llvm-project/llvm/lib/Target/Mips/MipsISelLowering.cpp

3865 lines
146 KiB
C++

//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Mips uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "mips-lower"
#include "MipsISelLowering.h"
#include "InstPrinter/MipsInstPrinter.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetObjectFile.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CallingConv.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool>
EnableMipsTailCalls("enable-mips-tail-calls", cl::Hidden,
cl::desc("MIPS: Enable tail calls."), cl::init(false));
static cl::opt<bool>
LargeGOT("mxgot", cl::Hidden,
cl::desc("MIPS: Enable GOT larger than 64k."), cl::init(false));
static cl::opt<bool>
Mips16HardFloat("mips16-hard-float", cl::NotHidden,
cl::desc("MIPS: mips16 hard float enable."),
cl::init(false));
static const uint16_t O32IntRegs[4] = {
Mips::A0, Mips::A1, Mips::A2, Mips::A3
};
static const uint16_t Mips64IntRegs[8] = {
Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64,
Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64
};
static const uint16_t Mips64DPRegs[8] = {
Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64,
Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64
};
// If I is a shifted mask, set the size (Size) and the first bit of the
// mask (Pos), and return true.
// For example, if I is 0x003ff800, (Pos, Size) = (11, 11).
static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) {
if (!isShiftedMask_64(I))
return false;
Size = CountPopulation_64(I);
Pos = CountTrailingZeros_64(I);
return true;
}
static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) {
MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>();
return DAG.getRegister(FI->getGlobalBaseReg(), Ty);
}
static SDValue getTargetNode(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
EVT Ty = Op.getValueType();
if (GlobalAddressSDNode *N = dyn_cast<GlobalAddressSDNode>(Op))
return DAG.getTargetGlobalAddress(N->getGlobal(), Op.getDebugLoc(), Ty, 0,
Flag);
if (ExternalSymbolSDNode *N = dyn_cast<ExternalSymbolSDNode>(Op))
return DAG.getTargetExternalSymbol(N->getSymbol(), Ty, Flag);
if (BlockAddressSDNode *N = dyn_cast<BlockAddressSDNode>(Op))
return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag);
if (JumpTableSDNode *N = dyn_cast<JumpTableSDNode>(Op))
return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag);
if (ConstantPoolSDNode *N = dyn_cast<ConstantPoolSDNode>(Op))
return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlignment(),
N->getOffset(), Flag);
llvm_unreachable("Unexpected node type.");
return SDValue();
}
static SDValue getAddrNonPIC(SDValue Op, SelectionDAG &DAG) {
DebugLoc DL = Op.getDebugLoc();
EVT Ty = Op.getValueType();
SDValue Hi = getTargetNode(Op, DAG, MipsII::MO_ABS_HI);
SDValue Lo = getTargetNode(Op, DAG, MipsII::MO_ABS_LO);
return DAG.getNode(ISD::ADD, DL, Ty,
DAG.getNode(MipsISD::Hi, DL, Ty, Hi),
DAG.getNode(MipsISD::Lo, DL, Ty, Lo));
}
static SDValue getAddrLocal(SDValue Op, SelectionDAG &DAG, bool HasMips64) {
DebugLoc DL = Op.getDebugLoc();
EVT Ty = Op.getValueType();
unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT;
SDValue GOT = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
getTargetNode(Op, DAG, GOTFlag));
SDValue Load = DAG.getLoad(Ty, DL, DAG.getEntryNode(), GOT,
MachinePointerInfo::getGOT(), false, false, false,
0);
unsigned LoFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO;
SDValue Lo = DAG.getNode(MipsISD::Lo, DL, Ty, getTargetNode(Op, DAG, LoFlag));
return DAG.getNode(ISD::ADD, DL, Ty, Load, Lo);
}
static SDValue getAddrGlobal(SDValue Op, SelectionDAG &DAG, unsigned Flag) {
DebugLoc DL = Op.getDebugLoc();
EVT Ty = Op.getValueType();
SDValue Tgt = DAG.getNode(MipsISD::Wrapper, DL, Ty, GetGlobalReg(DAG, Ty),
getTargetNode(Op, DAG, Flag));
return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Tgt,
MachinePointerInfo::getGOT(), false, false, false, 0);
}
static SDValue getAddrGlobalLargeGOT(SDValue Op, SelectionDAG &DAG,
unsigned HiFlag, unsigned LoFlag) {
DebugLoc DL = Op.getDebugLoc();
EVT Ty = Op.getValueType();
SDValue Hi = DAG.getNode(MipsISD::Hi, DL, Ty, getTargetNode(Op, DAG, HiFlag));
Hi = DAG.getNode(ISD::ADD, DL, Ty, Hi, GetGlobalReg(DAG, Ty));
SDValue Wrapper = DAG.getNode(MipsISD::Wrapper, DL, Ty, Hi,
getTargetNode(Op, DAG, LoFlag));
return DAG.getLoad(Ty, DL, DAG.getEntryNode(), Wrapper,
MachinePointerInfo::getGOT(), false, false, false, 0);
}
const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case MipsISD::JmpLink: return "MipsISD::JmpLink";
case MipsISD::TailCall: return "MipsISD::TailCall";
case MipsISD::Hi: return "MipsISD::Hi";
case MipsISD::Lo: return "MipsISD::Lo";
case MipsISD::GPRel: return "MipsISD::GPRel";
case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer";
case MipsISD::Ret: return "MipsISD::Ret";
case MipsISD::FPBrcond: return "MipsISD::FPBrcond";
case MipsISD::FPCmp: return "MipsISD::FPCmp";
case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T";
case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F";
case MipsISD::FPRound: return "MipsISD::FPRound";
case MipsISD::MAdd: return "MipsISD::MAdd";
case MipsISD::MAddu: return "MipsISD::MAddu";
case MipsISD::MSub: return "MipsISD::MSub";
case MipsISD::MSubu: return "MipsISD::MSubu";
case MipsISD::DivRem: return "MipsISD::DivRem";
case MipsISD::DivRemU: return "MipsISD::DivRemU";
case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64";
case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64";
case MipsISD::Wrapper: return "MipsISD::Wrapper";
case MipsISD::Sync: return "MipsISD::Sync";
case MipsISD::Ext: return "MipsISD::Ext";
case MipsISD::Ins: return "MipsISD::Ins";
case MipsISD::LWL: return "MipsISD::LWL";
case MipsISD::LWR: return "MipsISD::LWR";
case MipsISD::SWL: return "MipsISD::SWL";
case MipsISD::SWR: return "MipsISD::SWR";
case MipsISD::LDL: return "MipsISD::LDL";
case MipsISD::LDR: return "MipsISD::LDR";
case MipsISD::SDL: return "MipsISD::SDL";
case MipsISD::SDR: return "MipsISD::SDR";
case MipsISD::EXTP: return "MipsISD::EXTP";
case MipsISD::EXTPDP: return "MipsISD::EXTPDP";
case MipsISD::EXTR_S_H: return "MipsISD::EXTR_S_H";
case MipsISD::EXTR_W: return "MipsISD::EXTR_W";
case MipsISD::EXTR_R_W: return "MipsISD::EXTR_R_W";
case MipsISD::EXTR_RS_W: return "MipsISD::EXTR_RS_W";
case MipsISD::SHILO: return "MipsISD::SHILO";
case MipsISD::MTHLIP: return "MipsISD::MTHLIP";
case MipsISD::MULT: return "MipsISD::MULT";
case MipsISD::MULTU: return "MipsISD::MULTU";
case MipsISD::MADD_DSP: return "MipsISD::MADD_DSPDSP";
case MipsISD::MADDU_DSP: return "MipsISD::MADDU_DSP";
case MipsISD::MSUB_DSP: return "MipsISD::MSUB_DSP";
case MipsISD::MSUBU_DSP: return "MipsISD::MSUBU_DSP";
default: return NULL;
}
}
void MipsTargetLowering::setMips16HardFloatLibCalls() {
setLibcallName(RTLIB::ADD_F32, "__mips16_addsf3");
setLibcallName(RTLIB::ADD_F64, "__mips16_adddf3");
setLibcallName(RTLIB::SUB_F32, "__mips16_subsf3");
setLibcallName(RTLIB::SUB_F64, "__mips16_subdf3");
setLibcallName(RTLIB::MUL_F32, "__mips16_mulsf3");
setLibcallName(RTLIB::MUL_F64, "__mips16_muldf3");
setLibcallName(RTLIB::DIV_F32, "__mips16_divsf3");
setLibcallName(RTLIB::DIV_F64, "__mips16_divdf3");
setLibcallName(RTLIB::FPEXT_F32_F64, "__mips16_extendsfdf2");
setLibcallName(RTLIB::FPROUND_F64_F32, "__mips16_truncdfsf2");
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__mips16_fix_truncsfsi");
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__mips16_fix_truncdfsi");
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__mips16_floatsisf");
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__mips16_floatsidf");
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__mips16_floatunsisf");
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__mips16_floatunsidf");
setLibcallName(RTLIB::OEQ_F32, "__mips16_eqsf2");
setLibcallName(RTLIB::OEQ_F64, "__mips16_eqdf2");
setLibcallName(RTLIB::UNE_F32, "__mips16_nesf2");
setLibcallName(RTLIB::UNE_F64, "__mips16_nedf2");
setLibcallName(RTLIB::OGE_F32, "__mips16_gesf2");
setLibcallName(RTLIB::OGE_F64, "__mips16_gedf2");
setLibcallName(RTLIB::OLT_F32, "__mips16_ltsf2");
setLibcallName(RTLIB::OLT_F64, "__mips16_ltdf2");
setLibcallName(RTLIB::OLE_F32, "__mips16_lesf2");
setLibcallName(RTLIB::OLE_F64, "__mips16_ledf2");
setLibcallName(RTLIB::OGT_F32, "__mips16_gtsf2");
setLibcallName(RTLIB::OGT_F64, "__mips16_gtdf2");
setLibcallName(RTLIB::UO_F32, "__mips16_unordsf2");
setLibcallName(RTLIB::UO_F64, "__mips16_unorddf2");
setLibcallName(RTLIB::O_F32, "__mips16_unordsf2");
setLibcallName(RTLIB::O_F64, "__mips16_unorddf2");
}
MipsTargetLowering::
MipsTargetLowering(MipsTargetMachine &TM)
: TargetLowering(TM, new MipsTargetObjectFile()),
Subtarget(&TM.getSubtarget<MipsSubtarget>()),
HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()),
IsO32(Subtarget->isABI_O32()) {
// Mips does not have i1 type, so use i32 for
// setcc operations results (slt, sgt, ...).
setBooleanContents(ZeroOrOneBooleanContent);
setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
// Set up the register classes
addRegisterClass(MVT::i32, &Mips::CPURegsRegClass);
if (HasMips64)
addRegisterClass(MVT::i64, &Mips::CPU64RegsRegClass);
if (Subtarget->inMips16Mode()) {
addRegisterClass(MVT::i32, &Mips::CPU16RegsRegClass);
if (Mips16HardFloat)
setMips16HardFloatLibCalls();
}
if (Subtarget->hasDSP()) {
MVT::SimpleValueType VecTys[2] = {MVT::v2i16, MVT::v4i8};
for (unsigned i = 0; i < array_lengthof(VecTys); ++i) {
addRegisterClass(VecTys[i], &Mips::DSPRegsRegClass);
// Expand all builtin opcodes.
for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
setOperationAction(Opc, VecTys[i], Expand);
setOperationAction(ISD::LOAD, VecTys[i], Legal);
setOperationAction(ISD::STORE, VecTys[i], Legal);
setOperationAction(ISD::BITCAST, VecTys[i], Legal);
}
}
if (!TM.Options.UseSoftFloat) {
addRegisterClass(MVT::f32, &Mips::FGR32RegClass);
// When dealing with single precision only, use libcalls
if (!Subtarget->isSingleFloat()) {
if (HasMips64)
addRegisterClass(MVT::f64, &Mips::FGR64RegClass);
else
addRegisterClass(MVT::f64, &Mips::AFGR64RegClass);
}
}
// Load extented operations for i1 types must be promoted
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// MIPS doesn't have extending float->double load/store
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Used by legalize types to correctly generate the setcc result.
// Without this, every float setcc comes with a AND/OR with the result,
// we don't want this, since the fpcmp result goes to a flag register,
// which is used implicitly by brcond and select operations.
AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
// Mips Custom Operations
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::JumpTable, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Custom);
setOperationAction(ISD::SELECT, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::SETCC, MVT::f32, Custom);
setOperationAction(ISD::SETCC, MVT::f64, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setOperationAction(ISD::VASTART, MVT::Other, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
if (Subtarget->inMips16Mode()) {
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
}
else {
setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
}
if (!Subtarget->inMips16Mode()) {
setOperationAction(ISD::LOAD, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
}
if (!TM.Options.NoNaNsFPMath) {
setOperationAction(ISD::FABS, MVT::f32, Custom);
setOperationAction(ISD::FABS, MVT::f64, Custom);
}
if (HasMips64) {
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::LOAD, MVT::i64, Custom);
setOperationAction(ISD::STORE, MVT::i64, Custom);
}
if (!HasMips64) {
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
}
setOperationAction(ISD::ADD, MVT::i32, Custom);
if (HasMips64)
setOperationAction(ISD::ADD, MVT::i64, Custom);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// Operations not directly supported by Mips.
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::Other, Expand);
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
if (!Subtarget->hasMips32r2())
setOperationAction(ISD::ROTR, MVT::i32, Expand);
if (!Subtarget->hasMips64r2())
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FPOWI, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f32, Expand);
setOperationAction(ISD::FPOW, MVT::f64, Expand);
setOperationAction(ISD::FLOG, MVT::f32, Expand);
setOperationAction(ISD::FLOG2, MVT::f32, Expand);
setOperationAction(ISD::FLOG10, MVT::f32, Expand);
setOperationAction(ISD::FEXP, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
if (!TM.Options.NoNaNsFPMath) {
setOperationAction(ISD::FNEG, MVT::f32, Expand);
setOperationAction(ISD::FNEG, MVT::f64, Expand);
}
setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
setOperationAction(ISD::VAARG, MVT::Other, Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
setOperationAction(ISD::VAEND, MVT::Other, Expand);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
// Use the default for now
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
if (Subtarget->inMips16Mode()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
}
setInsertFencesForAtomic(true);
if (!Subtarget->hasSEInReg()) {
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
}
if (!Subtarget->hasBitCount()) {
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
setOperationAction(ISD::CTLZ, MVT::i64, Expand);
}
if (!Subtarget->hasSwap()) {
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
}
if (HasMips64) {
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Custom);
setTruncStoreAction(MVT::i64, MVT::i32, Custom);
}
setTargetDAGCombine(ISD::ADDE);
setTargetDAGCombine(ISD::SUBE);
setTargetDAGCombine(ISD::SDIVREM);
setTargetDAGCombine(ISD::UDIVREM);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::ADD);
setMinFunctionAlignment(HasMips64 ? 3 : 2);
setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP);
computeRegisterProperties();
setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0);
setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1);
maxStoresPerMemcpy = 16;
}
bool
MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy;
if (Subtarget->inMips16Mode())
return false;
switch (SVT) {
case MVT::i64:
case MVT::i32:
if (Fast)
*Fast = true;
return true;
default:
return false;
}
}
EVT MipsTargetLowering::getSetCCResultType(EVT VT) const {
return MVT::i32;
}
// SelectMadd -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc multLo, Lo0), (adde multHi, Hi0),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool SelectMadd(SDNode *ADDENode, SelectionDAG *CurDAG) {
// ADDENode's second operand must be a flag output of an ADDC node in order
// for the matching to be successful.
SDNode *ADDCNode = ADDENode->getOperand(2).getNode();
if (ADDCNode->getOpcode() != ISD::ADDC)
return false;
SDValue MultHi = ADDENode->getOperand(0);
SDValue MultLo = ADDCNode->getOperand(0);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MADD only if ADDENode and ADDCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than ADDENode or ADDCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MADD instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDValue Chain = CurDAG->getEntryNode();
DebugLoc dl = ADDENode->getDebugLoc();
// create MipsMAdd(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd;
SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
ADDCNode->getOperand(1),// Lo0
ADDENode->getOperand(1));// Hi0
// create CopyFromReg nodes
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
MAdd);
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
Mips::HI, MVT::i32,
CopyFromLo.getValue(2));
// replace uses of adde and addc here
if (!SDValue(ADDCNode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo);
if (!SDValue(ADDENode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi);
return true;
}
// SelectMsub -
// Transforms a subgraph in CurDAG if the following pattern is found:
// (addc Lo0, multLo), (sube Hi0, multHi),
// where,
// multHi/Lo: product of multiplication
// Lo0: initial value of Lo register
// Hi0: initial value of Hi register
// Return true if pattern matching was successful.
static bool SelectMsub(SDNode *SUBENode, SelectionDAG *CurDAG) {
// SUBENode's second operand must be a flag output of an SUBC node in order
// for the matching to be successful.
SDNode *SUBCNode = SUBENode->getOperand(2).getNode();
if (SUBCNode->getOpcode() != ISD::SUBC)
return false;
SDValue MultHi = SUBENode->getOperand(1);
SDValue MultLo = SUBCNode->getOperand(1);
SDNode *MultNode = MultHi.getNode();
unsigned MultOpc = MultHi.getOpcode();
// MultHi and MultLo must be generated by the same node,
if (MultLo.getNode() != MultNode)
return false;
// and it must be a multiplication.
if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI)
return false;
// MultLo amd MultHi must be the first and second output of MultNode
// respectively.
if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0)
return false;
// Transform this to a MSUB only if SUBENode and SUBCNode are the only users
// of the values of MultNode, in which case MultNode will be removed in later
// phases.
// If there exist users other than SUBENode or SUBCNode, this function returns
// here, which will result in MultNode being mapped to a single MULT
// instruction node rather than a pair of MULT and MSUB instructions being
// produced.
if (!MultHi.hasOneUse() || !MultLo.hasOneUse())
return false;
SDValue Chain = CurDAG->getEntryNode();
DebugLoc dl = SUBENode->getDebugLoc();
// create MipsSub(u) node
MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub;
SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue,
MultNode->getOperand(0),// Factor 0
MultNode->getOperand(1),// Factor 1
SUBCNode->getOperand(0),// Lo0
SUBENode->getOperand(0));// Hi0
// create CopyFromReg nodes
SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32,
MSub);
SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl,
Mips::HI, MVT::i32,
CopyFromLo.getValue(2));
// replace uses of sube and subc here
if (!SDValue(SUBCNode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo);
if (!SDValue(SUBENode, 0).use_empty())
CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi);
return true;
}
static SDValue PerformADDECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
SelectMadd(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue PerformSUBECombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalize())
return SDValue();
if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 &&
SelectMsub(N, &DAG))
return SDValue(N, 0);
return SDValue();
}
static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
EVT Ty = N->getValueType(0);
unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64;
unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64;
unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem :
MipsISD::DivRemU;
DebugLoc dl = N->getDebugLoc();
SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue,
N->getOperand(0), N->getOperand(1));
SDValue InChain = DAG.getEntryNode();
SDValue InGlue = DivRem;
// insert MFLO
if (N->hasAnyUseOfValue(0)) {
SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty,
InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo);
InChain = CopyFromLo.getValue(1);
InGlue = CopyFromLo.getValue(2);
}
// insert MFHI
if (N->hasAnyUseOfValue(1)) {
SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl,
HI, Ty, InGlue);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi);
}
return SDValue();
}
static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return Mips::FCOND_OEQ;
case ISD::SETUNE: return Mips::FCOND_UNE;
case ISD::SETLT:
case ISD::SETOLT: return Mips::FCOND_OLT;
case ISD::SETGT:
case ISD::SETOGT: return Mips::FCOND_OGT;
case ISD::SETLE:
case ISD::SETOLE: return Mips::FCOND_OLE;
case ISD::SETGE:
case ISD::SETOGE: return Mips::FCOND_OGE;
case ISD::SETULT: return Mips::FCOND_ULT;
case ISD::SETULE: return Mips::FCOND_ULE;
case ISD::SETUGT: return Mips::FCOND_UGT;
case ISD::SETUGE: return Mips::FCOND_UGE;
case ISD::SETUO: return Mips::FCOND_UN;
case ISD::SETO: return Mips::FCOND_OR;
case ISD::SETNE:
case ISD::SETONE: return Mips::FCOND_ONE;
case ISD::SETUEQ: return Mips::FCOND_UEQ;
}
}
// Returns true if condition code has to be inverted.
static bool InvertFPCondCode(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return false;
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
"Illegal Condition Code");
return true;
}
// Creates and returns an FPCmp node from a setcc node.
// Returns Op if setcc is not a floating point comparison.
static SDValue CreateFPCmp(SelectionDAG &DAG, const SDValue &Op) {
// must be a SETCC node
if (Op.getOpcode() != ISD::SETCC)
return Op;
SDValue LHS = Op.getOperand(0);
if (!LHS.getValueType().isFloatingPoint())
return Op;
SDValue RHS = Op.getOperand(1);
DebugLoc dl = Op.getDebugLoc();
// Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
// node if necessary.
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS,
DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
}
// Creates and returns a CMovFPT/F node.
static SDValue CreateCMovFP(SelectionDAG &DAG, SDValue Cond, SDValue True,
SDValue False, DebugLoc DL) {
bool invert = InvertFPCondCode((Mips::CondCode)
cast<ConstantSDNode>(Cond.getOperand(2))
->getSExtValue());
return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL,
True.getValueType(), True, False, Cond);
}
static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue SetCC = N->getOperand(0);
if ((SetCC.getOpcode() != ISD::SETCC) ||
!SetCC.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue False = N->getOperand(2);
EVT FalseTy = False.getValueType();
if (!FalseTy.isInteger())
return SDValue();
ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False);
if (!CN || CN->getZExtValue())
return SDValue();
const DebugLoc DL = N->getDebugLoc();
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
SDValue True = N->getOperand(1);
SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0),
SetCC.getOperand(1), ISD::getSetCCInverse(CC, true));
return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True);
}
static SDValue PerformANDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// Pattern match EXT.
// $dst = and ((sra or srl) $src , pos), (2**size - 1)
// => ext $dst, $src, size, pos
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
return SDValue();
SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1);
unsigned ShiftRightOpc = ShiftRight.getOpcode();
// Op's first operand must be a shift right.
if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL)
return SDValue();
// The second operand of the shift must be an immediate.
ConstantSDNode *CN;
if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1))))
return SDValue();
uint64_t Pos = CN->getZExtValue();
uint64_t SMPos, SMSize;
// Op's second operand must be a shifted mask.
if (!(CN = dyn_cast<ConstantSDNode>(Mask)) ||
!IsShiftedMask(CN->getZExtValue(), SMPos, SMSize))
return SDValue();
// Return if the shifted mask does not start at bit 0 or the sum of its size
// and Pos exceeds the word's size.
EVT ValTy = N->getValueType(0);
if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits())
return SDValue();
return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy,
ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32),
DAG.getConstant(SMSize, MVT::i32));
}
static SDValue PerformORCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// Pattern match INS.
// $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
// where mask1 = (2**size - 1) << pos, mask0 = ~mask1
// => ins $dst, $src, size, pos, $src1
if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2())
return SDValue();
SDValue And0 = N->getOperand(0), And1 = N->getOperand(1);
uint64_t SMPos0, SMSize0, SMPos1, SMSize1;
ConstantSDNode *CN;
// See if Op's first operand matches (and $src1 , mask0).
if (And0.getOpcode() != ISD::AND)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) ||
!IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0))
return SDValue();
// See if Op's second operand matches (and (shl $src, pos), mask1).
if (And1.getOpcode() != ISD::AND)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) ||
!IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1))
return SDValue();
// The shift masks must have the same position and size.
if (SMPos0 != SMPos1 || SMSize0 != SMSize1)
return SDValue();
SDValue Shl = And1.getOperand(0);
if (Shl.getOpcode() != ISD::SHL)
return SDValue();
if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1))))
return SDValue();
unsigned Shamt = CN->getZExtValue();
// Return if the shift amount and the first bit position of mask are not the
// same.
EVT ValTy = N->getValueType(0);
if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits()))
return SDValue();
return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0),
DAG.getConstant(SMPos0, MVT::i32),
DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0));
}
static SDValue PerformADDCombine(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const MipsSubtarget *Subtarget) {
// (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue Add = N->getOperand(1);
if (Add.getOpcode() != ISD::ADD)
return SDValue();
SDValue Lo = Add.getOperand(1);
if ((Lo.getOpcode() != MipsISD::Lo) ||
(Lo.getOperand(0).getOpcode() != ISD::TargetJumpTable))
return SDValue();
EVT ValTy = N->getValueType(0);
DebugLoc DL = N->getDebugLoc();
SDValue Add1 = DAG.getNode(ISD::ADD, DL, ValTy, N->getOperand(0),
Add.getOperand(0));
return DAG.getNode(ISD::ADD, DL, ValTy, Add1, Lo);
}
SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
SelectionDAG &DAG = DCI.DAG;
unsigned opc = N->getOpcode();
switch (opc) {
default: break;
case ISD::ADDE:
return PerformADDECombine(N, DAG, DCI, Subtarget);
case ISD::SUBE:
return PerformSUBECombine(N, DAG, DCI, Subtarget);
case ISD::SDIVREM:
case ISD::UDIVREM:
return PerformDivRemCombine(N, DAG, DCI, Subtarget);
case ISD::SELECT:
return PerformSELECTCombine(N, DAG, DCI, Subtarget);
case ISD::AND:
return PerformANDCombine(N, DAG, DCI, Subtarget);
case ISD::OR:
return PerformORCombine(N, DAG, DCI, Subtarget);
case ISD::ADD:
return PerformADDCombine(N, DAG, DCI, Subtarget);
}
return SDValue();
}
void
MipsTargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
void
MipsTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
SDValue MipsTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const
{
switch (Op.getOpcode())
{
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FABS: return LowerFABS(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG);
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG, true);
case ISD::SRL_PARTS: return LowerShiftRightParts(Op, DAG, false);
case ISD::LOAD: return LowerLOAD(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
case ISD::ADD: return LowerADD(Op, DAG);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Lower helper functions
//===----------------------------------------------------------------------===//
// AddLiveIn - This helper function adds the specified physical register to the
// MachineFunction as a live in value. It also creates a corresponding
// virtual register for it.
static unsigned
AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC)
{
unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
MF.getRegInfo().addLiveIn(PReg, VReg);
return VReg;
}
// Get fp branch code (not opcode) from condition code.
static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
return Mips::BRANCH_T;
assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) &&
"Invalid CondCode.");
return Mips::BRANCH_F;
}
/*
static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB,
DebugLoc dl,
const MipsSubtarget *Subtarget,
const TargetInstrInfo *TII,
bool isFPCmp, unsigned Opc) {
// There is no need to expand CMov instructions if target has
// conditional moves.
if (Subtarget->hasCondMov())
return BB;
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// setcc r1, r2, r3
// bNE r1, r0, copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
// Emit the right instruction according to the type of the operands compared
if (isFPCmp)
BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
else
BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg())
.addReg(Mips::ZERO).addMBB(sinkMBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
// ...
BB = sinkMBB;
if (isFPCmp)
BuildMI(*BB, BB->begin(), dl,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
else
BuildMI(*BB, BB->begin(), dl,
TII->get(Mips::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(3).getReg()).addMBB(thisMBB)
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
*/
MachineBasicBlock *
MipsTargetLowering::EmitBPOSGE32(MachineInstr *MI, MachineBasicBlock *BB) const{
// $bb:
// bposge32_pseudo $vr0
// =>
// $bb:
// bposge32 $tbb
// $fbb:
// li $vr2, 0
// b $sink
// $tbb:
// li $vr1, 1
// $sink:
// $vr0 = phi($vr2, $fbb, $vr1, $tbb)
MachineRegisterInfo &RegInfo = BB->getParent()->getRegInfo();
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
const TargetRegisterClass *RC = &Mips::CPURegsRegClass;
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = llvm::next(MachineFunction::iterator(BB));
MachineFunction *F = BB->getParent();
MachineBasicBlock *FBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *TBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *Sink = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, FBB);
F->insert(It, TBB);
F->insert(It, Sink);
// Transfer the remainder of BB and its successor edges to Sink.
Sink->splice(Sink->begin(), BB, llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
Sink->transferSuccessorsAndUpdatePHIs(BB);
// Add successors.
BB->addSuccessor(FBB);
BB->addSuccessor(TBB);
FBB->addSuccessor(Sink);
TBB->addSuccessor(Sink);
// Insert the real bposge32 instruction to $BB.
BuildMI(BB, DL, TII->get(Mips::BPOSGE32)).addMBB(TBB);
// Fill $FBB.
unsigned VR2 = RegInfo.createVirtualRegister(RC);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::ADDiu), VR2)
.addReg(Mips::ZERO).addImm(0);
BuildMI(*FBB, FBB->end(), DL, TII->get(Mips::B)).addMBB(Sink);
// Fill $TBB.
unsigned VR1 = RegInfo.createVirtualRegister(RC);
BuildMI(*TBB, TBB->end(), DL, TII->get(Mips::ADDiu), VR1)
.addReg(Mips::ZERO).addImm(1);
// Insert phi function to $Sink.
BuildMI(*Sink, Sink->begin(), DL, TII->get(Mips::PHI),
MI->getOperand(0).getReg())
.addReg(VR2).addMBB(FBB).addReg(VR1).addMBB(TBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return Sink;
}
MachineBasicBlock *
MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected instr type to insert");
case Mips::ATOMIC_LOAD_ADD_I8:
case Mips::ATOMIC_LOAD_ADD_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I16:
case Mips::ATOMIC_LOAD_ADD_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I32:
case Mips::ATOMIC_LOAD_ADD_I32_P8:
return EmitAtomicBinary(MI, BB, 4, Mips::ADDu);
case Mips::ATOMIC_LOAD_ADD_I64:
case Mips::ATOMIC_LOAD_ADD_I64_P8:
return EmitAtomicBinary(MI, BB, 8, Mips::DADDu);
case Mips::ATOMIC_LOAD_AND_I8:
case Mips::ATOMIC_LOAD_AND_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I16:
case Mips::ATOMIC_LOAD_AND_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I32:
case Mips::ATOMIC_LOAD_AND_I32_P8:
return EmitAtomicBinary(MI, BB, 4, Mips::AND);
case Mips::ATOMIC_LOAD_AND_I64:
case Mips::ATOMIC_LOAD_AND_I64_P8:
return EmitAtomicBinary(MI, BB, 8, Mips::AND64);
case Mips::ATOMIC_LOAD_OR_I8:
case Mips::ATOMIC_LOAD_OR_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I16:
case Mips::ATOMIC_LOAD_OR_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I32:
case Mips::ATOMIC_LOAD_OR_I32_P8:
return EmitAtomicBinary(MI, BB, 4, Mips::OR);
case Mips::ATOMIC_LOAD_OR_I64:
case Mips::ATOMIC_LOAD_OR_I64_P8:
return EmitAtomicBinary(MI, BB, 8, Mips::OR64);
case Mips::ATOMIC_LOAD_XOR_I8:
case Mips::ATOMIC_LOAD_XOR_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I16:
case Mips::ATOMIC_LOAD_XOR_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I32:
case Mips::ATOMIC_LOAD_XOR_I32_P8:
return EmitAtomicBinary(MI, BB, 4, Mips::XOR);
case Mips::ATOMIC_LOAD_XOR_I64:
case Mips::ATOMIC_LOAD_XOR_I64_P8:
return EmitAtomicBinary(MI, BB, 8, Mips::XOR64);
case Mips::ATOMIC_LOAD_NAND_I8:
case Mips::ATOMIC_LOAD_NAND_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, 0, true);
case Mips::ATOMIC_LOAD_NAND_I16:
case Mips::ATOMIC_LOAD_NAND_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, 0, true);
case Mips::ATOMIC_LOAD_NAND_I32:
case Mips::ATOMIC_LOAD_NAND_I32_P8:
return EmitAtomicBinary(MI, BB, 4, 0, true);
case Mips::ATOMIC_LOAD_NAND_I64:
case Mips::ATOMIC_LOAD_NAND_I64_P8:
return EmitAtomicBinary(MI, BB, 8, 0, true);
case Mips::ATOMIC_LOAD_SUB_I8:
case Mips::ATOMIC_LOAD_SUB_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I16:
case Mips::ATOMIC_LOAD_SUB_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I32:
case Mips::ATOMIC_LOAD_SUB_I32_P8:
return EmitAtomicBinary(MI, BB, 4, Mips::SUBu);
case Mips::ATOMIC_LOAD_SUB_I64:
case Mips::ATOMIC_LOAD_SUB_I64_P8:
return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu);
case Mips::ATOMIC_SWAP_I8:
case Mips::ATOMIC_SWAP_I8_P8:
return EmitAtomicBinaryPartword(MI, BB, 1, 0);
case Mips::ATOMIC_SWAP_I16:
case Mips::ATOMIC_SWAP_I16_P8:
return EmitAtomicBinaryPartword(MI, BB, 2, 0);
case Mips::ATOMIC_SWAP_I32:
case Mips::ATOMIC_SWAP_I32_P8:
return EmitAtomicBinary(MI, BB, 4, 0);
case Mips::ATOMIC_SWAP_I64:
case Mips::ATOMIC_SWAP_I64_P8:
return EmitAtomicBinary(MI, BB, 8, 0);
case Mips::ATOMIC_CMP_SWAP_I8:
case Mips::ATOMIC_CMP_SWAP_I8_P8:
return EmitAtomicCmpSwapPartword(MI, BB, 1);
case Mips::ATOMIC_CMP_SWAP_I16:
case Mips::ATOMIC_CMP_SWAP_I16_P8:
return EmitAtomicCmpSwapPartword(MI, BB, 2);
case Mips::ATOMIC_CMP_SWAP_I32:
case Mips::ATOMIC_CMP_SWAP_I32_P8:
return EmitAtomicCmpSwap(MI, BB, 4);
case Mips::ATOMIC_CMP_SWAP_I64:
case Mips::ATOMIC_CMP_SWAP_I64_P8:
return EmitAtomicCmpSwap(MI, BB, 8);
case Mips::BPOSGE32_PSEUDO:
return EmitBPOSGE32(MI, BB);
}
}
// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned LL, SC, AND, NOR, ZERO, BEQ;
if (Size == 4) {
LL = IsN64 ? Mips::LL_P8 : Mips::LL;
SC = IsN64 ? Mips::SC_P8 : Mips::SC;
AND = Mips::AND;
NOR = Mips::NOR;
ZERO = Mips::ZERO;
BEQ = Mips::BEQ;
}
else {
LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
AND = Mips::AND64;
NOR = Mips::NOR64;
ZERO = Mips::ZERO_64;
BEQ = Mips::BEQ64;
}
unsigned OldVal = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loopMBB
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(exitMBB);
// loopMBB:
// ll oldval, 0(ptr)
// <binop> storeval, oldval, incr
// sc success, storeval, 0(ptr)
// beq success, $0, loopMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0);
if (Nand) {
// and andres, oldval, incr
// nor storeval, $0, andres
BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr);
BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes);
} else if (BinOpcode) {
// <binop> storeval, oldval, incr
BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr);
} else {
StoreVal = Incr;
}
BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size, unsigned BinOpcode,
bool Nand) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicBinaryPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned Incr = MI->getOperand(2).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned NewVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned Incr2 = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned AndRes = RegInfo.createVirtualRegister(RC);
unsigned BinOpRes = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loopMBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loopMBB);
loopMBB->addSuccessor(loopMBB);
loopMBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// sll incr2,incr,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
.addReg(ShiftAmt).addReg(MaskUpper);
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr);
// atomic.load.binop
// loopMBB:
// ll oldval,0(alignedaddr)
// binop binopres,oldval,incr2
// and newval,binopres,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
// atomic.swap
// loopMBB:
// ll oldval,0(alignedaddr)
// and newval,incr2,mask
// and maskedoldval0,oldval,mask2
// or storeval,maskedoldval0,newval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loopMBB
BB = loopMBB;
BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
if (Nand) {
// and andres, oldval, incr2
// nor binopres, $0, andres
// and newval, binopres, mask
BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes)
.addReg(Mips::ZERO).addReg(AndRes);
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else if (BinOpcode) {
// <binop> binopres, oldval, incr2
// and newval, binopres, mask
BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2);
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask);
} else {// atomic.swap
// and newval, incr2, mask
BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask);
}
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal0).addReg(NewVal);
BuildMI(BB, dl, TII->get(SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB);
// sinkMBB:
// and maskedoldval1,oldval,mask
// srl srlres,maskedoldval1,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
.addReg(ShiftAmt).addReg(MaskedOldVal1);
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8));
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned LL, SC, ZERO, BNE, BEQ;
if (Size == 4) {
LL = IsN64 ? Mips::LL_P8 : Mips::LL;
SC = IsN64 ? Mips::SC_P8 : Mips::SC;
ZERO = Mips::ZERO;
BNE = Mips::BNE;
BEQ = Mips::BEQ;
}
else {
LL = IsN64 ? Mips::LLD_P8 : Mips::LLD;
SC = IsN64 ? Mips::SCD_P8 : Mips::SCD;
ZERO = Mips::ZERO_64;
BNE = Mips::BNE64;
BEQ = Mips::BEQ64;
}
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned OldVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
// thisMBB:
// ...
// fallthrough --> loop1MBB
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(exitMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(exitMBB);
// loop1MBB:
// ll dest, 0(ptr)
// bne dest, oldval, exitMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(BNE))
.addReg(Dest).addReg(OldVal).addMBB(exitMBB);
// loop2MBB:
// sc success, newval, 0(ptr)
// beq success, $0, loop1MBB
BB = loop2MBB;
BuildMI(BB, dl, TII->get(SC), Success)
.addReg(NewVal).addReg(Ptr).addImm(0);
BuildMI(BB, dl, TII->get(BEQ))
.addReg(Success).addReg(ZERO).addMBB(loop1MBB);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
MachineBasicBlock *
MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI,
MachineBasicBlock *BB,
unsigned Size) const {
assert((Size == 1 || Size == 2) &&
"Unsupported size for EmitAtomicCmpSwapPartial.");
MachineFunction *MF = BB->getParent();
MachineRegisterInfo &RegInfo = MF->getRegInfo();
const TargetRegisterClass *RC = getRegClassFor(MVT::i32);
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL;
unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC;
unsigned Dest = MI->getOperand(0).getReg();
unsigned Ptr = MI->getOperand(1).getReg();
unsigned CmpVal = MI->getOperand(2).getReg();
unsigned NewVal = MI->getOperand(3).getReg();
unsigned AlignedAddr = RegInfo.createVirtualRegister(RC);
unsigned ShiftAmt = RegInfo.createVirtualRegister(RC);
unsigned Mask = RegInfo.createVirtualRegister(RC);
unsigned Mask2 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned OldVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC);
unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC);
unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC);
unsigned MaskUpper = RegInfo.createVirtualRegister(RC);
unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC);
unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC);
unsigned StoreVal = RegInfo.createVirtualRegister(RC);
unsigned SrlRes = RegInfo.createVirtualRegister(RC);
unsigned SllRes = RegInfo.createVirtualRegister(RC);
unsigned Success = RegInfo.createVirtualRegister(RC);
// insert new blocks after the current block
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator It = BB;
++It;
MF->insert(It, loop1MBB);
MF->insert(It, loop2MBB);
MF->insert(It, sinkMBB);
MF->insert(It, exitMBB);
// Transfer the remainder of BB and its successor edges to exitMBB.
exitMBB->splice(exitMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(loop1MBB);
loop1MBB->addSuccessor(sinkMBB);
loop1MBB->addSuccessor(loop2MBB);
loop2MBB->addSuccessor(loop1MBB);
loop2MBB->addSuccessor(sinkMBB);
sinkMBB->addSuccessor(exitMBB);
// FIXME: computation of newval2 can be moved to loop2MBB.
// thisMBB:
// addiu masklsb2,$0,-4 # 0xfffffffc
// and alignedaddr,ptr,masklsb2
// andi ptrlsb2,ptr,3
// sll shiftamt,ptrlsb2,3
// ori maskupper,$0,255 # 0xff
// sll mask,maskupper,shiftamt
// nor mask2,$0,mask
// andi maskedcmpval,cmpval,255
// sll shiftedcmpval,maskedcmpval,shiftamt
// andi maskednewval,newval,255
// sll shiftednewval,maskednewval,shiftamt
int64_t MaskImm = (Size == 1) ? 255 : 65535;
BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2)
.addReg(Mips::ZERO).addImm(-4);
BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr)
.addReg(Ptr).addReg(MaskLSB2);
BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3);
BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3);
BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper)
.addReg(Mips::ZERO).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), Mask)
.addReg(ShiftAmt).addReg(MaskUpper);
BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal)
.addReg(CmpVal).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal)
.addReg(ShiftAmt).addReg(MaskedCmpVal);
BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal)
.addReg(NewVal).addImm(MaskImm);
BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal)
.addReg(ShiftAmt).addReg(MaskedNewVal);
// loop1MBB:
// ll oldval,0(alginedaddr)
// and maskedoldval0,oldval,mask
// bne maskedoldval0,shiftedcmpval,sinkMBB
BB = loop1MBB;
BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0)
.addReg(OldVal).addReg(Mask);
BuildMI(BB, dl, TII->get(Mips::BNE))
.addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB);
// loop2MBB:
// and maskedoldval1,oldval,mask2
// or storeval,maskedoldval1,shiftednewval
// sc success,storeval,0(alignedaddr)
// beq success,$0,loop1MBB
BB = loop2MBB;
BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1)
.addReg(OldVal).addReg(Mask2);
BuildMI(BB, dl, TII->get(Mips::OR), StoreVal)
.addReg(MaskedOldVal1).addReg(ShiftedNewVal);
BuildMI(BB, dl, TII->get(SC), Success)
.addReg(StoreVal).addReg(AlignedAddr).addImm(0);
BuildMI(BB, dl, TII->get(Mips::BEQ))
.addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB);
// sinkMBB:
// srl srlres,maskedoldval0,shiftamt
// sll sllres,srlres,24
// sra dest,sllres,24
BB = sinkMBB;
int64_t ShiftImm = (Size == 1) ? 24 : 16;
BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes)
.addReg(ShiftAmt).addReg(MaskedOldVal0);
BuildMI(BB, dl, TII->get(Mips::SLL), SllRes)
.addReg(SrlRes).addImm(ShiftImm);
BuildMI(BB, dl, TII->get(Mips::SRA), Dest)
.addReg(SllRes).addImm(ShiftImm);
MI->eraseFromParent(); // The instruction is gone now.
return exitMBB;
}
//===----------------------------------------------------------------------===//
// Misc Lower Operation implementation
//===----------------------------------------------------------------------===//
SDValue MipsTargetLowering::
LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
{
// The first operand is the chain, the second is the condition, the third is
// the block to branch to if the condition is true.
SDValue Chain = Op.getOperand(0);
SDValue Dest = Op.getOperand(2);
DebugLoc dl = Op.getDebugLoc();
SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1));
// Return if flag is not set by a floating point comparison.
if (CondRes.getOpcode() != MipsISD::FPCmp)
return Op;
SDValue CCNode = CondRes.getOperand(2);
Mips::CondCode CC =
(Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
Dest, CondRes);
}
SDValue MipsTargetLowering::
LowerSELECT(SDValue Op, SelectionDAG &DAG) const
{
SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0));
// Return if flag is not set by a floating point comparison.
if (Cond.getOpcode() != MipsISD::FPCmp)
return Op;
return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2),
Op.getDebugLoc());
}
SDValue MipsTargetLowering::
LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const
{
DebugLoc DL = Op.getDebugLoc();
EVT Ty = Op.getOperand(0).getValueType();
SDValue Cond = DAG.getNode(ISD::SETCC, DL, getSetCCResultType(Ty),
Op.getOperand(0), Op.getOperand(1),
Op.getOperand(4));
return DAG.getNode(ISD::SELECT, DL, Op.getValueType(), Cond, Op.getOperand(2),
Op.getOperand(3));
}
SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
SDValue Cond = CreateFPCmp(DAG, Op);
assert(Cond.getOpcode() == MipsISD::FPCmp &&
"Floating point operand expected.");
SDValue True = DAG.getConstant(1, MVT::i32);
SDValue False = DAG.getConstant(0, MVT::i32);
return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc());
}
SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
// FIXME there isn't actually debug info here
DebugLoc dl = Op.getDebugLoc();
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) {
const MipsTargetObjectFile &TLOF =
(const MipsTargetObjectFile&)getObjFileLowering();
// %gp_rel relocation
if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0,
MipsII::MO_GPREL);
SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl,
DAG.getVTList(MVT::i32), &GA, 1);
SDValue GPReg = DAG.getRegister(Mips::GP, MVT::i32);
return DAG.getNode(ISD::ADD, dl, MVT::i32, GPReg, GPRelNode);
}
// %hi/%lo relocation
return getAddrNonPIC(Op, DAG);
}
if (GV->hasInternalLinkage() || (GV->hasLocalLinkage() && !isa<Function>(GV)))
return getAddrLocal(Op, DAG, HasMips64);
if (LargeGOT)
return getAddrGlobalLargeGOT(Op, DAG, MipsII::MO_GOT_HI16,
MipsII::MO_GOT_LO16);
return getAddrGlobal(Op, DAG,
HasMips64 ? MipsII::MO_GOT_DISP : MipsII::MO_GOT16);
}
SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op,
SelectionDAG &DAG) const {
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(Op, DAG);
return getAddrLocal(Op, DAG, HasMips64);
}
SDValue MipsTargetLowering::
LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
{
// If the relocation model is PIC, use the General Dynamic TLS Model or
// Local Dynamic TLS model, otherwise use the Initial Exec or
// Local Exec TLS Model.
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
DebugLoc dl = GA->getDebugLoc();
const GlobalValue *GV = GA->getGlobal();
EVT PtrVT = getPointerTy();
TLSModel::Model model = getTargetMachine().getTLSModel(GV);
if (model == TLSModel::GeneralDynamic || model == TLSModel::LocalDynamic) {
// General Dynamic and Local Dynamic TLS Model.
unsigned Flag = (model == TLSModel::LocalDynamic) ? MipsII::MO_TLSLDM
: MipsII::MO_TLSGD;
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag);
SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT,
GetGlobalReg(DAG, PtrVT), TGA);
unsigned PtrSize = PtrVT.getSizeInBits();
IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize);
SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT);
ArgListTy Args;
ArgListEntry Entry;
Entry.Node = Argument;
Entry.Ty = PtrTy;
Args.push_back(Entry);
TargetLowering::CallLoweringInfo CLI(DAG.getEntryNode(), PtrTy,
false, false, false, false, 0, CallingConv::C,
/*isTailCall=*/false, /*doesNotRet=*/false,
/*isReturnValueUsed=*/true,
TlsGetAddr, Args, DAG, dl);
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
SDValue Ret = CallResult.first;
if (model != TLSModel::LocalDynamic)
return Ret;
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
MipsII::MO_DTPREL_HI);
SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
MipsII::MO_DTPREL_LO);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret);
return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo);
}
SDValue Offset;
if (model == TLSModel::InitialExec) {
// Initial Exec TLS Model
SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
MipsII::MO_GOTTPREL);
TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT),
TGA);
Offset = DAG.getLoad(PtrVT, dl,
DAG.getEntryNode(), TGA, MachinePointerInfo(),
false, false, false, 0);
} else {
// Local Exec TLS Model
assert(model == TLSModel::LocalExec);
SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
MipsII::MO_TPREL_HI);
SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
MipsII::MO_TPREL_LO);
SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi);
SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo);
Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo);
}
SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT);
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue MipsTargetLowering::
LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
{
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(Op, DAG);
return getAddrLocal(Op, DAG, HasMips64);
}
SDValue MipsTargetLowering::
LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
{
// gp_rel relocation
// FIXME: we should reference the constant pool using small data sections,
// but the asm printer currently doesn't support this feature without
// hacking it. This feature should come soon so we can uncomment the
// stuff below.
//if (IsInSmallSection(C->getType())) {
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64)
return getAddrNonPIC(Op, DAG);
return getAddrLocal(Op, DAG, HasMips64);
}
SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
DebugLoc dl = Op.getDebugLoc();
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
getPointerTy());
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
EVT TyX = Op.getOperand(0).getValueType();
EVT TyY = Op.getOperand(1).getValueType();
SDValue Const1 = DAG.getConstant(1, MVT::i32);
SDValue Const31 = DAG.getConstant(31, MVT::i32);
DebugLoc DL = Op.getDebugLoc();
SDValue Res;
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (TyX == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
Const1);
SDValue Y = (TyY == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1),
Const1);
if (HasR2) {
// ext E, Y, 31, 1 ; extract bit31 of Y
// ins X, E, 31, 1 ; insert extracted bit at bit31 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1);
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X);
} else {
// sll SllX, X, 1
// srl SrlX, SllX, 1
// srl SrlY, Y, 31
// sll SllY, SrlX, 31
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31);
SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31);
Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY);
}
if (TyX == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res);
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0), DAG.getConstant(0, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
unsigned WidthX = Op.getOperand(0).getValueSizeInBits();
unsigned WidthY = Op.getOperand(1).getValueSizeInBits();
EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY);
SDValue Const1 = DAG.getConstant(1, MVT::i32);
DebugLoc DL = Op.getDebugLoc();
// Bitcast to integer nodes.
SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0));
SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1));
if (HasR2) {
// ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
// ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y,
DAG.getConstant(WidthY - 1, MVT::i32), Const1);
if (WidthX > WidthY)
E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E);
else if (WidthY > WidthX)
E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E);
SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E,
DAG.getConstant(WidthX - 1, MVT::i32), Const1, X);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I);
}
// (d)sll SllX, X, 1
// (d)srl SrlX, SllX, 1
// (d)srl SrlY, Y, width(Y)-1
// (d)sll SllY, SrlX, width(Y)-1
// or Or, SrlX, SllY
SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1);
SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1);
SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y,
DAG.getConstant(WidthY - 1, MVT::i32));
if (WidthX > WidthY)
SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY);
else if (WidthY > WidthX)
SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY);
SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY,
DAG.getConstant(WidthX - 1, MVT::i32));
SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY);
return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or);
}
SDValue
MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasMips64())
return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2());
return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2());
}
static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) {
SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
DebugLoc DL = Op.getDebugLoc();
// If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
// to i32.
SDValue X = (Op.getValueType() == MVT::f32) ?
DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) :
DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0),
Const1);
// Clear MSB.
if (HasR2)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32,
DAG.getRegister(Mips::ZERO, MVT::i32),
DAG.getConstant(31, MVT::i32), Const1, X);
else {
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1);
}
if (Op.getValueType() == MVT::f32)
return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res);
SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32,
Op.getOperand(0), DAG.getConstant(0, MVT::i32));
return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res);
}
static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) {
SDValue Res, Const1 = DAG.getConstant(1, MVT::i32);
DebugLoc DL = Op.getDebugLoc();
// Bitcast to integer node.
SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0));
// Clear MSB.
if (HasR2)
Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64,
DAG.getRegister(Mips::ZERO_64, MVT::i64),
DAG.getConstant(63, MVT::i32), Const1, X);
else {
SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1);
Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1);
}
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res);
}
SDValue
MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const {
if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64))
return LowerFABS64(Op, DAG, Subtarget->hasMips32r2());
return LowerFABS32(Op, DAG, Subtarget->hasMips32r2());
}
SDValue MipsTargetLowering::
LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Frame address can only be determined for current frame.");
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
IsN64 ? Mips::FP_64 : Mips::FP, VT);
return FrameAddr;
}
SDValue MipsTargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
// check the depth
assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) &&
"Return address can be determined only for current frame.");
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MVT VT = Op.getSimpleValueType();
unsigned RA = IsN64 ? Mips::RA_64 : Mips::RA;
MFI->setReturnAddressIsTaken(true);
// Return RA, which contains the return address. Mark it an implicit live-in.
unsigned Reg = MF.addLiveIn(RA, getRegClassFor(VT));
return DAG.getCopyFromReg(DAG.getEntryNode(), Op.getDebugLoc(), Reg, VT);
}
// TODO: set SType according to the desired memory barrier behavior.
SDValue
MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const {
unsigned SType = 0;
DebugLoc dl = Op.getDebugLoc();
return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(SType, MVT::i32));
}
SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op,
SelectionDAG &DAG) const {
// FIXME: Need pseudo-fence for 'singlethread' fences
// FIXME: Set SType for weaker fences where supported/appropriate.
unsigned SType = 0;
DebugLoc dl = Op.getDebugLoc();
return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0),
DAG.getConstant(SType, MVT::i32));
}
SDValue MipsTargetLowering::LowerShiftLeftParts(SDValue Op,
SelectionDAG &DAG) const {
DebugLoc DL = Op.getDebugLoc();
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if shamt < 32:
// lo = (shl lo, shamt)
// hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
// else:
// lo = 0
// hi = (shl lo, shamt[4:0])
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, MVT::i32));
SDValue ShiftRight1Lo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo,
DAG.getConstant(1, MVT::i32));
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, ShiftRight1Lo,
Not);
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
SDValue ShiftLeftLo = DAG.getNode(ISD::SHL, DL, MVT::i32, Lo, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(0x20, MVT::i32));
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
DAG.getConstant(0, MVT::i32), ShiftLeftLo);
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftLeftLo, Or);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, 2, DL);
}
SDValue MipsTargetLowering::LowerShiftRightParts(SDValue Op, SelectionDAG &DAG,
bool IsSRA) const {
DebugLoc DL = Op.getDebugLoc();
SDValue Lo = Op.getOperand(0), Hi = Op.getOperand(1);
SDValue Shamt = Op.getOperand(2);
// if shamt < 32:
// lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
// if isSRA:
// hi = (sra hi, shamt)
// else:
// hi = (srl hi, shamt)
// else:
// if isSRA:
// lo = (sra hi, shamt[4:0])
// hi = (sra hi, 31)
// else:
// lo = (srl hi, shamt[4:0])
// hi = 0
SDValue Not = DAG.getNode(ISD::XOR, DL, MVT::i32, Shamt,
DAG.getConstant(-1, MVT::i32));
SDValue ShiftLeft1Hi = DAG.getNode(ISD::SHL, DL, MVT::i32, Hi,
DAG.getConstant(1, MVT::i32));
SDValue ShiftLeftHi = DAG.getNode(ISD::SHL, DL, MVT::i32, ShiftLeft1Hi, Not);
SDValue ShiftRightLo = DAG.getNode(ISD::SRL, DL, MVT::i32, Lo, Shamt);
SDValue Or = DAG.getNode(ISD::OR, DL, MVT::i32, ShiftLeftHi, ShiftRightLo);
SDValue ShiftRightHi = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, DL, MVT::i32,
Hi, Shamt);
SDValue Cond = DAG.getNode(ISD::AND, DL, MVT::i32, Shamt,
DAG.getConstant(0x20, MVT::i32));
SDValue Shift31 = DAG.getNode(ISD::SRA, DL, MVT::i32, Hi,
DAG.getConstant(31, MVT::i32));
Lo = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond, ShiftRightHi, Or);
Hi = DAG.getNode(ISD::SELECT, DL, MVT::i32, Cond,
IsSRA ? Shift31 : DAG.getConstant(0, MVT::i32),
ShiftRightHi);
SDValue Ops[2] = {Lo, Hi};
return DAG.getMergeValues(Ops, 2, DL);
}
static SDValue CreateLoadLR(unsigned Opc, SelectionDAG &DAG, LoadSDNode *LD,
SDValue Chain, SDValue Src, unsigned Offset) {
SDValue Ptr = LD->getBasePtr();
EVT VT = LD->getValueType(0), MemVT = LD->getMemoryVT();
EVT BasePtrVT = Ptr.getValueType();
DebugLoc DL = LD->getDebugLoc();
SDVTList VTList = DAG.getVTList(VT, MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, BasePtrVT));
SDValue Ops[] = { Chain, Ptr, Src };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
LD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer load node.
SDValue MipsTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
LoadSDNode *LD = cast<LoadSDNode>(Op);
EVT MemVT = LD->getMemoryVT();
// Return if load is aligned or if MemVT is neither i32 nor i64.
if ((LD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
return SDValue();
bool IsLittle = Subtarget->isLittle();
EVT VT = Op.getValueType();
ISD::LoadExtType ExtType = LD->getExtensionType();
SDValue Chain = LD->getChain(), Undef = DAG.getUNDEF(VT);
assert((VT == MVT::i32) || (VT == MVT::i64));
// Expand
// (set dst, (i64 (load baseptr)))
// to
// (set tmp, (ldl (add baseptr, 7), undef))
// (set dst, (ldr baseptr, tmp))
if ((VT == MVT::i64) && (ExtType == ISD::NON_EXTLOAD)) {
SDValue LDL = CreateLoadLR(MipsISD::LDL, DAG, LD, Chain, Undef,
IsLittle ? 7 : 0);
return CreateLoadLR(MipsISD::LDR, DAG, LD, LDL.getValue(1), LDL,
IsLittle ? 0 : 7);
}
SDValue LWL = CreateLoadLR(MipsISD::LWL, DAG, LD, Chain, Undef,
IsLittle ? 3 : 0);
SDValue LWR = CreateLoadLR(MipsISD::LWR, DAG, LD, LWL.getValue(1), LWL,
IsLittle ? 0 : 3);
// Expand
// (set dst, (i32 (load baseptr))) or
// (set dst, (i64 (sextload baseptr))) or
// (set dst, (i64 (extload baseptr)))
// to
// (set tmp, (lwl (add baseptr, 3), undef))
// (set dst, (lwr baseptr, tmp))
if ((VT == MVT::i32) || (ExtType == ISD::SEXTLOAD) ||
(ExtType == ISD::EXTLOAD))
return LWR;
assert((VT == MVT::i64) && (ExtType == ISD::ZEXTLOAD));
// Expand
// (set dst, (i64 (zextload baseptr)))
// to
// (set tmp0, (lwl (add baseptr, 3), undef))
// (set tmp1, (lwr baseptr, tmp0))
// (set tmp2, (shl tmp1, 32))
// (set dst, (srl tmp2, 32))
DebugLoc DL = LD->getDebugLoc();
SDValue Const32 = DAG.getConstant(32, MVT::i32);
SDValue SLL = DAG.getNode(ISD::SHL, DL, MVT::i64, LWR, Const32);
SDValue SRL = DAG.getNode(ISD::SRL, DL, MVT::i64, SLL, Const32);
SDValue Ops[] = { SRL, LWR.getValue(1) };
return DAG.getMergeValues(Ops, 2, DL);
}
static SDValue CreateStoreLR(unsigned Opc, SelectionDAG &DAG, StoreSDNode *SD,
SDValue Chain, unsigned Offset) {
SDValue Ptr = SD->getBasePtr(), Value = SD->getValue();
EVT MemVT = SD->getMemoryVT(), BasePtrVT = Ptr.getValueType();
DebugLoc DL = SD->getDebugLoc();
SDVTList VTList = DAG.getVTList(MVT::Other);
if (Offset)
Ptr = DAG.getNode(ISD::ADD, DL, BasePtrVT, Ptr,
DAG.getConstant(Offset, BasePtrVT));
SDValue Ops[] = { Chain, Value, Ptr };
return DAG.getMemIntrinsicNode(Opc, DL, VTList, Ops, 3, MemVT,
SD->getMemOperand());
}
// Expand an unaligned 32 or 64-bit integer store node.
SDValue MipsTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
StoreSDNode *SD = cast<StoreSDNode>(Op);
EVT MemVT = SD->getMemoryVT();
// Return if store is aligned or if MemVT is neither i32 nor i64.
if ((SD->getAlignment() >= MemVT.getSizeInBits() / 8) ||
((MemVT != MVT::i32) && (MemVT != MVT::i64)))
return SDValue();
bool IsLittle = Subtarget->isLittle();
SDValue Value = SD->getValue(), Chain = SD->getChain();
EVT VT = Value.getValueType();
// Expand
// (store val, baseptr) or
// (truncstore val, baseptr)
// to
// (swl val, (add baseptr, 3))
// (swr val, baseptr)
if ((VT == MVT::i32) || SD->isTruncatingStore()) {
SDValue SWL = CreateStoreLR(MipsISD::SWL, DAG, SD, Chain,
IsLittle ? 3 : 0);
return CreateStoreLR(MipsISD::SWR, DAG, SD, SWL, IsLittle ? 0 : 3);
}
assert(VT == MVT::i64);
// Expand
// (store val, baseptr)
// to
// (sdl val, (add baseptr, 7))
// (sdr val, baseptr)
SDValue SDL = CreateStoreLR(MipsISD::SDL, DAG, SD, Chain, IsLittle ? 7 : 0);
return CreateStoreLR(MipsISD::SDR, DAG, SD, SDL, IsLittle ? 0 : 7);
}
// This function expands mips intrinsic nodes which have 64-bit input operands
// or output values.
//
// out64 = intrinsic-node in64
// =>
// lo = copy (extract-element (in64, 0))
// hi = copy (extract-element (in64, 1))
// mips-specific-node
// v0 = copy lo
// v1 = copy hi
// out64 = merge-values (v0, v1)
//
static SDValue LowerDSPIntr(SDValue Op, SelectionDAG &DAG,
unsigned Opc, bool HasI64In, bool HasI64Out) {
DebugLoc DL = Op.getDebugLoc();
bool HasChainIn = Op->getOperand(0).getValueType() == MVT::Other;
SDValue Chain = HasChainIn ? Op->getOperand(0) : DAG.getEntryNode();
SmallVector<SDValue, 3> Ops;
if (HasI64In) {
SDValue InLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
Op->getOperand(1 + HasChainIn),
DAG.getConstant(0, MVT::i32));
SDValue InHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32,
Op->getOperand(1 + HasChainIn),
DAG.getConstant(1, MVT::i32));
Chain = DAG.getCopyToReg(Chain, DL, Mips::LO, InLo, SDValue());
Chain = DAG.getCopyToReg(Chain, DL, Mips::HI, InHi, Chain.getValue(1));
Ops.push_back(Chain);
Ops.append(Op->op_begin() + HasChainIn + 2, Op->op_end());
Ops.push_back(Chain.getValue(1));
} else {
Ops.push_back(Chain);
Ops.append(Op->op_begin() + HasChainIn + 1, Op->op_end());
}
if (!HasI64Out)
return DAG.getNode(Opc, DL, Op->value_begin(), Op->getNumValues(),
Ops.begin(), Ops.size());
SDValue Intr = DAG.getNode(Opc, DL, DAG.getVTList(MVT::Other, MVT::Glue),
Ops.begin(), Ops.size());
SDValue OutLo = DAG.getCopyFromReg(Intr.getValue(0), DL, Mips::LO, MVT::i32,
Intr.getValue(1));
SDValue OutHi = DAG.getCopyFromReg(OutLo.getValue(1), DL, Mips::HI, MVT::i32,
OutLo.getValue(2));
SDValue Out = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, OutLo, OutHi);
if (!HasChainIn)
return Out;
SDValue Vals[] = { Out, OutHi.getValue(1) };
return DAG.getMergeValues(Vals, 2, DL);
}
SDValue MipsTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
switch (cast<ConstantSDNode>(Op->getOperand(0))->getZExtValue()) {
default:
return SDValue();
case Intrinsic::mips_shilo:
return LowerDSPIntr(Op, DAG, MipsISD::SHILO, true, true);
case Intrinsic::mips_dpau_h_qbl:
return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBL, true, true);
case Intrinsic::mips_dpau_h_qbr:
return LowerDSPIntr(Op, DAG, MipsISD::DPAU_H_QBR, true, true);
case Intrinsic::mips_dpsu_h_qbl:
return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBL, true, true);
case Intrinsic::mips_dpsu_h_qbr:
return LowerDSPIntr(Op, DAG, MipsISD::DPSU_H_QBR, true, true);
case Intrinsic::mips_dpa_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPA_W_PH, true, true);
case Intrinsic::mips_dps_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPS_W_PH, true, true);
case Intrinsic::mips_dpax_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPAX_W_PH, true, true);
case Intrinsic::mips_dpsx_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPSX_W_PH, true, true);
case Intrinsic::mips_mulsa_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::MULSA_W_PH, true, true);
case Intrinsic::mips_mult:
return LowerDSPIntr(Op, DAG, MipsISD::MULT, false, true);
case Intrinsic::mips_multu:
return LowerDSPIntr(Op, DAG, MipsISD::MULTU, false, true);
case Intrinsic::mips_madd:
return LowerDSPIntr(Op, DAG, MipsISD::MADD_DSP, true, true);
case Intrinsic::mips_maddu:
return LowerDSPIntr(Op, DAG, MipsISD::MADDU_DSP, true, true);
case Intrinsic::mips_msub:
return LowerDSPIntr(Op, DAG, MipsISD::MSUB_DSP, true, true);
case Intrinsic::mips_msubu:
return LowerDSPIntr(Op, DAG, MipsISD::MSUBU_DSP, true, true);
}
}
SDValue MipsTargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
switch (cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue()) {
default:
return SDValue();
case Intrinsic::mips_extp:
return LowerDSPIntr(Op, DAG, MipsISD::EXTP, true, false);
case Intrinsic::mips_extpdp:
return LowerDSPIntr(Op, DAG, MipsISD::EXTPDP, true, false);
case Intrinsic::mips_extr_w:
return LowerDSPIntr(Op, DAG, MipsISD::EXTR_W, true, false);
case Intrinsic::mips_extr_r_w:
return LowerDSPIntr(Op, DAG, MipsISD::EXTR_R_W, true, false);
case Intrinsic::mips_extr_rs_w:
return LowerDSPIntr(Op, DAG, MipsISD::EXTR_RS_W, true, false);
case Intrinsic::mips_extr_s_h:
return LowerDSPIntr(Op, DAG, MipsISD::EXTR_S_H, true, false);
case Intrinsic::mips_mthlip:
return LowerDSPIntr(Op, DAG, MipsISD::MTHLIP, true, true);
case Intrinsic::mips_mulsaq_s_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::MULSAQ_S_W_PH, true, true);
case Intrinsic::mips_maq_s_w_phl:
return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHL, true, true);
case Intrinsic::mips_maq_s_w_phr:
return LowerDSPIntr(Op, DAG, MipsISD::MAQ_S_W_PHR, true, true);
case Intrinsic::mips_maq_sa_w_phl:
return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHL, true, true);
case Intrinsic::mips_maq_sa_w_phr:
return LowerDSPIntr(Op, DAG, MipsISD::MAQ_SA_W_PHR, true, true);
case Intrinsic::mips_dpaq_s_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_S_W_PH, true, true);
case Intrinsic::mips_dpsq_s_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_S_W_PH, true, true);
case Intrinsic::mips_dpaq_sa_l_w:
return LowerDSPIntr(Op, DAG, MipsISD::DPAQ_SA_L_W, true, true);
case Intrinsic::mips_dpsq_sa_l_w:
return LowerDSPIntr(Op, DAG, MipsISD::DPSQ_SA_L_W, true, true);
case Intrinsic::mips_dpaqx_s_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_S_W_PH, true, true);
case Intrinsic::mips_dpaqx_sa_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPAQX_SA_W_PH, true, true);
case Intrinsic::mips_dpsqx_s_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_S_W_PH, true, true);
case Intrinsic::mips_dpsqx_sa_w_ph:
return LowerDSPIntr(Op, DAG, MipsISD::DPSQX_SA_W_PH, true, true);
}
}
SDValue MipsTargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
if (Op->getOperand(0).getOpcode() != ISD::FRAMEADDR
|| cast<ConstantSDNode>
(Op->getOperand(0).getOperand(0))->getZExtValue() != 0
|| Op->getOperand(1).getOpcode() != ISD::FRAME_TO_ARGS_OFFSET)
return SDValue();
// The pattern
// (add (frameaddr 0), (frame_to_args_offset))
// results from lowering llvm.eh.dwarf.cfa intrinsic. Transform it to
// (add FrameObject, 0)
// where FrameObject is a fixed StackObject with offset 0 which points to
// the old stack pointer.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
EVT ValTy = Op->getValueType(0);
int FI = MFI->CreateFixedObject(Op.getValueSizeInBits() / 8, 0, false);
SDValue InArgsAddr = DAG.getFrameIndex(FI, ValTy);
return DAG.getNode(ISD::ADD, Op->getDebugLoc(), ValTy, InArgsAddr,
DAG.getConstant(0, ValTy));
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO: Implement a generic logic using tblgen that can support this.
// Mips O32 ABI rules:
// ---
// i32 - Passed in A0, A1, A2, A3 and stack
// f32 - Only passed in f32 registers if no int reg has been used yet to hold
// an argument. Otherwise, passed in A1, A2, A3 and stack.
// f64 - Only passed in two aliased f32 registers if no int reg has been used
// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
// not used, it must be shadowed. If only A3 is avaiable, shadow it and
// go to stack.
//
// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
//===----------------------------------------------------------------------===//
static bool CC_MipsO32(unsigned ValNo, MVT ValVT,
MVT LocVT, CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
static const unsigned IntRegsSize=4, FloatRegsSize=2;
static const uint16_t IntRegs[] = {
Mips::A0, Mips::A1, Mips::A2, Mips::A3
};
static const uint16_t F32Regs[] = {
Mips::F12, Mips::F14
};
static const uint16_t F64Regs[] = {
Mips::D6, Mips::D7
};
// Do not process byval args here.
if (ArgFlags.isByVal())
return true;
// Promote i8 and i16
if (LocVT == MVT::i8 || LocVT == MVT::i16) {
LocVT = MVT::i32;
if (ArgFlags.isSExt())
LocInfo = CCValAssign::SExt;
else if (ArgFlags.isZExt())
LocInfo = CCValAssign::ZExt;
else
LocInfo = CCValAssign::AExt;
}
unsigned Reg;
// f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
// is true: function is vararg, argument is 3rd or higher, there is previous
// argument which is not f32 or f64.
bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1
|| State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo;
unsigned OrigAlign = ArgFlags.getOrigAlign();
bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8);
if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) {
Reg = State.AllocateReg(IntRegs, IntRegsSize);
// If this is the first part of an i64 arg,
// the allocated register must be either A0 or A2.
if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3))
Reg = State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) {
// Allocate int register and shadow next int register. If first
// available register is Mips::A1 or Mips::A3, shadow it too.
Reg = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg == Mips::A1 || Reg == Mips::A3)
Reg = State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
LocVT = MVT::i32;
} else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) {
// we are guaranteed to find an available float register
if (ValVT == MVT::f32) {
Reg = State.AllocateReg(F32Regs, FloatRegsSize);
// Shadow int register
State.AllocateReg(IntRegs, IntRegsSize);
} else {
Reg = State.AllocateReg(F64Regs, FloatRegsSize);
// Shadow int registers
unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize);
if (Reg2 == Mips::A1 || Reg2 == Mips::A3)
State.AllocateReg(IntRegs, IntRegsSize);
State.AllocateReg(IntRegs, IntRegsSize);
}
} else
llvm_unreachable("Cannot handle this ValVT.");
if (!Reg) {
unsigned Offset = State.AllocateStack(ValVT.getSizeInBits() >> 3,
OrigAlign);
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
} else
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
return false;
}
#include "MipsGenCallingConv.inc"
//===----------------------------------------------------------------------===//
// Call Calling Convention Implementation
//===----------------------------------------------------------------------===//
static const unsigned O32IntRegsSize = 4;
// Return next O32 integer argument register.
static unsigned getNextIntArgReg(unsigned Reg) {
assert((Reg == Mips::A0) || (Reg == Mips::A2));
return (Reg == Mips::A0) ? Mips::A1 : Mips::A3;
}
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
/// for tail call optimization.
bool MipsTargetLowering::
IsEligibleForTailCallOptimization(const MipsCC &MipsCCInfo,
unsigned NextStackOffset,
const MipsFunctionInfo& FI) const {
if (!EnableMipsTailCalls)
return false;
// No tail call optimization for mips16.
if (Subtarget->inMips16Mode())
return false;
// Return false if either the callee or caller has a byval argument.
if (MipsCCInfo.hasByValArg() || FI.hasByvalArg())
return false;
// Return true if the callee's argument area is no larger than the
// caller's.
return NextStackOffset <= FI.getIncomingArgSize();
}
SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr, unsigned Offset,
SDValue Chain, SDValue Arg, DebugLoc DL,
bool IsTailCall, SelectionDAG &DAG) const {
if (!IsTailCall) {
SDValue PtrOff = DAG.getNode(ISD::ADD, DL, getPointerTy(), StackPtr,
DAG.getIntPtrConstant(Offset));
return DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo(), false,
false, 0);
}
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
int FI = MFI->CreateFixedObject(Arg.getValueSizeInBits() / 8, Offset, false);
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
return DAG.getStore(Chain, DL, Arg, FIN, MachinePointerInfo(),
/*isVolatile=*/ true, false, 0);
}
/// LowerCall - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
SDValue
MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
DebugLoc &dl = CLI.DL;
SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
bool &isTailCall = CLI.IsTailCall;
CallingConv::ID CallConv = CLI.CallConv;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering();
bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
MipsCCInfo.analyzeCallOperands(Outs);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NextStackOffset = CCInfo.getNextStackOffset();
// Check if it's really possible to do a tail call.
if (isTailCall)
isTailCall =
IsEligibleForTailCallOptimization(MipsCCInfo, NextStackOffset,
*MF.getInfo<MipsFunctionInfo>());
if (isTailCall)
++NumTailCalls;
// Chain is the output chain of the last Load/Store or CopyToReg node.
// ByValChain is the output chain of the last Memcpy node created for copying
// byval arguments to the stack.
unsigned StackAlignment = TFL->getStackAlignment();
NextStackOffset = RoundUpToAlignment(NextStackOffset, StackAlignment);
SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true);
if (!isTailCall)
Chain = DAG.getCALLSEQ_START(Chain, NextStackOffsetVal);
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl,
IsN64 ? Mips::SP_64 : Mips::SP,
getPointerTy());
// With EABI is it possible to have 16 args on registers.
SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue Arg = OutVals[i];
CCValAssign &VA = ArgLocs[i];
MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT();
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// ByVal Arg.
if (Flags.isByVal()) {
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValArg != MipsCCInfo.byval_end());
assert(!isTailCall &&
"Do not tail-call optimize if there is a byval argument.");
passByValArg(Chain, dl, RegsToPass, MemOpChains, StackPtr, MFI, DAG, Arg,
MipsCCInfo, *ByValArg, Flags, Subtarget->isLittle());
++ByValArg;
continue;
}
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full:
if (VA.isRegLoc()) {
if ((ValVT == MVT::f32 && LocVT == MVT::i32) ||
(ValVT == MVT::f64 && LocVT == MVT::i64))
Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg);
else if (ValVT == MVT::f64 && LocVT == MVT::i32) {
SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Arg, DAG.getConstant(0, MVT::i32));
SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32,
Arg, DAG.getConstant(1, MVT::i32));
if (!Subtarget->isLittle())
std::swap(Lo, Hi);
unsigned LocRegLo = VA.getLocReg();
unsigned LocRegHigh = getNextIntArgReg(LocRegLo);
RegsToPass.push_back(std::make_pair(LocRegLo, Lo));
RegsToPass.push_back(std::make_pair(LocRegHigh, Hi));
continue;
}
}
break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg);
break;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
// Register can't get to this point...
assert(VA.isMemLoc());
// emit ISD::STORE whichs stores the
// parameter value to a stack Location
MemOpChains.push_back(passArgOnStack(StackPtr, VA.getLocMemOffset(),
Chain, Arg, dl, isTailCall, DAG));
}
// Transform all store nodes into one single node because all store
// nodes are independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
// node so that legalize doesn't hack it.
bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25
bool GlobalOrExternal = false, InternalLinkage = false;
SDValue CalleeLo;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
if (IsPICCall) {
InternalLinkage = G->getGlobal()->hasInternalLinkage();
if (InternalLinkage)
Callee = getAddrLocal(Callee, DAG, HasMips64);
else if (LargeGOT)
Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16);
else
Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
} else
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0,
MipsII::MO_NO_FLAG);
GlobalOrExternal = true;
}
else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
if (!IsN64 && !IsPIC) // !N64 && static
Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
MipsII::MO_NO_FLAG);
else if (LargeGOT)
Callee = getAddrGlobalLargeGOT(Callee, DAG, MipsII::MO_CALL_HI16,
MipsII::MO_CALL_LO16);
else if (HasMips64)
Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_DISP);
else // O32 & PIC
Callee = getAddrGlobal(Callee, DAG, MipsII::MO_GOT_CALL);
GlobalOrExternal = true;
}
SDValue InFlag;
// T9 register operand.
SDValue T9;
// T9 should contain the address of the callee function if
// -reloction-model=pic or it is an indirect call.
if (IsPICCall || !GlobalOrExternal) {
// copy to T9
unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9;
Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0));
InFlag = Chain.getValue(1);
if (Subtarget->inMips16Mode())
T9 = DAG.getRegister(T9Reg, getPointerTy());
else
Callee = DAG.getRegister(T9Reg, getPointerTy());
}
// Insert node "GP copy globalreg" before call to function.
//
// R_MIPS_CALL* operators (emitted when non-internal functions are called
// in PIC mode) allow symbols to be resolved via lazy binding.
// The lazy binding stub requires GP to point to the GOT.
if (IsPICCall && !InternalLinkage) {
unsigned GPReg = IsN64 ? Mips::GP_64 : Mips::GP;
EVT Ty = IsN64 ? MVT::i64 : MVT::i32;
RegsToPass.push_back(std::make_pair(GPReg, GetGlobalReg(DAG, Ty)));
}
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// MipsJmpLink = #chain, #target_address, #opt_in_flags...
// = Chain, Callee, Reg#1, Reg#2, ...
//
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add T9 register operand.
if (T9.getNode())
Ops.push_back(T9);
// Add a register mask operand representing the call-preserved registers.
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall)
return DAG.getNode(MipsISD::TailCall, dl, MVT::Other, &Ops[0], Ops.size());
Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain, NextStackOffsetVal,
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
SDValue
MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Formal Arguments Calling Convention Implementation
//===----------------------------------------------------------------------===//
/// LowerFormalArguments - transform physical registers into virtual registers
/// and generate load operations for arguments places on the stack.
SDValue
MipsTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
MipsFI->setVarArgsFrameIndex(0);
// Used with vargs to acumulate store chains.
std::vector<SDValue> OutChains;
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
MipsCC MipsCCInfo(CallConv, isVarArg, IsO32, CCInfo);
MipsCCInfo.analyzeFormalArguments(Ins);
MipsFI->setFormalArgInfo(CCInfo.getNextStackOffset(),
MipsCCInfo.hasByValArg());
Function::const_arg_iterator FuncArg =
DAG.getMachineFunction().getFunction()->arg_begin();
unsigned CurArgIdx = 0;
MipsCC::byval_iterator ByValArg = MipsCCInfo.byval_begin();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
std::advance(FuncArg, Ins[i].OrigArgIndex - CurArgIdx);
CurArgIdx = Ins[i].OrigArgIndex;
EVT ValVT = VA.getValVT();
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool IsRegLoc = VA.isRegLoc();
if (Flags.isByVal()) {
assert(Flags.getByValSize() &&
"ByVal args of size 0 should have been ignored by front-end.");
assert(ByValArg != MipsCCInfo.byval_end());
copyByValRegs(Chain, dl, OutChains, DAG, Flags, InVals, &*FuncArg,
MipsCCInfo, *ByValArg);
++ByValArg;
continue;
}
// Arguments stored on registers
if (IsRegLoc) {
EVT RegVT = VA.getLocVT();
unsigned ArgReg = VA.getLocReg();
const TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = Subtarget->inMips16Mode()? &Mips::CPU16RegsRegClass :
&Mips::CPURegsRegClass;
else if (RegVT == MVT::i64)
RC = &Mips::CPU64RegsRegClass;
else if (RegVT == MVT::f32)
RC = &Mips::FGR32RegClass;
else if (RegVT == MVT::f64)
RC = HasMips64 ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
else
llvm_unreachable("RegVT not supported by FormalArguments Lowering");
// Transform the arguments stored on
// physical registers into virtual ones
unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it has been passed promoted
// to 32 bits. Insert an assert[sz]ext to capture this, then
// truncate to the right size.
if (VA.getLocInfo() != CCValAssign::Full) {
unsigned Opcode = 0;
if (VA.getLocInfo() == CCValAssign::SExt)
Opcode = ISD::AssertSext;
else if (VA.getLocInfo() == CCValAssign::ZExt)
Opcode = ISD::AssertZext;
if (Opcode)
ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
DAG.getValueType(ValVT));
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
}
// Handle floating point arguments passed in integer registers.
if ((RegVT == MVT::i32 && ValVT == MVT::f32) ||
(RegVT == MVT::i64 && ValVT == MVT::f64))
ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue);
else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) {
unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
getNextIntArgReg(ArgReg), RC);
SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
if (!Subtarget->isLittle())
std::swap(ArgValue, ArgValue2);
ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64,
ArgValue, ArgValue2);
}
InVals.push_back(ArgValue);
} else { // VA.isRegLoc()
// sanity check
assert(VA.isMemLoc());
// The stack pointer offset is relative to the caller stack frame.
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
VA.getLocMemOffset(), true);
// Create load nodes to retrieve arguments from the stack
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(FI),
false, false, false, 0));
}
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. Save the argument into
// a virtual register so that we can access it from the return points.
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().
createVirtualRegister(getRegClassFor(IsN64 ? MVT::i64 : MVT::i32));
MipsFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
if (isVarArg)
writeVarArgRegs(OutChains, MipsCCInfo, Chain, dl, DAG);
// All stores are grouped in one node to allow the matching between
// the size of Ins and InVals. This only happens when on varg functions
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
return Chain;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
bool
MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_Mips);
}
SDValue
MipsTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
// CCValAssign - represent the assignment of
// the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
// If this is the first return lowered for this function, add
// the regs to the liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
// guarantee that all emitted copies are
// stuck together, avoiding something bad
Flag = Chain.getValue(1);
}
// The mips ABIs for returning structs by value requires that we copy
// the sret argument into $v0 for the return. We saved the argument into
// a virtual register in the entry block, so now we copy the value out
// and into $v0.
if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
MachineFunction &MF = DAG.getMachineFunction();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
unsigned Reg = MipsFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
unsigned V0 = IsN64 ? Mips::V0_64 : Mips::V0;
Chain = DAG.getCopyToReg(Chain, dl, V0, Val, Flag);
Flag = Chain.getValue(1);
MF.getRegInfo().addLiveOut(V0);
}
// Return on Mips is always a "jr $ra"
if (Flag.getNode())
return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain, Flag);
// Return Void
return DAG.getNode(MipsISD::Ret, dl, MVT::Other, Chain);
}
//===----------------------------------------------------------------------===//
// Mips Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
MipsTargetLowering::ConstraintType MipsTargetLowering::
getConstraintType(const std::string &Constraint) const
{
// Mips specific constrainy
// GCC config/mips/constraints.md
//
// 'd' : An address register. Equivalent to r
// unless generating MIPS16 code.
// 'y' : Equivalent to r; retained for
// backwards compatibility.
// 'c' : A register suitable for use in an indirect
// jump. This will always be $25 for -mabicalls.
// 'l' : The lo register. 1 word storage.
// 'x' : The hilo register pair. Double word storage.
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default : break;
case 'd':
case 'y':
case 'f':
case 'c':
case 'l':
case 'x':
return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
MipsTargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (CallOperandVal == NULL)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
break;
case 'd':
case 'y':
if (type->isIntegerTy())
weight = CW_Register;
break;
case 'f':
if (type->isFloatTy())
weight = CW_Register;
break;
case 'c': // $25 for indirect jumps
case 'l': // lo register
case 'x': // hilo register pair
if (type->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'I': // signed 16 bit immediate
case 'J': // integer zero
case 'K': // unsigned 16 bit immediate
case 'L': // signed 32 bit immediate where lower 16 bits are 0
case 'N': // immediate in the range of -65535 to -1 (inclusive)
case 'O': // signed 15 bit immediate (+- 16383)
case 'P': // immediate in the range of 65535 to 1 (inclusive)
if (isa<ConstantInt>(CallOperandVal))
weight = CW_Constant;
break;
}
return weight;
}
/// Given a register class constraint, like 'r', if this corresponds directly
/// to an LLVM register class, return a register of 0 and the register class
/// pointer.
std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
{
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
case 'y': // Same as 'r'. Exists for compatibility.
case 'r':
if (VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
if (Subtarget->inMips16Mode())
return std::make_pair(0U, &Mips::CPU16RegsRegClass);
return std::make_pair(0U, &Mips::CPURegsRegClass);
}
if (VT == MVT::i64 && !HasMips64)
return std::make_pair(0U, &Mips::CPURegsRegClass);
if (VT == MVT::i64 && HasMips64)
return std::make_pair(0U, &Mips::CPU64RegsRegClass);
// This will generate an error message
return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
case 'f':
if (VT == MVT::f32)
return std::make_pair(0U, &Mips::FGR32RegClass);
if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) {
if (Subtarget->isFP64bit())
return std::make_pair(0U, &Mips::FGR64RegClass);
return std::make_pair(0U, &Mips::AFGR64RegClass);
}
break;
case 'c': // register suitable for indirect jump
if (VT == MVT::i32)
return std::make_pair((unsigned)Mips::T9, &Mips::CPURegsRegClass);
assert(VT == MVT::i64 && "Unexpected type.");
return std::make_pair((unsigned)Mips::T9_64, &Mips::CPU64RegsRegClass);
case 'l': // register suitable for indirect jump
if (VT == MVT::i32)
return std::make_pair((unsigned)Mips::LO, &Mips::HILORegClass);
return std::make_pair((unsigned)Mips::LO64, &Mips::HILO64RegClass);
case 'x': // register suitable for indirect jump
// Fixme: Not triggering the use of both hi and low
// This will generate an error message
return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0));
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result(0, 0);
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break; // This will fall through to the generic implementation
case 'I': // Signed 16 bit constant
// If this fails, the parent routine will give an error
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if (isInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'J': // integer zero
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getZExtValue();
if (Val == 0) {
Result = DAG.getTargetConstant(0, Type);
break;
}
}
return;
case 'K': // unsigned 16 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
uint64_t Val = (uint64_t)C->getZExtValue();
if (isUInt<16>(Val)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'L': // signed 32 bit immediate where lower 16 bits are 0
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)){
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'N': // immediate in the range of -65535 to -1 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val >= -65535) && (Val <= -1)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'O': // signed 15 bit immediate
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((isInt<15>(Val))) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
case 'P': // immediate in the range of 1 to 65535 (inclusive)
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
EVT Type = Op.getValueType();
int64_t Val = C->getSExtValue();
if ((Val <= 65535) && (Val >= 1)) {
Result = DAG.getTargetConstant(Val, Type);
break;
}
}
return;
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
bool
MipsTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const {
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (!AM.HasBaseReg) // allow "r+i".
break;
return false; // disallow "r+r" or "r+r+i".
default:
return false;
}
return true;
}
bool
MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Mips target isn't yet aware of offsets.
return false;
}
EVT MipsTargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
if (Subtarget->hasMips64())
return MVT::i64;
return MVT::i32;
}
bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (VT != MVT::f32 && VT != MVT::f64)
return false;
if (Imm.isNegZero())
return false;
return Imm.isZero();
}
unsigned MipsTargetLowering::getJumpTableEncoding() const {
if (IsN64)
return MachineJumpTableInfo::EK_GPRel64BlockAddress;
return TargetLowering::getJumpTableEncoding();
}
MipsTargetLowering::MipsCC::MipsCC(CallingConv::ID CallConv, bool IsVarArg,
bool IsO32, CCState &Info) : CCInfo(Info) {
UseRegsForByval = true;
if (IsO32) {
RegSize = 4;
NumIntArgRegs = array_lengthof(O32IntRegs);
ReservedArgArea = 16;
IntArgRegs = ShadowRegs = O32IntRegs;
FixedFn = VarFn = CC_MipsO32;
} else {
RegSize = 8;
NumIntArgRegs = array_lengthof(Mips64IntRegs);
ReservedArgArea = 0;
IntArgRegs = Mips64IntRegs;
ShadowRegs = Mips64DPRegs;
FixedFn = CC_MipsN;
VarFn = CC_MipsN_VarArg;
}
if (CallConv == CallingConv::Fast) {
assert(!IsVarArg);
UseRegsForByval = false;
ReservedArgArea = 0;
FixedFn = VarFn = CC_Mips_FastCC;
}
// Pre-allocate reserved argument area.
CCInfo.AllocateStack(ReservedArgArea, 1);
}
void MipsTargetLowering::MipsCC::
analyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Args) {
unsigned NumOpnds = Args.size();
for (unsigned I = 0; I != NumOpnds; ++I) {
MVT ArgVT = Args[I].VT;
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
bool R;
if (ArgFlags.isByVal()) {
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
continue;
}
if (Args[I].IsFixed)
R = FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
else
R = VarFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo);
if (R) {
#ifndef NDEBUG
dbgs() << "Call operand #" << I << " has unhandled type "
<< EVT(ArgVT).getEVTString();
#endif
llvm_unreachable(0);
}
}
}
void MipsTargetLowering::MipsCC::
analyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Args) {
unsigned NumArgs = Args.size();
for (unsigned I = 0; I != NumArgs; ++I) {
MVT ArgVT = Args[I].VT;
ISD::ArgFlagsTy ArgFlags = Args[I].Flags;
if (ArgFlags.isByVal()) {
handleByValArg(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags);
continue;
}
if (!FixedFn(I, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo))
continue;
#ifndef NDEBUG
dbgs() << "Formal Arg #" << I << " has unhandled type "
<< EVT(ArgVT).getEVTString();
#endif
llvm_unreachable(0);
}
}
void
MipsTargetLowering::MipsCC::handleByValArg(unsigned ValNo, MVT ValVT,
MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags) {
assert(ArgFlags.getByValSize() && "Byval argument's size shouldn't be 0.");
struct ByValArgInfo ByVal;
unsigned ByValSize = RoundUpToAlignment(ArgFlags.getByValSize(), RegSize);
unsigned Align = std::min(std::max(ArgFlags.getByValAlign(), RegSize),
RegSize * 2);
if (UseRegsForByval)
allocateRegs(ByVal, ByValSize, Align);
// Allocate space on caller's stack.
ByVal.Address = CCInfo.AllocateStack(ByValSize - RegSize * ByVal.NumRegs,
Align);
CCInfo.addLoc(CCValAssign::getMem(ValNo, ValVT, ByVal.Address, LocVT,
LocInfo));
ByValArgs.push_back(ByVal);
}
void MipsTargetLowering::MipsCC::allocateRegs(ByValArgInfo &ByVal,
unsigned ByValSize,
unsigned Align) {
assert(!(ByValSize % RegSize) && !(Align % RegSize) &&
"Byval argument's size and alignment should be a multiple of"
"RegSize.");
ByVal.FirstIdx = CCInfo.getFirstUnallocated(IntArgRegs, NumIntArgRegs);
// If Align > RegSize, the first arg register must be even.
if ((Align > RegSize) && (ByVal.FirstIdx % 2)) {
CCInfo.AllocateReg(IntArgRegs[ByVal.FirstIdx], ShadowRegs[ByVal.FirstIdx]);
++ByVal.FirstIdx;
}
// Mark the registers allocated.
for (unsigned I = ByVal.FirstIdx; ByValSize && (I < NumIntArgRegs);
ByValSize -= RegSize, ++I, ++ByVal.NumRegs)
CCInfo.AllocateReg(IntArgRegs[I], ShadowRegs[I]);
}
void MipsTargetLowering::
copyByValRegs(SDValue Chain, DebugLoc DL, std::vector<SDValue> &OutChains,
SelectionDAG &DAG, const ISD::ArgFlagsTy &Flags,
SmallVectorImpl<SDValue> &InVals, const Argument *FuncArg,
const MipsCC &CC, const ByValArgInfo &ByVal) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
unsigned RegAreaSize = ByVal.NumRegs * CC.regSize();
unsigned FrameObjSize = std::max(Flags.getByValSize(), RegAreaSize);
int FrameObjOffset;
if (RegAreaSize)
FrameObjOffset = (int)CC.reservedArgArea() -
(int)((CC.numIntArgRegs() - ByVal.FirstIdx) * CC.regSize());
else
FrameObjOffset = ByVal.Address;
// Create frame object.
EVT PtrTy = getPointerTy();
int FI = MFI->CreateFixedObject(FrameObjSize, FrameObjOffset, true);
SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
InVals.push_back(FIN);
if (!ByVal.NumRegs)
return;
// Copy arg registers.
MVT RegTy = MVT::getIntegerVT(CC.regSize() * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
for (unsigned I = 0; I < ByVal.NumRegs; ++I) {
unsigned ArgReg = CC.intArgRegs()[ByVal.FirstIdx + I];
unsigned VReg = AddLiveIn(MF, ArgReg, RC);
unsigned Offset = I * CC.regSize();
SDValue StorePtr = DAG.getNode(ISD::ADD, DL, PtrTy, FIN,
DAG.getConstant(Offset, PtrTy));
SDValue Store = DAG.getStore(Chain, DL, DAG.getRegister(VReg, RegTy),
StorePtr, MachinePointerInfo(FuncArg, Offset),
false, false, 0);
OutChains.push_back(Store);
}
}
// Copy byVal arg to registers and stack.
void MipsTargetLowering::
passByValArg(SDValue Chain, DebugLoc DL,
SmallVector<std::pair<unsigned, SDValue>, 16> &RegsToPass,
SmallVector<SDValue, 8> &MemOpChains, SDValue StackPtr,
MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg,
const MipsCC &CC, const ByValArgInfo &ByVal,
const ISD::ArgFlagsTy &Flags, bool isLittle) const {
unsigned ByValSize = Flags.getByValSize();
unsigned Offset = 0; // Offset in # of bytes from the beginning of struct.
unsigned RegSize = CC.regSize();
unsigned Alignment = std::min(Flags.getByValAlign(), RegSize);
EVT PtrTy = getPointerTy(), RegTy = MVT::getIntegerVT(RegSize * 8);
if (ByVal.NumRegs) {
const uint16_t *ArgRegs = CC.intArgRegs();
bool LeftoverBytes = (ByVal.NumRegs * RegSize > ByValSize);
unsigned I = 0;
// Copy words to registers.
for (; I < ByVal.NumRegs - LeftoverBytes; ++I, Offset += RegSize) {
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue LoadVal = DAG.getLoad(RegTy, DL, Chain, LoadPtr,
MachinePointerInfo(), false, false, false,
Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
RegsToPass.push_back(std::make_pair(ArgReg, LoadVal));
}
// Return if the struct has been fully copied.
if (ByValSize == Offset)
return;
// Copy the remainder of the byval argument with sub-word loads and shifts.
if (LeftoverBytes) {
assert((ByValSize > Offset) && (ByValSize < Offset + RegSize) &&
"Size of the remainder should be smaller than RegSize.");
SDValue Val;
for (unsigned LoadSize = RegSize / 2, TotalSizeLoaded = 0;
Offset < ByValSize; LoadSize /= 2) {
unsigned RemSize = ByValSize - Offset;
if (RemSize < LoadSize)
continue;
// Load subword.
SDValue LoadPtr = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue LoadVal =
DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegTy, Chain, LoadPtr,
MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8),
false, false, Alignment);
MemOpChains.push_back(LoadVal.getValue(1));
// Shift the loaded value.
unsigned Shamt;
if (isLittle)
Shamt = TotalSizeLoaded;
else
Shamt = (RegSize - (TotalSizeLoaded + LoadSize)) * 8;
SDValue Shift = DAG.getNode(ISD::SHL, DL, RegTy, LoadVal,
DAG.getConstant(Shamt, MVT::i32));
if (Val.getNode())
Val = DAG.getNode(ISD::OR, DL, RegTy, Val, Shift);
else
Val = Shift;
Offset += LoadSize;
TotalSizeLoaded += LoadSize;
Alignment = std::min(Alignment, LoadSize);
}
unsigned ArgReg = ArgRegs[ByVal.FirstIdx + I];
RegsToPass.push_back(std::make_pair(ArgReg, Val));
return;
}
}
// Copy remainder of byval arg to it with memcpy.
unsigned MemCpySize = ByValSize - Offset;
SDValue Src = DAG.getNode(ISD::ADD, DL, PtrTy, Arg,
DAG.getConstant(Offset, PtrTy));
SDValue Dst = DAG.getNode(ISD::ADD, DL, PtrTy, StackPtr,
DAG.getIntPtrConstant(ByVal.Address));
Chain = DAG.getMemcpy(Chain, DL, Dst, Src,
DAG.getConstant(MemCpySize, PtrTy), Alignment,
/*isVolatile=*/false, /*AlwaysInline=*/false,
MachinePointerInfo(0), MachinePointerInfo(0));
MemOpChains.push_back(Chain);
}
void
MipsTargetLowering::writeVarArgRegs(std::vector<SDValue> &OutChains,
const MipsCC &CC, SDValue Chain,
DebugLoc DL, SelectionDAG &DAG) const {
unsigned NumRegs = CC.numIntArgRegs();
const uint16_t *ArgRegs = CC.intArgRegs();
const CCState &CCInfo = CC.getCCInfo();
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumRegs);
unsigned RegSize = CC.regSize();
MVT RegTy = MVT::getIntegerVT(RegSize * 8);
const TargetRegisterClass *RC = getRegClassFor(RegTy);
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
// Offset of the first variable argument from stack pointer.
int VaArgOffset;
if (NumRegs == Idx)
VaArgOffset = RoundUpToAlignment(CCInfo.getNextStackOffset(), RegSize);
else
VaArgOffset =
(int)CC.reservedArgArea() - (int)(RegSize * (NumRegs - Idx));
// Record the frame index of the first variable argument
// which is a value necessary to VASTART.
int FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
MipsFI->setVarArgsFrameIndex(FI);
// Copy the integer registers that have not been used for argument passing
// to the argument register save area. For O32, the save area is allocated
// in the caller's stack frame, while for N32/64, it is allocated in the
// callee's stack frame.
for (unsigned I = Idx; I < NumRegs; ++I, VaArgOffset += RegSize) {
unsigned Reg = AddLiveIn(MF, ArgRegs[I], RC);
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegTy);
FI = MFI->CreateFixedObject(RegSize, VaArgOffset, true);
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
MachinePointerInfo(), false, false, 0);
cast<StoreSDNode>(Store.getNode())->getMemOperand()->setValue(0);
OutChains.push_back(Store);
}
}