}
static llvm::Value *emitCopyprivateCopyFunction(
CodeGenModule &CGM, llvm::Type *ArgsType,
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
// void copy_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
const auto &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
// Dest = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// *(Type0*)Dst[0] = *(Type0*)Src[0];
// *(Type1*)Dst[1] = *(Type1*)Src[1];
// ...
// *(Typen*)Dst[n] = *(Typen*)Src[n];
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
const auto *DestVar =
cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
const auto *SrcVar =
cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
QualType Type = VD->getType();
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
}
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc,
ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> DstExprs,
ArrayRef<const Expr *> AssignmentOps) {
if (!CGF.HaveInsertPoint())
return;
assert(CopyprivateVars.size() == SrcExprs.size() &&
CopyprivateVars.size() == DstExprs.size() &&
CopyprivateVars.size() == AssignmentOps.size());
ASTContext &C = CGM.getContext();
// int32 did_it = 0;
// if(__kmpc_single(ident_t *, gtid)) {
// SingleOpGen();
// __kmpc_end_single(ident_t *, gtid);
// did_it = 1;
// }
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
Address DidIt = Address::invalid();
if (!CopyprivateVars.empty()) {
// int32 did_it = 0;
QualType KmpInt32Ty =
C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
}
// Prepare arguments and build a call to __kmpc_single
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_single), Args,
createRuntimeFunction(OMPRTL__kmpc_end_single), Args,
/*Conditional=*/true);
SingleOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
if (DidIt.isValid()) {
// did_it = 1;
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
}
Action.Done(CGF);
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
if (DidIt.isValid()) {
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
QualType CopyprivateArrayTy = C.getConstantArrayType(
C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
// Create a list of all private variables for copyprivate.
Address CopyprivateList =
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
CGF.VoidPtrTy),
Elem);
}
// Build function that copies private values from single region to all other
// threads in the corresponding parallel region.
llvm::Value *CpyFn = emitCopyprivateCopyFunction(
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy)->getPointerTo(),
CopyprivateVars, SrcExprs, DstExprs, AssignmentOps, Loc);
llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
Address CL =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(CopyprivateList,
CGF.VoidPtrTy);
llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
getThreadID(CGF, Loc), // i32 <gtid>
BufSize, // size_t <buf_size>
CL.getPointer(), // void *<copyprivate list>
CpyFn, // void (*) (void *, void *) <copy_func>
DidItVal // i32 did_it
};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_copyprivate), Args);
}
}
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc, bool IsThreads) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_ordered(ident_t *, gtid);
// OrderedOpGen();
// __kmpc_end_ordered(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_ordered
if (IsThreads) {
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(createRuntimeFunction(OMPRTL__kmpc_ordered), Args,
createRuntimeFunction(OMPRTL__kmpc_end_ordered),
Args);
OrderedOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
return;
}
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
}
unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
unsigned Flags;
if (Kind == OMPD_for)
Flags = OMP_IDENT_BARRIER_IMPL_FOR;
else if (Kind == OMPD_sections)
Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
else if (Kind == OMPD_single)
Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
else if (Kind == OMPD_barrier)
Flags = OMP_IDENT_BARRIER_EXPL;
else
Flags = OMP_IDENT_BARRIER_IMPL;
return Flags;
}
void CGOpenMPRuntime::getDefaultScheduleAndChunk(
CodeGenFunction &CGF, const OMPLoopDirective &S,
OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
// Check if the loop directive is actually a doacross loop directive. In this
// case choose static, 1 schedule.
if (llvm::any_of(
S.getClausesOfKind<OMPOrderedClause>(),
[](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
ScheduleKind = OMPC_SCHEDULE_static;
// Chunk size is 1 in this case.
llvm::APInt ChunkSize(32, 1);
ChunkExpr = IntegerLiteral::Create(
CGF.getContext(), ChunkSize,
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
SourceLocation());
}
}
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind Kind, bool EmitChecks,
bool ForceSimpleCall) {
// Check if we should use the OMPBuilder
auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
llvm::OpenMPIRBuilder *OMPBuilder = CGF.CGM.getOpenMPIRBuilder();
if (OMPBuilder) {
CGF.Builder.restoreIP(OMPBuilder->CreateBarrier(
CGF.Builder, Kind, ForceSimpleCall, EmitChecks));
return;
}
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_cancel_barrier(loc, thread_id);
// Build call __kmpc_barrier(loc, thread_id);
unsigned Flags = getDefaultFlagsForBarriers(Kind);
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
// thread_id);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
getThreadID(CGF, Loc)};
if (OMPRegionInfo) {
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
llvm::Value *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancel_barrier), Args);
if (EmitChecks) {
// if (__kmpc_cancel_barrier()) {
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
CodeGenFunction::JumpDest CancelDestination =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDestination);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
return;
}
}
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_barrier), Args);
}
/// Map the OpenMP loop schedule to the runtime enumeration.
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked, bool Ordered) {
switch (ScheduleKind) {
case OMPC_SCHEDULE_static:
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
: (Ordered ? OMP_ord_static : OMP_sch_static);
case OMPC_SCHEDULE_dynamic:
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
case OMPC_SCHEDULE_guided:
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
case OMPC_SCHEDULE_runtime:
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
case OMPC_SCHEDULE_auto:
return Ordered ? OMP_ord_auto : OMP_sch_auto;
case OMPC_SCHEDULE_unknown:
assert(!Chunked && "chunk was specified but schedule kind not known");
return Ordered ? OMP_ord_static : OMP_sch_static;
}
llvm_unreachable("Unexpected runtime schedule");
}
/// Map the OpenMP distribute schedule to the runtime enumeration.
static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
// only static is allowed for dist_schedule
return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
return Schedule == OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static_chunked;
}
bool CGOpenMPRuntime::isStaticChunked(
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
return Schedule == OMP_dist_sch_static_chunked;
}
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
return Schedule != OMP_sch_static;
}
static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1,
OpenMPScheduleClauseModifier M2) {
int Modifier = 0;
switch (M1) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
switch (M2) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
// OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
// If the static schedule kind is specified or if the ordered clause is
// specified, and if the nonmonotonic modifier is not specified, the effect is
// as if the monotonic modifier is specified. Otherwise, unless the monotonic
// modifier is specified, the effect is as if the nonmonotonic modifier is
// specified.
if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static_chunked ||
Schedule == OMP_dist_sch_static))
Modifier = OMP_sch_modifier_nonmonotonic;
}
return Schedule | Modifier;
}
void CGOpenMPRuntime::emitForDispatchInit(
CodeGenFunction &CGF, SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
bool Ordered, const DispatchRTInput &DispatchValues) {
if (!CGF.HaveInsertPoint())
return;
OpenMPSchedType Schedule = getRuntimeSchedule(
ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
assert(Ordered ||
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
Schedule != OMP_sch_static_balanced_chunked));
// Call __kmpc_dispatch_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
// kmp_int[32|64] lower, kmp_int[32|64] upper,
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
// If the Chunk was not specified in the clause - use default value 1.
llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
: CGF.Builder.getIntN(IVSize, 1);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc),
CGF.Builder.getInt32(addMonoNonMonoModifier(
CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
DispatchValues.LB, // Lower
DispatchValues.UB, // Upper
CGF.Builder.getIntN(IVSize, 1), // Stride
Chunk // Chunk
};
CGF.EmitRuntimeCall(createDispatchInitFunction(IVSize, IVSigned), Args);
}
static void emitForStaticInitCall(
CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
const CGOpenMPRuntime::StaticRTInput &Values) {
if (!CGF.HaveInsertPoint())
return;
assert(!Values.Ordered);
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static ||
Schedule == OMP_dist_sch_static_chunked);
// Call __kmpc_for_static_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
llvm::Value *Chunk = Values.Chunk;
if (Chunk == nullptr) {
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) &&
"expected static non-chunked schedule");
// If the Chunk was not specified in the clause - use default value 1.
Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
} else {
assert((Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static_chunked) &&
"expected static chunked schedule");
}
llvm::Value *Args[] = {
UpdateLocation,
ThreadId,
CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
M2)), // Schedule type
Values.IL.getPointer(), // &isLastIter
Values.LB.getPointer(), // &LB
Values.UB.getPointer(), // &UB
Values.ST.getPointer(), // &Stride
CGF.Builder.getIntN(Values.IVSize, 1), // Incr
Chunk // Chunk
};
CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
}
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind,
const OpenMPScheduleTy &ScheduleKind,
const StaticRTInput &Values) {
OpenMPSchedType ScheduleNum = getRuntimeSchedule(
ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
assert(isOpenMPWorksharingDirective(DKind) &&
"Expected loop-based or sections-based directive.");
llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
isOpenMPLoopDirective(DKind)
? OMP_IDENT_WORK_LOOP
: OMP_IDENT_WORK_SECTIONS);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::FunctionCallee StaticInitFunction =
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
}
void CGOpenMPRuntime::emitDistributeStaticInit(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDistScheduleClauseKind SchedKind,
const CGOpenMPRuntime::StaticRTInput &Values) {
OpenMPSchedType ScheduleNum =
getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
llvm::Value *UpdatedLocation =
emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::FunctionCallee StaticInitFunction =
createForStaticInitFunction(Values.IVSize, Values.IVSigned);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
OMPC_SCHEDULE_MODIFIER_unknown, Values);
}
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc,
isOpenMPDistributeDirective(DKind)
? OMP_IDENT_WORK_DISTRIBUTE
: isOpenMPLoopDirective(DKind)
? OMP_IDENT_WORK_LOOP
: OMP_IDENT_WORK_SECTIONS),
getThreadID(CGF, Loc)};
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_for_static_fini),
Args);
}
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(createDispatchFiniFunction(IVSize, IVSigned), Args);
}
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc, unsigned IVSize,
bool IVSigned, Address IL,
Address LB, Address UB,
Address ST) {
// Call __kmpc_dispatch_next(
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
// kmp_int[32|64] *p_stride);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc),
IL.getPointer(), // &isLastIter
LB.getPointer(), // &Lower
UB.getPointer(), // &Upper
ST.getPointer() // &Stride
};
llvm::Value *Call =
CGF.EmitRuntimeCall(createDispatchNextFunction(IVSize, IVSigned), Args);
return CGF.EmitScalarConversion(
Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
CGF.getContext().BoolTy, Loc);
}
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_threads),
Args);
}
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
ProcBindKind ProcBind,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_proc_bind), Args);
}
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call void __kmpc_flush(ident_t *loc)
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_flush),
emitUpdateLocation(CGF, Loc));
}
namespace {
/// Indexes of fields for type kmp_task_t.
enum KmpTaskTFields {
/// List of shared variables.
KmpTaskTShareds,
/// Task routine.
KmpTaskTRoutine,
/// Partition id for the untied tasks.
KmpTaskTPartId,
/// Function with call of destructors for private variables.
Data1,
/// Task priority.
Data2,
/// (Taskloops only) Lower bound.
KmpTaskTLowerBound,
/// (Taskloops only) Upper bound.
KmpTaskTUpperBound,
/// (Taskloops only) Stride.
KmpTaskTStride,
/// (Taskloops only) Is last iteration flag.
KmpTaskTLastIter,
/// (Taskloops only) Reduction data.
KmpTaskTReductions,
};
} // anonymous namespace
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::empty() const {
return OffloadEntriesTargetRegion.empty() &&
OffloadEntriesDeviceGlobalVar.empty();
}
/// Initialize target region entry.
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
StringRef ParentName, unsigned LineNum,
unsigned Order) {
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device "
"code generation.");
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] =
OffloadEntryInfoTargetRegion(Order, /*Addr=*/nullptr, /*ID=*/nullptr,
OMPTargetRegionEntryTargetRegion);
++OffloadingEntriesNum;
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerTargetRegionEntryInfo(unsigned DeviceID, unsigned FileID,
StringRef ParentName, unsigned LineNum,
llvm::Constant *Addr, llvm::Constant *ID,
OMPTargetRegionEntryKind Flags) {
// If we are emitting code for a target, the entry is already initialized,
// only has to be registered.
if (CGM.getLangOpts().OpenMPIsDevice) {
if (!hasTargetRegionEntryInfo(DeviceID, FileID, ParentName, LineNum)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error,
"Unable to find target region on line '%0' in the device code.");
CGM.getDiags().Report(DiagID) << LineNum;
return;
}
auto &Entry =
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum];
assert(Entry.isValid() && "Entry not initialized!");
Entry.setAddress(Addr);
Entry.setID(ID);
Entry.setFlags(Flags);
} else {
OffloadEntryInfoTargetRegion Entry(OffloadingEntriesNum, Addr, ID, Flags);
OffloadEntriesTargetRegion[DeviceID][FileID][ParentName][LineNum] = Entry;
++OffloadingEntriesNum;
}
}
bool CGOpenMPRuntime::OffloadEntriesInfoManagerTy::hasTargetRegionEntryInfo(
unsigned DeviceID, unsigned FileID, StringRef ParentName,
unsigned LineNum) const {
auto PerDevice = OffloadEntriesTargetRegion.find(DeviceID);
if (PerDevice == OffloadEntriesTargetRegion.end())
return false;
auto PerFile = PerDevice->second.find(FileID);
if (PerFile == PerDevice->second.end())
return false;
auto PerParentName = PerFile->second.find(ParentName);
if (PerParentName == PerFile->second.end())
return false;
auto PerLine = PerParentName->second.find(LineNum);
if (PerLine == PerParentName->second.end())
return false;
// Fail if this entry is already registered.
if (PerLine->second.getAddress() || PerLine->second.getID())
return false;
return true;
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::actOnTargetRegionEntriesInfo(
const OffloadTargetRegionEntryInfoActTy &Action) {
// Scan all target region entries and perform the provided action.
for (const auto &D : OffloadEntriesTargetRegion)
for (const auto &F : D.second)
for (const auto &P : F.second)
for (const auto &L : P.second)
Action(D.first, F.first, P.first(), L.first, L.second);
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
initializeDeviceGlobalVarEntryInfo(StringRef Name,
OMPTargetGlobalVarEntryKind Flags,
unsigned Order) {
assert(CGM.getLangOpts().OpenMPIsDevice && "Initialization of entries is "
"only required for the device "
"code generation.");
OffloadEntriesDeviceGlobalVar.try_emplace(Name, Order, Flags);
++OffloadingEntriesNum;
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
registerDeviceGlobalVarEntryInfo(StringRef VarName, llvm::Constant *Addr,
CharUnits VarSize,
OMPTargetGlobalVarEntryKind Flags,
llvm::GlobalValue::LinkageTypes Linkage) {
if (CGM.getLangOpts().OpenMPIsDevice) {
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
assert(Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!");
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.");
if (Entry.getAddress() && hasDeviceGlobalVarEntryInfo(VarName)) {
if (Entry.getVarSize().isZero()) {
Entry.setVarSize(VarSize);
Entry.setLinkage(Linkage);
}
return;
}
Entry.setVarSize(VarSize);
Entry.setLinkage(Linkage);
Entry.setAddress(Addr);
} else {
if (hasDeviceGlobalVarEntryInfo(VarName)) {
auto &Entry = OffloadEntriesDeviceGlobalVar[VarName];
assert(Entry.isValid() && Entry.getFlags() == Flags &&
"Entry not initialized!");
assert((!Entry.getAddress() || Entry.getAddress() == Addr) &&
"Resetting with the new address.");
if (Entry.getVarSize().isZero()) {
Entry.setVarSize(VarSize);
Entry.setLinkage(Linkage);
}
return;
}
OffloadEntriesDeviceGlobalVar.try_emplace(
VarName, OffloadingEntriesNum, Addr, VarSize, Flags, Linkage);
++OffloadingEntriesNum;
}
}
void CGOpenMPRuntime::OffloadEntriesInfoManagerTy::
actOnDeviceGlobalVarEntriesInfo(
const OffloadDeviceGlobalVarEntryInfoActTy &Action) {
// Scan all target region entries and perform the provided action.
for (const auto &E : OffloadEntriesDeviceGlobalVar)
Action(E.getKey(), E.getValue());
}
void CGOpenMPRuntime::createOffloadEntry(
llvm::Constant *ID, llvm::Constant *Addr, uint64_t Size, int32_t Flags,
llvm::GlobalValue::LinkageTypes Linkage) {
StringRef Name = Addr->getName();
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &C = M.getContext();
// Create constant string with the name.
llvm::Constant *StrPtrInit = llvm::ConstantDataArray::getString(C, Name);
std::string StringName = getName({"omp_offloading", "entry_name"});
auto *Str = new llvm::GlobalVariable(
M, StrPtrInit->getType(), /*isConstant=*/true,
llvm::GlobalValue::InternalLinkage, StrPtrInit, StringName);
Str->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
llvm::Constant *Data[] = {llvm::ConstantExpr::getBitCast(ID, CGM.VoidPtrTy),
llvm::ConstantExpr::getBitCast(Str, CGM.Int8PtrTy),
llvm::ConstantInt::get(CGM.SizeTy, Size),
llvm::ConstantInt::get(CGM.Int32Ty, Flags),
llvm::ConstantInt::get(CGM.Int32Ty, 0)};
std::string EntryName = getName({"omp_offloading", "entry", ""});
llvm::GlobalVariable *Entry = createGlobalStruct(
CGM, getTgtOffloadEntryQTy(), /*IsConstant=*/true, Data,
Twine(EntryName).concat(Name), llvm::GlobalValue::WeakAnyLinkage);
// The entry has to be created in the section the linker expects it to be.
Entry->setSection("omp_offloading_entries");
}
void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
// Emit the offloading entries and metadata so that the device codegen side
// can easily figure out what to emit. The produced metadata looks like
// this:
//
// !omp_offload.info = !{!1, ...}
//
// Right now we only generate metadata for function that contain target
// regions.
// If we are in simd mode or there are no entries, we don't need to do
// anything.
if (CGM.getLangOpts().OpenMPSimd || OffloadEntriesInfoManager.empty())
return;
llvm::Module &M = CGM.getModule();
llvm::LLVMContext &C = M.getContext();
SmallVector<std::tuple<const OffloadEntriesInfoManagerTy::OffloadEntryInfo *,
SourceLocation, StringRef>,
16>
OrderedEntries(OffloadEntriesInfoManager.size());
llvm::SmallVector<StringRef, 16> ParentFunctions(
OffloadEntriesInfoManager.size());
// Auxiliary methods to create metadata values and strings.
auto &&GetMDInt = [this](unsigned V) {
return llvm::ConstantAsMetadata::get(
llvm::ConstantInt::get(CGM.Int32Ty, V));
};
auto &&GetMDString = [&C](StringRef V) { return llvm::MDString::get(C, V); };
// Create the offloading info metadata node.
llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("omp_offload.info");
// Create function that emits metadata for each target region entry;
auto &&TargetRegionMetadataEmitter =
[this, &C, MD, &OrderedEntries, &ParentFunctions, &GetMDInt,
&GetMDString](
unsigned DeviceID, unsigned FileID, StringRef ParentName,
unsigned Line,
const OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion &E) {
// Generate metadata for target regions. Each entry of this metadata
// contains:
// - Entry 0 -> Kind of this type of metadata (0).
// - Entry 1 -> Device ID of the file where the entry was identified.
// - Entry 2 -> File ID of the file where the entry was identified.
// - Entry 3 -> Mangled name of the function where the entry was
// identified.
// - Entry 4 -> Line in the file where the entry was identified.
// - Entry 5 -> Order the entry was created.
// The first element of the metadata node is the kind.
llvm::Metadata *Ops[] = {GetMDInt(E.getKind()), GetMDInt(DeviceID),
GetMDInt(FileID), GetMDString(ParentName),
GetMDInt(Line), GetMDInt(E.getOrder())};
SourceLocation Loc;
for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
E = CGM.getContext().getSourceManager().fileinfo_end();
I != E; ++I) {
if (I->getFirst()->getUniqueID().getDevice() == DeviceID &&
I->getFirst()->getUniqueID().getFile() == FileID) {
Loc = CGM.getContext().getSourceManager().translateFileLineCol(
I->getFirst(), Line, 1);
break;
}
}
// Save this entry in the right position of the ordered entries array.
OrderedEntries[E.getOrder()] = std::make_tuple(&E, Loc, ParentName);
ParentFunctions[E.getOrder()] = ParentName;
// Add metadata to the named metadata node.
MD->addOperand(llvm::MDNode::get(C, Ops));
};
OffloadEntriesInfoManager.actOnTargetRegionEntriesInfo(
TargetRegionMetadataEmitter);
// Create function that emits metadata for each device global variable entry;
auto &&DeviceGlobalVarMetadataEmitter =
[&C, &OrderedEntries, &GetMDInt, &GetMDString,
MD](StringRef MangledName,
const OffloadEntriesInfoManagerTy::OffloadEntryInfoDeviceGlobalVar
&E) {
// Generate metadata for global variables. Each entry of this metadata
// contains:
// - Entry 0 -> Kind of this type of metadata (1).
// - Entry 1 -> Mangled name of the variable.
// - Entry 2 -> Declare target kind.
// - Entry 3 -> Order the entry was created.
// The first element of the metadata node is the kind.
llvm::Metadata *Ops[] = {
GetMDInt(E.getKind()), GetMDString(MangledName),
GetMDInt(E.getFlags()), GetMDInt(E.getOrder())};
// Save this entry in the right position of the ordered entries array.
OrderedEntries[E.getOrder()] =
std::make_tuple(&E, SourceLocation(), MangledName);
// Add metadata to the named metadata node.
MD->addOperand(llvm::MDNode::get(C, Ops));
};
OffloadEntriesInfoManager.actOnDeviceGlobalVarEntriesInfo(
DeviceGlobalVarMetadataEmitter);
for (const auto &E : OrderedEntries) {
assert(std::get<0>(E) && "All ordered entries must exist!");
if (const auto *CE =
dyn_cast<OffloadEntriesInfoManagerTy::OffloadEntryInfoTargetRegion>(
std::get<0>(E))) {
if (!CE->getID() || !CE->getAddress()) {
// Do not blame the entry if the parent funtion is not emitted.
StringRef FnName = ParentFunctions[CE->getOrder()];
if (!CGM.GetGlobalValue(FnName))
continue;
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error,
"Offloading entry for target region in %0 is incorrect: either the "
"address or the ID is invalid.");
CGM.getDiags().Report(std::get<1>(E), DiagID) << FnName;
continue;
}
createOffloadEntry(CE->getID(), CE->getAddress(), /*Size=*/0,
CE->getFlags(), llvm::GlobalValue::WeakAnyLinkage);
} else if (const auto *CE = dyn_cast<OffloadEntriesInfoManagerTy::
OffloadEntryInfoDeviceGlobalVar>(
std::get<0>(E))) {
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags =
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
CE->getFlags());
switch (Flags) {
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo: {
if (CGM.getLangOpts().OpenMPIsDevice &&
CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())
continue;
if (!CE->getAddress()) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error, "Offloading entry for declare target "
"variable %0 is incorrect: the "
"address is invalid.");
CGM.getDiags().Report(std::get<1>(E), DiagID) << std::get<2>(E);
continue;
}
// The vaiable has no definition - no need to add the entry.
if (CE->getVarSize().isZero())
continue;
break;
}
case OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink:
assert(((CGM.getLangOpts().OpenMPIsDevice && !CE->getAddress()) ||
(!CGM.getLangOpts().OpenMPIsDevice && CE->getAddress())) &&
"Declaret target link address is set.");
if (CGM.getLangOpts().OpenMPIsDevice)
continue;
if (!CE->getAddress()) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error,
"Offloading entry for declare target variable is incorrect: the "
"address is invalid.");
CGM.getDiags().Report(DiagID);
continue;
}
break;
}
createOffloadEntry(CE->getAddress(), CE->getAddress(),
CE->getVarSize().getQuantity(), Flags,
CE->getLinkage());
} else {
llvm_unreachable("Unsupported entry kind.");
}
}
}
/// Loads all the offload entries information from the host IR
/// metadata.
void CGOpenMPRuntime::loadOffloadInfoMetadata() {
// If we are in target mode, load the metadata from the host IR. This code has
// to match the metadaata creation in createOffloadEntriesAndInfoMetadata().
if (!CGM.getLangOpts().OpenMPIsDevice)
return;
if (CGM.getLangOpts().OMPHostIRFile.empty())
return;
auto Buf = llvm::MemoryBuffer::getFile(CGM.getLangOpts().OMPHostIRFile);
if (auto EC = Buf.getError()) {
CGM.getDiags().Report(diag::err_cannot_open_file)
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
return;
}
llvm::LLVMContext C;
auto ME = expectedToErrorOrAndEmitErrors(
C, llvm::parseBitcodeFile(Buf.get()->getMemBufferRef(), C));
if (auto EC = ME.getError()) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error, "Unable to parse host IR file '%0':'%1'");
CGM.getDiags().Report(DiagID)
<< CGM.getLangOpts().OMPHostIRFile << EC.message();
return;
}
llvm::NamedMDNode *MD = ME.get()->getNamedMetadata("omp_offload.info");
if (!MD)
return;
for (llvm::MDNode *MN : MD->operands()) {
auto &&GetMDInt = [MN](unsigned Idx) {
auto *V = cast<llvm::ConstantAsMetadata>(MN->getOperand(Idx));
return cast<llvm::ConstantInt>(V->getValue())->getZExtValue();
};
auto &&GetMDString = [MN](unsigned Idx) {
auto *V = cast<llvm::MDString>(MN->getOperand(Idx));
return V->getString();
};
switch (GetMDInt(0)) {
default:
llvm_unreachable("Unexpected metadata!");
break;
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
OffloadingEntryInfoTargetRegion:
OffloadEntriesInfoManager.initializeTargetRegionEntryInfo(
/*DeviceID=*/GetMDInt(1), /*FileID=*/GetMDInt(2),
/*ParentName=*/GetMDString(3), /*Line=*/GetMDInt(4),
/*Order=*/GetMDInt(5));
break;
case OffloadEntriesInfoManagerTy::OffloadEntryInfo::
OffloadingEntryInfoDeviceGlobalVar:
OffloadEntriesInfoManager.initializeDeviceGlobalVarEntryInfo(
/*MangledName=*/GetMDString(1),
static_cast<OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind>(
/*Flags=*/GetMDInt(2)),
/*Order=*/GetMDInt(3));
break;
}
}
}
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
if (!KmpRoutineEntryPtrTy) {
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
ASTContext &C = CGM.getContext();
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
KmpRoutineEntryPtrQTy = C.getPointerType(
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
}
}
QualType CGOpenMPRuntime::getTgtOffloadEntryQTy() {
// Make sure the type of the entry is already created. This is the type we
// have to create:
// struct __tgt_offload_entry{
// void *addr; // Pointer to the offload entry info.
// // (function or global)
// char *name; // Name of the function or global.
// size_t size; // Size of the entry info (0 if it a function).
// int32_t flags; // Flags associated with the entry, e.g. 'link'.
// int32_t reserved; // Reserved, to use by the runtime library.
// };
if (TgtOffloadEntryQTy.isNull()) {
ASTContext &C = CGM.getContext();
RecordDecl *RD = C.buildImplicitRecord("__tgt_offload_entry");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, C.getPointerType(C.CharTy));
addFieldToRecordDecl(C, RD, C.getSizeType());
addFieldToRecordDecl(
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
addFieldToRecordDecl(
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/true));
RD->completeDefinition();
RD->addAttr(PackedAttr::CreateImplicit(C));
TgtOffloadEntryQTy = C.getRecordType(RD);
}
return TgtOffloadEntryQTy;
}
namespace {
struct PrivateHelpersTy {
PrivateHelpersTy(const VarDecl *Original, const VarDecl *PrivateCopy,
const VarDecl *PrivateElemInit)
: Original(Original), PrivateCopy(PrivateCopy),
PrivateElemInit(PrivateElemInit) {}
const VarDecl *Original;
const VarDecl *PrivateCopy;
const VarDecl *PrivateElemInit;
};
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
} // anonymous namespace
static RecordDecl *
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
if (!Privates.empty()) {
ASTContext &C = CGM.getContext();
// Build struct .kmp_privates_t. {
// /* private vars */
// };
RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
RD->startDefinition();
for (const auto &Pair : Privates) {
const VarDecl *VD = Pair.second.Original;
QualType Type = VD->getType().getNonReferenceType();
FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
if (VD->hasAttrs()) {
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
E(VD->getAttrs().end());
I != E; ++I)
FD->addAttr(*I);
}
}
RD->completeDefinition();
return RD;
}
return nullptr;
}
static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
QualType KmpInt32Ty,
QualType KmpRoutineEntryPointerQTy) {
ASTContext &C = CGM.getContext();
// Build struct kmp_task_t {
// void * shareds;
// kmp_routine_entry_t routine;
// kmp_int32 part_id;
// kmp_cmplrdata_t data1;
// kmp_cmplrdata_t data2;
// For taskloops additional fields:
// kmp_uint64 lb;
// kmp_uint64 ub;
// kmp_int64 st;
// kmp_int32 liter;
// void * reductions;
// };
RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TTK_Union);
UD->startDefinition();
addFieldToRecordDecl(C, UD, KmpInt32Ty);
addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
UD->completeDefinition();
QualType KmpCmplrdataTy = C.getRecordType(UD);
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
if (isOpenMPTaskLoopDirective(Kind)) {
QualType KmpUInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
QualType KmpInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
}
RD->completeDefinition();
return RD;
}
static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
ArrayRef<PrivateDataTy> Privates) {
ASTContext &C = CGM.getContext();
// Build struct kmp_task_t_with_privates {
// kmp_task_t task_data;
// .kmp_privates_t. privates;
// };
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
RD->startDefinition();
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
RD->completeDefinition();
return RD;
}
/// Emit a proxy function which accepts kmp_task_t as the second
/// argument.
/// \code
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
/// For taskloops:
/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
/// tt->reductions, tt->shareds);
/// return 0;
/// }
/// \endcode
static llvm::Function *
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
QualType SharedsPtrTy, llvm::Function *TaskFunction,
llvm::Value *TaskPrivatesMap) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
ImplicitParamDecl::Other);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
ImplicitParamDecl::Other);
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
const auto &TaskEntryFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
llvm::FunctionType *TaskEntryTy =
CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
auto *TaskEntry = llvm::Function::Create(
TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
TaskEntry->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
Loc, Loc);
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
// tt,
// For taskloops:
// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
// tt->task_data.shareds);
llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
const auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
LValue Base =
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(SharedsLVal, Loc),
CGF.ConvertTypeForMem(SharedsPtrTy));
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
llvm::Value *PrivatesParam;
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
} else {
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
llvm::Value *CommonArgs[] = {GtidParam, PartidParam, PrivatesParam,
TaskPrivatesMap,
CGF.Builder
.CreatePointerBitCastOrAddrSpaceCast(
TDBase.getAddress(CGF), CGF.VoidPtrTy)
.getPointer()};
SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
std::end(CommonArgs));
if (isOpenMPTaskLoopDirective(Kind)) {
auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
CallArgs.push_back(LBParam);
CallArgs.push_back(UBParam);
CallArgs.push_back(StParam);
CallArgs.push_back(LIParam);
CallArgs.push_back(RParam);
}
CallArgs.push_back(SharedsParam);
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
CallArgs);
CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
CGF.FinishFunction();
return TaskEntry;
}
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
SourceLocation Loc,
QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
ImplicitParamDecl::Other);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
ImplicitParamDecl::Other);
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
const auto &DestructorFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
llvm::FunctionType *DestructorFnTy =
CGM.getTypes().GetFunctionType(DestructorFnInfo);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
auto *DestructorFn =
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
DestructorFnInfo);
DestructorFn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
Args, Loc, Loc);
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
const auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
Base = CGF.EmitLValueForField(Base, *FI);
for (const auto *Field :
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
if (QualType::DestructionKind DtorKind =
Field->getType().isDestructedType()) {
LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(CGF), Field->getType());
}
}
CGF.FinishFunction();
return DestructorFn;
}
/// Emit a privates mapping function for correct handling of private and
/// firstprivate variables.
/// \code
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
/// **noalias priv1,..., <tyn> **noalias privn) {
/// *priv1 = &.privates.priv1;
/// ...;
/// *privn = &.privates.privn;
/// }
/// \endcode
static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
ArrayRef<const Expr *> PrivateVars,
ArrayRef<const Expr *> FirstprivateVars,
ArrayRef<const Expr *> LastprivateVars,
QualType PrivatesQTy,
ArrayRef<PrivateDataTy> Privates) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl TaskPrivatesArg(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(PrivatesQTy).withConst().withRestrict(),
ImplicitParamDecl::Other);
Args.push_back(&TaskPrivatesArg);
llvm::DenseMap<const VarDecl *, unsigned> PrivateVarsPos;
unsigned Counter = 1;
for (const Expr *E : PrivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamDecl::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (const Expr *E : FirstprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamDecl::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (const Expr *E : LastprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamDecl::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
const auto &TaskPrivatesMapFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *TaskPrivatesMapTy =
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
auto *TaskPrivatesMap = llvm::Function::Create(
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
TaskPrivatesMapFnInfo);
if (CGM.getLangOpts().Optimize) {
TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
}
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
TaskPrivatesMapFnInfo, Args, Loc, Loc);
// *privi = &.privates.privi;
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
TaskPrivatesArg.getType()->castAs<PointerType>());
const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
Counter = 0;
for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
LValue RefLVal =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
RefLVal.getAddress(CGF), RefLVal.getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
++Counter;
}
CGF.FinishFunction();
return TaskPrivatesMap;
}
/// Emit initialization for private variables in task-based directives.
static void emitPrivatesInit(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
Address KmpTaskSharedsPtr, LValue TDBase,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
QualType SharedsTy, QualType SharedsPtrTy,
const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool ForDup) {
ASTContext &C = CGF.getContext();
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
? OMPD_taskloop
: OMPD_task;
const CapturedStmt &CS = *D.getCapturedStmt(Kind);
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
LValue SrcBase;
bool IsTargetTask =
isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
isOpenMPTargetExecutionDirective(D.getDirectiveKind());
// For target-based directives skip 3 firstprivate arrays BasePointersArray,
// PointersArray and SizesArray. The original variables for these arrays are
// not captured and we get their addresses explicitly.
if ((!IsTargetTask && !Data.FirstprivateVars.empty()) ||
(IsTargetTask && KmpTaskSharedsPtr.isValid())) {
SrcBase = CGF.MakeAddrLValue(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy)),
SharedsTy);
}
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
for (const PrivateDataTy &Pair : Privates) {
const VarDecl *VD = Pair.second.PrivateCopy;
const Expr *Init = VD->getAnyInitializer();
if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init)))) {
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
const VarDecl *OriginalVD = Pair.second.Original;
// Check if the variable is the target-based BasePointersArray,
// PointersArray or SizesArray.
LValue SharedRefLValue;
QualType Type = PrivateLValue.getType();
const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
if (IsTargetTask && !SharedField) {
assert(isa<ImplicitParamDecl>(OriginalVD) &&
isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
cast<CapturedDecl>(OriginalVD->getDeclContext())
->getNumParams() == 0 &&
isa<TranslationUnitDecl>(
cast<CapturedDecl>(OriginalVD->getDeclContext())
->getDeclContext()) &&
"Expected artificial target data variable.");
SharedRefLValue =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
} else {
SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
SharedRefLValue = CGF.MakeAddrLValue(
Address(SharedRefLValue.getPointer(CGF),
C.getDeclAlign(OriginalVD)),
SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
SharedRefLValue.getTBAAInfo());
}
if (Type->isArrayType()) {
// Initialize firstprivate array.
if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
// Perform simple memcpy.
CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
} else {
// Initialize firstprivate array using element-by-element
// initialization.
CGF.EmitOMPAggregateAssign(
PrivateLValue.getAddress(CGF), SharedRefLValue.getAddress(CGF),
Type,
[&CGF, Elem, Init, &CapturesInfo](Address DestElement,
Address SrcElement) {
// Clean up any temporaries needed by the initialization.
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(
Elem, [SrcElement]() -> Address { return SrcElement; });
(void)InitScope.Privatize();
// Emit initialization for single element.
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
CGF, &CapturesInfo);
CGF.EmitAnyExprToMem(Init, DestElement,
Init->getType().getQualifiers(),
/*IsInitializer=*/false);
});
}
} else {
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, [SharedRefLValue, &CGF]() -> Address {
return SharedRefLValue.getAddress(CGF);
});
(void)InitScope.Privatize();
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
/*capturedByInit=*/false);
}
} else {
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
}
}
++FI;
}
}
/// Check if duplication function is required for taskloops.
static bool checkInitIsRequired(CodeGenFunction &CGF,
ArrayRef<PrivateDataTy> Privates) {
bool InitRequired = false;
for (const PrivateDataTy &Pair : Privates) {
const VarDecl *VD = Pair.second.PrivateCopy;
const Expr *Init = VD->getAnyInitializer();
InitRequired = InitRequired || (Init && isa<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init));
if (InitRequired)
break;
}
return InitRequired;
}
/// Emit task_dup function (for initialization of
/// private/firstprivate/lastprivate vars and last_iter flag)
/// \code
/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
/// lastpriv) {
/// // setup lastprivate flag
/// task_dst->last = lastpriv;
/// // could be constructor calls here...
/// }
/// \endcode
static llvm::Value *
emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
const OMPExecutableDirective &D,
QualType KmpTaskTWithPrivatesPtrQTy,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
QualType SharedsPtrTy, const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy,
ImplicitParamDecl::Other);
ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy,
ImplicitParamDecl::Other);
ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamDecl::Other);
Args.push_back(&DstArg);
Args.push_back(&SrcArg);
Args.push_back(&LastprivArg);
const auto &TaskDupFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
auto *TaskDup = llvm::Function::Create(
TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
TaskDup->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
Loc);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&DstArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
// task_dst->liter = lastpriv;
if (WithLastIter) {
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
CGF.EmitStoreOfScalar(Lastpriv, LILVal);
}
// Emit initial values for private copies (if any).
assert(!Privates.empty());
Address KmpTaskSharedsPtr = Address::invalid();
if (!Data.FirstprivateVars.empty()) {
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&SrcArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
KmpTaskSharedsPtr = Address(
CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
Base, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.getNaturalTypeAlignment(SharedsTy));
}
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
CGF.FinishFunction();
return TaskDup;
}
/// Checks if destructor function is required to be generated.
/// \return true if cleanups are required, false otherwise.
static bool
checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD) {
bool NeedsCleanup = false;
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
const auto *PrivateRD = cast<RecordDecl>(FI->getType()->getAsTagDecl());
for (const FieldDecl *FD : PrivateRD->fields()) {
NeedsCleanup = NeedsCleanup || FD->getType().isDestructedType();
if (NeedsCleanup)
break;
}
return NeedsCleanup;
}
CGOpenMPRuntime::TaskResultTy
CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction, QualType SharedsTy,
Address Shareds, const OMPTaskDataTy &Data) {
ASTContext &C = CGM.getContext();
llvm::SmallVector<PrivateDataTy, 4> Privates;
// Aggregate privates and sort them by the alignment.
auto I = Data.PrivateCopies.begin();
for (const Expr *E : Data.PrivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr));
++I;
}
I = Data.FirstprivateCopies.begin();
auto IElemInitRef = Data.FirstprivateInits.begin();
for (const Expr *E : Data.FirstprivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(
VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
++I;
++IElemInitRef;
}
I = Data.LastprivateCopies.begin();
for (const Expr *E : Data.LastprivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr));
++I;
}
llvm::stable_sort(Privates, [](PrivateDataTy L, PrivateDataTy R) {
return L.first > R.first;
});
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Build type kmp_routine_entry_t (if not built yet).
emitKmpRoutineEntryT(KmpInt32Ty);
// Build type kmp_task_t (if not built yet).
if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
if (SavedKmpTaskloopTQTy.isNull()) {
SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
KmpTaskTQTy = SavedKmpTaskloopTQTy;
} else {
assert((D.getDirectiveKind() == OMPD_task ||
isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
"Expected taskloop, task or target directive");
if (SavedKmpTaskTQTy.isNull()) {
SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
KmpTaskTQTy = SavedKmpTaskTQTy;
}
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
// Build particular struct kmp_task_t for the given task.
const RecordDecl *KmpTaskTWithPrivatesQTyRD =
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
QualType KmpTaskTWithPrivatesPtrQTy =
C.getPointerType(KmpTaskTWithPrivatesQTy);
llvm::Type *KmpTaskTWithPrivatesTy = CGF.ConvertType(KmpTaskTWithPrivatesQTy);
llvm::Type *KmpTaskTWithPrivatesPtrTy =
KmpTaskTWithPrivatesTy->getPointerTo();
llvm::Value *KmpTaskTWithPrivatesTySize =
CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
// Emit initial values for private copies (if any).
llvm::Value *TaskPrivatesMap = nullptr;
llvm::Type *TaskPrivatesMapTy =
std::next(TaskFunction->arg_begin(), 3)->getType();
if (!Privates.empty()) {
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
TaskPrivatesMap = emitTaskPrivateMappingFunction(
CGM, Loc, Data.PrivateVars, Data.FirstprivateVars, Data.LastprivateVars,
FI->getType(), Privates);
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskPrivatesMap, TaskPrivatesMapTy);
} else {
TaskPrivatesMap = llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(TaskPrivatesMapTy));
}
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
// kmp_task_t *tt);
llvm::Function *TaskEntry = emitProxyTaskFunction(
CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
TaskPrivatesMap);
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
// Task flags. Format is taken from
// https://github.com/llvm/llvm-project/blob/master/openmp/runtime/src/kmp.h,
// description of kmp_tasking_flags struct.
enum {
TiedFlag = 0x1,
FinalFlag = 0x2,
DestructorsFlag = 0x8,
PriorityFlag = 0x20
};
unsigned Flags = Data.Tied ? TiedFlag : 0;
bool NeedsCleanup = false;
if (!Privates.empty()) {
NeedsCleanup = checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD);
if (NeedsCleanup)
Flags = Flags | DestructorsFlag;
}
if (Data.Priority.getInt())
Flags = Flags | PriorityFlag;
llvm::Value *TaskFlags =
Data.Final.getPointer()
? CGF.Builder.CreateSelect(Data.Final.getPointer(),
CGF.Builder.getInt32(FinalFlag),
CGF.Builder.getInt32(/*C=*/0))
: CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskEntry, KmpRoutineEntryPtrTy)};
llvm::Value *NewTask;
if (D.hasClausesOfKind<OMPNowaitClause>()) {
// Check if we have any device clause associated with the directive.
const Expr *Device = nullptr;
if (auto *C = D.getSingleClause<OMPDeviceClause>())
Device = C->getDevice();
// Emit device ID if any otherwise use default value.
llvm::Value *DeviceID;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
AllocArgs.push_back(DeviceID);
NewTask = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_target_task_alloc), AllocArgs);
} else {
NewTask = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_task_alloc), AllocArgs);
}
llvm::Value *NewTaskNewTaskTTy =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
NewTask, KmpTaskTWithPrivatesPtrTy);
LValue Base = CGF.MakeNaturalAlignAddrLValue(NewTaskNewTaskTTy,
KmpTaskTWithPrivatesQTy);
LValue TDBase =
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
// Fill the data in the resulting kmp_task_t record.
// Copy shareds if there are any.
Address KmpTaskSharedsPtr = Address::invalid();
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
KmpTaskSharedsPtr =
Address(CGF.EmitLoadOfScalar(
CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.getNaturalTypeAlignment(SharedsTy));
LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
}
// Emit initial values for private copies (if any).
TaskResultTy Result;
if (!Privates.empty()) {
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates,
/*ForDup=*/false);
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
(!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
Result.TaskDupFn = emitTaskDupFunction(
CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
/*WithLastIter=*/!Data.LastprivateVars.empty());
}
}
// Fields of union "kmp_cmplrdata_t" for destructors and priority.
enum { Priority = 0, Destructors = 1 };
// Provide pointer to function with destructors for privates.
auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
const RecordDecl *KmpCmplrdataUD =
(*FI)->getType()->getAsUnionType()->getDecl();
if (NeedsCleanup) {
llvm::Value *DestructorFn = emitDestructorsFunction(
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy);
LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
LValue DestructorsLV = CGF.EmitLValueForField(
Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DestructorFn, KmpRoutineEntryPtrTy),
DestructorsLV);
}
// Set priority.
if (Data.Priority.getInt()) {
LValue Data2LV = CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
LValue PriorityLV = CGF.EmitLValueForField(
Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
}
Result.NewTask = NewTask;
Result.TaskEntry = TaskEntry;
Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
Result.TDBase = TDBase;
Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
return Result;
}
void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
llvm::Value *NewTask = Result.NewTask;
llvm::Function *TaskEntry = Result.TaskEntry;
llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
LValue TDBase = Result.TDBase;
const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
ASTContext &C = CGM.getContext();
// Process list of dependences.
Address DependenciesArray = Address::invalid();
unsigned NumDependencies = Data.Dependences.size();
if (NumDependencies) {
// Dependence kind for RTL.
enum RTLDependenceKindTy { DepIn = 0x01, DepInOut = 0x3, DepMutexInOutSet = 0x4 };
enum RTLDependInfoFieldsTy { BaseAddr, Len, Flags };
RecordDecl *KmpDependInfoRD;
QualType FlagsTy =
C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
if (KmpDependInfoTy.isNull()) {
KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
KmpDependInfoRD->startDefinition();
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
KmpDependInfoRD->completeDefinition();
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
} else {
KmpDependInfoRD = cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
}
// Define type kmp_depend_info[<Dependences.size()>];
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies),
nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
// kmp_depend_info[<Dependences.size()>] deps;
DependenciesArray =
CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
for (unsigned I = 0; I < NumDependencies; ++I) {
const Expr *E = Data.Dependences[I].second;
LValue Addr = CGF.EmitLValue(E);
llvm::Value *Size;
QualType Ty = E->getType();
if (const auto *ASE =
dyn_cast<OMPArraySectionExpr>(E->IgnoreParenImpCasts())) {
LValue UpAddrLVal =
CGF.EmitOMPArraySectionExpr(ASE, /*IsLowerBound=*/false);
llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(
UpAddrLVal.getPointer(CGF), /*Idx0=*/1);
llvm::Value *LowIntPtr =
CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGM.SizeTy);
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGM.SizeTy);
Size = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
} else {
Size = CGF.getTypeSize(Ty);
}
LValue Base = CGF.MakeAddrLValue(
CGF.Builder.CreateConstArrayGEP(DependenciesArray, I),
KmpDependInfoTy);
// deps[i].base_addr = &<Dependences[i].second>;
LValue BaseAddrLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), BaseAddr));
CGF.EmitStoreOfScalar(
CGF.Builder.CreatePtrToInt(Addr.getPointer(CGF), CGF.IntPtrTy),
BaseAddrLVal);
// deps[i].len = sizeof(<Dependences[i].second>);
LValue LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Len));
CGF.EmitStoreOfScalar(Size, LenLVal);
// deps[i].flags = <Dependences[i].first>;
RTLDependenceKindTy DepKind;
switch (Data.Dependences[I].first) {
case OMPC_DEPEND_in:
DepKind = DepIn;
break;
// Out and InOut dependencies must use the same code.
case OMPC_DEPEND_out:
case OMPC_DEPEND_inout:
DepKind = DepInOut;
break;
case OMPC_DEPEND_mutexinoutset:
DepKind = DepMutexInOutSet;
break;
case OMPC_DEPEND_source:
case OMPC_DEPEND_sink:
case OMPC_DEPEND_unknown:
llvm_unreachable("Unknown task dependence type");
}
LValue FlagsLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(), Flags));
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(LLVMFlagsTy, DepKind),
FlagsLVal);
}
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0), CGF.VoidPtrTy);
}
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
// libcall.
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
// list is not empty
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
llvm::Value *DepTaskArgs[7];
if (NumDependencies) {
DepTaskArgs[0] = UpLoc;
DepTaskArgs[1] = ThreadID;
DepTaskArgs[2] = NewTask;
DepTaskArgs[3] = CGF.Builder.getInt32(NumDependencies);
DepTaskArgs[4] = DependenciesArray.getPointer();
DepTaskArgs[5] = CGF.Builder.getInt32(0);
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, NumDependencies,
&TaskArgs,
&DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
if (!Data.Tied) {
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
}
if (NumDependencies) {
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_omp_task_with_deps), DepTaskArgs);
} else {
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_task),
TaskArgs);
}
// Check if parent region is untied and build return for untied task;
if (auto *Region =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
};
llvm::Value *DepWaitTaskArgs[6];
if (NumDependencies) {
DepWaitTaskArgs[0] = UpLoc;
DepWaitTaskArgs[1] = ThreadID;
DepWaitTaskArgs[2] = CGF.Builder.getInt32(NumDependencies);
DepWaitTaskArgs[3] = DependenciesArray.getPointer();
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ElseCodeGen = [&TaskArgs, ThreadID, NewTaskNewTaskTTy, TaskEntry,
NumDependencies, &DepWaitTaskArgs,
Loc](CodeGenFunction &CGF, PrePostActionTy &) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
// is specified.
if (NumDependencies)
CGF.EmitRuntimeCall(RT.createRuntimeFunction(OMPRTL__kmpc_omp_wait_deps),
DepWaitTaskArgs);
// Call proxy_task_entry(gtid, new_task);
auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
OutlinedFnArgs);
};
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_begin_if0), TaskArgs,
RT.createRuntimeFunction(OMPRTL__kmpc_omp_task_complete_if0), TaskArgs);
RCG.setAction(Action);
RCG(CGF);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
} else {
RegionCodeGenTy ThenRCG(ThenCodeGen);
ThenRCG(CGF);
}
}
void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPLoopDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
// libcall.
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *IfVal;
if (IfCond) {
IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
/*isSigned=*/true);
} else {
IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
}
LValue LBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
const auto *LBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(CGF),
LBLVal.getQuals(),
/*IsInitializer=*/true);
LValue UBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
const auto *UBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(CGF),
UBLVal.getQuals(),
/*IsInitializer=*/true);
LValue StLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
const auto *StVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(CGF),
StLVal.getQuals(),
/*IsInitializer=*/true);
// Store reductions address.
LValue RedLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
if (Data.Reductions) {
CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
} else {
CGF.EmitNullInitialization(RedLVal.getAddress(CGF),
CGF.getContext().VoidPtrTy);
}
enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
llvm::Value *TaskArgs[] = {
UpLoc,
ThreadID,
Result.NewTask,
IfVal,
LBLVal.getPointer(CGF),
UBLVal.getPointer(CGF),
CGF.EmitLoadOfScalar(StLVal, Loc),
llvm::ConstantInt::getSigned(
CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
llvm::ConstantInt::getSigned(
CGF.IntTy, Data.Schedule.getPointer()
? Data.Schedule.getInt() ? NumTasks : Grainsize
: NoSchedule),
Data.Schedule.getPointer()
? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
/*isSigned=*/false)
: llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0),
Result.TaskDupFn ? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Result.TaskDupFn, CGF.VoidPtrTy)
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy)};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_taskloop), TaskArgs);
}
/// Emit reduction operation for each element of array (required for
/// array sections) LHS op = RHS.
/// \param Type Type of array.
/// \param LHSVar Variable on the left side of the reduction operation
/// (references element of array in original variable).
/// \param RHSVar Variable on the right side of the reduction operation
/// (references element of array in original variable).
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
/// RHSVar.
static void EmitOMPAggregateReduction(
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
const VarDecl *RHSVar,
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *)> &RedOpGen,
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
const Expr *UpExpr = nullptr) {
// Perform element-by-element initialization.
QualType ElementTy;
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
// Drill down to the base element type on both arrays.
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
llvm::Value *RHSBegin = RHSAddr.getPointer();
llvm::Value *LHSBegin = LHSAddr.getPointer();
// Cast from pointer to array type to pointer to single element.
llvm::Value *LHSEnd = CGF.Builder.CreateGEP(LHSBegin, NumElements);
// The basic structure here is a while-do loop.
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
llvm::Value *IsEmpty =
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
Address RHSElementCurrent =
Address(RHSElementPHI,
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
Address LHSElementCurrent =
Address(LHSElementPHI,
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
CodeGenFunction::OMPPrivateScope Scope(CGF);
Scope.addPrivate(LHSVar, [=]() { return LHSElementCurrent; });
Scope.addPrivate(RHSVar, [=]() { return RHSElementCurrent; });
Scope.Privatize();
RedOpGen(CGF, XExpr, EExpr, UpExpr);
Scope.ForceCleanup();
// Shift the address forward by one element.
llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
LHSElementPHI, /*Idx0=*/1, "omp.arraycpy.dest.element");
llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
RHSElementPHI, /*Idx0=*/1, "omp.arraycpy.src.element");
// Check whether we've reached the end.
llvm::Value *Done =
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
/// Emit reduction combiner. If the combiner is a simple expression emit it as
/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
/// UDR combiner function.
static void emitReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp) {
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
if (const auto *DRE =
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
if (const auto *DRD =
dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
std::pair<llvm::Function *, llvm::Function *> Reduction =
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
RValue Func = RValue::get(Reduction.first);
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
CGF.EmitIgnoredExpr(ReductionOp);
return;
}
CGF.EmitIgnoredExpr(ReductionOp);
}
llvm::Function *CGOpenMPRuntime::emitReductionFunction(
SourceLocation Loc, llvm::Type *ArgsType, ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps) {
ASTContext &C = CGM.getContext();
// void reduction_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
const auto &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
std::string Name = getName({"omp", "reduction", "reduction_func"});
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
// Dst = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
ArgsType), CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
ArgsType), CGF.getPointerAlign());
// ...
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
// ...
CodeGenFunction::OMPPrivateScope Scope(CGF);
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
Scope.addPrivate(RHSVar, [&CGF, RHS, Idx, RHSVar]() {
return emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar);
});
const auto *LHSVar =
cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
Scope.addPrivate(LHSVar, [&CGF, LHS, Idx, LHSVar]() {
return emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar);
});
QualType PrivTy = (*IPriv)->getType();
if (PrivTy->isVariablyModifiedType()) {
// Get array size and emit VLA type.
++Idx;
Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
const VariableArrayType *VLA =
CGF.getContext().getAsVariableArrayType(PrivTy);
const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
CGF.EmitVariablyModifiedType(PrivTy);
}
}
Scope.Privatize();
IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
// Emit reduction for array section.
const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, E);
});
} else {
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, E);
}
++IPriv;
++ILHS;
++IRHS;
}
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp,
const Expr *PrivateRef,
const DeclRefExpr *LHS,
const DeclRefExpr *RHS) {
if (PrivateRef->getType()->isArrayType()) {
// Emit reduction for array section.
const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
EmitOMPAggregateReduction(
CGF, PrivateRef->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, ReductionOp);
});
} else {
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, ReductionOp);
}
}
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps,
ReductionOptionsTy Options) {
if (!CGF.HaveInsertPoint())
return;
bool WithNowait = Options.WithNowait;
bool SimpleReduction = Options.SimpleReduction;
// Next code should be emitted for reduction:
//
// static kmp_critical_name lock = { 0 };
//
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
// ...
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
// *(Type<n>-1*)rhs[<n>-1]);
// }
//
// ...
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>)) {
// case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
// case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
// break;
// default:;
// }
//
// if SimpleReduction is true, only the next code is generated:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
ASTContext &C = CGM.getContext();
if (SimpleReduction) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
return;
}
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
auto Size = RHSExprs.size();
for (const Expr *E : Privates) {
if (E->getType()->isVariablyModifiedType())
// Reserve place for array size.
++Size;
}
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
QualType ReductionArrayTy =
C.getConstantArrayType(C.VoidPtrTy, ArraySize, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Address ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
auto IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
Elem);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.NumElts,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
// 2. Emit reduce_func().
llvm::Function *ReductionFn = emitReductionFunction(
Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(), Privates,
LHSExprs, RHSExprs, ReductionOps);
// 3. Create static kmp_critical_name lock = { 0 };
std::string Name = getName({"reduction"});
llvm::Value *Lock = getCriticalRegionLock(Name);
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>);
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
ReductionList.getPointer(), CGF.VoidPtrTy);
llvm::Value *Args[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
ReductionArrayTySize, // size_type sizeof(RedList)
RL, // void *RedList
ReductionFn, // void (*) (void *, void *) <reduce_func>
Lock // kmp_critical_name *&<lock>
};
llvm::Value *Res = CGF.EmitRuntimeCall(
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_reduce_nowait
: OMPRTL__kmpc_reduce),
Args);
// 5. Build switch(res)
llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
llvm::SwitchInst *SwInst =
CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
// 6. Build case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
CGF.EmitBlock(Case1BB);
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
auto IPriv = Privates.begin();
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
};
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(
nullptr, llvm::None,
createRuntimeFunction(WithNowait ? OMPRTL__kmpc_end_reduce_nowait
: OMPRTL__kmpc_end_reduce),
EndArgs);
RCG.setAction(Action);
RCG(CGF);
CGF.EmitBranch(DefaultBB);
// 7. Build case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// break;
llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
CGF.EmitBlock(Case2BB);
auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
auto ILHS = LHSExprs.begin();
auto IRHS = RHSExprs.begin();
auto IPriv = Privates.begin();
for (const Expr *E : ReductionOps) {
const Expr *XExpr = nullptr;
const Expr *EExpr = nullptr;
const Expr *UpExpr = nullptr;
BinaryOperatorKind BO = BO_Comma;
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Assign) {
XExpr = BO->getLHS();
UpExpr = BO->getRHS();
}
}
// Try to emit update expression as a simple atomic.
const Expr *RHSExpr = UpExpr;
if (RHSExpr) {
// Analyze RHS part of the whole expression.
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
RHSExpr->IgnoreParenImpCasts())) {
// If this is a conditional operator, analyze its condition for
// min/max reduction operator.
RHSExpr = ACO->getCond();
}
if (const auto *BORHS =
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
EExpr = BORHS->getRHS();
BO = BORHS->getOpcode();
}
}
if (XExpr) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto &&AtomicRedGen = [BO, VD,
Loc](CodeGenFunction &CGF, const Expr *XExpr,
const Expr *EExpr, const Expr *UpExpr) {
LValue X = CGF.EmitLValue(XExpr);
RValue E;
if (EExpr)
E = CGF.EmitAnyExpr(EExpr);
CGF.EmitOMPAtomicSimpleUpdateExpr(
X, E, BO, /*IsXLHSInRHSPart=*/true,
llvm::AtomicOrdering::Monotonic, Loc,
[&CGF, UpExpr, VD, Loc](RValue XRValue) {
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(
VD, [&CGF, VD, XRValue, Loc]() {
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.emitOMPSimpleStore(
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
VD->getType().getNonReferenceType(), Loc);
return LHSTemp;
});
(void)PrivateScope.Privatize();
return CGF.EmitAnyExpr(UpExpr);
});
};
if ((*IPriv)->getType()->isArrayType()) {
// Emit atomic reduction for array section.
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
AtomicRedGen, XExpr, EExpr, UpExpr);
} else {
// Emit atomic reduction for array subscript or single variable.
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
}
} else {
// Emit as a critical region.
auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
std::string Name = RT.getName({"atomic_reduction"});
RT.emitCriticalRegion(
CGF, Name,
[=](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
emitReductionCombiner(CGF, E);
},
Loc);
};
if ((*IPriv)->getType()->isArrayType()) {
const auto *LHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
CritRedGen);
} else {
CritRedGen(CGF, nullptr, nullptr, nullptr);
}
}
++ILHS;
++IRHS;
++IPriv;
}
};
RegionCodeGenTy AtomicRCG(AtomicCodeGen);
if (!WithNowait) {
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
CommonActionTy Action(nullptr, llvm::None,
createRuntimeFunction(OMPRTL__kmpc_end_reduce),
EndArgs);
AtomicRCG.setAction(Action);
AtomicRCG(CGF);
} else {
AtomicRCG(CGF);
}
CGF.EmitBranch(DefaultBB);
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
}
/// Generates unique name for artificial threadprivate variables.
/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
const Expr *Ref) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
const clang::DeclRefExpr *DE;
const VarDecl *D = ::getBaseDecl(Ref, DE);
if (!D)
D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
D = D->getCanonicalDecl();
std::string Name = CGM.getOpenMPRuntime().getName(
{D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
Out << Prefix << Name << "_"
<< D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
return std::string(Out.str());
}
/// Emits reduction initializer function:
/// \code
/// void @.red_init(void* %arg) {
/// %0 = bitcast void* %arg to <type>*
/// store <type> <init>, <type>* %0
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
Args.emplace_back(&Param);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
Address PrivateAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&Param),
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
LValue SharedLVal;
// If initializer uses initializer from declare reduction construct, emit a
// pointer to the address of the original reduction item (reuired by reduction
// initializer)
if (RCG.usesReductionInitializer(N)) {
Address SharedAddr =
CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().VoidPtrTy,
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
SharedAddr = CGF.EmitLoadOfPointer(
SharedAddr,
CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
SharedLVal = CGF.MakeAddrLValue(SharedAddr, CGM.getContext().VoidPtrTy);
} else {
SharedLVal = CGF.MakeNaturalAlignAddrLValue(
llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
CGM.getContext().VoidPtrTy);
}
// Emit the initializer:
// %0 = bitcast void* %arg to <type>*
// store <type> <init>, <type>* %0
RCG.emitInitialization(CGF, N, PrivateAddr, SharedLVal,
[](CodeGenFunction &) { return false; });
CGF.FinishFunction();
return Fn;
}
/// Emits reduction combiner function:
/// \code
/// void @.red_comb(void* %arg0, void* %arg1) {
/// %lhs = bitcast void* %arg0 to <type>*
/// %rhs = bitcast void* %arg1 to <type>*
/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
/// store <type> %2, <type>* %lhs
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N,
const Expr *ReductionOp,
const Expr *LHS, const Expr *RHS,
const Expr *PrivateRef) {
ASTContext &C = CGM.getContext();
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
FunctionArgList Args;
ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
Args.emplace_back(&ParamInOut);
Args.emplace_back(&ParamIn);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
// Remap lhs and rhs variables to the addresses of the function arguments.
// %lhs = bitcast void* %arg0 to <type>*
// %rhs = bitcast void* %arg1 to <type>*
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(LHSVD, [&C, &CGF, &ParamInOut, LHSVD]() {
// Pull out the pointer to the variable.
Address PtrAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&ParamInOut),
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
return CGF.Builder.CreateElementBitCast(
PtrAddr, CGF.ConvertTypeForMem(LHSVD->getType()));
});
PrivateScope.addPrivate(RHSVD, [&C, &CGF, &ParamIn, RHSVD]() {
// Pull out the pointer to the variable.
Address PtrAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&ParamIn),
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
return CGF.Builder.CreateElementBitCast(
PtrAddr, CGF.ConvertTypeForMem(RHSVD->getType()));
});
PrivateScope.Privatize();
// Emit the combiner body:
// %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
// store <type> %2, <type>* %lhs
CGM.getOpenMPRuntime().emitSingleReductionCombiner(
CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
cast<DeclRefExpr>(RHS));
CGF.FinishFunction();
return Fn;
}
/// Emits reduction finalizer function:
/// \code
/// void @.red_fini(void* %arg) {
/// %0 = bitcast void* %arg to <type>*
/// <destroy>(<type>* %0)
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N) {
if (!RCG.needCleanups(N))
return nullptr;
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
Args.emplace_back(&Param);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
Address PrivateAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&Param),
C.getPointerType(C.VoidPtrTy).castAs<PointerType>());
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
// Emit the finalizer body:
// <destroy>(<type>* %0)
RCG.emitCleanups(CGF, N, PrivateAddr);
CGF.FinishFunction(Loc);
return Fn;
}
llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
return nullptr;
// Build typedef struct:
// kmp_task_red_input {
// void *reduce_shar; // shared reduction item
// size_t reduce_size; // size of data item
// void *reduce_init; // data initialization routine
// void *reduce_fini; // data finalization routine
// void *reduce_comb; // data combiner routine
// kmp_task_red_flags_t flags; // flags for additional info from compiler
// } kmp_task_red_input_t;
ASTContext &C = CGM.getContext();
RecordDecl *RD = C.buildImplicitRecord("kmp_task_red_input_t");
RD->startDefinition();
const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *FlagsFD = addFieldToRecordDecl(
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
RD->completeDefinition();
QualType RDType = C.getRecordType(RD);
unsigned Size = Data.ReductionVars.size();
llvm::APInt ArraySize(/*numBits=*/64, Size);
QualType ArrayRDType = C.getConstantArrayType(
RDType, ArraySize, nullptr, ArrayType::Normal, /*IndexTypeQuals=*/0);
// kmp_task_red_input_t .rd_input.[Size];
Address TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionCopies,
Data.ReductionOps);
for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
// kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
TaskRedInput.getPointer(), Idxs,
/*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
".rd_input.gep.");
LValue ElemLVal = CGF.MakeNaturalAlignAddrLValue(GEP, RDType);
// ElemLVal.reduce_shar = &Shareds[Cnt];
LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
RCG.emitSharedLValue(CGF, Cnt);
llvm::Value *CastedShared =
CGF.EmitCastToVoidPtr(RCG.getSharedLValue(Cnt).getPointer(CGF));
CGF.EmitStoreOfScalar(CastedShared, SharedLVal);
RCG.emitAggregateType(CGF, Cnt);
llvm::Value *SizeValInChars;
llvm::Value *SizeVal;
std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
// We use delayed creation/initialization for VLAs, array sections and
// custom reduction initializations. It is required because runtime does not
// provide the way to pass the sizes of VLAs/array sections to
// initializer/combiner/finalizer functions and does not pass the pointer to
// original reduction item to the initializer. Instead threadprivate global
// variables are used to store these values and use them in the functions.
bool DelayedCreation = !!SizeVal;
SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
/*isSigned=*/false);
LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
// ElemLVal.reduce_init = init;
LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
llvm::Value *InitAddr =
CGF.EmitCastToVoidPtr(emitReduceInitFunction(CGM, Loc, RCG, Cnt));
CGF.EmitStoreOfScalar(InitAddr, InitLVal);
DelayedCreation = DelayedCreation || RCG.usesReductionInitializer(Cnt);
// ElemLVal.reduce_fini = fini;
LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
llvm::Value *FiniAddr = Fini
? CGF.EmitCastToVoidPtr(Fini)
: llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
// ElemLVal.reduce_comb = comb;
LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
llvm::Value *CombAddr = CGF.EmitCastToVoidPtr(emitReduceCombFunction(
CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
RHSExprs[Cnt], Data.ReductionCopies[Cnt]));
CGF.EmitStoreOfScalar(CombAddr, CombLVal);
// ElemLVal.flags = 0;
LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
if (DelayedCreation) {
CGF.EmitStoreOfScalar(
llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
FlagsLVal);
} else
CGF.EmitNullInitialization(FlagsLVal.getAddress(CGF),
FlagsLVal.getType());
}
// Build call void *__kmpc_task_reduction_init(int gtid, int num_data, void
// *data);
llvm::Value *Args[] = {
CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
/*isSigned=*/true),
llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
CGM.VoidPtrTy)};
return CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_task_reduction_init), Args);
}
void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
SourceLocation Loc,
ReductionCodeGen &RCG,
unsigned N) {
auto Sizes = RCG.getSizes(N);
// Emit threadprivate global variable if the type is non-constant
// (Sizes.second = nullptr).
if (Sizes.second) {
llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
/*isSigned=*/false);
Address SizeAddr = getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
}
// Store address of the original reduction item if custom initializer is used.
if (RCG.usesReductionInitializer(N)) {
Address SharedAddr = getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().VoidPtrTy,
generateUniqueName(CGM, "reduction", RCG.getRefExpr(N)));
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
RCG.getSharedLValue(N).getPointer(CGF), CGM.VoidPtrTy),
SharedAddr, /*IsVolatile=*/false);
}
}
Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Value *ReductionsPtr,
LValue SharedLVal) {
// Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
// *d);
llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
CGM.IntTy,
/*isSigned=*/true),
ReductionsPtr,
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
return Address(
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_task_reduction_get_th_data), Args),
SharedLVal.getAlignment());
}
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
// Ignore return result until untied tasks are supported.
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_omp_taskwait), Args);
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
OpenMPDirectiveKind InnerKind,
const RegionCodeGenTy &CodeGen,
bool HasCancel) {
if (!CGF.HaveInsertPoint())
return;
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel);
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
}
namespace {
enum RTCancelKind {
CancelNoreq = 0,
CancelParallel = 1,
CancelLoop = 2,
CancelSections = 3,
CancelTaskgroup = 4
};
} // anonymous namespace
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
RTCancelKind CancelKind = CancelNoreq;
if (CancelRegion == OMPD_parallel)
CancelKind = CancelParallel;
else if (CancelRegion == OMPD_for)
CancelKind = CancelLoop;
else if (CancelRegion == OMPD_sections)
CancelKind = CancelSections;
else {
assert(CancelRegion == OMPD_taskgroup);
CancelKind = CancelTaskgroup;
}
return CancelKind;
}
void CGOpenMPRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
// For 'cancellation point taskgroup', the task region info may not have a
// cancel. This may instead happen in another adjacent task.
if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
llvm::Value *Result = CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_cancellationpoint), Args);
// if (__kmpc_cancellationpoint()) {
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
CodeGenFunction::JumpDest CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
}
}
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
auto &&ThenGen = [Loc, CancelRegion, OMPRegionInfo](CodeGenFunction &CGF,
PrePostActionTy &) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
llvm::Value *Result = CGF.EmitRuntimeCall(
RT.createRuntimeFunction(OMPRTL__kmpc_cancel), Args);
// if (__kmpc_cancel()) {
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
CodeGenFunction::JumpDest CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenGen,
[](CodeGenFunction &, PrePostActionTy &) {});
} else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
}
void CGOpenMPRuntime::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
assert(!ParentName.empty() && "Invalid target region parent name!");
HasEmittedTargetRegion = true;
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
}
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
// Create a unique name for the entry function using the source location
// information of the current target region. The name will be something like:
//
// __omp_offloading_DD_FFFF_PP_lBB
//
// where DD_FFFF is an ID unique to the file (device and file IDs), PP is the
// mangled name of the function that encloses the target region and BB is the
// line number of the target region.
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), D.getBeginLoc(), DeviceID, FileID,
Line);
SmallString<64> EntryFnName;
{
llvm::raw_svector_ostream OS(EntryFnName);
OS << "__omp_offloading" << llvm::format("_%x", DeviceID)
<< llvm::format("_%x_", FileID) << ParentName << "_l" << Line;
}
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
CodeGenFunction CGF(CGM, true);
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
OutlinedFn = CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
// If this target outline function is not an offload entry, we don't need to
// register it.
if (!IsOffloadEntry)
return;
// The target region ID is used by the runtime library to identify the current
// target region, so it only has to be unique and not necessarily point to
// anything. It could be the pointer to the outlined function that implements
// the target region, but we aren't using that so that the compiler doesn't
// need to keep that, and could therefore inline the host function if proven
// worthwhile during optimization. In the other hand, if emitting code for the
// device, the ID has to be the function address so that it can retrieved from
// the offloading entry and launched by the runtime library. We also mark the
// outlined function to have external linkage in case we are emitting code for
// the device, because these functions will be entry points to the device.
if (CGM.getLangOpts().OpenMPIsDevice) {
OutlinedFnID = llvm::ConstantExpr::getBitCast(OutlinedFn, CGM.Int8PtrTy);
OutlinedFn->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
OutlinedFn->setDSOLocal(false);
} else {
std::string Name = getName({EntryFnName, "region_id"});
OutlinedFnID = new llvm::GlobalVariable(
CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
llvm::GlobalValue::WeakAnyLinkage,
llvm::Constant::getNullValue(CGM.Int8Ty), Name);
}
// Register the information for the entry associated with this target region.
OffloadEntriesInfoManager.registerTargetRegionEntryInfo(
DeviceID, FileID, ParentName, Line, OutlinedFn, OutlinedFnID,
OffloadEntriesInfoManagerTy::OMPTargetRegionEntryTargetRegion);
}
/// Checks if the expression is constant or does not have non-trivial function
/// calls.
static bool isTrivial(ASTContext &Ctx, const Expr * E) {
// We can skip constant expressions.
// We can skip expressions with trivial calls or simple expressions.
return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
!E->hasNonTrivialCall(Ctx)) &&
!E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
}
const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
const Stmt *Body) {
const Stmt *Child = Body->IgnoreContainers();
while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
Child = nullptr;
for (const Stmt *S : C->body()) {
if (const auto *E = dyn_cast<Expr>(S)) {
if (isTrivial(Ctx, E))
continue;
}
// Some of the statements can be ignored.
if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
continue;
// Analyze declarations.
if (const auto *DS = dyn_cast<DeclStmt>(S)) {
if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
isa<UsingDirectiveDecl>(D) ||
isa<OMPDeclareReductionDecl>(D) ||
isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
return true;
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return false;
return VD->isConstexpr() ||
((VD->getType().isTrivialType(Ctx) ||
VD->getType()->isReferenceType()) &&
(!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
}))
continue;
}
// Found multiple children - cannot get the one child only.
if (Child)
return nullptr;
Child = S;
}
if (Child)
Child = Child->IgnoreContainers();
}
return Child;
}
/// Emit the number of teams for a target directive. Inspect the num_teams
/// clause associated with a teams construct combined or closely nested
/// with the target directive.
///
/// Emit a team of size one for directives such as 'target parallel' that
/// have no associated teams construct.
///
/// Otherwise, return nullptr.
static llvm::Value *
emitNumTeamsForTargetDirective(CodeGenFunction &CGF,
const OMPExecutableDirective &D) {
assert(!CGF.getLangOpts().OpenMPIsDevice &&
"Clauses associated with the teams directive expected to be emitted "
"only for the host!");
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
"Expected target-based executable directive.");
CGBuilderTy &Bld = CGF.Builder;
switch (DirectiveKind) {
case OMPD_target: {
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt =
CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const Expr *NumTeams =
NestedDir->getSingleClause<OMPNumTeamsClause>()->getNumTeams();
llvm::Value *NumTeamsVal =
CGF.EmitScalarExpr(NumTeams,
/*IgnoreResultAssign*/ true);
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
/*isSigned=*/true);
}
return Bld.getInt32(0);
}
if (isOpenMPParallelDirective(NestedDir->getDirectiveKind()) ||
isOpenMPSimdDirective(NestedDir->getDirectiveKind()))
return Bld.getInt32(1);
return Bld.getInt32(0);
}
return nullptr;
}
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
const Expr *NumTeams =
D.getSingleClause<OMPNumTeamsClause>()->getNumTeams();
llvm::Value *NumTeamsVal =
CGF.EmitScalarExpr(NumTeams,
/*IgnoreResultAssign*/ true);
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
/*isSigned=*/true);
}
return Bld.getInt32(0);
}
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_simd:
return Bld.getInt32(1);
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
break;
}
llvm_unreachable("Unexpected directive kind.");
}
static llvm::Value *getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
llvm::Value *DefaultThreadLimitVal) {
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
llvm::Value *NumThreads = nullptr;
llvm::Value *CondVal = nullptr;
// Handle if clause. If if clause present, the number of threads is
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
if (Dir->hasClausesOfKind<OMPIfClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const OMPIfClause *IfClause = nullptr;
for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_parallel) {
IfClause = C;
break;
}
}
if (IfClause) {
const Expr *Cond = IfClause->getCondition();
bool Result;
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
if (!Result)
return CGF.Builder.getInt32(1);
} else {
CodeGenFunction::LexicalScope Scope(CGF, Cond->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
}
CondVal = CGF.EvaluateExprAsBool(Cond);
}
}
}
// Check the value of num_threads clause iff if clause was not specified
// or is not evaluated to false.
if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const auto *NumThreadsClause =
Dir->getSingleClause<OMPNumThreadsClause>();
CodeGenFunction::LexicalScope Scope(
CGF, NumThreadsClause->getNumThreads()->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
}
NumThreads = CGF.EmitScalarExpr(NumThreadsClause->getNumThreads());
NumThreads = CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty,
/*isSigned=*/false);
if (DefaultThreadLimitVal)
NumThreads = CGF.Builder.CreateSelect(
CGF.Builder.CreateICmpULT(DefaultThreadLimitVal, NumThreads),
DefaultThreadLimitVal, NumThreads);
} else {
NumThreads = DefaultThreadLimitVal ? DefaultThreadLimitVal
: CGF.Builder.getInt32(0);
}
// Process condition of the if clause.
if (CondVal) {
NumThreads = CGF.Builder.CreateSelect(CondVal, NumThreads,
CGF.Builder.getInt32(1));
}
return NumThreads;
}
if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
return CGF.Builder.getInt32(1);
return DefaultThreadLimitVal;
}
return DefaultThreadLimitVal ? DefaultThreadLimitVal
: CGF.Builder.getInt32(0);
}
/// Emit the number of threads for a target directive. Inspect the
/// thread_limit clause associated with a teams construct combined or closely
/// nested with the target directive.
///
/// Emit the num_threads clause for directives such as 'target parallel' that
/// have no associated teams construct.
///
/// Otherwise, return nullptr.
static llvm::Value *
emitNumThreadsForTargetDirective(CodeGenFunction &CGF,
const OMPExecutableDirective &D) {
assert(!CGF.getLangOpts().OpenMPIsDevice &&
"Clauses associated with the teams directive expected to be emitted "
"only for the host!");
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
"Expected target-based executable directive.");
CGBuilderTy &Bld = CGF.Builder;
llvm::Value *ThreadLimitVal = nullptr;
llvm::Value *NumThreadsVal = nullptr;
switch (DirectiveKind) {
case OMPD_target: {
const CapturedStmt *CS = D.getInnermostCapturedStmt();
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
return NumThreads;
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (Dir->hasClausesOfKind<OMPThreadLimitClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const auto *ThreadLimitClause =
Dir->getSingleClause<OMPThreadLimitClause>();
CodeGenFunction::LexicalScope Scope(
CGF, ThreadLimitClause->getThreadLimit()->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
}
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
ThreadLimitVal =
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
}
if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
!isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
CS = Dir->getInnermostCapturedStmt();
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
}
if (Dir && isOpenMPDistributeDirective(Dir->getDirectiveKind()) &&
!isOpenMPSimdDirective(Dir->getDirectiveKind())) {
CS = Dir->getInnermostCapturedStmt();
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
return NumThreads;
}
if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
return Bld.getInt32(1);
}
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
}
case OMPD_target_teams: {
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
ThreadLimitVal =
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
}
const CapturedStmt *CS = D.getInnermostCapturedStmt();
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
return NumThreads;
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (Dir->getDirectiveKind() == OMPD_distribute) {
CS = Dir->getInnermostCapturedStmt();
if (llvm::Value *NumThreads = getNumThreads(CGF, CS, ThreadLimitVal))
return NumThreads;
}
}
return ThreadLimitVal ? ThreadLimitVal : Bld.getInt32(0);
}
case OMPD_target_teams_distribute:
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
ThreadLimitVal =
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
}
return getNumThreads(CGF, D.getInnermostCapturedStmt(), ThreadLimitVal);
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
llvm::Value *CondVal = nullptr;
// Handle if clause. If if clause present, the number of threads is
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
if (D.hasClausesOfKind<OMPIfClause>()) {
const OMPIfClause *IfClause = nullptr;
for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_parallel) {
IfClause = C;
break;
}
}
if (IfClause) {
const Expr *Cond = IfClause->getCondition();
bool Result;
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
if (!Result)
return Bld.getInt32(1);
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
CondVal = CGF.EvaluateExprAsBool(Cond);
}
}
}
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
llvm::Value *ThreadLimit = CGF.EmitScalarExpr(
ThreadLimitClause->getThreadLimit(), /*IgnoreResultAssign=*/true);
ThreadLimitVal =
Bld.CreateIntCast(ThreadLimit, CGF.Int32Ty, /*isSigned=*/false);
}
if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
llvm::Value *NumThreads = CGF.EmitScalarExpr(
NumThreadsClause->getNumThreads(), /*IgnoreResultAssign=*/true);
NumThreadsVal =
Bld.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned=*/false);
ThreadLimitVal = ThreadLimitVal
? Bld.CreateSelect(Bld.CreateICmpULT(NumThreadsVal,
ThreadLimitVal),
NumThreadsVal, ThreadLimitVal)
: NumThreadsVal;
}
if (!ThreadLimitVal)
ThreadLimitVal = Bld.getInt32(0);
if (CondVal)
return Bld.CreateSelect(CondVal, ThreadLimitVal, Bld.getInt32(1));
return ThreadLimitVal;
}
case OMPD_target_teams_distribute_simd:
case OMPD_target_simd:
return Bld.getInt32(1);
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
break;
}
llvm_unreachable("Unsupported directive kind.");
}
namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
// Utility to handle information from clauses associated with a given
// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
// It provides a convenient interface to obtain the information and generate
// code for that information.
class MappableExprsHandler {
public:
/// Values for bit flags used to specify the mapping type for
/// offloading.
enum OpenMPOffloadMappingFlags : uint64_t {
/// No flags
OMP_MAP_NONE = 0x0,
/// Allocate memory on the device and move data from host to device.
OMP_MAP_TO = 0x01,
/// Allocate memory on the device and move data from device to host.
OMP_MAP_FROM = 0x02,
/// Always perform the requested mapping action on the element, even
/// if it was already mapped before.
OMP_MAP_ALWAYS = 0x04,
/// Delete the element from the device environment, ignoring the
/// current reference count associated with the element.
OMP_MAP_DELETE = 0x08,
/// The element being mapped is a pointer-pointee pair; both the
/// pointer and the pointee should be mapped.
OMP_MAP_PTR_AND_OBJ = 0x10,
/// This flags signals that the base address of an entry should be
/// passed to the target kernel as an argument.
OMP_MAP_TARGET_PARAM = 0x20,
/// Signal that the runtime library has to return the device pointer
/// in the current position for the data being mapped. Used when we have the
/// use_device_ptr clause.
OMP_MAP_RETURN_PARAM = 0x40,
/// This flag signals that the reference being passed is a pointer to
/// private data.
OMP_MAP_PRIVATE = 0x80,
/// Pass the element to the device by value.
OMP_MAP_LITERAL = 0x100,
/// Implicit map
OMP_MAP_IMPLICIT = 0x200,
/// Close is a hint to the runtime to allocate memory close to
/// the target device.
OMP_MAP_CLOSE = 0x400,
/// The 16 MSBs of the flags indicate whether the entry is member of some
/// struct/class.
OMP_MAP_MEMBER_OF = 0xffff000000000000,
LLVM_MARK_AS_BITMASK_ENUM(/* LargestFlag = */ OMP_MAP_MEMBER_OF),
};
/// Get the offset of the OMP_MAP_MEMBER_OF field.
static unsigned getFlagMemberOffset() {
unsigned Offset = 0;
for (uint64_t Remain = OMP_MAP_MEMBER_OF; !(Remain & 1);
Remain = Remain >> 1)
Offset++;
return Offset;
}
/// Class that associates information with a base pointer to be passed to the
/// runtime library.
class BasePointerInfo {
/// The base pointer.
llvm::Value *Ptr = nullptr;
/// The base declaration that refers to this device pointer, or null if
/// there is none.
const ValueDecl *DevPtrDecl = nullptr;
public:
BasePointerInfo(llvm::Value *Ptr, const ValueDecl *DevPtrDecl = nullptr)
: Ptr(Ptr), DevPtrDecl(DevPtrDecl) {}
llvm::Value *operator*() const { return Ptr; }
const ValueDecl *getDevicePtrDecl() const { return DevPtrDecl; }
void setDevicePtrDecl(const ValueDecl *D) { DevPtrDecl = D; }
};
using MapBaseValuesArrayTy = SmallVector<BasePointerInfo, 4>;
using MapValuesArrayTy = SmallVector<llvm::Value *, 4>;
using MapFlagsArrayTy = SmallVector<OpenMPOffloadMappingFlags, 4>;
/// Map between a struct and the its lowest & highest elements which have been
/// mapped.
/// [ValueDecl *] --> {LE(FieldIndex, Pointer),
/// HE(FieldIndex, Pointer)}
struct StructRangeInfoTy {
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
0, Address::invalid()};
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
0, Address::invalid()};
Address Base = Address::invalid();
};
private:
/// Kind that defines how a device pointer has to be returned.
struct MapInfo {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool ReturnDevicePointer = false;
bool IsImplicit = false;
MapInfo() = default;
MapInfo(
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
bool ReturnDevicePointer, bool IsImplicit)
: Components(Components), MapType(MapType), MapModifiers(MapModifiers),
ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit) {}
};
/// If use_device_ptr is used on a pointer which is a struct member and there
/// is no map information about it, then emission of that entry is deferred
/// until the whole struct has been processed.
struct DeferredDevicePtrEntryTy {
const Expr *IE = nullptr;
const ValueDecl *VD = nullptr;
DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD)
: IE(IE), VD(VD) {}
};
/// The target directive from where the mappable clauses were extracted. It
/// is either a executable directive or a user-defined mapper directive.
llvm::PointerUnion<const OMPExecutableDirective *,
const OMPDeclareMapperDecl *>
CurDir;
/// Function the directive is being generated for.
CodeGenFunction &CGF;
/// Set of all first private variables in the current directive.
/// bool data is set to true if the variable is implicitly marked as
/// firstprivate, false otherwise.
llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
/// Map between device pointer declarations and their expression components.
/// The key value for declarations in 'this' is null.
llvm::DenseMap<
const ValueDecl *,
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
DevPointersMap;
llvm::Value *getExprTypeSize(const Expr *E) const {
QualType ExprTy = E->getType().getCanonicalType();
// Reference types are ignored for mapping purposes.
if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
ExprTy = RefTy->getPointeeType().getCanonicalType();
// Given that an array section is considered a built-in type, we need to
// do the calculation based on the length of the section instead of relying
// on CGF.getTypeSize(E->getType()).
if (const auto *OAE = dyn_cast<OMPArraySectionExpr>(E)) {
QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(
OAE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
// If there is no length associated with the expression and lower bound is
// not specified too, that means we are using the whole length of the
// base.
if (!OAE->getLength() && OAE->getColonLoc().isValid() &&
!OAE->getLowerBound())
return CGF.getTypeSize(BaseTy);
llvm::Value *ElemSize;
if (const auto *PTy = BaseTy->getAs<PointerType>()) {
ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
} else {
const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
assert(ATy && "Expecting array type if not a pointer type.");
ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
}
// If we don't have a length at this point, that is because we have an
// array section with a single element.
if (!OAE->getLength() && OAE->getColonLoc().isInvalid())
return ElemSize;
if (const Expr *LenExpr = OAE->getLength()) {
llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
CGF.getContext().getSizeType(),
LenExpr->getExprLoc());
return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
}
assert(!OAE->getLength() && OAE->getColonLoc().isValid() &&
OAE->getLowerBound() && "expected array_section[lb:].");
// Size = sizetype - lb * elemtype;
llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
CGF.getContext().getSizeType(),
OAE->getLowerBound()->getExprLoc());
LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
LengthVal = CGF.Builder.CreateSelect(
Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
return LengthVal;
}
return CGF.getTypeSize(ExprTy);
}
/// Return the corresponding bits for a given map clause modifier. Add
/// a flag marking the map as a pointer if requested. Add a flag marking the
/// map as the first one of a series of maps that relate to the same map
/// expression.
OpenMPOffloadMappingFlags getMapTypeBits(
OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
bool IsImplicit, bool AddPtrFlag, bool AddIsTargetParamFlag) const {
OpenMPOffloadMappingFlags Bits =
IsImplicit ? OMP_MAP_IMPLICIT : OMP_MAP_NONE;
switch (MapType) {
case OMPC_MAP_alloc:
case OMPC_MAP_release:
// alloc and release is the default behavior in the runtime library, i.e.
// if we don't pass any bits alloc/release that is what the runtime is
// going to do. Therefore, we don't need to signal anything for these two
// type modifiers.
break;
case OMPC_MAP_to:
Bits |= OMP_MAP_TO;
break;
case OMPC_MAP_from:
Bits |= OMP_MAP_FROM;
break;
case OMPC_MAP_tofrom:
Bits |= OMP_MAP_TO | OMP_MAP_FROM;
break;
case OMPC_MAP_delete:
Bits |= OMP_MAP_DELETE;
break;
case OMPC_MAP_unknown:
llvm_unreachable("Unexpected map type!");
}
if (AddPtrFlag)
Bits |= OMP_MAP_PTR_AND_OBJ;
if (AddIsTargetParamFlag)
Bits |= OMP_MAP_TARGET_PARAM;
if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_always)
!= MapModifiers.end())
Bits |= OMP_MAP_ALWAYS;
if (llvm::find(MapModifiers, OMPC_MAP_MODIFIER_close)
!= MapModifiers.end())
Bits |= OMP_MAP_CLOSE;
return Bits;
}
/// Return true if the provided expression is a final array section. A
/// final array section, is one whose length can't be proved to be one.
bool isFinalArraySectionExpression(const Expr *E) const {
const auto *OASE = dyn_cast<OMPArraySectionExpr>(E);
// It is not an array section and therefore not a unity-size one.
if (!OASE)
return false;
// An array section with no colon always refer to a single element.
if (OASE->getColonLoc().isInvalid())
return false;
const Expr *Length = OASE->getLength();
// If we don't have a length we have to check if the array has size 1
// for this dimension. Also, we should always expect a length if the
// base type is pointer.
if (!Length) {
QualType BaseQTy = OMPArraySectionExpr::getBaseOriginalType(
OASE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
return ATy->getSize().getSExtValue() != 1;
// If we don't have a constant dimension length, we have to consider
// the current section as having any size, so it is not necessarily
// unitary. If it happen to be unity size, that's user fault.
return true;
}
// Check if the length evaluates to 1.
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, CGF.getContext()))
return true; // Can have more that size 1.
llvm::APSInt ConstLength = Result.Val.getInt();
return ConstLength.getSExtValue() != 1;
}
/// Generate the base pointers, section pointers, sizes and map type
/// bits for the provided map type, map modifier, and expression components.
/// \a IsFirstComponent should be set to true if the provided set of
/// components is the first associated with a capture.
void generateInfoForComponentList(
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
bool IsImplicit,
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
OverlappedElements = llvm::None) const {
// The following summarizes what has to be generated for each map and the
// types below. The generated information is expressed in this order:
// base pointer, section pointer, size, flags
// (to add to the ones that come from the map type and modifier).
//
// double d;
// int i[100];
// float *p;
//
// struct S1 {
// int i;
// float f[50];
// }
// struct S2 {
// int i;
// float f[50];
// S1 s;
// double *p;
// struct S2 *ps;
// }
// S2 s;
// S2 *ps;
//
// map(d)
// &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
//
// map(i)
// &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
//
// map(i[1:23])
// &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
//
// map(p)
// &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
//
// map(p[1:24])
// p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
//
// map(s)
// &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
//
// map(s.i)
// &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
//
// map(s.s.f)
// &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
//
// map(s.p)
// &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
//
// map(to: s.p[:22])
// &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
// &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
// &(s.p), &(s.p[0]), 22*sizeof(double),
// MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
// (*) alloc space for struct members, only this is a target parameter
// (**) map the pointer (nothing to be mapped in this example) (the compiler
// optimizes this entry out, same in the examples below)
// (***) map the pointee (map: to)
//
// map(s.ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(from: s.ps->s.i)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(to: s.ps->ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
//
// map(s.ps->ps->ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
//
// map(to: s.ps->ps->s.f[:22])
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
//
// map(ps)
// &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(ps->i)
// ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
//
// map(ps->s.f)
// ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
//
// map(from: ps->p)
// ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
//
// map(to: ps->p[:22])
// ps, &(ps->p), sizeof(double*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
// &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
//
// map(ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(from: ps->ps->s.i)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(from: ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(ps->ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
//
// map(to: ps->ps->ps->s.f[:22])
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
//
// map(to: s.f[:22]) map(from: s.p[:33])
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
// sizeof(double*) (**), TARGET_PARAM
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
// &s, &(s.p), sizeof(double*), MEMBER_OF(1)
// &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
// (*) allocate contiguous space needed to fit all mapped members even if
// we allocate space for members not mapped (in this example,
// s.f[22..49] and s.s are not mapped, yet we must allocate space for
// them as well because they fall between &s.f[0] and &s.p)
//
// map(from: s.f[:22]) map(to: ps->p[:33])
// &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
// (*) the struct this entry pertains to is the 2nd element in the list of
// arguments, hence MEMBER_OF(2)
//
// map(from: s.f[:22], s.s) map(to: ps->p[:33])
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
// &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
// (*) the struct this entry pertains to is the 4th element in the list
// of arguments, hence MEMBER_OF(4)
// Track if the map information being generated is the first for a capture.
bool IsCaptureFirstInfo = IsFirstComponentList;
// When the variable is on a declare target link or in a to clause with
// unified memory, a reference is needed to hold the host/device address
// of the variable.
bool RequiresReference = false;
// Scan the components from the base to the complete expression.
auto CI = Components.rbegin();
auto CE = Components.rend();
auto I = CI;
// Track if the map information being generated is the first for a list of
// components.
bool IsExpressionFirstInfo = true;
Address BP = Address::invalid();
const Expr *AssocExpr = I->getAssociatedExpression();
const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
const auto *OASE = dyn_cast<OMPArraySectionExpr>(AssocExpr);
if (isa<MemberExpr>(AssocExpr)) {
// The base is the 'this' pointer. The content of the pointer is going
// to be the base of the field being mapped.
BP = CGF.LoadCXXThisAddress();
} else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
(OASE &&
isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
} else {
// The base is the reference to the variable.
// BP = &Var.
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress(CGF);
if (const auto *VD =
dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
if (llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
RequiresReference = true;
BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
}
}
// If the variable is a pointer and is being dereferenced (i.e. is not
// the last component), the base has to be the pointer itself, not its
// reference. References are ignored for mapping purposes.
QualType Ty =
I->getAssociatedDeclaration()->getType().getNonReferenceType();
if (Ty->isAnyPointerType() && std::next(I) != CE) {
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
// We do not need to generate individual map information for the
// pointer, it can be associated with the combined storage.
++I;
}
}
// Track whether a component of the list should be marked as MEMBER_OF some
// combined entry (for partial structs). Only the first PTR_AND_OBJ entry
// in a component list should be marked as MEMBER_OF, all subsequent entries
// do not belong to the base struct. E.g.
// struct S2 s;
// s.ps->ps->ps->f[:]
// (1) (2) (3) (4)
// ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
// PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
// is the pointee of ps(2) which is not member of struct s, so it should not
// be marked as such (it is still PTR_AND_OBJ).
// The variable is initialized to false so that PTR_AND_OBJ entries which
// are not struct members are not considered (e.g. array of pointers to
// data).
bool ShouldBeMemberOf = false;
// Variable keeping track of whether or not we have encountered a component
// in the component list which is a member expression. Useful when we have a
// pointer or a final array section, in which case it is the previous
// component in the list which tells us whether we have a member expression.
// E.g. X.f[:]
// While processing the final array section "[:]" it is "f" which tells us
// whether we are dealing with a member of a declared struct.
const MemberExpr *EncounteredME = nullptr;
for (; I != CE; ++I) {
// If the current component is member of a struct (parent struct) mark it.
if (!EncounteredME) {
EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
// If we encounter a PTR_AND_OBJ entry from now on it should be marked
// as MEMBER_OF the parent struct.
if (EncounteredME)
ShouldBeMemberOf = true;
}
auto Next = std::next(I);
// We need to generate the addresses and sizes if this is the last
// component, if the component is a pointer or if it is an array section
// whose length can't be proved to be one. If this is a pointer, it
// becomes the base address for the following components.
// A final array section, is one whose length can't be proved to be one.
bool IsFinalArraySection =
isFinalArraySectionExpression(I->getAssociatedExpression());
// Get information on whether the element is a pointer. Have to do a
// special treatment for array sections given that they are built-in
// types.
const auto *OASE =
dyn_cast<OMPArraySectionExpr>(I->getAssociatedExpression());
bool IsPointer =
(OASE && OMPArraySectionExpr::getBaseOriginalType(OASE)
.getCanonicalType()
->isAnyPointerType()) ||
I->getAssociatedExpression()->getType()->isAnyPointerType();
if (Next == CE || IsPointer || IsFinalArraySection) {
// If this is not the last component, we expect the pointer to be
// associated with an array expression or member expression.
assert((Next == CE ||
isa<MemberExpr>(Next->getAssociatedExpression()) ||
isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
isa<OMPArraySectionExpr>(Next->getAssociatedExpression())) &&
"Unexpected expression");
Address LB = CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
.getAddress(CGF);
// If this component is a pointer inside the base struct then we don't
// need to create any entry for it - it will be combined with the object
// it is pointing to into a single PTR_AND_OBJ entry.
bool IsMemberPointer =
IsPointer && EncounteredME &&
(dyn_cast<MemberExpr>(I->getAssociatedExpression()) ==
EncounteredME);
if (!OverlappedElements.empty()) {
// Handle base element with the info for overlapped elements.
assert(!PartialStruct.Base.isValid() && "The base element is set.");
assert(Next == CE &&
"Expected last element for the overlapped elements.");
assert(!IsPointer &&
"Unexpected base element with the pointer type.");
// Mark the whole struct as the struct that requires allocation on the
// device.
PartialStruct.LowestElem = {0, LB};
CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
I->getAssociatedExpression()->getType());
Address HB = CGF.Builder.CreateConstGEP(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(LB,
CGF.VoidPtrTy),
TypeSize.getQuantity() - 1);
PartialStruct.HighestElem = {
std::numeric_limits<decltype(
PartialStruct.HighestElem.first)>::max(),
HB};
PartialStruct.Base = BP;
// Emit data for non-overlapped data.
OpenMPOffloadMappingFlags Flags =
OMP_MAP_MEMBER_OF |
getMapTypeBits(MapType, MapModifiers, IsImplicit,
/*AddPtrFlag=*/false,
/*AddIsTargetParamFlag=*/false);
LB = BP;
llvm::Value *Size = nullptr;
// Do bitcopy of all non-overlapped structure elements.
for (OMPClauseMappableExprCommon::MappableExprComponentListRef
Component : OverlappedElements) {
Address ComponentLB = Address::invalid();
for (const OMPClauseMappableExprCommon::MappableComponent &MC :
Component) {
if (MC.getAssociatedDeclaration()) {
ComponentLB =
CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
.getAddress(CGF);
Size = CGF.Builder.CreatePtrDiff(
CGF.EmitCastToVoidPtr(ComponentLB.getPointer()),
CGF.EmitCastToVoidPtr(LB.getPointer()));
break;
}
}
BasePointers.push_back(BP.getPointer());
Pointers.push_back(LB.getPointer());
Sizes.push_back(CGF.Builder.CreateIntCast(Size, CGF.Int64Ty,
/*isSigned=*/true));
Types.push_back(Flags);
LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
}
BasePointers.push_back(BP.getPointer());
Pointers.push_back(LB.getPointer());
Size = CGF.Builder.CreatePtrDiff(
CGF.EmitCastToVoidPtr(
CGF.Builder.CreateConstGEP(HB, 1).getPointer()),
CGF.EmitCastToVoidPtr(LB.getPointer()));
Sizes.push_back(
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
Types.push_back(Flags);
break;
}
llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
if (!IsMemberPointer) {
BasePointers.push_back(BP.getPointer());
Pointers.push_back(LB.getPointer());
Sizes.push_back(
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
// We need to add a pointer flag for each map that comes from the
// same expression except for the first one. We also need to signal
// this map is the first one that relates with the current capture
// (there is a set of entries for each capture).
OpenMPOffloadMappingFlags Flags = getMapTypeBits(
MapType, MapModifiers, IsImplicit,
!IsExpressionFirstInfo || RequiresReference,
IsCaptureFirstInfo && !RequiresReference);
if (!IsExpressionFirstInfo) {
// If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
// then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
if (IsPointer)
Flags &= ~(OMP_MAP_TO | OMP_MAP_FROM | OMP_MAP_ALWAYS |
OMP_MAP_DELETE | OMP_MAP_CLOSE);
if (ShouldBeMemberOf) {
// Set placeholder value MEMBER_OF=FFFF to indicate that the flag
// should be later updated with the correct value of MEMBER_OF.
Flags |= OMP_MAP_MEMBER_OF;
// From now on, all subsequent PTR_AND_OBJ entries should not be
// marked as MEMBER_OF.
ShouldBeMemberOf = false;
}
}
Types.push_back(Flags);
}
// If we have encountered a member expression so far, keep track of the
// mapped member. If the parent is "*this", then the value declaration
// is nullptr.
if (EncounteredME) {
const auto *FD = dyn_cast<FieldDecl>(EncounteredME->getMemberDecl());
unsigned FieldIndex = FD->getFieldIndex();
// Update info about the lowest and highest elements for this struct
if (!PartialStruct.Base.isValid()) {
PartialStruct.LowestElem = {FieldIndex, LB};
PartialStruct.HighestElem = {FieldIndex, LB};
PartialStruct.Base = BP;
} else if (FieldIndex < PartialStruct.LowestElem.first) {
PartialStruct.LowestElem = {FieldIndex, LB};
} else if (FieldIndex > PartialStruct.HighestElem.first) {
PartialStruct.HighestElem = {FieldIndex, LB};
}
}
// If we have a final array section, we are done with this expression.
if (IsFinalArraySection)
break;
// The pointer becomes the base for the next element.
if (Next != CE)
BP = LB;
IsExpressionFirstInfo = false;
IsCaptureFirstInfo = false;
}
}
}
/// Return the adjusted map modifiers if the declaration a capture refers to
/// appears in a first-private clause. This is expected to be used only with
/// directives that start with 'target'.
MappableExprsHandler::OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
assert(Cap.capturesVariable() && "Expected capture by reference only!");
// A first private variable captured by reference will use only the
// 'private ptr' and 'map to' flag. Return the right flags if the captured
// declaration is known as first-private in this handler.
if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
if (Cap.getCapturedVar()->getType().isConstant(CGF.getContext()) &&
Cap.getCaptureKind() == CapturedStmt::VCK_ByRef)
return MappableExprsHandler::OMP_MAP_ALWAYS |
MappableExprsHandler::OMP_MAP_TO;
if (Cap.getCapturedVar()->getType()->isAnyPointerType())
return MappableExprsHandler::OMP_MAP_TO |
MappableExprsHandler::OMP_MAP_PTR_AND_OBJ;
return MappableExprsHandler::OMP_MAP_PRIVATE |
MappableExprsHandler::OMP_MAP_TO;
}
return MappableExprsHandler::OMP_MAP_TO |
MappableExprsHandler::OMP_MAP_FROM;
}
static OpenMPOffloadMappingFlags getMemberOfFlag(unsigned Position) {
// Rotate by getFlagMemberOffset() bits.
return static_cast<OpenMPOffloadMappingFlags>(((uint64_t)Position + 1)
<< getFlagMemberOffset());
}
static void setCorrectMemberOfFlag(OpenMPOffloadMappingFlags &Flags,
OpenMPOffloadMappingFlags MemberOfFlag) {
// If the entry is PTR_AND_OBJ but has not been marked with the special
// placeholder value 0xFFFF in the MEMBER_OF field, then it should not be
// marked as MEMBER_OF.
if ((Flags & OMP_MAP_PTR_AND_OBJ) &&
((Flags & OMP_MAP_MEMBER_OF) != OMP_MAP_MEMBER_OF))
return;
// Reset the placeholder value to prepare the flag for the assignment of the
// proper MEMBER_OF value.
Flags &= ~OMP_MAP_MEMBER_OF;
Flags |= MemberOfFlag;
}
void getPlainLayout(const CXXRecordDecl *RD,
llvm::SmallVectorImpl<const FieldDecl *> &Layout,
bool AsBase) const {
const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
llvm::StructType *St =
AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
unsigned NumElements = St->getNumElements();
llvm::SmallVector<
llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
RecordLayout(NumElements);
// Fill bases.
for (const auto &I : RD->bases()) {
if (I.isVirtual())
continue;
const auto *Base = I.getType()->getAsCXXRecordDecl();
// Ignore empty bases.
if (Base->isEmpty() || CGF.getContext()
.getASTRecordLayout(Base)
.getNonVirtualSize()
.isZero())
continue;
unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
RecordLayout[FieldIndex] = Base;
}
// Fill in virtual bases.
for (const auto &I : RD->vbases()) {
const auto *Base = I.getType()->getAsCXXRecordDecl();
// Ignore empty bases.
if (Base->isEmpty())
continue;
unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
if (RecordLayout[FieldIndex])
continue;
RecordLayout[FieldIndex] = Base;
}
// Fill in all the fields.
assert(!RD->isUnion() && "Unexpected union.");
for (const auto *Field : RD->fields()) {
// Fill in non-bitfields. (Bitfields always use a zero pattern, which we
// will fill in later.)
if (!Field->isBitField() && !Field->isZeroSize(CGF.getContext())) {
unsigned FieldIndex = RL.getLLVMFieldNo(Field);
RecordLayout[FieldIndex] = Field;
}
}
for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
&Data : RecordLayout) {
if (Data.isNull())
continue;
if (const auto *Base = Data.dyn_cast<const CXXRecordDecl *>())
getPlainLayout(Base, Layout, /*AsBase=*/true);
else
Layout.push_back(Data.get<const FieldDecl *>());
}
}
public:
MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
: CurDir(&Dir), CGF(CGF) {
// Extract firstprivate clause information.
for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
for (const auto *D : C->varlists())
FirstPrivateDecls.try_emplace(
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
// Extract device pointer clause information.
for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
for (auto L : C->component_lists())
DevPointersMap[L.first].push_back(L.second);
}
/// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
: CurDir(&Dir), CGF(CGF) {}
/// Generate code for the combined entry if we have a partially mapped struct
/// and take care of the mapping flags of the arguments corresponding to
/// individual struct members.
void emitCombinedEntry(MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types, MapFlagsArrayTy &CurTypes,
const StructRangeInfoTy &PartialStruct) const {
// Base is the base of the struct
BasePointers.push_back(PartialStruct.Base.getPointer());
// Pointer is the address of the lowest element
llvm::Value *LB = PartialStruct.LowestElem.second.getPointer();
Pointers.push_back(LB);
// Size is (addr of {highest+1} element) - (addr of lowest element)
llvm::Value *HB = PartialStruct.HighestElem.second.getPointer();
llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(HB, /*Idx0=*/1);
llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CHAddr, CLAddr);
llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
/*isSigned=*/false);
Sizes.push_back(Size);
// Map type is always TARGET_PARAM
Types.push_back(OMP_MAP_TARGET_PARAM);
// Remove TARGET_PARAM flag from the first element
(*CurTypes.begin()) &= ~OMP_MAP_TARGET_PARAM;
// All other current entries will be MEMBER_OF the combined entry
// (except for PTR_AND_OBJ entries which do not have a placeholder value
// 0xFFFF in the MEMBER_OF field).
OpenMPOffloadMappingFlags MemberOfFlag =
getMemberOfFlag(BasePointers.size() - 1);
for (auto &M : CurTypes)
setCorrectMemberOfFlag(M, MemberOfFlag);
}
/// Generate all the base pointers, section pointers, sizes and map
/// types for the extracted mappable expressions. Also, for each item that
/// relates with a device pointer, a pair of the relevant declaration and
/// index where it occurs is appended to the device pointers info array.
void generateAllInfo(MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types) const {
// We have to process the component lists that relate with the same
// declaration in a single chunk so that we can generate the map flags
// correctly. Therefore, we organize all lists in a map.
llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
// Helper function to fill the information map for the different supported
// clauses.
auto &&InfoGen = [&Info](
const ValueDecl *D,
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
bool ReturnDevicePointer, bool IsImplicit) {
const ValueDecl *VD =
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
IsImplicit);
};
assert(CurDir.is<const OMPExecutableDirective *>() &&
"Expect a executable directive");
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>())
for (const auto L : C->component_lists()) {
InfoGen(L.first, L.second, C->getMapType(), C->getMapTypeModifiers(),
/*ReturnDevicePointer=*/false, C->isImplicit());
}
for (const auto *C : CurExecDir->getClausesOfKind<OMPToClause>())
for (const auto L : C->component_lists()) {
InfoGen(L.first, L.second, OMPC_MAP_to, llvm::None,
/*ReturnDevicePointer=*/false, C->isImplicit());
}
for (const auto *C : CurExecDir->getClausesOfKind<OMPFromClause>())
for (const auto L : C->component_lists()) {
InfoGen(L.first, L.second, OMPC_MAP_from, llvm::None,
/*ReturnDevicePointer=*/false, C->isImplicit());
}
// Look at the use_device_ptr clause information and mark the existing map
// entries as such. If there is no map information for an entry in the
// use_device_ptr list, we create one with map type 'alloc' and zero size
// section. It is the user fault if that was not mapped before. If there is
// no map information and the pointer is a struct member, then we defer the
// emission of that entry until the whole struct has been processed.
llvm::MapVector<const ValueDecl *, SmallVector<DeferredDevicePtrEntryTy, 4>>
DeferredInfo;
for (const auto *C :
CurExecDir->getClausesOfKind<OMPUseDevicePtrClause>()) {
for (const auto L : C->component_lists()) {
assert(!L.second.empty() && "Not expecting empty list of components!");
const ValueDecl *VD = L.second.back().getAssociatedDeclaration();
VD = cast<ValueDecl>(VD->getCanonicalDecl());
const Expr *IE = L.second.back().getAssociatedExpression();
// If the first component is a member expression, we have to look into
// 'this', which maps to null in the map of map information. Otherwise
// look directly for the information.
auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
// We potentially have map information for this declaration already.
// Look for the first set of components that refer to it.
if (It != Info.end()) {
auto CI = std::find_if(
It->second.begin(), It->second.end(), [VD](const MapInfo &MI) {
return MI.Components.back().getAssociatedDeclaration() == VD;
});
// If we found a map entry, signal that the pointer has to be returned
// and move on to the next declaration.
if (CI != It->second.end()) {
CI->ReturnDevicePointer = true;
continue;
}
}
// We didn't find any match in our map information - generate a zero
// size array section - if the pointer is a struct member we defer this
// action until the whole struct has been processed.
if (isa<MemberExpr>(IE)) {
// Insert the pointer into Info to be processed by
// generateInfoForComponentList. Because it is a member pointer
// without a pointee, no entry will be generated for it, therefore
// we need to generate one after the whole struct has been processed.
// Nonetheless, generateInfoForComponentList must be called to take
// the pointer into account for the calculation of the range of the
// partial struct.
InfoGen(nullptr, L.second, OMPC_MAP_unknown, llvm::None,
/*ReturnDevicePointer=*/false, C->isImplicit());
DeferredInfo[nullptr].emplace_back(IE, VD);
} else {
llvm::Value *Ptr =
CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
BasePointers.emplace_back(Ptr, VD);
Pointers.push_back(Ptr);
Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
Types.push_back(OMP_MAP_RETURN_PARAM | OMP_MAP_TARGET_PARAM);
}
}
}
for (const auto &M : Info) {
// We need to know when we generate information for the first component
// associated with a capture, because the mapping flags depend on it.
bool IsFirstComponentList = true;
// Temporary versions of arrays
MapBaseValuesArrayTy CurBasePointers;
MapValuesArrayTy CurPointers;
MapValuesArrayTy CurSizes;
MapFlagsArrayTy CurTypes;
StructRangeInfoTy PartialStruct;
for (const MapInfo &L : M.second) {
assert(!L.Components.empty() &&
"Not expecting declaration with no component lists.");
// Remember the current base pointer index.
unsigned CurrentBasePointersIdx = CurBasePointers.size();
generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
CurBasePointers, CurPointers, CurSizes,
CurTypes, PartialStruct,
IsFirstComponentList, L.IsImplicit);
// If this entry relates with a device pointer, set the relevant
// declaration and add the 'return pointer' flag.
if (L.ReturnDevicePointer) {
assert(CurBasePointers.size() > CurrentBasePointersIdx &&
"Unexpected number of mapped base pointers.");
const ValueDecl *RelevantVD =
L.Components.back().getAssociatedDeclaration();
assert(RelevantVD &&
"No relevant declaration related with device pointer??");
CurBasePointers[CurrentBasePointersIdx].setDevicePtrDecl(RelevantVD);
CurTypes[CurrentBasePointersIdx] |= OMP_MAP_RETURN_PARAM;
}
IsFirstComponentList = false;
}
// Append any pending zero-length pointers which are struct members and
// used with use_device_ptr.
auto CI = DeferredInfo.find(M.first);
if (CI != DeferredInfo.end()) {
for (const DeferredDevicePtrEntryTy &L : CI->second) {
llvm::Value *BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
llvm::Value *Ptr = this->CGF.EmitLoadOfScalar(
this->CGF.EmitLValue(L.IE), L.IE->getExprLoc());
CurBasePointers.emplace_back(BasePtr, L.VD);
CurPointers.push_back(Ptr);
CurSizes.push_back(llvm::Constant::getNullValue(this->CGF.Int64Ty));
// Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the placeholder
// value MEMBER_OF=FFFF so that the entry is later updated with the
// correct value of MEMBER_OF.
CurTypes.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_RETURN_PARAM |
OMP_MAP_MEMBER_OF);
}
}
// If there is an entry in PartialStruct it means we have a struct with
// individual members mapped. Emit an extra combined entry.
if (PartialStruct.Base.isValid())
emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
PartialStruct);
// We need to append the results of this capture to what we already have.
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
Pointers.append(CurPointers.begin(), CurPointers.end());
Sizes.append(CurSizes.begin(), CurSizes.end());
Types.append(CurTypes.begin(), CurTypes.end());
}
}
/// Generate all the base pointers, section pointers, sizes and map types for
/// the extracted map clauses of user-defined mapper.
void generateAllInfoForMapper(MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types) const {
assert(CurDir.is<const OMPDeclareMapperDecl *>() &&
"Expect a declare mapper directive");
const auto *CurMapperDir = CurDir.get<const OMPDeclareMapperDecl *>();
// We have to process the component lists that relate with the same
// declaration in a single chunk so that we can generate the map flags
// correctly. Therefore, we organize all lists in a map.
llvm::MapVector<const ValueDecl *, SmallVector<MapInfo, 8>> Info;
// Helper function to fill the information map for the different supported
// clauses.
auto &&InfoGen = [&Info](
const ValueDecl *D,
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
bool ReturnDevicePointer, bool IsImplicit) {
const ValueDecl *VD =
D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
Info[VD].emplace_back(L, MapType, MapModifiers, ReturnDevicePointer,
IsImplicit);
};
for (const auto *C : CurMapperDir->clauselists()) {
const auto *MC = cast<OMPMapClause>(C);
for (const auto L : MC->component_lists()) {
InfoGen(L.first, L.second, MC->getMapType(), MC->getMapTypeModifiers(),
/*ReturnDevicePointer=*/false, MC->isImplicit());
}
}
for (const auto &M : Info) {
// We need to know when we generate information for the first component
// associated with a capture, because the mapping flags depend on it.
bool IsFirstComponentList = true;
// Temporary versions of arrays
MapBaseValuesArrayTy CurBasePointers;
MapValuesArrayTy CurPointers;
MapValuesArrayTy CurSizes;
MapFlagsArrayTy CurTypes;
StructRangeInfoTy PartialStruct;
for (const MapInfo &L : M.second) {
assert(!L.Components.empty() &&
"Not expecting declaration with no component lists.");
generateInfoForComponentList(L.MapType, L.MapModifiers, L.Components,
CurBasePointers, CurPointers, CurSizes,
CurTypes, PartialStruct,
IsFirstComponentList, L.IsImplicit);
IsFirstComponentList = false;
}
// If there is an entry in PartialStruct it means we have a struct with
// individual members mapped. Emit an extra combined entry.
if (PartialStruct.Base.isValid())
emitCombinedEntry(BasePointers, Pointers, Sizes, Types, CurTypes,
PartialStruct);
// We need to append the results of this capture to what we already have.
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
Pointers.append(CurPointers.begin(), CurPointers.end());
Sizes.append(CurSizes.begin(), CurSizes.end());
Types.append(CurTypes.begin(), CurTypes.end());
}
}
/// Emit capture info for lambdas for variables captured by reference.
void generateInfoForLambdaCaptures(
const ValueDecl *VD, llvm::Value *Arg, MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers, MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types,
llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
const auto *RD = VD->getType()
.getCanonicalType()
.getNonReferenceType()
->getAsCXXRecordDecl();
if (!RD || !RD->isLambda())
return;
Address VDAddr = Address(Arg, CGF.getContext().getDeclAlign(VD));
LValue VDLVal = CGF.MakeAddrLValue(
VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
FieldDecl *ThisCapture = nullptr;
RD->getCaptureFields(Captures, ThisCapture);
if (ThisCapture) {
LValue ThisLVal =
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
BasePointers.push_back(ThisLVal.getPointer(CGF));
Pointers.push_back(ThisLValVal.getPointer(CGF));
Sizes.push_back(
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
CGF.Int64Ty, /*isSigned=*/true));
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
}
for (const LambdaCapture &LC : RD->captures()) {
if (!LC.capturesVariable())
continue;
const VarDecl *VD = LC.getCapturedVar();
if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
continue;
auto It = Captures.find(VD);
assert(It != Captures.end() && "Found lambda capture without field.");
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
if (LC.getCaptureKind() == LCK_ByRef) {
LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
BasePointers.push_back(VarLVal.getPointer(CGF));
Pointers.push_back(VarLValVal.getPointer(CGF));
Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(
VD->getType().getCanonicalType().getNonReferenceType()),
CGF.Int64Ty, /*isSigned=*/true));
} else {
RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
BasePointers.push_back(VarLVal.getPointer(CGF));
Pointers.push_back(VarRVal.getScalarVal());
Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
}
Types.push_back(OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT);
}
}
/// Set correct indices for lambdas captures.
void adjustMemberOfForLambdaCaptures(
const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
MapFlagsArrayTy &Types) const {
for (unsigned I = 0, E = Types.size(); I < E; ++I) {
// Set correct member_of idx for all implicit lambda captures.
if (Types[I] != (OMP_MAP_PTR_AND_OBJ | OMP_MAP_LITERAL |
OMP_MAP_MEMBER_OF | OMP_MAP_IMPLICIT))
continue;
llvm::Value *BasePtr = LambdaPointers.lookup(*BasePointers[I]);
assert(BasePtr && "Unable to find base lambda address.");
int TgtIdx = -1;
for (unsigned J = I; J > 0; --J) {
unsigned Idx = J - 1;
if (Pointers[Idx] != BasePtr)
continue;
TgtIdx = Idx;
break;
}
assert(TgtIdx != -1 && "Unable to find parent lambda.");
// All other current entries will be MEMBER_OF the combined entry
// (except for PTR_AND_OBJ entries which do not have a placeholder value
// 0xFFFF in the MEMBER_OF field).
OpenMPOffloadMappingFlags MemberOfFlag = getMemberOfFlag(TgtIdx);
setCorrectMemberOfFlag(Types[I], MemberOfFlag);
}
}
/// Generate the base pointers, section pointers, sizes and map types
/// associated to a given capture.
void generateInfoForCapture(const CapturedStmt::Capture *Cap,
llvm::Value *Arg,
MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes, MapFlagsArrayTy &Types,
StructRangeInfoTy &PartialStruct) const {
assert(!Cap->capturesVariableArrayType() &&
"Not expecting to generate map info for a variable array type!");
// We need to know when we generating information for the first component
const ValueDecl *VD = Cap->capturesThis()
? nullptr
: Cap->getCapturedVar()->getCanonicalDecl();
// If this declaration appears in a is_device_ptr clause we just have to
// pass the pointer by value. If it is a reference to a declaration, we just
// pass its value.
if (DevPointersMap.count(VD)) {
BasePointers.emplace_back(Arg, VD);
Pointers.push_back(Arg);
Sizes.push_back(
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
CGF.Int64Ty, /*isSigned=*/true));
Types.push_back(OMP_MAP_LITERAL | OMP_MAP_TARGET_PARAM);
return;
}
using MapData =
std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool>;
SmallVector<MapData, 4> DeclComponentLists;
assert(CurDir.is<const OMPExecutableDirective *>() &&
"Expect a executable directive");
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
for (const auto L : C->decl_component_lists(VD)) {
assert(L.first == VD &&
"We got information for the wrong declaration??");
assert(!L.second.empty() &&
"Not expecting declaration with no component lists.");
DeclComponentLists.emplace_back(L.second, C->getMapType(),
C->getMapTypeModifiers(),
C->isImplicit());
}
}
// Find overlapping elements (including the offset from the base element).
llvm::SmallDenseMap<
const MapData *,
llvm::SmallVector<
OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
4>
OverlappedData;
size_t Count = 0;
for (const MapData &L : DeclComponentLists) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
++Count;
for (const MapData &L1 : makeArrayRef(DeclComponentLists).slice(Count)) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
std::tie(Components1, MapType, MapModifiers, IsImplicit) = L1;
auto CI = Components.rbegin();
auto CE = Components.rend();
auto SI = Components1.rbegin();
auto SE = Components1.rend();
for (; CI != CE && SI != SE; ++CI, ++SI) {
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass())
break;
// Are we dealing with different variables/fields?
if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
break;
}
// Found overlapping if, at least for one component, reached the head of
// the components list.
if (CI == CE || SI == SE) {
assert((CI != CE || SI != SE) &&
"Unexpected full match of the mapping components.");
const MapData &BaseData = CI == CE ? L : L1;
OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
SI == SE ? Components : Components1;
auto &OverlappedElements = OverlappedData.FindAndConstruct(&BaseData);
OverlappedElements.getSecond().push_back(SubData);
}
}
}
// Sort the overlapped elements for each item.
llvm::SmallVector<const FieldDecl *, 4> Layout;
if (!OverlappedData.empty()) {
if (const auto *CRD =
VD->getType().getCanonicalType()->getAsCXXRecordDecl())
getPlainLayout(CRD, Layout, /*AsBase=*/false);
else {
const auto *RD = VD->getType().getCanonicalType()->getAsRecordDecl();
Layout.append(RD->field_begin(), RD->field_end());
}
}
for (auto &Pair : OverlappedData) {
llvm::sort(
Pair.getSecond(),
[&Layout](
OMPClauseMappableExprCommon::MappableExprComponentListRef First,
OMPClauseMappableExprCommon::MappableExprComponentListRef
Second) {
auto CI = First.rbegin();
auto CE = First.rend();
auto SI = Second.rbegin();
auto SE = Second.rend();
for (; CI != CE && SI != SE; ++CI, ++SI) {
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass())
break;
// Are we dealing with different variables/fields?
if (CI->getAssociatedDeclaration() !=
SI->getAssociatedDeclaration())
break;
}
// Lists contain the same elements.
if (CI == CE && SI == SE)
return false;
// List with less elements is less than list with more elements.
if (CI == CE || SI == SE)
return CI == CE;
const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
if (FD1->getParent() == FD2->getParent())
return FD1->getFieldIndex() < FD2->getFieldIndex();
const auto It =
llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
return FD == FD1 || FD == FD2;
});
return *It == FD1;
});
}
// Associated with a capture, because the mapping flags depend on it.
// Go through all of the elements with the overlapped elements.
for (const auto &Pair : OverlappedData) {
const MapData &L = *Pair.getFirst();
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
OverlappedComponents = Pair.getSecond();
bool IsFirstComponentList = true;
generateInfoForComponentList(MapType, MapModifiers, Components,
BasePointers, Pointers, Sizes, Types,
PartialStruct, IsFirstComponentList,
IsImplicit, OverlappedComponents);
}
// Go through other elements without overlapped elements.
bool IsFirstComponentList = OverlappedData.empty();
for (const MapData &L : DeclComponentLists) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
std::tie(Components, MapType, MapModifiers, IsImplicit) = L;
auto It = OverlappedData.find(&L);
if (It == OverlappedData.end())
generateInfoForComponentList(MapType, MapModifiers, Components,
BasePointers, Pointers, Sizes, Types,
PartialStruct, IsFirstComponentList,
IsImplicit);
IsFirstComponentList = false;
}
}
/// Generate the base pointers, section pointers, sizes and map types
/// associated with the declare target link variables.
void generateInfoForDeclareTargetLink(MapBaseValuesArrayTy &BasePointers,
MapValuesArrayTy &Pointers,
MapValuesArrayTy &Sizes,
MapFlagsArrayTy &Types) const {
assert(CurDir.is<const OMPExecutableDirective *>() &&
"Expect a executable directive");
const auto *CurExecDir = CurDir.get<const OMPExecutableDirective *>();
// Map other list items in the map clause which are not captured variables
// but "declare target link" global variables.
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
for (const auto L : C->component_lists()) {
if (!L.first)
continue;
const auto *VD = dyn_cast<VarDecl>(L.first);
if (!VD)
continue;
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
!Res || *Res != OMPDeclareTargetDeclAttr::MT_Link)
continue;
StructRangeInfoTy PartialStruct;
generateInfoForComponentList(
C->getMapType(), C->getMapTypeModifiers(), L.second, BasePointers,
Pointers, Sizes, Types, PartialStruct,
/*IsFirstComponentList=*/true, C->isImplicit());
assert(!PartialStruct.Base.isValid() &&
"No partial structs for declare target link expected.");
}
}
}
/// Generate the default map information for a given capture \a CI,
/// record field declaration \a RI and captured value \a CV.
void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
const FieldDecl &RI, llvm::Value *CV,
MapBaseValuesArrayTy &CurBasePointers,
MapValuesArrayTy &CurPointers,
MapValuesArrayTy &CurSizes,
MapFlagsArrayTy &CurMapTypes) const {
bool IsImplicit = true;
// Do the default mapping.
if (CI.capturesThis()) {
CurBasePointers.push_back(CV);
CurPointers.push_back(CV);
const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
CurSizes.push_back(
CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
CGF.Int64Ty, /*isSigned=*/true));
// Default map type.
CurMapTypes.push_back(OMP_MAP_TO | OMP_MAP_FROM);
} else if (CI.capturesVariableByCopy()) {
CurBasePointers.push_back(CV);
CurPointers.push_back(CV);
if (!RI.getType()->isAnyPointerType()) {
// We have to signal to the runtime captures passed by value that are
// not pointers.
CurMapTypes.push_back(OMP_MAP_LITERAL);
CurSizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
} else {
// Pointers are implicitly mapped with a zero size and no flags
// (other than first map that is added for all implicit maps).
CurMapTypes.push_back(OMP_MAP_NONE);
CurSizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
}
const VarDecl *VD = CI.getCapturedVar();
auto I = FirstPrivateDecls.find(VD);
if (I != FirstPrivateDecls.end())
IsImplicit = I->getSecond();
} else {
assert(CI.capturesVariable() && "Expected captured reference.");
const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
QualType ElementType = PtrTy->getPointeeType();
CurSizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
// The default map type for a scalar/complex type is 'to' because by
// default the value doesn't have to be retrieved. For an aggregate
// type, the default is 'tofrom'.
CurMapTypes.push_back(getMapModifiersForPrivateClauses(CI));
const VarDecl *VD = CI.getCapturedVar();
auto I = FirstPrivateDecls.find(VD);
if (I != FirstPrivateDecls.end() &&
VD->getType().isConstant(CGF.getContext())) {
llvm::Constant *Addr =
CGF.CGM.getOpenMPRuntime().registerTargetFirstprivateCopy(CGF, VD);
// Copy the value of the original variable to the new global copy.
CGF.Builder.CreateMemCpy(
CGF.MakeNaturalAlignAddrLValue(Addr, ElementType).getAddress(CGF),
Address(CV, CGF.getContext().getTypeAlignInChars(ElementType)),
CurSizes.back(), /*IsVolatile=*/false);
// Use new global variable as the base pointers.
CurBasePointers.push_back(Addr);
CurPointers.push_back(Addr);
} else {
CurBasePointers.push_back(CV);
if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
CV, ElementType, CGF.getContext().getDeclAlign(VD),
AlignmentSource::Decl));
CurPointers.push_back(PtrAddr.getPointer());
} else {
CurPointers.push_back(CV);
}
}
if (I != FirstPrivateDecls.end())
IsImplicit = I->getSecond();
}
// Every default map produces a single argument which is a target parameter.
CurMapTypes.back() |= OMP_MAP_TARGET_PARAM;
// Add flag stating this is an implicit map.
if (IsImplicit)
CurMapTypes.back() |= OMP_MAP_IMPLICIT;
}
};
} // anonymous namespace
/// Emit the arrays used to pass the captures and map information to the
/// offloading runtime library. If there is no map or capture information,
/// return nullptr by reference.
static void
emitOffloadingArrays(CodeGenFunction &CGF,
MappableExprsHandler::MapBaseValuesArrayTy &BasePointers,
MappableExprsHandler::MapValuesArrayTy &Pointers,
MappableExprsHandler::MapValuesArrayTy &Sizes,
MappableExprsHandler::MapFlagsArrayTy &MapTypes,
CGOpenMPRuntime::TargetDataInfo &Info) {
CodeGenModule &CGM = CGF.CGM;
ASTContext &Ctx = CGF.getContext();
// Reset the array information.
Info.clearArrayInfo();
Info.NumberOfPtrs = BasePointers.size();
if (Info.NumberOfPtrs) {
// Detect if we have any capture size requiring runtime evaluation of the
// size so that a constant array could be eventually used.
bool hasRuntimeEvaluationCaptureSize = false;
for (llvm::Value *S : Sizes)
if (!isa<llvm::Constant>(S)) {
hasRuntimeEvaluationCaptureSize = true;
break;
}
llvm::APInt PointerNumAP(32, Info.NumberOfPtrs, /*isSigned=*/true);
QualType PointerArrayType = Ctx.getConstantArrayType(
Ctx.VoidPtrTy, PointerNumAP, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Info.BasePointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_baseptrs").getPointer();
Info.PointersArray =
CGF.CreateMemTemp(PointerArrayType, ".offload_ptrs").getPointer();
// If we don't have any VLA types or other types that require runtime
// evaluation, we can use a constant array for the map sizes, otherwise we
// need to fill up the arrays as we do for the pointers.
QualType Int64Ty =
Ctx.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
if (hasRuntimeEvaluationCaptureSize) {
QualType SizeArrayType = Ctx.getConstantArrayType(
Int64Ty, PointerNumAP, nullptr, ArrayType::Normal,
/*IndexTypeQuals=*/0);
Info.SizesArray =
CGF.CreateMemTemp(SizeArrayType, ".offload_sizes").getPointer();
} else {
// We expect all the sizes to be constant, so we collect them to create
// a constant array.
SmallVector<llvm::Constant *, 16> ConstSizes;
for (llvm::Value *S : Sizes)
ConstSizes.push_back(cast<llvm::Constant>(S));
auto *SizesArrayInit = llvm::ConstantArray::get(
llvm::ArrayType::get(CGM.Int64Ty, ConstSizes.size()), ConstSizes);
std::string Name = CGM.getOpenMPRuntime().getName({"offload_sizes"});
auto *SizesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), SizesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
SizesArrayInit, Name);
SizesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
Info.SizesArray = SizesArrayGbl;
}
// The map types are always constant so we don't need to generate code to
// fill arrays. Instead, we create an array constant.
SmallVector<uint64_t, 4> Mapping(MapTypes.size(), 0);
llvm::copy(MapTypes, Mapping.begin());
llvm::Constant *MapTypesArrayInit =
llvm::ConstantDataArray::get(CGF.Builder.getContext(), Mapping);
std::string MaptypesName =
CGM.getOpenMPRuntime().getName({"offload_maptypes"});
auto *MapTypesArrayGbl = new llvm::GlobalVariable(
CGM.getModule(), MapTypesArrayInit->getType(),
/*isConstant=*/true, llvm::GlobalValue::PrivateLinkage,
MapTypesArrayInit, MaptypesName);
MapTypesArrayGbl->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
Info.MapTypesArray = MapTypesArrayGbl;
for (unsigned I = 0; I < Info.NumberOfPtrs; ++I) {
llvm::Value *BPVal = *BasePointers[I];
llvm::Value *BP = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.BasePointersArray, 0, I);
BP = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
BP, BPVal->getType()->getPointerTo(/*AddrSpace=*/0));
Address BPAddr(BP, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
CGF.Builder.CreateStore(BPVal, BPAddr);
if (Info.requiresDevicePointerInfo())
if (const ValueDecl *DevVD = BasePointers[I].getDevicePtrDecl())
Info.CaptureDeviceAddrMap.try_emplace(DevVD, BPAddr);
llvm::Value *PVal = Pointers[I];
llvm::Value *P = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.PointersArray, 0, I);
P = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
P, PVal->getType()->getPointerTo(/*AddrSpace=*/0));
Address PAddr(P, Ctx.getTypeAlignInChars(Ctx.VoidPtrTy));
CGF.Builder.CreateStore(PVal, PAddr);
if (hasRuntimeEvaluationCaptureSize) {
llvm::Value *S = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
Info.SizesArray,
/*Idx0=*/0,
/*Idx1=*/I);
Address SAddr(S, Ctx.getTypeAlignInChars(Int64Ty));
CGF.Builder.CreateStore(
CGF.Builder.CreateIntCast(Sizes[I], CGM.Int64Ty, /*isSigned=*/true),
SAddr);
}
}
}
}
/// Emit the arguments to be passed to the runtime library based on the
/// arrays of pointers, sizes and map types.
static void emitOffloadingArraysArgument(
CodeGenFunction &CGF, llvm::Value *&BasePointersArrayArg,
llvm::Value *&PointersArrayArg, llvm::Value *&SizesArrayArg,
llvm::Value *&MapTypesArrayArg, CGOpenMPRuntime::TargetDataInfo &Info) {
CodeGenModule &CGM = CGF.CGM;
if (Info.NumberOfPtrs) {
BasePointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.BasePointersArray,
/*Idx0=*/0, /*Idx1=*/0);
PointersArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.VoidPtrTy, Info.NumberOfPtrs),
Info.PointersArray,
/*Idx0=*/0,
/*Idx1=*/0);
SizesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs), Info.SizesArray,
/*Idx0=*/0, /*Idx1=*/0);
MapTypesArrayArg = CGF.Builder.CreateConstInBoundsGEP2_32(
llvm::ArrayType::get(CGM.Int64Ty, Info.NumberOfPtrs),
Info.MapTypesArray,
/*Idx0=*/0,
/*Idx1=*/0);
} else {
BasePointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
PointersArrayArg = llvm::ConstantPointerNull::get(CGM.VoidPtrPtrTy);
SizesArrayArg = llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
MapTypesArrayArg =
llvm::ConstantPointerNull::get(CGM.Int64Ty->getPointerTo());
}
}
/// Check for inner distribute directive.
static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt =
CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
switch (D.getDirectiveKind()) {
case OMPD_target:
if (isOpenMPDistributeDirective(DKind))
return NestedDir;
if (DKind == OMPD_teams) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return nullptr;
ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPDistributeDirective(DKind))
return NND;
}
}
return nullptr;
case OMPD_target_teams:
if (isOpenMPDistributeDirective(DKind))
return NestedDir;
return nullptr;
case OMPD_target_parallel:
case OMPD_target_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
return nullptr;
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
llvm_unreachable("Unexpected directive.");
}
}
return nullptr;
}
/// Emit the user-defined mapper function. The code generation follows the
/// pattern in the example below.
/// \code
/// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
/// void *base, void *begin,
/// int64_t size, int64_t type) {
/// // Allocate space for an array section first.
/// if (size > 1 && !maptype.IsDelete)
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
/// size*sizeof(Ty), clearToFrom(type));
/// // Map members.
/// for (unsigned i = 0; i < size; i++) {
/// // For each component specified by this mapper:
/// for (auto c : all_components) {
/// if (c.hasMapper())
/// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
/// c.arg_type);
/// else
/// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
/// c.arg_begin, c.arg_size, c.arg_type);
/// }
/// }
/// // Delete the array section.
/// if (size > 1 && maptype.IsDelete)
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
/// size*sizeof(Ty), clearToFrom(type));
/// }
/// \endcode
void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
CodeGenFunction *CGF) {
if (UDMMap.count(D) > 0)
return;
ASTContext &C = CGM.getContext();
QualType Ty = D->getType();
QualType PtrTy = C.getPointerType(Ty).withRestrict();
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
auto *MapperVarDecl =
cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
SourceLocation Loc = D->getLocation();
CharUnits ElementSize = C.getTypeSizeInChars(Ty);
// Prepare mapper function arguments and attributes.
ImplicitParamDecl HandleArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
ImplicitParamDecl BaseArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamDecl::Other);
ImplicitParamDecl BeginArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamDecl::Other);
ImplicitParamDecl SizeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
ImplicitParamDecl::Other);
ImplicitParamDecl TypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, Int64Ty,
ImplicitParamDecl::Other);
FunctionArgList Args;
Args.push_back(&HandleArg);
Args.push_back(&BaseArg);
Args.push_back(&BeginArg);
Args.push_back(&SizeArg);
Args.push_back(&TypeArg);
const CGFunctionInfo &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
SmallString<64> TyStr;
llvm::raw_svector_ostream Out(TyStr);
CGM.getCXXABI().getMangleContext().mangleTypeName(Ty, Out);
std::string Name = getName({"omp_mapper", TyStr, D->getName()});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
// Start the mapper function code generation.
CodeGenFunction MapperCGF(CGM);
MapperCGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
// Compute the starting and end addreses of array elements.
llvm::Value *Size = MapperCGF.EmitLoadOfScalar(
MapperCGF.GetAddrOfLocalVar(&SizeArg), /*Volatile=*/false,
C.getPointerType(Int64Ty), Loc);
llvm::Value *PtrBegin = MapperCGF.Builder.CreateBitCast(
MapperCGF.GetAddrOfLocalVar(&BeginArg).getPointer(),
CGM.getTypes().ConvertTypeForMem(C.getPointerType(PtrTy)));
llvm::Value *PtrEnd = MapperCGF.Builder.CreateGEP(PtrBegin, Size);
llvm::Value *MapType = MapperCGF.EmitLoadOfScalar(
MapperCGF.GetAddrOfLocalVar(&TypeArg), /*Volatile=*/false,
C.getPointerType(Int64Ty), Loc);
// Prepare common arguments for array initiation and deletion.
llvm::Value *Handle = MapperCGF.EmitLoadOfScalar(
MapperCGF.GetAddrOfLocalVar(&HandleArg),
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
llvm::Value *BaseIn = MapperCGF.EmitLoadOfScalar(
MapperCGF.GetAddrOfLocalVar(&BaseArg),
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
llvm::Value *BeginIn = MapperCGF.EmitLoadOfScalar(
MapperCGF.GetAddrOfLocalVar(&BeginArg),
/*Volatile=*/false, C.getPointerType(C.VoidPtrTy), Loc);
// Emit array initiation if this is an array section and \p MapType indicates
// that memory allocation is required.
llvm::BasicBlock *HeadBB = MapperCGF.createBasicBlock("omp.arraymap.head");
emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
ElementSize, HeadBB, /*IsInit=*/true);
// Emit a for loop to iterate through SizeArg of elements and map all of them.
// Emit the loop header block.
MapperCGF.EmitBlock(HeadBB);
llvm::BasicBlock *BodyBB = MapperCGF.createBasicBlock("omp.arraymap.body");
llvm::BasicBlock *DoneBB = MapperCGF.createBasicBlock("omp.done");
// Evaluate whether the initial condition is satisfied.
llvm::Value *IsEmpty =
MapperCGF.Builder.CreateICmpEQ(PtrBegin, PtrEnd, "omp.arraymap.isempty");
MapperCGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
llvm::BasicBlock *EntryBB = MapperCGF.Builder.GetInsertBlock();
// Emit the loop body block.
MapperCGF.EmitBlock(BodyBB);
llvm::PHINode *PtrPHI = MapperCGF.Builder.CreatePHI(
PtrBegin->getType(), 2, "omp.arraymap.ptrcurrent");
PtrPHI->addIncoming(PtrBegin, EntryBB);
Address PtrCurrent =
Address(PtrPHI, MapperCGF.GetAddrOfLocalVar(&BeginArg)
.getAlignment()
.alignmentOfArrayElement(ElementSize));
// Privatize the declared variable of mapper to be the current array element.
CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
Scope.addPrivate(MapperVarDecl, [&MapperCGF, PtrCurrent, PtrTy]() {
return MapperCGF
.EmitLoadOfPointerLValue(PtrCurrent, PtrTy->castAs<PointerType>())
.getAddress(MapperCGF);
});
(void)Scope.Privatize();
// Get map clause information. Fill up the arrays with all mapped variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
MappableExprsHandler MEHandler(*D, MapperCGF);
MEHandler.generateAllInfoForMapper(BasePointers, Pointers, Sizes, MapTypes);
// Call the runtime API __tgt_mapper_num_components to get the number of
// pre-existing components.
llvm::Value *OffloadingArgs[] = {Handle};
llvm::Value *PreviousSize = MapperCGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__tgt_mapper_num_components), OffloadingArgs);
llvm::Value *ShiftedPreviousSize = MapperCGF.Builder.CreateShl(
PreviousSize,
MapperCGF.Builder.getInt64(MappableExprsHandler::getFlagMemberOffset()));
// Fill up the runtime mapper handle for all components.
for (unsigned I = 0; I < BasePointers.size(); ++I) {
llvm::Value *CurBaseArg = MapperCGF.Builder.CreateBitCast(
*BasePointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
llvm::Value *CurBeginArg = MapperCGF.Builder.CreateBitCast(
Pointers[I], CGM.getTypes().ConvertTypeForMem(C.VoidPtrTy));
llvm::Value *CurSizeArg = Sizes[I];
// Extract the MEMBER_OF field from the map type.
llvm::BasicBlock *MemberBB = MapperCGF.createBasicBlock("omp.member");
MapperCGF.EmitBlock(MemberBB);
llvm::Value *OriMapType = MapperCGF.Builder.getInt64(MapTypes[I]);
llvm::Value *Member = MapperCGF.Builder.CreateAnd(
OriMapType,
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_MEMBER_OF));
llvm::BasicBlock *MemberCombineBB =
MapperCGF.createBasicBlock("omp.member.combine");
llvm::BasicBlock *TypeBB = MapperCGF.createBasicBlock("omp.type");
llvm::Value *IsMember = MapperCGF.Builder.CreateIsNull(Member);
MapperCGF.Builder.CreateCondBr(IsMember, TypeBB, MemberCombineBB);
// Add the number of pre-existing components to the MEMBER_OF field if it
// is valid.
MapperCGF.EmitBlock(MemberCombineBB);
llvm::Value *CombinedMember =
MapperCGF.Builder.CreateNUWAdd(OriMapType, ShiftedPreviousSize);
// Do nothing if it is not a member of previous components.
MapperCGF.EmitBlock(TypeBB);
llvm::PHINode *MemberMapType =
MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.membermaptype");
MemberMapType->addIncoming(OriMapType, MemberBB);
MemberMapType->addIncoming(CombinedMember, MemberCombineBB);
// Combine the map type inherited from user-defined mapper with that
// specified in the program. According to the OMP_MAP_TO and OMP_MAP_FROM
// bits of the \a MapType, which is the input argument of the mapper
// function, the following code will set the OMP_MAP_TO and OMP_MAP_FROM
// bits of MemberMapType.
// [OpenMP 5.0], 1.2.6. map-type decay.
// | alloc | to | from | tofrom | release | delete
// ----------------------------------------------------------
// alloc | alloc | alloc | alloc | alloc | release | delete
// to | alloc | to | alloc | to | release | delete
// from | alloc | alloc | from | from | release | delete
// tofrom | alloc | to | from | tofrom | release | delete
llvm::Value *LeftToFrom = MapperCGF.Builder.CreateAnd(
MapType,
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO |
MappableExprsHandler::OMP_MAP_FROM));
llvm::BasicBlock *AllocBB = MapperCGF.createBasicBlock("omp.type.alloc");
llvm::BasicBlock *AllocElseBB =
MapperCGF.createBasicBlock("omp.type.alloc.else");
llvm::BasicBlock *ToBB = MapperCGF.createBasicBlock("omp.type.to");
llvm::BasicBlock *ToElseBB = MapperCGF.createBasicBlock("omp.type.to.else");
llvm::BasicBlock *FromBB = MapperCGF.createBasicBlock("omp.type.from");
llvm::BasicBlock *EndBB = MapperCGF.createBasicBlock("omp.type.end");
llvm::Value *IsAlloc = MapperCGF.Builder.CreateIsNull(LeftToFrom);
MapperCGF.Builder.CreateCondBr(IsAlloc, AllocBB, AllocElseBB);
// In case of alloc, clear OMP_MAP_TO and OMP_MAP_FROM.
MapperCGF.EmitBlock(AllocBB);
llvm::Value *AllocMapType = MapperCGF.Builder.CreateAnd(
MemberMapType,
MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
MappableExprsHandler::OMP_MAP_FROM)));
MapperCGF.Builder.CreateBr(EndBB);
MapperCGF.EmitBlock(AllocElseBB);
llvm::Value *IsTo = MapperCGF.Builder.CreateICmpEQ(
LeftToFrom,
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_TO));
MapperCGF.Builder.CreateCondBr(IsTo, ToBB, ToElseBB);
// In case of to, clear OMP_MAP_FROM.
MapperCGF.EmitBlock(ToBB);
llvm::Value *ToMapType = MapperCGF.Builder.CreateAnd(
MemberMapType,
MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_FROM));
MapperCGF.Builder.CreateBr(EndBB);
MapperCGF.EmitBlock(ToElseBB);
llvm::Value *IsFrom = MapperCGF.Builder.CreateICmpEQ(
LeftToFrom,
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_FROM));
MapperCGF.Builder.CreateCondBr(IsFrom, FromBB, EndBB);
// In case of from, clear OMP_MAP_TO.
MapperCGF.EmitBlock(FromBB);
llvm::Value *FromMapType = MapperCGF.Builder.CreateAnd(
MemberMapType,
MapperCGF.Builder.getInt64(~MappableExprsHandler::OMP_MAP_TO));
// In case of tofrom, do nothing.
MapperCGF.EmitBlock(EndBB);
llvm::PHINode *CurMapType =
MapperCGF.Builder.CreatePHI(CGM.Int64Ty, 4, "omp.maptype");
CurMapType->addIncoming(AllocMapType, AllocBB);
CurMapType->addIncoming(ToMapType, ToBB);
CurMapType->addIncoming(FromMapType, FromBB);
CurMapType->addIncoming(MemberMapType, ToElseBB);
// TODO: call the corresponding mapper function if a user-defined mapper is
// associated with this map clause.
// Call the runtime API __tgt_push_mapper_component to fill up the runtime
// data structure.
llvm::Value *OffloadingArgs[] = {Handle, CurBaseArg, CurBeginArg,
CurSizeArg, CurMapType};
MapperCGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__tgt_push_mapper_component),
OffloadingArgs);
}
// Update the pointer to point to the next element that needs to be mapped,
// and check whether we have mapped all elements.
llvm::Value *PtrNext = MapperCGF.Builder.CreateConstGEP1_32(
PtrPHI, /*Idx0=*/1, "omp.arraymap.next");
PtrPHI->addIncoming(PtrNext, BodyBB);
llvm::Value *IsDone =
MapperCGF.Builder.CreateICmpEQ(PtrNext, PtrEnd, "omp.arraymap.isdone");
llvm::BasicBlock *ExitBB = MapperCGF.createBasicBlock("omp.arraymap.exit");
MapperCGF.Builder.CreateCondBr(IsDone, ExitBB, BodyBB);
MapperCGF.EmitBlock(ExitBB);
// Emit array deletion if this is an array section and \p MapType indicates
// that deletion is required.
emitUDMapperArrayInitOrDel(MapperCGF, Handle, BaseIn, BeginIn, Size, MapType,
ElementSize, DoneBB, /*IsInit=*/false);
// Emit the function exit block.
MapperCGF.EmitBlock(DoneBB, /*IsFinished=*/true);
MapperCGF.FinishFunction();
UDMMap.try_emplace(D, Fn);
if (CGF) {
auto &Decls = FunctionUDMMap.FindAndConstruct(CGF->CurFn);
Decls.second.push_back(D);
}
}
/// Emit the array initialization or deletion portion for user-defined mapper
/// code generation. First, it evaluates whether an array section is mapped and
/// whether the \a MapType instructs to delete this section. If \a IsInit is
/// true, and \a MapType indicates to not delete this array, array
/// initialization code is generated. If \a IsInit is false, and \a MapType
/// indicates to not this array, array deletion code is generated.
void CGOpenMPRuntime::emitUDMapperArrayInitOrDel(
CodeGenFunction &MapperCGF, llvm::Value *Handle, llvm::Value *Base,
llvm::Value *Begin, llvm::Value *Size, llvm::Value *MapType,
CharUnits ElementSize, llvm::BasicBlock *ExitBB, bool IsInit) {
StringRef Prefix = IsInit ? ".init" : ".del";
// Evaluate if this is an array section.
llvm::BasicBlock *IsDeleteBB =
MapperCGF.createBasicBlock(getName({"omp.array", Prefix, ".evaldelete"}));
llvm::BasicBlock *BodyBB =
MapperCGF.createBasicBlock(getName({"omp.array", Prefix}));
llvm::Value *IsArray = MapperCGF.Builder.CreateICmpSGE(
Size, MapperCGF.Builder.getInt64(1), "omp.arrayinit.isarray");
MapperCGF.Builder.CreateCondBr(IsArray, IsDeleteBB, ExitBB);
// Evaluate if we are going to delete this section.
MapperCGF.EmitBlock(IsDeleteBB);
llvm::Value *DeleteBit = MapperCGF.Builder.CreateAnd(
MapType,
MapperCGF.Builder.getInt64(MappableExprsHandler::OMP_MAP_DELETE));
llvm::Value *DeleteCond;
if (IsInit) {
DeleteCond = MapperCGF.Builder.CreateIsNull(
DeleteBit, getName({"omp.array", Prefix, ".delete"}));
} else {
DeleteCond = MapperCGF.Builder.CreateIsNotNull(
DeleteBit, getName({"omp.array", Prefix, ".delete"}));
}
MapperCGF.Builder.CreateCondBr(DeleteCond, BodyBB, ExitBB);
MapperCGF.EmitBlock(BodyBB);
// Get the array size by multiplying element size and element number (i.e., \p
// Size).
llvm::Value *ArraySize = MapperCGF.Builder.CreateNUWMul(
Size, MapperCGF.Builder.getInt64(ElementSize.getQuantity()));
// Remove OMP_MAP_TO and OMP_MAP_FROM from the map type, so that it achieves
// memory allocation/deletion purpose only.
llvm::Value *MapTypeArg = MapperCGF.Builder.CreateAnd(
MapType,
MapperCGF.Builder.getInt64(~(MappableExprsHandler::OMP_MAP_TO |
MappableExprsHandler::OMP_MAP_FROM)));
// Call the runtime API __tgt_push_mapper_component to fill up the runtime
// data structure.
llvm::Value *OffloadingArgs[] = {Handle, Base, Begin, ArraySize, MapTypeArg};
MapperCGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__tgt_push_mapper_component), OffloadingArgs);
}
void CGOpenMPRuntime::emitTargetNumIterationsCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::Value *DeviceID,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
OpenMPDirectiveKind Kind = D.getDirectiveKind();
const OMPExecutableDirective *TD = &D;
// Get nested teams distribute kind directive, if any.
if (!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind))
TD = getNestedDistributeDirective(CGM.getContext(), D);
if (!TD)
return;
const auto *LD = cast<OMPLoopDirective>(TD);
auto &&CodeGen = [LD, DeviceID, SizeEmitter, this](CodeGenFunction &CGF,
PrePostActionTy &) {
if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD)) {
llvm::Value *Args[] = {DeviceID, NumIterations};
CGF.EmitRuntimeCall(
createRuntimeFunction(OMPRTL__kmpc_push_target_tripcount), Args);
}
};
emitInlinedDirective(CGF, OMPD_unknown, CodeGen);
}
void CGOpenMPRuntime::emitTargetCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
const Expr *Device,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
if (!CGF.HaveInsertPoint())
return;
assert(OutlinedFn && "Invalid outlined function!");
const bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>();
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
PrePostActionTy &) {
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
};
emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
CodeGenFunction::OMPTargetDataInfo InputInfo;
llvm::Value *MapTypesArray = nullptr;
// Fill up the pointer arrays and transfer execution to the device.
auto &&ThenGen = [this, Device, OutlinedFn, OutlinedFnID, &D, &InputInfo,
&MapTypesArray, &CS, RequiresOuterTask, &CapturedVars,
SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
// On top of the arrays that were filled up, the target offloading call
// takes as arguments the device id as well as the host pointer. The host
// pointer is used by the runtime library to identify the current target
// region, so it only has to be unique and not necessarily point to
// anything. It could be the pointer to the outlined function that
// implements the target region, but we aren't using that so that the
// compiler doesn't need to keep that, and could therefore inline the host
// function if proven worthwhile during optimization.
// From this point on, we need to have an ID of the target region defined.
assert(OutlinedFnID && "Invalid outlined function ID!");
// Emit device ID if any.
llvm::Value *DeviceID;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Emit the number of elements in the offloading arrays.
llvm::Value *PointerNum =
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
// Return value of the runtime offloading call.
llvm::Value *Return;
llvm::Value *NumTeams = emitNumTeamsForTargetDirective(CGF, D);
llvm::Value *NumThreads = emitNumThreadsForTargetDirective(CGF, D);
// Emit tripcount for the target loop-based directive.
emitTargetNumIterationsCall(CGF, D, DeviceID, SizeEmitter);
bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
// The target region is an outlined function launched by the runtime
// via calls __tgt_target() or __tgt_target_teams().
//
// __tgt_target() launches a target region with one team and one thread,
// executing a serial region. This master thread may in turn launch
// more threads within its team upon encountering a parallel region,
// however, no additional teams can be launched on the device.
//
// __tgt_target_teams() launches a target region with one or more teams,
// each with one or more threads. This call is required for target
// constructs such as:
// 'target teams'
// 'target' / 'teams'
// 'target teams distribute parallel for'
// 'target parallel'
// and so on.
//
// Note that on the host and CPU targets, the runtime implementation of
// these calls simply call the outlined function without forking threads.
// The outlined functions themselves have runtime calls to
// __kmpc_fork_teams() and __kmpc_fork() for this purpose, codegen'd by
// the compiler in emitTeamsCall() and emitParallelCall().
//
// In contrast, on the NVPTX target, the implementation of
// __tgt_target_teams() launches a GPU kernel with the requested number
// of teams and threads so no additional calls to the runtime are required.
if (NumTeams) {
// If we have NumTeams defined this means that we have an enclosed teams
// region. Therefore we also expect to have NumThreads defined. These two
// values should be defined in the presence of a teams directive,
// regardless of having any clauses associated. If the user is using teams
// but no clauses, these two values will be the default that should be
// passed to the runtime library - a 32-bit integer with the value zero.
assert(NumThreads && "Thread limit expression should be available along "
"with number of teams.");
llvm::Value *OffloadingArgs[] = {DeviceID,
OutlinedFnID,
PointerNum,
InputInfo.BasePointersArray.getPointer(),
InputInfo.PointersArray.getPointer(),
InputInfo.SizesArray.getPointer(),
MapTypesArray,
NumTeams,
NumThreads};
Return = CGF.EmitRuntimeCall(
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_teams_nowait
: OMPRTL__tgt_target_teams),
OffloadingArgs);
} else {
llvm::Value *OffloadingArgs[] = {DeviceID,
OutlinedFnID,
PointerNum,
InputInfo.BasePointersArray.getPointer(),
InputInfo.PointersArray.getPointer(),
InputInfo.SizesArray.getPointer(),
MapTypesArray};
Return = CGF.EmitRuntimeCall(
createRuntimeFunction(HasNowait ? OMPRTL__tgt_target_nowait
: OMPRTL__tgt_target),
OffloadingArgs);
}
// Check the error code and execute the host version if required.
llvm::BasicBlock *OffloadFailedBlock =
CGF.createBasicBlock("omp_offload.failed");
llvm::BasicBlock *OffloadContBlock =
CGF.createBasicBlock("omp_offload.cont");
llvm::Value *Failed = CGF.Builder.CreateIsNotNull(Return);
CGF.Builder.CreateCondBr(Failed, OffloadFailedBlock, OffloadContBlock);
CGF.EmitBlock(OffloadFailedBlock);
if (RequiresOuterTask) {
CapturedVars.clear();
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
}
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
CGF.EmitBranch(OffloadContBlock);
CGF.EmitBlock(OffloadContBlock, /*IsFinished=*/true);
};
// Notify that the host version must be executed.
auto &&ElseGen = [this, &D, OutlinedFn, &CS, &CapturedVars,
RequiresOuterTask](CodeGenFunction &CGF,
PrePostActionTy &) {
if (RequiresOuterTask) {
CapturedVars.clear();
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
}
emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn, CapturedVars);
};
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
&CapturedVars, RequiresOuterTask,
&CS](CodeGenFunction &CGF, PrePostActionTy &) {
// Fill up the arrays with all the captured variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
// Get mappable expression information.
MappableExprsHandler MEHandler(D, CGF);
llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
auto RI = CS.getCapturedRecordDecl()->field_begin();
auto CV = CapturedVars.begin();
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
CE = CS.capture_end();
CI != CE; ++CI, ++RI, ++CV) {
MappableExprsHandler::MapBaseValuesArrayTy CurBasePointers;
MappableExprsHandler::MapValuesArrayTy CurPointers;
MappableExprsHandler::MapValuesArrayTy CurSizes;
MappableExprsHandler::MapFlagsArrayTy CurMapTypes;
MappableExprsHandler::StructRangeInfoTy PartialStruct;
// VLA sizes are passed to the outlined region by copy and do not have map
// information associated.
if (CI->capturesVariableArrayType()) {
CurBasePointers.push_back(*CV);
CurPointers.push_back(*CV);
CurSizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
// Copy to the device as an argument. No need to retrieve it.
CurMapTypes.push_back(MappableExprsHandler::OMP_MAP_LITERAL |
MappableExprsHandler::OMP_MAP_TARGET_PARAM |
MappableExprsHandler::OMP_MAP_IMPLICIT);
} else {
// If we have any information in the map clause, we use it, otherwise we
// just do a default mapping.
MEHandler.generateInfoForCapture(CI, *CV, CurBasePointers, CurPointers,
CurSizes, CurMapTypes, PartialStruct);
if (CurBasePointers.empty())
MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurBasePointers,
CurPointers, CurSizes, CurMapTypes);
// Generate correct mapping for variables captured by reference in
// lambdas.
if (CI->capturesVariable())
MEHandler.generateInfoForLambdaCaptures(
CI->getCapturedVar(), *CV, CurBasePointers, CurPointers, CurSizes,
CurMapTypes, LambdaPointers);
}
// We expect to have at least an element of information for this capture.
assert(!CurBasePointers.empty() &&
"Non-existing map pointer for capture!");
assert(CurBasePointers.size() == CurPointers.size() &&
CurBasePointers.size() == CurSizes.size() &&
CurBasePointers.size() == CurMapTypes.size() &&
"Inconsistent map information sizes!");
// If there is an entry in PartialStruct it means we have a struct with
// individual members mapped. Emit an extra combined entry.
if (PartialStruct.Base.isValid())
MEHandler.emitCombinedEntry(BasePointers, Pointers, Sizes, MapTypes,
CurMapTypes, PartialStruct);
// We need to append the results of this capture to what we already have.
BasePointers.append(CurBasePointers.begin(), CurBasePointers.end());
Pointers.append(CurPointers.begin(), CurPointers.end());
Sizes.append(CurSizes.begin(), CurSizes.end());
MapTypes.append(CurMapTypes.begin(), CurMapTypes.end());
}
// Adjust MEMBER_OF flags for the lambdas captures.
MEHandler.adjustMemberOfForLambdaCaptures(LambdaPointers, BasePointers,
Pointers, MapTypes);
// Map other list items in the map clause which are not captured variables
// but "declare target link" global variables.
MEHandler.generateInfoForDeclareTargetLink(BasePointers, Pointers, Sizes,
MapTypes);
TargetDataInfo Info;
// Fill up the arrays and create the arguments.
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray, Info);
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
InputInfo.BasePointersArray =
Address(Info.BasePointersArray, CGM.getPointerAlign());
InputInfo.PointersArray =
Address(Info.PointersArray, CGM.getPointerAlign());
InputInfo.SizesArray = Address(Info.SizesArray, CGM.getPointerAlign());
MapTypesArray = Info.MapTypesArray;
if (RequiresOuterTask)
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
else
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
};
auto &&TargetElseGen = [this, &ElseGen, &D, RequiresOuterTask](
CodeGenFunction &CGF, PrePostActionTy &) {
if (RequiresOuterTask) {
CodeGenFunction::OMPTargetDataInfo InputInfo;
CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
} else {
emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
}
};
// If we have a target function ID it means that we need to support
// offloading, otherwise, just execute on the host. We need to execute on host
// regardless of the conditional in the if clause if, e.g., the user do not
// specify target triples.
if (OutlinedFnID) {
if (IfCond) {
emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
} else {
RegionCodeGenTy ThenRCG(TargetThenGen);
ThenRCG(CGF);
}
} else {
RegionCodeGenTy ElseRCG(TargetElseGen);
ElseRCG(CGF);
}
}
void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
StringRef ParentName) {
if (!S)
return;
// Codegen OMP target directives that offload compute to the device.
bool RequiresDeviceCodegen =
isa<OMPExecutableDirective>(S) &&
isOpenMPTargetExecutionDirective(
cast<OMPExecutableDirective>(S)->getDirectiveKind());
if (RequiresDeviceCodegen) {
const auto &E = *cast<OMPExecutableDirective>(S);
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), E.getBeginLoc(), DeviceID,
FileID, Line);
// Is this a target region that should not be emitted as an entry point? If
// so just signal we are done with this target region.
if (!OffloadEntriesInfoManager.hasTargetRegionEntryInfo(DeviceID, FileID,
ParentName, Line))
return;
switch (E.getDirectiveKind()) {
case OMPD_target:
CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
cast<OMPTargetDirective>(E));
break;
case OMPD_target_parallel:
CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelDirective>(E));
break;
case OMPD_target_teams:
CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
break;
case OMPD_target_teams_distribute:
CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
break;
case OMPD_target_teams_distribute_simd:
CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
break;
case OMPD_target_parallel_for:
CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
break;
case OMPD_target_parallel_for_simd:
CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
break;
case OMPD_target_simd:
CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetSimdDirective>(E));
break;
case OMPD_target_teams_distribute_parallel_for:
CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
CGM, ParentName,
cast<OMPTargetTeamsDistributeParallelForDirective>(E));
break;
case OMPD_target_teams_distribute_parallel_for_simd:
CodeGenFunction::
EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
CGM, ParentName,
cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
break;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_unknown:
llvm_unreachable("Unknown target directive for OpenMP device codegen.");
}
return;
}
if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
return;
scanForTargetRegionsFunctions(
E->getInnermostCapturedStmt()->getCapturedStmt(), ParentName);
return;
}
// If this is a lambda function, look into its body.
if (const auto *L = dyn_cast<LambdaExpr>(S))
S = L->getBody();
// Keep looking for target regions recursively.
for (const Stmt *II : S->children())
scanForTargetRegionsFunctions(II, ParentName);
}
bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
// If emitting code for the host, we do not process FD here. Instead we do
// the normal code generation.
if (!CGM.getLangOpts().OpenMPIsDevice) {
if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl())) {
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
OMPDeclareTargetDeclAttr::getDeviceType(FD);
// Do not emit device_type(nohost) functions for the host.
if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
return true;
}
return false;
}
const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
// Try to detect target regions in the function.
if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
StringRef Name = CGM.getMangledName(GD);
scanForTargetRegionsFunctions(FD->getBody(), Name);
Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
OMPDeclareTargetDeclAttr::getDeviceType(FD);
// Do not emit device_type(nohost) functions for the host.
if (DevTy && *DevTy == OMPDeclareTargetDeclAttr::DT_Host)
return true;
}
// Do not to emit function if it is not marked as declare target.
return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
AlreadyEmittedTargetDecls.count(VD) == 0;
}
bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
if (!CGM.getLangOpts().OpenMPIsDevice)
return false;
// Check if there are Ctors/Dtors in this declaration and look for target
// regions in it. We use the complete variant to produce the kernel name
// mangling.
QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
for (const CXXConstructorDecl *Ctor : RD->ctors()) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
}
if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
}
}
// Do not to emit variable if it is not marked as declare target.
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
cast<VarDecl>(GD.getDecl()));
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
HasRequiresUnifiedSharedMemory)) {
DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
return true;
}
return false;
}
llvm::Constant *
CGOpenMPRuntime::registerTargetFirstprivateCopy(CodeGenFunction &CGF,
const VarDecl *VD) {
assert(VD->getType().isConstant(CGM.getContext()) &&
"Expected constant variable.");
StringRef VarName;
llvm::Constant *Addr;
llvm::GlobalValue::LinkageTypes Linkage;
QualType Ty = VD->getType();
SmallString<128> Buffer;
{
unsigned DeviceID;
unsigned FileID;
unsigned Line;
getTargetEntryUniqueInfo(CGM.getContext(), VD->getLocation(), DeviceID,
FileID, Line);
llvm::raw_svector_ostream OS(Buffer);
OS << "__omp_offloading_firstprivate_" << llvm::format("_%x", DeviceID)
<< llvm::format("_%x_", FileID) << VD->getName() << "_l" << Line;
VarName = OS.str();
}
Linkage = llvm::GlobalValue::InternalLinkage;
Addr =
getOrCreateInternalVariable(CGM.getTypes().ConvertTypeForMem(Ty), VarName,
getDefaultFirstprivateAddressSpace());
cast<llvm::GlobalValue>(Addr)->setLinkage(Linkage);
CharUnits VarSize = CGM.getContext().getTypeSizeInChars(Ty);
CGM.addCompilerUsedGlobal(cast<llvm::GlobalValue>(Addr));
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
VarName, Addr, VarSize,
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo, Linkage);
return Addr;
}
void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
llvm::Constant *Addr) {
if (CGM.getLangOpts().OMPTargetTriples.empty() &&
!CGM.getLangOpts().OpenMPIsDevice)
return;
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (!Res) {
if (CGM.getLangOpts().OpenMPIsDevice) {
// Register non-target variables being emitted in device code (debug info
// may cause this).
StringRef VarName = CGM.getMangledName(VD);
EmittedNonTargetVariables.try_emplace(VarName, Addr);
}
return;
}
// Register declare target variables.
OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryKind Flags;
StringRef VarName;
CharUnits VarSize;
llvm::GlobalValue::LinkageTypes Linkage;
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
!HasRequiresUnifiedSharedMemory) {
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
VarName = CGM.getMangledName(VD);
if (VD->hasDefinition(CGM.getContext()) != VarDecl::DeclarationOnly) {
VarSize = CGM.getContext().getTypeSizeInChars(VD->getType());
assert(!VarSize.isZero() && "Expected non-zero size of the variable");
} else {
VarSize = CharUnits::Zero();
}
Linkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false);
// Temp solution to prevent optimizations of the internal variables.
if (CGM.getLangOpts().OpenMPIsDevice && !VD->isExternallyVisible()) {
std::string RefName = getName({VarName, "ref"});
if (!CGM.GetGlobalValue(RefName)) {
llvm::Constant *AddrRef =
getOrCreateInternalVariable(Addr->getType(), RefName);
auto *GVAddrRef = cast<llvm::GlobalVariable>(AddrRef);
GVAddrRef->setConstant(/*Val=*/true);
GVAddrRef->setLinkage(llvm::GlobalValue::InternalLinkage);
GVAddrRef->setInitializer(Addr);
CGM.addCompilerUsedGlobal(GVAddrRef);
}
}
} else {
assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
HasRequiresUnifiedSharedMemory)) &&
"Declare target attribute must link or to with unified memory.");
if (*Res == OMPDeclareTargetDeclAttr::MT_Link)
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryLink;
else
Flags = OffloadEntriesInfoManagerTy::OMPTargetGlobalVarEntryTo;
if (CGM.getLangOpts().OpenMPIsDevice) {
VarName = Addr->getName();
Addr = nullptr;
} else {
VarName = getAddrOfDeclareTargetVar(VD).getName();
Addr = cast<llvm::Constant>(getAddrOfDeclareTargetVar(VD).getPointer());
}
VarSize = CGM.getPointerSize();
Linkage = llvm::GlobalValue::WeakAnyLinkage;
}
OffloadEntriesInfoManager.registerDeviceGlobalVarEntryInfo(
VarName, Addr, VarSize, Flags, Linkage);
}
bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
if (isa<FunctionDecl>(GD.getDecl()) ||
isa<OMPDeclareReductionDecl>(GD.getDecl()))
return emitTargetFunctions(GD);
return emitTargetGlobalVariable(GD);
}
void CGOpenMPRuntime::emitDeferredTargetDecls() const {
for (const VarDecl *VD : DeferredGlobalVariables) {
llvm::Optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (!Res)
continue;
if (*Res == OMPDeclareTargetDeclAttr::MT_To &&
!HasRequiresUnifiedSharedMemory) {
CGM.EmitGlobal(VD);
} else {
assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
(*Res == OMPDeclareTargetDeclAttr::MT_To &&
HasRequiresUnifiedSharedMemory)) &&
"Expected link clause or to clause with unified memory.");
(void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
}
}
void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
" Expected target-based directive.");
}
void CGOpenMPRuntime::checkArchForUnifiedAddressing(
const OMPRequiresDecl *D) {
for (const OMPClause *Clause : D->clauselists()) {
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
HasRequiresUnifiedSharedMemory = true;
break;
}
}
}
bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
LangAS &AS) {
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
return false;
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
switch(A->getAllocatorType()) {
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
// Not supported, fallback to the default mem space.
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
case OMPAllocateDeclAttr::OMPConstMemAlloc:
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
AS = LangAS::Default;
return true;
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
llvm_unreachable("Expected predefined allocator for the variables with the "
"static storage.");
}
return false;
}
bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
return HasRequiresUnifiedSharedMemory;
}
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
CodeGenModule &CGM)
: CGM(CGM) {
if (CGM.getLangOpts().OpenMPIsDevice) {
SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
}
}
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
if (CGM.getLangOpts().OpenMPIsDevice)
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
}
bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
if (!CGM.getLangOpts().OpenMPIsDevice || !ShouldMarkAsGlobal)
return true;
const auto *D = cast<FunctionDecl>(GD.getDecl());
// Do not to emit function if it is marked as declare target as it was already
// emitted.
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
if (auto *F = dyn_cast_or_null<llvm::Function>(
CGM.GetGlobalValue(CGM.getMangledName(GD))))
return !F->isDeclaration();
return false;
}
return true;
}
return !AlreadyEmittedTargetDecls.insert(D).second;
}
llvm::Function *CGOpenMPRuntime::emitRequiresDirectiveRegFun() {
// If we don't have entries or if we are emitting code for the device, we
// don't need to do anything.
if (CGM.getLangOpts().OMPTargetTriples.empty() ||
CGM.getLangOpts().OpenMPSimd || CGM.getLangOpts().OpenMPIsDevice ||
(OffloadEntriesInfoManager.empty() &&
!HasEmittedDeclareTargetRegion &&
!HasEmittedTargetRegion))
return nullptr;
// Create and register the function that handles the requires directives.
ASTContext &C = CGM.getContext();
llvm::Function *RequiresRegFn;
{
CodeGenFunction CGF(CGM);
const auto &FI = CGM.getTypes().arrangeNullaryFunction();
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
std::string ReqName = getName({"omp_offloading", "requires_reg"});
RequiresRegFn = CGM.CreateGlobalInitOrDestructFunction(FTy, ReqName, FI);
CGF.StartFunction(GlobalDecl(), C.VoidTy, RequiresRegFn, FI, {});
OpenMPOffloadingRequiresDirFlags Flags = OMP_REQ_NONE;
// TODO: check for other requires clauses.
// The requires directive takes effect only when a target region is
// present in the compilation unit. Otherwise it is ignored and not
// passed to the runtime. This avoids the runtime from throwing an error
// for mismatching requires clauses across compilation units that don't
// contain at least 1 target region.
assert((HasEmittedTargetRegion ||
HasEmittedDeclareTargetRegion ||
!OffloadEntriesInfoManager.empty()) &&
"Target or declare target region expected.");
if (HasRequiresUnifiedSharedMemory)
Flags = OMP_REQ_UNIFIED_SHARED_MEMORY;
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_register_requires),
llvm::ConstantInt::get(CGM.Int64Ty, Flags));
CGF.FinishFunction();
}
return RequiresRegFn;
}
void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
CodeGenFunction::RunCleanupsScope Scope(CGF);
// Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
llvm::FunctionCallee RTLFn = createRuntimeFunction(OMPRTL__kmpc_fork_teams);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
}
void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *NumTeamsVal =
NumTeams
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
llvm::Value *ThreadLimitVal =
ThreadLimit
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
// Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
ThreadLimitVal};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_push_num_teams),
PushNumTeamsArgs);
}
void CGOpenMPRuntime::emitTargetDataCalls(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
if (!CGF.HaveInsertPoint())
return;
// Action used to replace the default codegen action and turn privatization
// off.
PrePostActionTy NoPrivAction;
// Generate the code for the opening of the data environment. Capture all the
// arguments of the runtime call by reference because they are used in the
// closing of the region.
auto &&BeginThenGen = [this, &D, Device, &Info,
&CodeGen](CodeGenFunction &CGF, PrePostActionTy &) {
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
// Get map clause information.
MappableExprsHandler MCHandler(D, CGF);
MCHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
// Fill up the arrays and create the arguments.
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
llvm::Value *BasePointersArrayArg = nullptr;
llvm::Value *PointersArrayArg = nullptr;
llvm::Value *SizesArrayArg = nullptr;
llvm::Value *MapTypesArrayArg = nullptr;
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
SizesArrayArg, MapTypesArrayArg, Info);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Emit the number of elements in the offloading arrays.
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
llvm::Value *OffloadingArgs[] = {
DeviceID, PointerNum, BasePointersArrayArg,
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_begin),
OffloadingArgs);
// If device pointer privatization is required, emit the body of the region
// here. It will have to be duplicated: with and without privatization.
if (!Info.CaptureDeviceAddrMap.empty())
CodeGen(CGF);
};
// Generate code for the closing of the data region.
auto &&EndThenGen = [this, Device, &Info](CodeGenFunction &CGF,
PrePostActionTy &) {
assert(Info.isValid() && "Invalid data environment closing arguments.");
llvm::Value *BasePointersArrayArg = nullptr;
llvm::Value *PointersArrayArg = nullptr;
llvm::Value *SizesArrayArg = nullptr;
llvm::Value *MapTypesArrayArg = nullptr;
emitOffloadingArraysArgument(CGF, BasePointersArrayArg, PointersArrayArg,
SizesArrayArg, MapTypesArrayArg, Info);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Emit the number of elements in the offloading arrays.
llvm::Value *PointerNum = CGF.Builder.getInt32(Info.NumberOfPtrs);
llvm::Value *OffloadingArgs[] = {
DeviceID, PointerNum, BasePointersArrayArg,
PointersArrayArg, SizesArrayArg, MapTypesArrayArg};
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__tgt_target_data_end),
OffloadingArgs);
};
// If we need device pointer privatization, we need to emit the body of the
// region with no privatization in the 'else' branch of the conditional.
// Otherwise, we don't have to do anything.
auto &&BeginElseGen = [&Info, &CodeGen, &NoPrivAction](CodeGenFunction &CGF,
PrePostActionTy &) {
if (!Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
};
// We don't have to do anything to close the region if the if clause evaluates
// to false.
auto &&EndElseGen = [](CodeGenFunction &CGF, PrePostActionTy &) {};
if (IfCond) {
emitIfClause(CGF, IfCond, BeginThenGen, BeginElseGen);
} else {
RegionCodeGenTy RCG(BeginThenGen);
RCG(CGF);
}
// If we don't require privatization of device pointers, we emit the body in
// between the runtime calls. This avoids duplicating the body code.
if (Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
if (IfCond) {
emitIfClause(CGF, IfCond, EndThenGen, EndElseGen);
} else {
RegionCodeGenTy RCG(EndThenGen);
RCG(CGF);
}
}
void CGOpenMPRuntime::emitTargetDataStandAloneCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device) {
if (!CGF.HaveInsertPoint())
return;
assert((isa<OMPTargetEnterDataDirective>(D) ||
isa<OMPTargetExitDataDirective>(D) ||
isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives.");
CodeGenFunction::OMPTargetDataInfo InputInfo;
llvm::Value *MapTypesArray = nullptr;
// Generate the code for the opening of the data environment.
auto &&ThenGen = [this, &D, Device, &InputInfo,
&MapTypesArray](CodeGenFunction &CGF, PrePostActionTy &) {
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Emit the number of elements in the offloading arrays.
llvm::Constant *PointerNum =
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
llvm::Value *OffloadingArgs[] = {DeviceID,
PointerNum,
InputInfo.BasePointersArray.getPointer(),
InputInfo.PointersArray.getPointer(),
InputInfo.SizesArray.getPointer(),
MapTypesArray};
// Select the right runtime function call for each expected standalone
// directive.
const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
OpenMPRTLFunction RTLFn;
switch (D.getDirectiveKind()) {
case OMPD_target_enter_data:
RTLFn = HasNowait ? OMPRTL__tgt_target_data_begin_nowait
: OMPRTL__tgt_target_data_begin;
break;
case OMPD_target_exit_data:
RTLFn = HasNowait ? OMPRTL__tgt_target_data_end_nowait
: OMPRTL__tgt_target_data_end;
break;
case OMPD_target_update:
RTLFn = HasNowait ? OMPRTL__tgt_target_data_update_nowait
: OMPRTL__tgt_target_data_update;
break;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_teams:
case OMPD_target_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_requires:
case OMPD_unknown:
llvm_unreachable("Unexpected standalone target data directive.");
break;
}
CGF.EmitRuntimeCall(createRuntimeFunction(RTLFn), OffloadingArgs);
};
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray](
CodeGenFunction &CGF, PrePostActionTy &) {
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapBaseValuesArrayTy BasePointers;
MappableExprsHandler::MapValuesArrayTy Pointers;
MappableExprsHandler::MapValuesArrayTy Sizes;
MappableExprsHandler::MapFlagsArrayTy MapTypes;
// Get map clause information.
MappableExprsHandler MEHandler(D, CGF);
MEHandler.generateAllInfo(BasePointers, Pointers, Sizes, MapTypes);
TargetDataInfo Info;
// Fill up the arrays and create the arguments.
emitOffloadingArrays(CGF, BasePointers, Pointers, Sizes, MapTypes, Info);
emitOffloadingArraysArgument(CGF, Info.BasePointersArray,
Info.PointersArray, Info.SizesArray,
Info.MapTypesArray, Info);
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
InputInfo.BasePointersArray =
Address(Info.BasePointersArray, CGM.getPointerAlign());
InputInfo.PointersArray =
Address(Info.PointersArray, CGM.getPointerAlign());
InputInfo.SizesArray =
Address(Info.SizesArray, CGM.getPointerAlign());
MapTypesArray = Info.MapTypesArray;
if (D.hasClausesOfKind<OMPDependClause>())
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
else
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
};
if (IfCond) {
emitIfClause(CGF, IfCond, TargetThenGen,
[](CodeGenFunction &CGF, PrePostActionTy &) {});
} else {
RegionCodeGenTy ThenRCG(TargetThenGen);
ThenRCG(CGF);
}
}
namespace {
/// Kind of parameter in a function with 'declare simd' directive.
enum ParamKindTy { LinearWithVarStride, Linear, Uniform, Vector };
/// Attribute set of the parameter.
struct ParamAttrTy {
ParamKindTy Kind = Vector;
llvm::APSInt StrideOrArg;
llvm::APSInt Alignment;
};
} // namespace
static unsigned evaluateCDTSize(const FunctionDecl *FD,
ArrayRef<ParamAttrTy> ParamAttrs) {
// Every vector variant of a SIMD-enabled function has a vector length (VLEN).
// If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
// of that clause. The VLEN value must be power of 2.
// In other case the notion of the function`s "characteristic data type" (CDT)
// is used to compute the vector length.
// CDT is defined in the following order:
// a) For non-void function, the CDT is the return type.
// b) If the function has any non-uniform, non-linear parameters, then the
// CDT is the type of the first such parameter.
// c) If the CDT determined by a) or b) above is struct, union, or class
// type which is pass-by-value (except for the type that maps to the
// built-in complex data type), the characteristic data type is int.
// d) If none of the above three cases is applicable, the CDT is int.
// The VLEN is then determined based on the CDT and the size of vector
// register of that ISA for which current vector version is generated. The
// VLEN is computed using the formula below:
// VLEN = sizeof(vector_register) / sizeof(CDT),
// where vector register size specified in section 3.2.1 Registers and the
// Stack Frame of original AMD64 ABI document.
QualType RetType = FD->getReturnType();
if (RetType.isNull())
return 0;
ASTContext &C = FD->getASTContext();
QualType CDT;
if (!RetType.isNull() && !RetType->isVoidType()) {
CDT = RetType;
} else {
unsigned Offset = 0;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (ParamAttrs[Offset].Kind == Vector)
CDT = C.getPointerType(C.getRecordType(MD->getParent()));
++Offset;
}
if (CDT.isNull()) {
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
if (ParamAttrs[I + Offset].Kind == Vector) {
CDT = FD->getParamDecl(I)->getType();
break;
}
}
}
}
if (CDT.isNull())
CDT = C.IntTy;
CDT = CDT->getCanonicalTypeUnqualified();
if (CDT->isRecordType() || CDT->isUnionType())
CDT = C.IntTy;
return C.getTypeSize(CDT);
}
static void
emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
const llvm::APSInt &VLENVal,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State) {
struct ISADataTy {
char ISA;
unsigned VecRegSize;
};
ISADataTy ISAData[] = {
{
'b', 128
}, // SSE
{
'c', 256
}, // AVX
{
'd', 256
}, // AVX2
{
'e', 512
}, // AVX512
};
llvm::SmallVector<char, 2> Masked;
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
Masked.push_back('N');
Masked.push_back('M');
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
Masked.push_back('N');
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
Masked.push_back('M');
break;
}
for (char Mask : Masked) {
for (const ISADataTy &Data : ISAData) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << "_ZGV" << Data.ISA << Mask;
if (!VLENVal) {
unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
assert(NumElts && "Non-zero simdlen/cdtsize expected");
Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
} else {
Out << VLENVal;
}
for (const ParamAttrTy &ParamAttr : ParamAttrs) {
switch (ParamAttr.Kind){
case LinearWithVarStride:
Out << 's' << ParamAttr.StrideOrArg;
break;
case Linear:
Out << 'l';
if (!!ParamAttr.StrideOrArg)
Out << ParamAttr.StrideOrArg;
break;
case Uniform:
Out << 'u';
break;
case Vector:
Out << 'v';
break;
}
if (!!ParamAttr.Alignment)
Out << 'a' << ParamAttr.Alignment;
}
Out << '_' << Fn->getName();
Fn->addFnAttr(Out.str());
}
}
}
// This are the Functions that are needed to mangle the name of the
// vector functions generated by the compiler, according to the rules
// defined in the "Vector Function ABI specifications for AArch64",
// available at
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
/// Maps To Vector (MTV), as defined in 3.1.1 of the AAVFABI.
///
/// TODO: Need to implement the behavior for reference marked with a
/// var or no linear modifiers (1.b in the section). For this, we
/// need to extend ParamKindTy to support the linear modifiers.
static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
QT = QT.getCanonicalType();
if (QT->isVoidType())
return false;
if (Kind == ParamKindTy::Uniform)
return false;
if (Kind == ParamKindTy::Linear)
return false;
// TODO: Handle linear references with modifiers
if (Kind == ParamKindTy::LinearWithVarStride)
return false;
return true;
}
/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
static bool getAArch64PBV(QualType QT, ASTContext &C) {
QT = QT.getCanonicalType();
unsigned Size = C.getTypeSize(QT);
// Only scalars and complex within 16 bytes wide set PVB to true.
if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
return false;
if (QT->isFloatingType())
return true;
if (QT->isIntegerType())
return true;
if (QT->isPointerType())
return true;
// TODO: Add support for complex types (section 3.1.2, item 2).
return false;
}
/// Computes the lane size (LS) of a return type or of an input parameter,
/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
/// TODO: Add support for references, section 3.2.1, item 1.
static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
if (getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
QualType PTy = QT.getCanonicalType()->getPointeeType();
if (getAArch64PBV(PTy, C))
return C.getTypeSize(PTy);
}
if (getAArch64PBV(QT, C))
return C.getTypeSize(QT);
return C.getTypeSize(C.getUIntPtrType());
}
// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
// signature of the scalar function, as defined in 3.2.2 of the
// AAVFABI.
static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
QualType RetType = FD->getReturnType().getCanonicalType();
ASTContext &C = FD->getASTContext();
bool OutputBecomesInput = false;
llvm::SmallVector<unsigned, 8> Sizes;
if (!RetType->isVoidType()) {
Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
OutputBecomesInput = true;
}
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
}
assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
// The LS of a function parameter / return value can only be a power
// of 2, starting from 8 bits, up to 128.
assert(std::all_of(Sizes.begin(), Sizes.end(),
[](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 ||
Size == 64 || Size == 128;
}) &&
"Invalid size");
return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
*std::max_element(std::begin(Sizes), std::end(Sizes)),
OutputBecomesInput);
}
/// Mangle the parameter part of the vector function name according to
/// their OpenMP classification. The mangling function is defined in
/// section 3.5 of the AAVFABI.
static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
for (const auto &ParamAttr : ParamAttrs) {
switch (ParamAttr.Kind) {
case LinearWithVarStride:
Out << "ls" << ParamAttr.StrideOrArg;
break;
case Linear:
Out << 'l';
// Don't print the step value if it is not present or if it is
// equal to 1.
if (!!ParamAttr.StrideOrArg && ParamAttr.StrideOrArg != 1)
Out << ParamAttr.StrideOrArg;
break;
case Uniform:
Out << 'u';
break;
case Vector:
Out << 'v';
break;
}
if (!!ParamAttr.Alignment)
Out << 'a' << ParamAttr.Alignment;
}
return std::string(Out.str());
}
// Function used to add the attribute. The parameter `VLEN` is
// templated to allow the use of "x" when targeting scalable functions
// for SVE.
template <typename T>
static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
char ISA, StringRef ParSeq,
StringRef MangledName, bool OutputBecomesInput,
llvm::Function *Fn) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Prefix << ISA << LMask << VLEN;
if (OutputBecomesInput)
Out << "v";
Out << ParSeq << "_" << MangledName;
Fn->addFnAttr(Out.str());
}
// Helper function to generate the Advanced SIMD names depending on
// the value of the NDS when simdlen is not present.
static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
StringRef Prefix, char ISA,
StringRef ParSeq, StringRef MangledName,
bool OutputBecomesInput,
llvm::Function *Fn) {
switch (NDS) {
case 8:
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 16:
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 32:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 64:
case 128:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
default:
llvm_unreachable("Scalar type is too wide.");
}
}
/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
static void emitAArch64DeclareSimdFunction(
CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
// Get basic data for building the vector signature.
const auto Data = getNDSWDS(FD, ParamAttrs);
const unsigned NDS = std::get<0>(Data);
const unsigned WDS = std::get<1>(Data);
const bool OutputBecomesInput = std::get<2>(Data);
// Check the values provided via `simdlen` by the user.
// 1. A `simdlen(1)` doesn't produce vector signatures,
if (UserVLEN == 1) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning,
"The clause simdlen(1) has no effect when targeting aarch64.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 2. Section 3.3.1, item 1: user input must be a power of 2 for
// Advanced SIMD output.
if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
"power of 2 when targeting Advanced SIMD.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 3. Section 3.4.1. SVE fixed lengh must obey the architectural
// limits.
if (ISA == 's' && UserVLEN != 0) {
if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
"lanes in the architectural constraints "
"for SVE (min is 128-bit, max is "
"2048-bit, by steps of 128-bit)");
CGM.getDiags().Report(SLoc, DiagID) << WDS;
return;
}
}
// Sort out parameter sequence.
const std::string ParSeq = mangleVectorParameters(ParamAttrs);
StringRef Prefix = "_ZGV";
// Generate simdlen from user input (if any).
if (UserVLEN) {
if (ISA == 's') {
// SVE generates only a masked function.
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD generates one or two functions, depending on
// the `[not]inbranch` clause.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
} else {
// If no user simdlen is provided, follow the AAVFABI rules for
// generating the vector length.
if (ISA == 's') {
// SVE, section 3.4.1, item 1.
addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
// two vector names depending on the use of the clause
// `[not]inbranch`.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
}
}
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
ASTContext &C = CGM.getContext();
FD = FD->getMostRecentDecl();
// Map params to their positions in function decl.
llvm::DenseMap<const Decl *, unsigned> ParamPositions;
if (isa<CXXMethodDecl>(FD))
ParamPositions.try_emplace(FD, 0);
unsigned ParamPos = ParamPositions.size();
for (const ParmVarDecl *P : FD->parameters()) {
ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
++ParamPos;
}
while (FD) {
for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
// Mark uniform parameters.
for (const Expr *E : Attr->uniforms()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
}
ParamAttrs[Pos].Kind = Uniform;
}
// Get alignment info.
auto NI = Attr->alignments_begin();
for (const Expr *E : Attr->aligneds()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
QualType ParmTy;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
ParmTy = E->getType();
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
ParmTy = PVD->getType();
}
ParamAttrs[Pos].Alignment =
(*NI)
? (*NI)->EvaluateKnownConstInt(C)
: llvm::APSInt::getUnsigned(
C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
.getQuantity());
++NI;
}
// Mark linear parameters.
auto SI = Attr->steps_begin();
auto MI = Attr->modifiers_begin();
for (const Expr *E : Attr->linears()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
Pos = ParamPositions[PVD];
}
ParamAttrTy &ParamAttr = ParamAttrs[Pos];
ParamAttr.Kind = Linear;
if (*SI) {
Expr::EvalResult Result;
if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
if (const auto *DRE =
cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
if (const auto *StridePVD = cast<ParmVarDecl>(DRE->getDecl())) {
ParamAttr.Kind = LinearWithVarStride;
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(
ParamPositions[StridePVD->getCanonicalDecl()]);
}
}
} else {
ParamAttr.StrideOrArg = Result.Val.getInt();
}
}
++SI;
++MI;
}
llvm::APSInt VLENVal;
SourceLocation ExprLoc;
const Expr *VLENExpr = Attr->getSimdlen();
if (VLENExpr) {
VLENVal = VLENExpr->EvaluateKnownConstInt(C);
ExprLoc = VLENExpr->getExprLoc();
}
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
if (CGM.getTriple().isX86()) {
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
} else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
unsigned VLEN = VLENVal.getExtValue();
StringRef MangledName = Fn->getName();
if (CGM.getTarget().hasFeature("sve"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 's', 128, Fn, ExprLoc);
if (CGM.getTarget().hasFeature("neon"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 'n', 128, Fn, ExprLoc);
}
}
FD = FD->getPreviousDecl();
}
}
namespace {
/// Cleanup action for doacross support.
class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
public:
static const int DoacrossFinArgs = 2;
private:
llvm::FunctionCallee RTLFn;
llvm::Value *Args[DoacrossFinArgs];
public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
ArrayRef<llvm::Value *> CallArgs)
: RTLFn(RTLFn) {
assert(CallArgs.size() == DoacrossFinArgs);
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
CGF.EmitRuntimeCall(RTLFn, Args);
}
};
} // namespace
void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
const OMPLoopDirective &D,
ArrayRef<Expr *> NumIterations) {
if (!CGF.HaveInsertPoint())
return;
ASTContext &C = CGM.getContext();
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
RecordDecl *RD;
if (KmpDimTy.isNull()) {
// Build struct kmp_dim { // loop bounds info casted to kmp_int64
// kmp_int64 lo; // lower
// kmp_int64 up; // upper
// kmp_int64 st; // stride
// };
RD = C.buildImplicitRecord("kmp_dim");
RD->startDefinition();
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
RD->completeDefinition();
KmpDimTy = C.getRecordType(RD);
} else {
RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
}
llvm::APInt Size(/*numBits=*/32, NumIterations.size());
QualType ArrayTy =
C.getConstantArrayType(KmpDimTy, Size, nullptr, ArrayType::Normal, 0);
Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
CGF.EmitNullInitialization(DimsAddr, ArrayTy);
enum { LowerFD = 0, UpperFD, StrideFD };
// Fill dims with data.
for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
LValue DimsLVal = CGF.MakeAddrLValue(
CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
// dims.upper = num_iterations;
LValue UpperLVal = CGF.EmitLValueForField(
DimsLVal, *std::next(RD->field_begin(), UpperFD));
llvm::Value *NumIterVal =
CGF.EmitScalarConversion(CGF.EmitScalarExpr(NumIterations[I]),
D.getNumIterations()->getType(), Int64Ty,
D.getNumIterations()->getExprLoc());
CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
// dims.stride = 1;
LValue StrideLVal = CGF.EmitLValueForField(
DimsLVal, *std::next(RD->field_begin(), StrideFD));
CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
StrideLVal);
}
// Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
// kmp_int32 num_dims, struct kmp_dim * dims);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, D.getBeginLoc()),
getThreadID(CGF, D.getBeginLoc()),
llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).getPointer(),
CGM.VoidPtrTy)};
llvm::FunctionCallee RTLFn =
createRuntimeFunction(OMPRTL__kmpc_doacross_init);
CGF.EmitRuntimeCall(RTLFn, Args);
llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
llvm::FunctionCallee FiniRTLFn =
createRuntimeFunction(OMPRTL__kmpc_doacross_fini);
CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
llvm::makeArrayRef(FiniArgs));
}
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDependClause *C) {
QualType Int64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
QualType ArrayTy = CGM.getContext().getConstantArrayType(
Int64Ty, Size, nullptr, ArrayType::Normal, 0);
Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
const Expr *CounterVal = C->getLoopData(I);
assert(CounterVal);
llvm::Value *CntVal = CGF.EmitScalarConversion(
CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
CounterVal->getExprLoc());
CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
/*Volatile=*/false, Int64Ty);
}
llvm::Value *Args[] = {
emitUpdateLocation(CGF, C->getBeginLoc()),
getThreadID(CGF, C->getBeginLoc()),
CGF.Builder.CreateConstArrayGEP(CntAddr, 0).getPointer()};
llvm::FunctionCallee RTLFn;
if (C->getDependencyKind() == OMPC_DEPEND_source) {
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_post);
} else {
assert(C->getDependencyKind() == OMPC_DEPEND_sink);
RTLFn = createRuntimeFunction(OMPRTL__kmpc_doacross_wait);
}
CGF.EmitRuntimeCall(RTLFn, Args);
}
void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::FunctionCallee Callee,
ArrayRef<llvm::Value *> Args) const {
assert(Loc.isValid() && "Outlined function call location must be valid.");
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
if (Fn->doesNotThrow()) {
CGF.EmitNounwindRuntimeCall(Fn, Args);
return;
}
}
CGF.EmitRuntimeCall(Callee, Args);
}
void CGOpenMPRuntime::emitOutlinedFunctionCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
ArrayRef<llvm::Value *> Args) const {
emitCall(CGF, Loc, OutlinedFn, Args);
}
void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
HasEmittedDeclareTargetRegion = true;
}
Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
const VarDecl *NativeParam,
const VarDecl *TargetParam) const {
return CGF.GetAddrOfLocalVar(NativeParam);
}
namespace {
/// Cleanup action for allocate support.
class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
public:
static const int CleanupArgs = 3;
private:
llvm::FunctionCallee RTLFn;
llvm::Value *Args[CleanupArgs];
public:
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
ArrayRef<llvm::Value *> CallArgs)
: RTLFn(RTLFn) {
assert(CallArgs.size() == CleanupArgs &&
"Size of arguments does not match.");
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
CGF.EmitRuntimeCall(RTLFn, Args);
}
};
} // namespace
Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
const VarDecl *VD) {
if (!VD)
return Address::invalid();
const VarDecl *CVD = VD->getCanonicalDecl();
if (!CVD->hasAttr<OMPAllocateDeclAttr>())
return Address::invalid();
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
// Use the default allocation.
if (AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
!AA->getAllocator())
return Address::invalid();
llvm::Value *Size;
CharUnits Align = CGM.getContext().getDeclAlign(CVD);
if (CVD->getType()->isVariablyModifiedType()) {
Size = CGF.getTypeSize(CVD->getType());
// Align the size: ((size + align - 1) / align) * align
Size = CGF.Builder.CreateNUWAdd(
Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
} else {
CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
Size = CGM.getSize(Sz.alignTo(Align));
}
llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
assert(AA->getAllocator() &&
"Expected allocator expression for non-default allocator.");
llvm::Value *Allocator = CGF.EmitScalarExpr(AA->getAllocator());
// According to the standard, the original allocator type is a enum (integer).
// Convert to pointer type, if required.
if (Allocator->getType()->isIntegerTy())
Allocator = CGF.Builder.CreateIntToPtr(Allocator, CGM.VoidPtrTy);
else if (Allocator->getType()->isPointerTy())
Allocator = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Allocator,
CGM.VoidPtrTy);
llvm::Value *Args[] = {ThreadID, Size, Allocator};
llvm::Value *Addr =
CGF.EmitRuntimeCall(createRuntimeFunction(OMPRTL__kmpc_alloc), Args,
getName({CVD->getName(), ".void.addr"}));
llvm::Value *FiniArgs[OMPAllocateCleanupTy::CleanupArgs] = {ThreadID, Addr,
Allocator};
llvm::FunctionCallee FiniRTLFn = createRuntimeFunction(OMPRTL__kmpc_free);
CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
llvm::makeArrayRef(FiniArgs));
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr,
CGF.ConvertTypeForMem(CGM.getContext().getPointerType(CVD->getType())),
getName({CVD->getName(), ".addr"}));
return Address(Addr, Align);
}
namespace {
using OMPContextSelectorData =
OpenMPCtxSelectorData<ArrayRef<StringRef>, llvm::APSInt>;
using CompleteOMPContextSelectorData = SmallVector<OMPContextSelectorData, 4>;
} // anonymous namespace
/// Checks current context and returns true if it matches the context selector.
template <OpenMPContextSelectorSetKind CtxSet, OpenMPContextSelectorKind Ctx,
typename... Arguments>
static bool checkContext(const OMPContextSelectorData &Data,
Arguments... Params) {
assert(Data.CtxSet != OMP_CTX_SET_unknown && Data.Ctx != OMP_CTX_unknown &&
"Unknown context selector or context selector set.");
return false;
}
/// Checks for implementation={vendor(<vendor>)} context selector.
/// \returns true iff <vendor>="llvm", false otherwise.
template <>
bool checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(
const OMPContextSelectorData &Data) {
return llvm::all_of(Data.Names,
[](StringRef S) { return !S.compare_lower("llvm"); });
}
/// Checks for device={kind(<kind>)} context selector.
/// \returns true if <kind>="host" and compilation is for host.
/// true if <kind>="nohost" and compilation is for device.
/// true if <kind>="cpu" and compilation is for Arm, X86 or PPC CPU.
/// true if <kind>="gpu" and compilation is for NVPTX or AMDGCN.
/// false otherwise.
template <>
bool checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(
const OMPContextSelectorData &Data, CodeGenModule &CGM) {
for (StringRef Name : Data.Names) {
if (!Name.compare_lower("host")) {
if (CGM.getLangOpts().OpenMPIsDevice)
return false;
continue;
}
if (!Name.compare_lower("nohost")) {
if (!CGM.getLangOpts().OpenMPIsDevice)
return false;
continue;
}
switch (CGM.getTriple().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_be:
case llvm::Triple::aarch64_32:
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
if (Name.compare_lower("cpu"))
return false;
break;
case llvm::Triple::amdgcn:
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
if (Name.compare_lower("gpu"))
return false;
break;
case llvm::Triple::UnknownArch:
case llvm::Triple::arc:
case llvm::Triple::avr:
case llvm::Triple::bpfel:
case llvm::Triple::bpfeb:
case llvm::Triple::hexagon:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::msp430:
case llvm::Triple::r600:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::sparc:
case llvm::Triple::sparcv9:
case llvm::Triple::sparcel:
case llvm::Triple::systemz:
case llvm::Triple::tce:
case llvm::Triple::tcele:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
case llvm::Triple::xcore:
case llvm::Triple::le32:
case llvm::Triple::le64:
case llvm::Triple::amdil:
case llvm::Triple::amdil64:
case llvm::Triple::hsail:
case llvm::Triple::hsail64:
case llvm::Triple::spir:
case llvm::Triple::spir64:
case llvm::Triple::kalimba:
case llvm::Triple::shave:
case llvm::Triple::lanai:
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
case llvm::Triple::renderscript32:
case llvm::Triple::renderscript64:
case llvm::Triple::ve:
return false;
}
}
return true;
}
static bool matchesContext(CodeGenModule &CGM,
const CompleteOMPContextSelectorData &ContextData) {
for (const OMPContextSelectorData &Data : ContextData) {
switch (Data.Ctx) {
case OMP_CTX_vendor:
assert(Data.CtxSet == OMP_CTX_SET_implementation &&
"Expected implementation context selector set.");
if (!checkContext<OMP_CTX_SET_implementation, OMP_CTX_vendor>(Data))
return false;
break;
case OMP_CTX_kind:
assert(Data.CtxSet == OMP_CTX_SET_device &&
"Expected device context selector set.");
if (!checkContext<OMP_CTX_SET_device, OMP_CTX_kind, CodeGenModule &>(Data,
CGM))
return false;
break;
case OMP_CTX_unknown:
llvm_unreachable("Unknown context selector kind.");
}
}
return true;
}
static CompleteOMPContextSelectorData
translateAttrToContextSelectorData(ASTContext &C,
const OMPDeclareVariantAttr *A) {
CompleteOMPContextSelectorData Data;
for (unsigned I = 0, E = A->scores_size(); I < E; ++I) {
Data.emplace_back();
auto CtxSet = static_cast<OpenMPContextSelectorSetKind>(
*std::next(A->ctxSelectorSets_begin(), I));
auto Ctx = static_cast<OpenMPContextSelectorKind>(
*std::next(A->ctxSelectors_begin(), I));
Data.back().CtxSet = CtxSet;
Data.back().Ctx = Ctx;
const Expr *Score = *std::next(A->scores_begin(), I);
Data.back().Score = Score->EvaluateKnownConstInt(C);
switch (Ctx) {
case OMP_CTX_vendor:
assert(CtxSet == OMP_CTX_SET_implementation &&
"Expected implementation context selector set.");
Data.back().Names =
llvm::makeArrayRef(A->implVendors_begin(), A->implVendors_end());
break;
case OMP_CTX_kind:
assert(CtxSet == OMP_CTX_SET_device &&
"Expected device context selector set.");
Data.back().Names =
llvm::makeArrayRef(A->deviceKinds_begin(), A->deviceKinds_end());
break;
case OMP_CTX_unknown:
llvm_unreachable("Unknown context selector kind.");
}
}
return Data;
}
static bool isStrictSubset(const CompleteOMPContextSelectorData &LHS,
const CompleteOMPContextSelectorData &RHS) {
llvm::SmallDenseMap<std::pair<int, int>, llvm::StringSet<>, 4> RHSData;
for (const OMPContextSelectorData &D : RHS) {
auto &Pair = RHSData.FindAndConstruct(std::make_pair(D.CtxSet, D.Ctx));
Pair.getSecond().insert(D.Names.begin(), D.Names.end());
}
bool AllSetsAreEqual = true;
for (const OMPContextSelectorData &D : LHS) {
auto It = RHSData.find(std::make_pair(D.CtxSet, D.Ctx));
if (It == RHSData.end())
return false;
if (D.Names.size() > It->getSecond().size())
return false;
if (llvm::set_union(It->getSecond(), D.Names))
return false;
AllSetsAreEqual =
AllSetsAreEqual && (D.Names.size() == It->getSecond().size());
}
return LHS.size() != RHS.size() || !AllSetsAreEqual;
}
static bool greaterCtxScore(const CompleteOMPContextSelectorData &LHS,
const CompleteOMPContextSelectorData &RHS) {
// Score is calculated as sum of all scores + 1.
llvm::APSInt LHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
bool RHSIsSubsetOfLHS = isStrictSubset(RHS, LHS);
if (RHSIsSubsetOfLHS) {
LHSScore = llvm::APSInt::get(0);
} else {
for (const OMPContextSelectorData &Data : LHS) {
if (Data.Score.getBitWidth() > LHSScore.getBitWidth()) {
LHSScore = LHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
} else if (Data.Score.getBitWidth() < LHSScore.getBitWidth()) {
LHSScore += Data.Score.extend(LHSScore.getBitWidth());
} else {
LHSScore += Data.Score;
}
}
}
llvm::APSInt RHSScore(llvm::APInt(64, 1), /*isUnsigned=*/false);
if (!RHSIsSubsetOfLHS && isStrictSubset(LHS, RHS)) {
RHSScore = llvm::APSInt::get(0);
} else {
for (const OMPContextSelectorData &Data : RHS) {
if (Data.Score.getBitWidth() > RHSScore.getBitWidth()) {
RHSScore = RHSScore.extend(Data.Score.getBitWidth()) + Data.Score;
} else if (Data.Score.getBitWidth() < RHSScore.getBitWidth()) {
RHSScore += Data.Score.extend(RHSScore.getBitWidth());
} else {
RHSScore += Data.Score;
}
}
}
return llvm::APSInt::compareValues(LHSScore, RHSScore) >= 0;
}
/// Finds the variant function that matches current context with its context
/// selector.
static const FunctionDecl *getDeclareVariantFunction(CodeGenModule &CGM,
const FunctionDecl *FD) {
if (!FD->hasAttrs() || !FD->hasAttr<OMPDeclareVariantAttr>())
return FD;
// Iterate through all DeclareVariant attributes and check context selectors.
const OMPDeclareVariantAttr *TopMostAttr = nullptr;
CompleteOMPContextSelectorData TopMostData;
for (const auto *A : FD->specific_attrs<OMPDeclareVariantAttr>()) {
CompleteOMPContextSelectorData Data =
translateAttrToContextSelectorData(CGM.getContext(), A);
if (!matchesContext(CGM, Data))
continue;
// If the attribute matches the context, find the attribute with the highest
// score.
if (!TopMostAttr || !greaterCtxScore(TopMostData, Data)) {
TopMostAttr = A;
TopMostData.swap(Data);
}
}
if (!TopMostAttr)
return FD;
return cast<FunctionDecl>(
cast<DeclRefExpr>(TopMostAttr->getVariantFuncRef()->IgnoreParenImpCasts())
->getDecl());
}
bool CGOpenMPRuntime::emitDeclareVariant(GlobalDecl GD, bool IsForDefinition) {
const auto *D = cast<FunctionDecl>(GD.getDecl());
// If the original function is defined already, use its definition.
StringRef MangledName = CGM.getMangledName(GD);
llvm::GlobalValue *Orig = CGM.GetGlobalValue(MangledName);
if (Orig && !Orig->isDeclaration())
return false;
const FunctionDecl *NewFD = getDeclareVariantFunction(CGM, D);
// Emit original function if it does not have declare variant attribute or the
// context does not match.
if (NewFD == D)
return false;
GlobalDecl NewGD = GD.getWithDecl(NewFD);
if (tryEmitDeclareVariant(NewGD, GD, Orig, IsForDefinition)) {
DeferredVariantFunction.erase(D);
return true;
}
DeferredVariantFunction.insert(std::make_pair(D, std::make_pair(NewGD, GD)));
return true;
}
CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
CodeGenModule &CGM, const OMPLoopDirective &S)
: CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (!NeedToPush)
return;
NontemporalDeclsSet &DS =
CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
for (const Stmt *Ref : C->private_refs()) {
const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
const ValueDecl *VD;
if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
VD = DRE->getDecl();
} else {
const auto *ME = cast<MemberExpr>(SimpleRefExpr);
assert((ME->isImplicitCXXThis() ||
isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
"Expected member of current class.");
VD = ME->getMemberDecl();
}
DS.insert(VD);
}
}
}
CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
if (!NeedToPush)
return;
CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
}
bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
return llvm::any_of(
CGM.getOpenMPRuntime().NontemporalDeclsStack,
[VD](const NontemporalDeclsSet &Set) { return Set.count(VD) > 0; });
}
void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
const OMPExecutableDirective &S,
llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
const {
llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
// Vars in target/task regions must be excluded completely.
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
isOpenMPTaskingDirective(S.getDirectiveKind())) {
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
for (const CapturedStmt::Capture &Cap : CS->captures()) {
if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
NeedToCheckForLPCs.insert(Cap.getCapturedVar());
}
}
// Exclude vars in private clauses.
for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
for (const Expr *Ref : C->varlists()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
for (const Expr *Ref : C->varlists()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
for (const Expr *Ref : C->varlists()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
for (const Expr *Ref : C->varlists()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
for (const Expr *Ref : C->varlists()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const Decl *VD : NeedToCheckForLPCs) {
for (const LastprivateConditionalData &Data :
llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
if (Data.DeclToUniqueName.count(VD) > 0) {
if (!Data.Disabled)
NeedToAddForLPCsAsDisabled.insert(VD);
break;
}
}
}
}
CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
: CGM(CGF.CGM),
Action((CGM.getLangOpts().OpenMP >= 50 &&
llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
[](const OMPLastprivateClause *C) {
return C->getKind() ==
OMPC_LASTPRIVATE_conditional;
}))
? ActionToDo::PushAsLastprivateConditional
: ActionToDo::DoNotPush) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
return;
assert(Action == ActionToDo::PushAsLastprivateConditional &&
"Expected a push action.");
LastprivateConditionalData &Data =
CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
if (C->getKind() != OMPC_LASTPRIVATE_conditional)
continue;
for (const Expr *Ref : C->varlists()) {
Data.DeclToUniqueName.insert(std::make_pair(
cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
}
}
Data.IVLVal = IVLVal;
Data.Fn = CGF.CurFn;
}
CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
CodeGenFunction &CGF, const OMPExecutableDirective &S)
: CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (CGM.getLangOpts().OpenMP < 50)
return;
llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
if (!NeedToAddForLPCsAsDisabled.empty()) {
Action = ActionToDo::DisableLastprivateConditional;
LastprivateConditionalData &Data =
CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
for (const Decl *VD : NeedToAddForLPCsAsDisabled)
Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
Data.Fn = CGF.CurFn;
Data.Disabled = true;
}
}
CGOpenMPRuntime::LastprivateConditionalRAII
CGOpenMPRuntime::LastprivateConditionalRAII::disable(
CodeGenFunction &CGF, const OMPExecutableDirective &S) {
return LastprivateConditionalRAII(CGF, S);
}
CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
if (CGM.getLangOpts().OpenMP < 50)
return;
if (Action == ActionToDo::DisableLastprivateConditional) {
assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
"Expected list of disabled private vars.");
CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
}
if (Action == ActionToDo::PushAsLastprivateConditional) {
assert(
!CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
"Expected list of lastprivate conditional vars.");
CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
}
}
Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
const VarDecl *VD) {
ASTContext &C = CGM.getContext();
auto I = LastprivateConditionalToTypes.find(CGF.CurFn);
if (I == LastprivateConditionalToTypes.end())
I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
QualType NewType;
const FieldDecl *VDField;
const FieldDecl *FiredField;
LValue BaseLVal;
auto VI = I->getSecond().find(VD);
if (VI == I->getSecond().end()) {
RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
RD->startDefinition();
VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
RD->completeDefinition();
NewType = C.getRecordType(RD);
Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
} else {
NewType = std::get<0>(VI->getSecond());
VDField = std::get<1>(VI->getSecond());
FiredField = std::get<2>(VI->getSecond());
BaseLVal = std::get<3>(VI->getSecond());
}
LValue FiredLVal =
CGF.EmitLValueForField(BaseLVal, FiredField);
CGF.EmitStoreOfScalar(
llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
FiredLVal);
return CGF.EmitLValueForField(BaseLVal, VDField).getAddress(CGF);
}
namespace {
/// Checks if the lastprivate conditional variable is referenced in LHS.
class LastprivateConditionalRefChecker final
: public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
const Expr *FoundE = nullptr;
const Decl *FoundD = nullptr;
StringRef UniqueDeclName;
LValue IVLVal;
llvm::Function *FoundFn = nullptr;
SourceLocation Loc;
public:
bool VisitDeclRefExpr(const DeclRefExpr *E) {
for (const CGOpenMPRuntime::LastprivateConditionalData &D :
llvm::reverse(LPM)) {
auto It = D.DeclToUniqueName.find(E->getDecl());
if (It == D.DeclToUniqueName.end())
continue;
if (D.Disabled)
return false;
FoundE = E;
FoundD = E->getDecl()->getCanonicalDecl();
UniqueDeclName = It->second;
IVLVal = D.IVLVal;
FoundFn = D.Fn;
break;
}
return FoundE == E;
}
bool VisitMemberExpr(const MemberExpr *E) {
if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
return false;
for (const CGOpenMPRuntime::LastprivateConditionalData &D :
llvm::reverse(LPM)) {
auto It = D.DeclToUniqueName.find(E->getMemberDecl());
if (It == D.DeclToUniqueName.end())
continue;
if (D.Disabled)
return false;
FoundE = E;
FoundD = E->getMemberDecl()->getCanonicalDecl();
UniqueDeclName = It->second;
IVLVal = D.IVLVal;
FoundFn = D.Fn;
break;
}
return FoundE == E;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children()) {
if (!Child)
continue;
if (const auto *E = dyn_cast<Expr>(Child))
if (!E->isGLValue())
continue;
if (Visit(Child))
return true;
}
return false;
}
explicit LastprivateConditionalRefChecker(
ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
: LPM(LPM) {}
std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const {
return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
}
};
} // namespace
void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
LValue IVLVal,
StringRef UniqueDeclName,
LValue LVal,
SourceLocation Loc) {
// Last updated loop counter for the lastprivate conditional var.
// int<xx> last_iv = 0;
llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
llvm::Constant *LastIV =
getOrCreateInternalVariable(LLIVTy, getName({UniqueDeclName, "iv"}));
cast<llvm::GlobalVariable>(LastIV)->setAlignment(
IVLVal.getAlignment().getAsAlign());
LValue LastIVLVal = CGF.MakeNaturalAlignAddrLValue(LastIV, IVLVal.getType());
// Last value of the lastprivate conditional.
// decltype(priv_a) last_a;
llvm::Constant *Last = getOrCreateInternalVariable(
CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
cast<llvm::GlobalVariable>(Last)->setAlignment(
LVal.getAlignment().getAsAlign());
LValue LastLVal =
CGF.MakeAddrLValue(Last, LVal.getType(), LVal.getAlignment());
// Global loop counter. Required to handle inner parallel-for regions.
// iv
llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
// #pragma omp critical(a)
// if (last_iv <= iv) {
// last_iv = iv;
// last_a = priv_a;
// }
auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
// (last_iv <= iv) ? Check if the variable is updated and store new
// value in global var.
llvm::Value *CmpRes;
if (IVLVal.getType()->isSignedIntegerType()) {
CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
} else {
assert(IVLVal.getType()->isUnsignedIntegerType() &&
"Loop iteration variable must be integer.");
CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
}
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
// {
CGF.EmitBlock(ThenBB);
// last_iv = iv;
CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
// last_a = priv_a;
switch (CGF.getEvaluationKind(LVal.getType())) {
case TEK_Scalar: {
llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
CGF.EmitStoreOfScalar(PrivVal, LastLVal);
break;
}
case TEK_Complex: {
CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
break;
}
case TEK_Aggregate:
llvm_unreachable(
"Aggregates are not supported in lastprivate conditional.");
}
// }
CGF.EmitBranch(ExitBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
};
if (CGM.getLangOpts().OpenMPSimd) {
// Do not emit as a critical region as no parallel region could be emitted.
RegionCodeGenTy ThenRCG(CodeGen);
ThenRCG(CGF);
} else {
emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
}
}
void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
const Expr *LHS) {
if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
return;
LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
if (!Checker.Visit(LHS))
return;
const Expr *FoundE;
const Decl *FoundD;
StringRef UniqueDeclName;
LValue IVLVal;
llvm::Function *FoundFn;
std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
Checker.getFoundData();
if (FoundFn != CGF.CurFn) {
// Special codegen for inner parallel regions.
// ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
"Lastprivate conditional is not found in outer region.");
QualType StructTy = std::get<0>(It->getSecond());
const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
LValue PrivLVal = CGF.EmitLValue(FoundE);
Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivLVal.getAddress(CGF),
CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)));
LValue BaseLVal =
CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
FiredLVal, llvm::AtomicOrdering::Unordered,
/*IsVolatile=*/true, /*isInit=*/false);
return;
}
// Private address of the lastprivate conditional in the current context.
// priv_a
LValue LVal = CGF.EmitLValue(FoundE);
emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
FoundE->getExprLoc());
}
void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
return;
auto Range = llvm::reverse(LastprivateConditionalStack);
auto It = llvm::find_if(
Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
if (It == Range.end() || It->Fn != CGF.CurFn)
return;
auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
assert(LPCI != LastprivateConditionalToTypes.end() &&
"Lastprivates must be registered already.");
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
for (const auto &Pair : It->DeclToUniqueName) {
const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
if (!CS->capturesVariable(VD) || IgnoredDecls.count(VD) > 0)
continue;
auto I = LPCI->getSecond().find(Pair.first);
assert(I != LPCI->getSecond().end() &&
"Lastprivate must be rehistered already.");
// bool Cmp = priv_a.Fired != 0;
LValue BaseLVal = std::get<3>(I->getSecond());
LValue FiredLVal =
CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
// if (Cmp) {
CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
CGF.EmitBlock(ThenBB);
Address Addr = CGF.GetAddrOfLocalVar(VD);
LValue LVal;
if (VD->getType()->isReferenceType())
LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
AlignmentSource::Decl);
else
LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
AlignmentSource::Decl);
emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
D.getBeginLoc());
auto AL = ApplyDebugLocation::CreateArtificial(CGF);
CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
// }
}
}
void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
SourceLocation Loc) {
if (CGF.getLangOpts().OpenMP < 50)
return;
auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
"Unknown lastprivate conditional variable.");
StringRef UniqueName = It->second;
llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
// The variable was not updated in the region - exit.
if (!GV)
return;
LValue LPLVal = CGF.MakeAddrLValue(
GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
CGF.EmitStoreOfScalar(Res, PrivLVal);
}
llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
bool Tied, unsigned &NumberOfParts) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCriticalRegion(
CodeGenFunction &CGF, StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
const Expr *Hint) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitSingleRegion(
CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> AssignmentOps) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc,
bool IsThreads) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind Kind,
bool EmitChecks,
bool ForceSimpleCall) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForDispatchInit(
CodeGenFunction &CGF, SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
bool Ordered, const DispatchRTInput &DispatchValues) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForStaticInit(
CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize, bool IVSigned,
Address IL, Address LB,
Address UB, Address ST) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
ProcBindKind ProcBind,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
CodeGenFunction *CGF) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
CodeGenFunction &CGF, QualType VarType, StringRef Name) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
ArrayRef<const Expr *> Vars,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskLoopCall(
CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
const Expr *IfCond, const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitReduction(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
assert(Options.SimpleReduction && "Only simple reduction is expected.");
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
ReductionOps, Options);
}
llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
SourceLocation Loc,
ReductionCodeGen &RCG,
unsigned N) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Value *ReductionsPtr,
LValue SharedLVal) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
SourceLocation Loc, const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
const Expr *Device,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
return false;
}
void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetDataCalls(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device, const RegionCodeGenTy &CodeGen, TargetDataInfo &Info) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
const OMPLoopDirective &D,
ArrayRef<Expr *> NumIterations) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDependClause *C) {
llvm_unreachable("Not supported in SIMD-only mode");
}
const VarDecl *
CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
const VarDecl *NativeParam) const {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address
CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
const VarDecl *NativeParam,
const VarDecl *TargetParam) const {
llvm_unreachable("Not supported in SIMD-only mode");
}