llvm-project/llvm/lib/Target/MSP430/MSP430ISelLowering.cpp

1625 lines
61 KiB
C++

//===-- MSP430ISelLowering.cpp - MSP430 DAG Lowering Implementation ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the MSP430TargetLowering class.
//
//===----------------------------------------------------------------------===//
#include "MSP430ISelLowering.h"
#include "MSP430.h"
#include "MSP430MachineFunctionInfo.h"
#include "MSP430Subtarget.h"
#include "MSP430TargetMachine.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "msp430-lower"
static cl::opt<bool>MSP430NoLegalImmediate(
"msp430-no-legal-immediate", cl::Hidden,
cl::desc("Enable non legal immediates (for testing purposes only)"),
cl::init(false));
MSP430TargetLowering::MSP430TargetLowering(const TargetMachine &TM,
const MSP430Subtarget &STI)
: TargetLowering(TM) {
// Set up the register classes.
addRegisterClass(MVT::i8, &MSP430::GR8RegClass);
addRegisterClass(MVT::i16, &MSP430::GR16RegClass);
// Compute derived properties from the register classes
computeRegisterProperties(STI.getRegisterInfo());
// Provide all sorts of operation actions
setStackPointerRegisterToSaveRestore(MSP430::SP);
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
// We have post-incremented loads / stores.
setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
for (MVT VT : MVT::integer_valuetypes()) {
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Expand);
}
// We don't have any truncstores
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
setOperationAction(ISD::SRA, MVT::i8, Custom);
setOperationAction(ISD::SHL, MVT::i8, Custom);
setOperationAction(ISD::SRL, MVT::i8, Custom);
setOperationAction(ISD::SRA, MVT::i16, Custom);
setOperationAction(ISD::SHL, MVT::i16, Custom);
setOperationAction(ISD::SRL, MVT::i16, Custom);
setOperationAction(ISD::ROTL, MVT::i8, Expand);
setOperationAction(ISD::ROTR, MVT::i8, Expand);
setOperationAction(ISD::ROTL, MVT::i16, Expand);
setOperationAction(ISD::ROTR, MVT::i16, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
setOperationAction(ISD::ExternalSymbol, MVT::i16, Custom);
setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i8, Custom);
setOperationAction(ISD::BR_CC, MVT::i16, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::SETCC, MVT::i8, Custom);
setOperationAction(ISD::SETCC, MVT::i16, Custom);
setOperationAction(ISD::SELECT, MVT::i8, Expand);
setOperationAction(ISD::SELECT, MVT::i16, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::CTTZ, MVT::i8, Expand);
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
setOperationAction(ISD::CTLZ, MVT::i8, Expand);
setOperationAction(ISD::CTLZ, MVT::i16, Expand);
setOperationAction(ISD::CTPOP, MVT::i8, Expand);
setOperationAction(ISD::CTPOP, MVT::i16, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i8, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
// FIXME: Implement efficiently multiplication by a constant
setOperationAction(ISD::MUL, MVT::i8, Promote);
setOperationAction(ISD::MULHS, MVT::i8, Promote);
setOperationAction(ISD::MULHU, MVT::i8, Promote);
setOperationAction(ISD::SMUL_LOHI, MVT::i8, Promote);
setOperationAction(ISD::UMUL_LOHI, MVT::i8, Promote);
setOperationAction(ISD::MUL, MVT::i16, LibCall);
setOperationAction(ISD::MULHS, MVT::i16, Expand);
setOperationAction(ISD::MULHU, MVT::i16, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
setOperationAction(ISD::UDIV, MVT::i8, Promote);
setOperationAction(ISD::UDIVREM, MVT::i8, Promote);
setOperationAction(ISD::UREM, MVT::i8, Promote);
setOperationAction(ISD::SDIV, MVT::i8, Promote);
setOperationAction(ISD::SDIVREM, MVT::i8, Promote);
setOperationAction(ISD::SREM, MVT::i8, Promote);
setOperationAction(ISD::UDIV, MVT::i16, LibCall);
setOperationAction(ISD::UDIVREM, MVT::i16, Expand);
setOperationAction(ISD::UREM, MVT::i16, LibCall);
setOperationAction(ISD::SDIV, MVT::i16, LibCall);
setOperationAction(ISD::SDIVREM, MVT::i16, Expand);
setOperationAction(ISD::SREM, MVT::i16, LibCall);
// varargs support
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::JumpTable, MVT::i16, Custom);
// EABI Libcalls - EABI Section 6.2
const struct {
const RTLIB::Libcall Op;
const char * const Name;
const ISD::CondCode Cond;
} LibraryCalls[] = {
// Floating point conversions - EABI Table 6
{ RTLIB::FPROUND_F64_F32, "__mspabi_cvtdf", ISD::SETCC_INVALID },
{ RTLIB::FPEXT_F32_F64, "__mspabi_cvtfd", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F64_I16, "__mspabi_fixdi", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I32, "__mspabi_fixdli", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F64_I64, "__mspabi_fixdlli", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F64_I16, "__mspabi_fixdu", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I32, "__mspabi_fixdul", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F64_I64, "__mspabi_fixdull", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOSINT_F32_I16, "__mspabi_fixfi", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I32, "__mspabi_fixfli", ISD::SETCC_INVALID },
{ RTLIB::FPTOSINT_F32_I64, "__mspabi_fixflli", ISD::SETCC_INVALID },
// The following is NOT implemented in libgcc
//{ RTLIB::FPTOUINT_F32_I16, "__mspabi_fixfu", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I32, "__mspabi_fixful", ISD::SETCC_INVALID },
{ RTLIB::FPTOUINT_F32_I64, "__mspabi_fixfull", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F64, "__mspabi_fltid", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F64, "__mspabi_fltlid", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc but is not in the EABI
{ RTLIB::SINTTOFP_I64_F64, "__mspabi_fltllid", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F64, "__mspabi_fltud", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F64, "__mspabi_fltuld", ISD::SETCC_INVALID },
// The following IS implemented in libgcc but is not in the EABI
{ RTLIB::UINTTOFP_I64_F64, "__mspabi_fltulld", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::SINTTOFP_I16_F32, "__mspabi_fltif", ISD::SETCC_INVALID },
{ RTLIB::SINTTOFP_I32_F32, "__mspabi_fltlif", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc but is not in the EABI
{ RTLIB::SINTTOFP_I64_F32, "__mspabi_fltllif", ISD::SETCC_INVALID },
// TODO The following IS implemented in libgcc
//{ RTLIB::UINTTOFP_I16_F32, "__mspabi_fltuf", ISD::SETCC_INVALID },
{ RTLIB::UINTTOFP_I32_F32, "__mspabi_fltulf", ISD::SETCC_INVALID },
// The following IS implemented in libgcc but is not in the EABI
{ RTLIB::UINTTOFP_I64_F32, "__mspabi_fltullf", ISD::SETCC_INVALID },
// Floating point comparisons - EABI Table 7
{ RTLIB::OEQ_F64, "__mspabi_cmpd", ISD::SETEQ },
{ RTLIB::UNE_F64, "__mspabi_cmpd", ISD::SETNE },
{ RTLIB::OGE_F64, "__mspabi_cmpd", ISD::SETGE },
{ RTLIB::OLT_F64, "__mspabi_cmpd", ISD::SETLT },
{ RTLIB::OLE_F64, "__mspabi_cmpd", ISD::SETLE },
{ RTLIB::OGT_F64, "__mspabi_cmpd", ISD::SETGT },
{ RTLIB::OEQ_F32, "__mspabi_cmpf", ISD::SETEQ },
{ RTLIB::UNE_F32, "__mspabi_cmpf", ISD::SETNE },
{ RTLIB::OGE_F32, "__mspabi_cmpf", ISD::SETGE },
{ RTLIB::OLT_F32, "__mspabi_cmpf", ISD::SETLT },
{ RTLIB::OLE_F32, "__mspabi_cmpf", ISD::SETLE },
{ RTLIB::OGT_F32, "__mspabi_cmpf", ISD::SETGT },
// Floating point arithmetic - EABI Table 8
{ RTLIB::ADD_F64, "__mspabi_addd", ISD::SETCC_INVALID },
{ RTLIB::ADD_F32, "__mspabi_addf", ISD::SETCC_INVALID },
{ RTLIB::DIV_F64, "__mspabi_divd", ISD::SETCC_INVALID },
{ RTLIB::DIV_F32, "__mspabi_divf", ISD::SETCC_INVALID },
{ RTLIB::MUL_F64, "__mspabi_mpyd", ISD::SETCC_INVALID },
{ RTLIB::MUL_F32, "__mspabi_mpyf", ISD::SETCC_INVALID },
{ RTLIB::SUB_F64, "__mspabi_subd", ISD::SETCC_INVALID },
{ RTLIB::SUB_F32, "__mspabi_subf", ISD::SETCC_INVALID },
// The following are NOT implemented in libgcc
// { RTLIB::NEG_F64, "__mspabi_negd", ISD::SETCC_INVALID },
// { RTLIB::NEG_F32, "__mspabi_negf", ISD::SETCC_INVALID },
// Universal Integer Operations - EABI Table 9
{ RTLIB::SDIV_I16, "__mspabi_divi", ISD::SETCC_INVALID },
{ RTLIB::SDIV_I32, "__mspabi_divli", ISD::SETCC_INVALID },
{ RTLIB::SDIV_I64, "__mspabi_divlli", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I16, "__mspabi_divu", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I32, "__mspabi_divul", ISD::SETCC_INVALID },
{ RTLIB::UDIV_I64, "__mspabi_divull", ISD::SETCC_INVALID },
{ RTLIB::SREM_I16, "__mspabi_remi", ISD::SETCC_INVALID },
{ RTLIB::SREM_I32, "__mspabi_remli", ISD::SETCC_INVALID },
{ RTLIB::SREM_I64, "__mspabi_remlli", ISD::SETCC_INVALID },
{ RTLIB::UREM_I16, "__mspabi_remu", ISD::SETCC_INVALID },
{ RTLIB::UREM_I32, "__mspabi_remul", ISD::SETCC_INVALID },
{ RTLIB::UREM_I64, "__mspabi_remull", ISD::SETCC_INVALID },
// Bitwise Operations - EABI Table 10
// TODO: __mspabi_[srli/srai/slli] ARE implemented in libgcc
{ RTLIB::SRL_I32, "__mspabi_srll", ISD::SETCC_INVALID },
{ RTLIB::SRA_I32, "__mspabi_sral", ISD::SETCC_INVALID },
{ RTLIB::SHL_I32, "__mspabi_slll", ISD::SETCC_INVALID },
// __mspabi_[srlll/srall/sllll/rlli/rlll] are NOT implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
if (LC.Cond != ISD::SETCC_INVALID)
setCmpLibcallCC(LC.Op, LC.Cond);
}
if (STI.hasHWMult16()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw" },
// TODO The __mspabi_mpysl*_hw functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_hw functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else if (STI.hasHWMult32()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_hw32" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_hw32" },
// TODO The __mspabi_mpysl*_hw32 functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_hw32 functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else if (STI.hasHWMultF5()) {
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi_f5hw" },
{ RTLIB::MUL_I32, "__mspabi_mpyl_f5hw" },
{ RTLIB::MUL_I64, "__mspabi_mpyll_f5hw" },
// TODO The __mspabi_mpysl*_f5hw functions ARE implemented in libgcc
// TODO The __mspabi_mpyul*_f5hw functions ARE implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
} else { // NoHWMult
const struct {
const RTLIB::Libcall Op;
const char * const Name;
} LibraryCalls[] = {
// Integer Multiply - EABI Table 9
{ RTLIB::MUL_I16, "__mspabi_mpyi" },
{ RTLIB::MUL_I32, "__mspabi_mpyl" },
{ RTLIB::MUL_I64, "__mspabi_mpyll" },
// The __mspabi_mpysl* functions are NOT implemented in libgcc
// The __mspabi_mpyul* functions are NOT implemented in libgcc
};
for (const auto &LC : LibraryCalls) {
setLibcallName(LC.Op, LC.Name);
}
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::MSP430_BUILTIN);
}
// Several of the runtime library functions use a special calling conv
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::MSP430_BUILTIN);
setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::MSP430_BUILTIN);
// TODO: __mspabi_srall, __mspabi_srlll, __mspabi_sllll
setMinFunctionAlignment(Align(2));
setPrefFunctionAlignment(Align(2));
}
SDValue MSP430TargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
case ISD::SHL: // FALLTHROUGH
case ISD::SRL:
case ISD::SRA: return LowerShifts(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
default:
llvm_unreachable("unimplemented operand");
}
}
// Define non profitable transforms into shifts
bool MSP430TargetLowering::shouldAvoidTransformToShift(EVT VT,
unsigned Amount) const {
return !(Amount == 8 || Amount == 9 || Amount<=2);
}
// Implemented to verify test case assertions in
// tests/codegen/msp430/shift-amount-threshold-b.ll
bool MSP430TargetLowering::isLegalICmpImmediate(int64_t Immed) const {
if (MSP430NoLegalImmediate)
return Immed >= -32 && Immed < 32;
return TargetLowering::isLegalICmpImmediate(Immed);
}
//===----------------------------------------------------------------------===//
// MSP430 Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
TargetLowering::ConstraintType
MSP430TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass *>
MSP430TargetLowering::getRegForInlineAsmConstraint(
const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
if (VT == MVT::i8)
return std::make_pair(0U, &MSP430::GR8RegClass);
return std::make_pair(0U, &MSP430::GR16RegClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "MSP430GenCallingConv.inc"
/// For each argument in a function store the number of pieces it is composed
/// of.
template<typename ArgT>
static void ParseFunctionArgs(const SmallVectorImpl<ArgT> &Args,
SmallVectorImpl<unsigned> &Out) {
unsigned CurrentArgIndex;
if (Args.empty())
return;
CurrentArgIndex = Args[0].OrigArgIndex;
Out.push_back(0);
for (auto &Arg : Args) {
if (CurrentArgIndex == Arg.OrigArgIndex) {
Out.back() += 1;
} else {
Out.push_back(1);
CurrentArgIndex = Arg.OrigArgIndex;
}
}
}
static void AnalyzeVarArgs(CCState &State,
const SmallVectorImpl<ISD::OutputArg> &Outs) {
State.AnalyzeCallOperands(Outs, CC_MSP430_AssignStack);
}
static void AnalyzeVarArgs(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) {
State.AnalyzeFormalArguments(Ins, CC_MSP430_AssignStack);
}
/// Analyze incoming and outgoing function arguments. We need custom C++ code
/// to handle special constraints in the ABI like reversing the order of the
/// pieces of splitted arguments. In addition, all pieces of a certain argument
/// have to be passed either using registers or the stack but never mixing both.
template<typename ArgT>
static void AnalyzeArguments(CCState &State,
SmallVectorImpl<CCValAssign> &ArgLocs,
const SmallVectorImpl<ArgT> &Args) {
static const MCPhysReg CRegList[] = {
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
};
static const unsigned CNbRegs = array_lengthof(CRegList);
static const MCPhysReg BuiltinRegList[] = {
MSP430::R8, MSP430::R9, MSP430::R10, MSP430::R11,
MSP430::R12, MSP430::R13, MSP430::R14, MSP430::R15
};
static const unsigned BuiltinNbRegs = array_lengthof(BuiltinRegList);
ArrayRef<MCPhysReg> RegList;
unsigned NbRegs;
bool Builtin = (State.getCallingConv() == CallingConv::MSP430_BUILTIN);
if (Builtin) {
RegList = BuiltinRegList;
NbRegs = BuiltinNbRegs;
} else {
RegList = CRegList;
NbRegs = CNbRegs;
}
if (State.isVarArg()) {
AnalyzeVarArgs(State, Args);
return;
}
SmallVector<unsigned, 4> ArgsParts;
ParseFunctionArgs(Args, ArgsParts);
if (Builtin) {
assert(ArgsParts.size() == 2 &&
"Builtin calling convention requires two arguments");
}
unsigned RegsLeft = NbRegs;
bool UsedStack = false;
unsigned ValNo = 0;
for (unsigned i = 0, e = ArgsParts.size(); i != e; i++) {
MVT ArgVT = Args[ValNo].VT;
ISD::ArgFlagsTy ArgFlags = Args[ValNo].Flags;
MVT LocVT = ArgVT;
CCValAssign::LocInfo LocInfo = CCValAssign::Full;
// Promote i8 to i16
if (LocVT == MVT::i8) {
LocVT = MVT::i16;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
// Handle byval arguments
if (ArgFlags.isByVal()) {
State.HandleByVal(ValNo++, ArgVT, LocVT, LocInfo, 2, 2, ArgFlags);
continue;
}
unsigned Parts = ArgsParts[i];
if (Builtin) {
assert(Parts == 4 &&
"Builtin calling convention requires 64-bit arguments");
}
if (!UsedStack && Parts == 2 && RegsLeft == 1) {
// Special case for 32-bit register split, see EABI section 3.3.3
unsigned Reg = State.AllocateReg(RegList);
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
RegsLeft -= 1;
UsedStack = true;
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
} else if (Parts <= RegsLeft) {
for (unsigned j = 0; j < Parts; j++) {
unsigned Reg = State.AllocateReg(RegList);
State.addLoc(CCValAssign::getReg(ValNo++, ArgVT, Reg, LocVT, LocInfo));
RegsLeft--;
}
} else {
UsedStack = true;
for (unsigned j = 0; j < Parts; j++)
CC_MSP430_AssignStack(ValNo++, ArgVT, LocVT, LocInfo, ArgFlags, State);
}
}
}
static void AnalyzeRetResult(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) {
State.AnalyzeCallResult(Ins, RetCC_MSP430);
}
static void AnalyzeRetResult(CCState &State,
const SmallVectorImpl<ISD::OutputArg> &Outs) {
State.AnalyzeReturn(Outs, RetCC_MSP430);
}
template<typename ArgT>
static void AnalyzeReturnValues(CCState &State,
SmallVectorImpl<CCValAssign> &RVLocs,
const SmallVectorImpl<ArgT> &Args) {
AnalyzeRetResult(State, Args);
}
SDValue MSP430TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
case CallingConv::MSP430_INTR:
if (Ins.empty())
return Chain;
report_fatal_error("ISRs cannot have arguments");
}
}
SDValue
MSP430TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
// MSP430 target does not yet support tail call optimization.
isTailCall = false;
switch (CallConv) {
default:
report_fatal_error("Unsupported calling convention");
case CallingConv::MSP430_BUILTIN:
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, OutVals, Ins, dl, DAG, InVals);
case CallingConv::MSP430_INTR:
report_fatal_error("ISRs cannot be called directly");
}
}
/// LowerCCCArguments - transform physical registers into virtual registers and
/// generate load operations for arguments places on the stack.
// FIXME: struct return stuff
SDValue MSP430TargetLowering::LowerCCCArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Ins);
// Create frame index for the start of the first vararg value
if (isVarArg) {
unsigned Offset = CCInfo.getNextStackOffset();
FuncInfo->setVarArgsFrameIndex(MFI.CreateFixedObject(1, Offset, true));
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc()) {
// Arguments passed in registers
EVT RegVT = VA.getLocVT();
switch (RegVT.getSimpleVT().SimpleTy) {
default:
{
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< RegVT.getEVTString() << "\n";
#endif
llvm_unreachable(nullptr);
}
case MVT::i16:
Register VReg = RegInfo.createVirtualRegister(&MSP430::GR16RegClass);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
// If this is an 8-bit value, it is really passed promoted to 16
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
}
} else {
// Sanity check
assert(VA.isMemLoc());
SDValue InVal;
ISD::ArgFlagsTy Flags = Ins[i].Flags;
if (Flags.isByVal()) {
int FI = MFI.CreateFixedObject(Flags.getByValSize(),
VA.getLocMemOffset(), true);
InVal = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
} else {
// Load the argument to a virtual register
unsigned ObjSize = VA.getLocVT().getSizeInBits()/8;
if (ObjSize > 2) {
errs() << "LowerFormalArguments Unhandled argument type: "
<< EVT(VA.getLocVT()).getEVTString()
<< "\n";
}
// Create the frame index object for this incoming parameter...
int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
// Create the SelectionDAG nodes corresponding to a load
//from this parameter
SDValue FIN = DAG.getFrameIndex(FI, MVT::i16);
InVal = DAG.getLoad(
VA.getLocVT(), dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
}
InVals.push_back(InVal);
}
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
if (Ins[i].Flags.isSRet()) {
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(
getRegClassFor(MVT::i16));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
}
return Chain;
}
bool
MSP430TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF,
bool IsVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_MSP430);
}
SDValue
MSP430TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SDLoc &dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// ISRs cannot return any value.
if (CallConv == CallingConv::MSP430_INTR && !Outs.empty())
report_fatal_error("ISRs cannot return any value");
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
// Analize return values.
AnalyzeReturnValues(CCInfo, RVLocs, Outs);
SDValue Flag;
SmallVector<SDValue, 4> RetOps(1, Chain);
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
if (MF.getFunction().hasStructRetAttr()) {
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in entry block");
SDValue Val =
DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy(DAG.getDataLayout()));
unsigned R12 = MSP430::R12;
Chain = DAG.getCopyToReg(Chain, dl, R12, Val, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(R12, getPointerTy(DAG.getDataLayout())));
}
unsigned Opc = (CallConv == CallingConv::MSP430_INTR ?
MSP430ISD::RETI_FLAG : MSP430ISD::RET_FLAG);
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
return DAG.getNode(Opc, dl, MVT::Other, RetOps);
}
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue MSP430TargetLowering::LowerCCCCallTo(
SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
bool isTailCall, const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
*DAG.getContext());
AnalyzeArguments(CCInfo, ArgLocs, Outs);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, MSP430::SP, PtrVT);
SDValue PtrOff =
DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
DAG.getIntPtrConstant(VA.getLocMemOffset(), dl));
SDValue MemOp;
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isByVal()) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i16);
MemOp = DAG.getMemcpy(Chain, dl, PtrOff, Arg, SizeNode,
Flags.getByValAlign(),
/*isVolatile*/false,
/*AlwaysInline=*/true,
/*isTailCall=*/false,
MachinePointerInfo(),
MachinePointerInfo());
} else {
MemOp = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
}
MemOpChains.push_back(MemOp);
}
}
// Transform all store nodes into one single node because all store nodes are
// independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
// Build a sequence of copy-to-reg nodes chained together with token chain and
// flag operands which copy the outgoing args into registers. The InFlag in
// necessary since all emitted instructions must be stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i16);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i16);
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(MSP430ISD::CALL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, DAG.getConstant(NumBytes, dl, PtrVT, true),
DAG.getConstant(0, dl, PtrVT, true), InFlag, dl);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue MSP430TargetLowering::LowerCallResult(
SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
AnalyzeReturnValues(CCInfo, RVLocs, Ins);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
SDValue MSP430TargetLowering::LowerShifts(SDValue Op,
SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
SDNode* N = Op.getNode();
EVT VT = Op.getValueType();
SDLoc dl(N);
// Expand non-constant shifts to loops:
if (!isa<ConstantSDNode>(N->getOperand(1)))
return Op;
uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
// Expand the stuff into sequence of shifts.
SDValue Victim = N->getOperand(0);
if (ShiftAmount >= 8) {
assert(VT == MVT::i16 && "Can not shift i8 by 8 and more");
switch(Opc) {
default:
llvm_unreachable("Unknown shift");
case ISD::SHL:
// foo << (8 + N) => swpb(zext(foo)) << N
Victim = DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
break;
case ISD::SRA:
case ISD::SRL:
// foo >> (8 + N) => sxt(swpb(foo)) >> N
Victim = DAG.getNode(ISD::BSWAP, dl, VT, Victim);
Victim = (Opc == ISD::SRA)
? DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Victim,
DAG.getValueType(MVT::i8))
: DAG.getZeroExtendInReg(Victim, dl, MVT::i8);
break;
}
ShiftAmount -= 8;
}
if (Opc == ISD::SRL && ShiftAmount) {
// Emit a special goodness here:
// srl A, 1 => clrc; rrc A
Victim = DAG.getNode(MSP430ISD::RRCL, dl, VT, Victim);
ShiftAmount -= 1;
}
while (ShiftAmount--)
Victim = DAG.getNode((Opc == ISD::SHL ? MSP430ISD::RLA : MSP430ISD::RRA),
dl, VT, Victim);
return Victim;
}
SDValue MSP430TargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Create the TargetGlobalAddress node, folding in the constant offset.
SDValue Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op), PtrVT, Offset);
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(Op), PtrVT, Result);
}
SDValue MSP430TargetLowering::LowerExternalSymbol(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
}
SDValue MSP430TargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, dl, PtrVT, Result);
}
static SDValue EmitCMP(SDValue &LHS, SDValue &RHS, SDValue &TargetCC,
ISD::CondCode CC, const SDLoc &dl, SelectionDAG &DAG) {
// FIXME: Handle bittests someday
assert(!LHS.getValueType().isFloatingPoint() && "We don't handle FP yet");
// FIXME: Handle jump negative someday
MSP430CC::CondCodes TCC = MSP430CC::COND_INVALID;
switch (CC) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
TCC = MSP430CC::COND_E; // aka COND_Z
// Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETNE:
TCC = MSP430CC::COND_NE; // aka COND_NZ
// Minor optimization: if LHS is a constant, swap operands, then the
// constant can be folded into comparison.
if (LHS.getOpcode() == ISD::Constant)
std::swap(LHS, RHS);
break;
case ISD::SETULE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETUGE:
// Turn lhs u>= rhs with lhs constant into rhs u< lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_LO;
break;
}
TCC = MSP430CC::COND_HS; // aka COND_C
break;
case ISD::SETUGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETULT:
// Turn lhs u< rhs with lhs constant into rhs u>= lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_HS;
break;
}
TCC = MSP430CC::COND_LO; // aka COND_NC
break;
case ISD::SETLE:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETGE:
// Turn lhs >= rhs with lhs constant into rhs < lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_L;
break;
}
TCC = MSP430CC::COND_GE;
break;
case ISD::SETGT:
std::swap(LHS, RHS);
LLVM_FALLTHROUGH;
case ISD::SETLT:
// Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
// fold constant into instruction.
if (const ConstantSDNode * C = dyn_cast<ConstantSDNode>(LHS)) {
LHS = RHS;
RHS = DAG.getConstant(C->getSExtValue() + 1, dl, C->getValueType(0));
TCC = MSP430CC::COND_GE;
break;
}
TCC = MSP430CC::COND_L;
break;
}
TargetCC = DAG.getConstant(TCC, dl, MVT::i8);
return DAG.getNode(MSP430ISD::CMP, dl, MVT::Glue, LHS, RHS);
}
SDValue MSP430TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
SDLoc dl (Op);
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
return DAG.getNode(MSP430ISD::BR_CC, dl, Op.getValueType(),
Chain, Dest, TargetCC, Flag);
}
SDValue MSP430TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDLoc dl (Op);
// If we are doing an AND and testing against zero, then the CMP
// will not be generated. The AND (or BIT) will generate the condition codes,
// but they are different from CMP.
// FIXME: since we're doing a post-processing, use a pseudoinstr here, so
// lowering & isel wouldn't diverge.
bool andCC = false;
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (RHSC->isNullValue() && LHS.hasOneUse() &&
(LHS.getOpcode() == ISD::AND ||
(LHS.getOpcode() == ISD::TRUNCATE &&
LHS.getOperand(0).getOpcode() == ISD::AND))) {
andCC = true;
}
}
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
// Get the condition codes directly from the status register, if its easy.
// Otherwise a branch will be generated. Note that the AND and BIT
// instructions generate different flags than CMP, the carry bit can be used
// for NE/EQ.
bool Invert = false;
bool Shift = false;
bool Convert = true;
switch (cast<ConstantSDNode>(TargetCC)->getZExtValue()) {
default:
Convert = false;
break;
case MSP430CC::COND_HS:
// Res = SR & 1, no processing is required
break;
case MSP430CC::COND_LO:
// Res = ~(SR & 1)
Invert = true;
break;
case MSP430CC::COND_NE:
if (andCC) {
// C = ~Z, thus Res = SR & 1, no processing is required
} else {
// Res = ~((SR >> 1) & 1)
Shift = true;
Invert = true;
}
break;
case MSP430CC::COND_E:
Shift = true;
// C = ~Z for AND instruction, thus we can put Res = ~(SR & 1), however,
// Res = (SR >> 1) & 1 is 1 word shorter.
break;
}
EVT VT = Op.getValueType();
SDValue One = DAG.getConstant(1, dl, VT);
if (Convert) {
SDValue SR = DAG.getCopyFromReg(DAG.getEntryNode(), dl, MSP430::SR,
MVT::i16, Flag);
if (Shift)
// FIXME: somewhere this is turned into a SRL, lower it MSP specific?
SR = DAG.getNode(ISD::SRA, dl, MVT::i16, SR, One);
SR = DAG.getNode(ISD::AND, dl, MVT::i16, SR, One);
if (Invert)
SR = DAG.getNode(ISD::XOR, dl, MVT::i16, SR, One);
return SR;
} else {
SDValue Zero = DAG.getConstant(0, dl, VT);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {One, Zero, TargetCC, Flag};
return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
}
}
SDValue MSP430TargetLowering::LowerSELECT_CC(SDValue Op,
SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueV = Op.getOperand(2);
SDValue FalseV = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDLoc dl (Op);
SDValue TargetCC;
SDValue Flag = EmitCMP(LHS, RHS, TargetCC, CC, dl, DAG);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = {TrueV, FalseV, TargetCC, Flag};
return DAG.getNode(MSP430ISD::SELECT_CC, dl, VTs, Ops);
}
SDValue MSP430TargetLowering::LowerSIGN_EXTEND(SDValue Op,
SelectionDAG &DAG) const {
SDValue Val = Op.getOperand(0);
EVT VT = Op.getValueType();
SDLoc dl(Op);
assert(VT == MVT::i16 && "Only support i16 for now!");
return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT,
DAG.getNode(ISD::ANY_EXTEND, dl, VT, Val),
DAG.getValueType(Val.getValueType()));
}
SDValue
MSP430TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
auto PtrVT = getPointerTy(MF.getDataLayout());
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
uint64_t SlotSize = MF.getDataLayout().getPointerSize();
ReturnAddrIndex = MF.getFrameInfo().CreateFixedObject(SlotSize, -SlotSize,
true);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, PtrVT);
}
SDValue MSP430TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
SDValue Offset =
DAG.getConstant(DAG.getDataLayout().getPointerSize(), dl, MVT::i16);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
MachinePointerInfo());
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
MachinePointerInfo());
}
SDValue MSP430TargetLowering::LowerFRAMEADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
MFI.setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
MSP430::FP, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo());
return FrameAddr;
}
SDValue MSP430TargetLowering::LowerVASTART(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MSP430MachineFunctionInfo *FuncInfo = MF.getInfo<MSP430MachineFunctionInfo>();
auto PtrVT = getPointerTy(DAG.getDataLayout());
// Frame index of first vararg argument
SDValue FrameIndex =
DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
// Create a store of the frame index to the location operand
return DAG.getStore(Op.getOperand(0), SDLoc(Op), FrameIndex, Op.getOperand(1),
MachinePointerInfo(SV));
}
SDValue MSP430TargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
return DAG.getNode(MSP430ISD::Wrapper, SDLoc(JT), PtrVT, Result);
}
/// getPostIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if this node can be
/// combined with a load / store to form a post-indexed load / store.
bool MSP430TargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->getExtensionType() != ISD::NON_EXTLOAD)
return false;
EVT VT = LD->getMemoryVT();
if (VT != MVT::i8 && VT != MVT::i16)
return false;
if (Op->getOpcode() != ISD::ADD)
return false;
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
uint64_t RHSC = RHS->getZExtValue();
if ((VT == MVT::i16 && RHSC != 2) ||
(VT == MVT::i8 && RHSC != 1))
return false;
Base = Op->getOperand(0);
Offset = DAG.getConstant(RHSC, SDLoc(N), VT);
AM = ISD::POST_INC;
return true;
}
return false;
}
const char *MSP430TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((MSP430ISD::NodeType)Opcode) {
case MSP430ISD::FIRST_NUMBER: break;
case MSP430ISD::RET_FLAG: return "MSP430ISD::RET_FLAG";
case MSP430ISD::RETI_FLAG: return "MSP430ISD::RETI_FLAG";
case MSP430ISD::RRA: return "MSP430ISD::RRA";
case MSP430ISD::RLA: return "MSP430ISD::RLA";
case MSP430ISD::RRC: return "MSP430ISD::RRC";
case MSP430ISD::RRCL: return "MSP430ISD::RRCL";
case MSP430ISD::CALL: return "MSP430ISD::CALL";
case MSP430ISD::Wrapper: return "MSP430ISD::Wrapper";
case MSP430ISD::BR_CC: return "MSP430ISD::BR_CC";
case MSP430ISD::CMP: return "MSP430ISD::CMP";
case MSP430ISD::SETCC: return "MSP430ISD::SETCC";
case MSP430ISD::SELECT_CC: return "MSP430ISD::SELECT_CC";
case MSP430ISD::DADD: return "MSP430ISD::DADD";
}
return nullptr;
}
bool MSP430TargetLowering::isTruncateFree(Type *Ty1,
Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
return (Ty1->getPrimitiveSizeInBits() > Ty2->getPrimitiveSizeInBits());
}
bool MSP430TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
return (VT1.getSizeInBits() > VT2.getSizeInBits());
}
bool MSP430TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
return 0 && Ty1->isIntegerTy(8) && Ty2->isIntegerTy(16);
}
bool MSP430TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// MSP430 implicitly zero-extends 8-bit results in 16-bit registers.
return 0 && VT1 == MVT::i8 && VT2 == MVT::i16;
}
bool MSP430TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock *
MSP430TargetLowering::EmitShiftInstr(MachineInstr &MI,
MachineBasicBlock *BB) const {
MachineFunction *F = BB->getParent();
MachineRegisterInfo &RI = F->getRegInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetInstrInfo &TII = *F->getSubtarget().getInstrInfo();
unsigned Opc;
bool ClearCarry = false;
const TargetRegisterClass * RC;
switch (MI.getOpcode()) {
default: llvm_unreachable("Invalid shift opcode!");
case MSP430::Shl8:
Opc = MSP430::ADD8rr;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Shl16:
Opc = MSP430::ADD16rr;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Sra8:
Opc = MSP430::RRA8r;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Sra16:
Opc = MSP430::RRA16r;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Srl8:
ClearCarry = true;
Opc = MSP430::RRC8r;
RC = &MSP430::GR8RegClass;
break;
case MSP430::Srl16:
ClearCarry = true;
Opc = MSP430::RRC16r;
RC = &MSP430::GR16RegClass;
break;
case MSP430::Rrcl8:
case MSP430::Rrcl16: {
BuildMI(*BB, MI, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
.addReg(MSP430::SR).addImm(1);
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
unsigned RrcOpc = MI.getOpcode() == MSP430::Rrcl16
? MSP430::RRC16r : MSP430::RRC8r;
BuildMI(*BB, MI, dl, TII.get(RrcOpc), DstReg)
.addReg(SrcReg);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
}
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = ++BB->getIterator();
// Create loop block
MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, LoopBB);
F->insert(I, RemBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the block containing instructions after shift.
RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
BB->end());
RemBB->transferSuccessorsAndUpdatePHIs(BB);
// Add edges BB => LoopBB => RemBB, BB => RemBB, LoopBB => LoopBB
BB->addSuccessor(LoopBB);
BB->addSuccessor(RemBB);
LoopBB->addSuccessor(RemBB);
LoopBB->addSuccessor(LoopBB);
Register ShiftAmtReg = RI.createVirtualRegister(&MSP430::GR8RegClass);
Register ShiftAmtReg2 = RI.createVirtualRegister(&MSP430::GR8RegClass);
Register ShiftReg = RI.createVirtualRegister(RC);
Register ShiftReg2 = RI.createVirtualRegister(RC);
Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register DstReg = MI.getOperand(0).getReg();
// BB:
// cmp 0, N
// je RemBB
BuildMI(BB, dl, TII.get(MSP430::CMP8ri))
.addReg(ShiftAmtSrcReg).addImm(0);
BuildMI(BB, dl, TII.get(MSP430::JCC))
.addMBB(RemBB)
.addImm(MSP430CC::COND_E);
// LoopBB:
// ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
// ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
// ShiftReg2 = shift ShiftReg
// ShiftAmt2 = ShiftAmt - 1;
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftReg)
.addReg(SrcReg).addMBB(BB)
.addReg(ShiftReg2).addMBB(LoopBB);
BuildMI(LoopBB, dl, TII.get(MSP430::PHI), ShiftAmtReg)
.addReg(ShiftAmtSrcReg).addMBB(BB)
.addReg(ShiftAmtReg2).addMBB(LoopBB);
if (ClearCarry)
BuildMI(LoopBB, dl, TII.get(MSP430::BIC16rc), MSP430::SR)
.addReg(MSP430::SR).addImm(1);
if (Opc == MSP430::ADD8rr || Opc == MSP430::ADD16rr)
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
.addReg(ShiftReg)
.addReg(ShiftReg);
else
BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2)
.addReg(ShiftReg);
BuildMI(LoopBB, dl, TII.get(MSP430::SUB8ri), ShiftAmtReg2)
.addReg(ShiftAmtReg).addImm(1);
BuildMI(LoopBB, dl, TII.get(MSP430::JCC))
.addMBB(LoopBB)
.addImm(MSP430CC::COND_NE);
// RemBB:
// DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
BuildMI(*RemBB, RemBB->begin(), dl, TII.get(MSP430::PHI), DstReg)
.addReg(SrcReg).addMBB(BB)
.addReg(ShiftReg2).addMBB(LoopBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return RemBB;
}
MachineBasicBlock *
MSP430TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *BB) const {
unsigned Opc = MI.getOpcode();
if (Opc == MSP430::Shl8 || Opc == MSP430::Shl16 ||
Opc == MSP430::Sra8 || Opc == MSP430::Sra16 ||
Opc == MSP430::Srl8 || Opc == MSP430::Srl16 ||
Opc == MSP430::Rrcl8 || Opc == MSP430::Rrcl16)
return EmitShiftInstr(MI, BB);
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
assert((Opc == MSP430::Select16 || Opc == MSP430::Select8) &&
"Unexpected instr type to insert");
// To "insert" a SELECT instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// jCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(I, copy0MBB);
F->insert(I, copy1MBB);
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
copy1MBB->splice(copy1MBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
copy1MBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(copy1MBB);
BuildMI(BB, dl, TII.get(MSP430::JCC))
.addMBB(copy1MBB)
.addImm(MI.getOperand(3).getImm());
// copy0MBB:
// %FalseValue = ...
// # fallthrough to copy1MBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
// copy1MBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = copy1MBB;
BuildMI(*BB, BB->begin(), dl, TII.get(MSP430::PHI), MI.getOperand(0).getReg())
.addReg(MI.getOperand(2).getReg())
.addMBB(copy0MBB)
.addReg(MI.getOperand(1).getReg())
.addMBB(thisMBB);
MI.eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}