llvm-project/llvm/test/Transforms/InstCombine/logical-select.ll

638 lines
27 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt < %s -instcombine -S | FileCheck %s
define i32 @foo(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @foo(
; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
; CHECK-NEXT: ret i32 [[TMP1]]
;
%e = icmp slt i32 %a, %b
%f = sext i1 %e to i32
%g = and i32 %c, %f
%h = xor i32 %f, -1
%i = and i32 %d, %h
%j = or i32 %g, %i
ret i32 %j
}
define i32 @bar(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @bar(
; CHECK-NEXT: [[E:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[E]], i32 [[C:%.*]], i32 [[D:%.*]]
; CHECK-NEXT: ret i32 [[TMP1]]
;
%e = icmp slt i32 %a, %b
%f = sext i1 %e to i32
%g = and i32 %c, %f
%h = xor i32 %f, -1
%i = and i32 %d, %h
%j = or i32 %i, %g
ret i32 %j
}
define i32 @goo(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @goo(
; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
; CHECK-NEXT: ret i32 [[TMP1]]
;
%t0 = icmp slt i32 %a, %b
%iftmp.0.0 = select i1 %t0, i32 -1, i32 0
%t1 = and i32 %iftmp.0.0, %c
%not = xor i32 %iftmp.0.0, -1
%t2 = and i32 %not, %d
%t3 = or i32 %t1, %t2
ret i32 %t3
}
define i32 @poo(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @poo(
; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[T3:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
; CHECK-NEXT: ret i32 [[T3]]
;
%t0 = icmp slt i32 %a, %b
%iftmp.0.0 = select i1 %t0, i32 -1, i32 0
%t1 = and i32 %iftmp.0.0, %c
%iftmp = select i1 %t0, i32 0, i32 -1
%t2 = and i32 %iftmp, %d
%t3 = or i32 %t1, %t2
ret i32 %t3
}
; PR32791 - https://bugs.llvm.org//show_bug.cgi?id=32791
; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
define i32 @fold_inverted_icmp_preds(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_icmp_preds(
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 [[A]], [[B]]
; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 0, i32 [[D:%.*]]
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[OR]]
;
%cmp1 = icmp slt i32 %a, %b
%sel1 = select i1 %cmp1, i32 %c, i32 0
%cmp2 = icmp sge i32 %a, %b
%sel2 = select i1 %cmp2, i32 %d, i32 0
%or = or i32 %sel1, %sel2
ret i32 %or
}
; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
define i32 @fold_inverted_icmp_preds_reverse(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_icmp_preds_reverse(
; CHECK-NEXT: [[CMP1:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 0, i32 [[C:%.*]]
; CHECK-NEXT: [[CMP2:%.*]] = icmp slt i32 [[A]], [[B]]
; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[OR]]
;
%cmp1 = icmp slt i32 %a, %b
%sel1 = select i1 %cmp1, i32 0, i32 %c
%cmp2 = icmp sge i32 %a, %b
%sel2 = select i1 %cmp2, i32 0, i32 %d
%or = or i32 %sel1, %sel2
ret i32 %or
}
; TODO: Should fcmp have the same sort of predicate canonicalization as icmp?
define i32 @fold_inverted_fcmp_preds(float %a, float %b, i32 %c, i32 %d) {
; CHECK-LABEL: @fold_inverted_fcmp_preds(
; CHECK-NEXT: [[CMP1:%.*]] = fcmp olt float [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[SEL1:%.*]] = select i1 [[CMP1]], i32 [[C:%.*]], i32 0
; CHECK-NEXT: [[CMP2:%.*]] = fcmp uge float [[A]], [[B]]
; CHECK-NEXT: [[SEL2:%.*]] = select i1 [[CMP2]], i32 [[D:%.*]], i32 0
; CHECK-NEXT: [[OR:%.*]] = or i32 [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret i32 [[OR]]
;
%cmp1 = fcmp olt float %a, %b
%sel1 = select i1 %cmp1, i32 %c, i32 0
%cmp2 = fcmp uge float %a, %b
%sel2 = select i1 %cmp2, i32 %d, i32 0
%or = or i32 %sel1, %sel2
ret i32 %or
}
; The 2nd compare/select are canonicalized, so CSE and another round of instcombine or some other pass will fold this.
define <2 x i32> @fold_inverted_icmp_vector_preds(<2 x i32> %a, <2 x i32> %b, <2 x i32> %c, <2 x i32> %d) {
; CHECK-LABEL: @fold_inverted_icmp_vector_preds(
; CHECK-NEXT: [[CMP1:%.*]] = icmp eq <2 x i32> [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[SEL1:%.*]] = select <2 x i1> [[CMP1]], <2 x i32> zeroinitializer, <2 x i32> [[C:%.*]]
; CHECK-NEXT: [[CMP2:%.*]] = icmp eq <2 x i32> [[A]], [[B]]
; CHECK-NEXT: [[SEL2:%.*]] = select <2 x i1> [[CMP2]], <2 x i32> [[D:%.*]], <2 x i32> zeroinitializer
; CHECK-NEXT: [[OR:%.*]] = or <2 x i32> [[SEL1]], [[SEL2]]
; CHECK-NEXT: ret <2 x i32> [[OR]]
;
%cmp1 = icmp ne <2 x i32> %a, %b
%sel1 = select <2 x i1> %cmp1, <2 x i32> %c, <2 x i32> <i32 0, i32 0>
%cmp2 = icmp eq <2 x i32> %a, %b
%sel2 = select <2 x i1> %cmp2, <2 x i32> %d, <2 x i32> <i32 0, i32 0>
%or = or <2 x i32> %sel1, %sel2
ret <2 x i32> %or
}
define i32 @par(i32 %a, i32 %b, i32 %c, i32 %d) {
; CHECK-LABEL: @par(
; CHECK-NEXT: [[T0:%.*]] = icmp slt i32 [[A:%.*]], [[B:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[T0]], i32 [[C:%.*]], i32 [[D:%.*]]
; CHECK-NEXT: ret i32 [[TMP1]]
;
%t0 = icmp slt i32 %a, %b
%iftmp.1.0 = select i1 %t0, i32 -1, i32 0
%t1 = and i32 %iftmp.1.0, %c
%not = xor i32 %iftmp.1.0, -1
%t2 = and i32 %not, %d
%t3 = or i32 %t1, %t2
ret i32 %t3
}
; In the following tests (8 commutation variants), verify that a bitcast doesn't get
; in the way of a select transform. These bitcasts are common in SSE/AVX and possibly
; other vector code because of canonicalization to i64 elements for vectors.
; The fptosi instructions are included to avoid commutation canonicalization based on
; operator weight. Using another cast operator ensures that both operands of all logic
; ops are equally weighted, and this ensures that we're testing all commutation
; possibilities.
define <2 x i64> @bitcast_select_swap0(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap0(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %bc1, %sia
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %bc2, %sib
%or = or <2 x i64> %and1, %and2
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap1(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap1(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %bc1, %sia
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %bc2, %sib
%or = or <2 x i64> %and2, %and1
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap2(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap2(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %bc1, %sia
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %sib, %bc2
%or = or <2 x i64> %and1, %and2
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap3(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap3(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %bc1, %sia
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %sib, %bc2
%or = or <2 x i64> %and2, %and1
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap4(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap4(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %sia, %bc1
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %bc2, %sib
%or = or <2 x i64> %and1, %and2
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap5(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap5(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %sia, %bc1
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %bc2, %sib
%or = or <2 x i64> %and2, %and1
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap6(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap6(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %sia, %bc1
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %sib, %bc2
%or = or <2 x i64> %and1, %and2
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_swap7(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @bitcast_select_swap7(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <2 x i64> [[SIA]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <2 x i64> [[SIB]] to <4 x i32>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[CMP:%.*]], <4 x i32> [[TMP1]], <4 x i32> [[TMP2]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i32> [[TMP3]] to <2 x i64>
; CHECK-NEXT: ret <2 x i64> [[TMP4]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %sia, %bc1
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %sib, %bc2
%or = or <2 x i64> %and2, %and1
ret <2 x i64> %or
}
define <2 x i64> @bitcast_select_multi_uses(<4 x i1> %cmp, <2 x i64> %a, <2 x i64> %b) {
; CHECK-LABEL: @bitcast_select_multi_uses(
; CHECK-NEXT: [[SEXT:%.*]] = sext <4 x i1> [[CMP:%.*]] to <4 x i32>
; CHECK-NEXT: [[BC1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
; CHECK-NEXT: [[AND1:%.*]] = and <2 x i64> [[BC1]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = bitcast <4 x i32> [[SEXT]] to <2 x i64>
; CHECK-NEXT: [[BC2:%.*]] = xor <2 x i64> [[TMP1]], <i64 -1, i64 -1>
; CHECK-NEXT: [[AND2:%.*]] = and <2 x i64> [[BC2]], [[B:%.*]]
; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
; CHECK-NEXT: [[ADD:%.*]] = add <2 x i64> [[AND2]], [[BC2]]
; CHECK-NEXT: [[SUB:%.*]] = sub <2 x i64> [[OR]], [[ADD]]
; CHECK-NEXT: ret <2 x i64> [[SUB]]
;
%sext = sext <4 x i1> %cmp to <4 x i32>
%bc1 = bitcast <4 x i32> %sext to <2 x i64>
%and1 = and <2 x i64> %a, %bc1
%neg = xor <4 x i32> %sext, <i32 -1, i32 -1, i32 -1, i32 -1>
%bc2 = bitcast <4 x i32> %neg to <2 x i64>
%and2 = and <2 x i64> %b, %bc2
%or = or <2 x i64> %and2, %and1
%add = add <2 x i64> %and2, %bc2
%sub = sub <2 x i64> %or, %add
ret <2 x i64> %sub
}
define i1 @bools(i1 %a, i1 %b, i1 %c) {
; CHECK-LABEL: @bools(
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
; CHECK-NEXT: ret i1 [[TMP1]]
;
%not = xor i1 %c, -1
%and1 = and i1 %not, %a
%and2 = and i1 %c, %b
%or = or i1 %and1, %and2
ret i1 %or
}
; Form a select if we know we can get replace 2 simple logic ops.
define i1 @bools_multi_uses1(i1 %a, i1 %b, i1 %c) {
; CHECK-LABEL: @bools_multi_uses1(
; CHECK-NEXT: [[NOT:%.*]] = xor i1 [[C:%.*]], true
; CHECK-NEXT: [[AND1:%.*]] = and i1 [[NOT]], [[A:%.*]]
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C]], i1 [[B:%.*]], i1 [[A]]
; CHECK-NEXT: [[XOR:%.*]] = xor i1 [[TMP1]], [[AND1]]
; CHECK-NEXT: ret i1 [[XOR]]
;
%not = xor i1 %c, -1
%and1 = and i1 %not, %a
%and2 = and i1 %c, %b
%or = or i1 %and1, %and2
%xor = xor i1 %or, %and1
ret i1 %xor
}
; Don't replace a cheap logic op with a potentially expensive select
; unless we can also eliminate one of the other original ops.
define i1 @bools_multi_uses2(i1 %a, i1 %b, i1 %c) {
; CHECK-LABEL: @bools_multi_uses2(
; CHECK-NEXT: [[TMP1:%.*]] = select i1 [[C:%.*]], i1 [[B:%.*]], i1 [[A:%.*]]
; CHECK-NEXT: ret i1 [[TMP1]]
;
%not = xor i1 %c, -1
%and1 = and i1 %not, %a
%and2 = and i1 %c, %b
%or = or i1 %and1, %and2
%add = add i1 %and1, %and2
%and3 = and i1 %or, %add
ret i1 %and3
}
define <4 x i1> @vec_of_bools(<4 x i1> %a, <4 x i1> %b, <4 x i1> %c) {
; CHECK-LABEL: @vec_of_bools(
; CHECK-NEXT: [[TMP1:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[B:%.*]], <4 x i1> [[A:%.*]]
; CHECK-NEXT: ret <4 x i1> [[TMP1]]
;
%not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
%and1 = and <4 x i1> %not, %a
%and2 = and <4 x i1> %b, %c
%or = or <4 x i1> %and2, %and1
ret <4 x i1> %or
}
define i4 @vec_of_casted_bools(i4 %a, i4 %b, <4 x i1> %c) {
; CHECK-LABEL: @vec_of_casted_bools(
; CHECK-NEXT: [[TMP1:%.*]] = bitcast i4 [[A:%.*]] to <4 x i1>
; CHECK-NEXT: [[TMP2:%.*]] = bitcast i4 [[B:%.*]] to <4 x i1>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[C:%.*]], <4 x i1> [[TMP2]], <4 x i1> [[TMP1]]
; CHECK-NEXT: [[TMP4:%.*]] = bitcast <4 x i1> [[TMP3]] to i4
; CHECK-NEXT: ret i4 [[TMP4]]
;
%not = xor <4 x i1> %c, <i1 true, i1 true, i1 true, i1 true>
%bc1 = bitcast <4 x i1> %not to i4
%bc2 = bitcast <4 x i1> %c to i4
%and1 = and i4 %a, %bc1
%and2 = and i4 %bc2, %b
%or = or i4 %and1, %and2
ret i4 %or
}
; Inverted 'and' constants mean this is a select which is canonicalized to a shuffle.
define <4 x i32> @vec_sel_consts(<4 x i32> %a, <4 x i32> %b) {
; CHECK-LABEL: @vec_sel_consts(
; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]], <4 x i32> <i32 0, i32 5, i32 6, i32 3>
; CHECK-NEXT: ret <4 x i32> [[TMP1]]
;
%and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 -1>
%and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 -1, i32 0>
%or = or <4 x i32> %and1, %and2
ret <4 x i32> %or
}
define <3 x i129> @vec_sel_consts_weird(<3 x i129> %a, <3 x i129> %b) {
; CHECK-LABEL: @vec_sel_consts_weird(
; CHECK-NEXT: [[TMP1:%.*]] = shufflevector <3 x i129> [[A:%.*]], <3 x i129> [[B:%.*]], <3 x i32> <i32 0, i32 4, i32 2>
; CHECK-NEXT: ret <3 x i129> [[TMP1]]
;
%and1 = and <3 x i129> %a, <i129 -1, i129 0, i129 -1>
%and2 = and <3 x i129> %b, <i129 0, i129 -1, i129 0>
%or = or <3 x i129> %and2, %and1
ret <3 x i129> %or
}
; The mask elements must be inverted for this to be a select.
define <4 x i32> @vec_not_sel_consts(<4 x i32> %a, <4 x i32> %b) {
; CHECK-LABEL: @vec_not_sel_consts(
; CHECK-NEXT: [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 0, i32 0, i32 0>
; CHECK-NEXT: [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 -1>
; CHECK-NEXT: [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
; CHECK-NEXT: ret <4 x i32> [[OR]]
;
%and1 = and <4 x i32> %a, <i32 -1, i32 0, i32 0, i32 0>
%and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 -1>
%or = or <4 x i32> %and1, %and2
ret <4 x i32> %or
}
define <4 x i32> @vec_not_sel_consts_undef_elts(<4 x i32> %a, <4 x i32> %b) {
; CHECK-LABEL: @vec_not_sel_consts_undef_elts(
; CHECK-NEXT: [[AND1:%.*]] = and <4 x i32> [[A:%.*]], <i32 -1, i32 undef, i32 0, i32 0>
; CHECK-NEXT: [[AND2:%.*]] = and <4 x i32> [[B:%.*]], <i32 0, i32 -1, i32 0, i32 undef>
; CHECK-NEXT: [[OR:%.*]] = or <4 x i32> [[AND1]], [[AND2]]
; CHECK-NEXT: ret <4 x i32> [[OR]]
;
%and1 = and <4 x i32> %a, <i32 -1, i32 undef, i32 0, i32 0>
%and2 = and <4 x i32> %b, <i32 0, i32 -1, i32 0, i32 undef>
%or = or <4 x i32> %and1, %and2
ret <4 x i32> %or
}
; The inverted constants may be operands of xor instructions.
define <4 x i32> @vec_sel_xor(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
; CHECK-LABEL: @vec_sel_xor(
; CHECK-NEXT: [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 false, i1 true, i1 true, i1 true>
; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
; CHECK-NEXT: ret <4 x i32> [[TMP2]]
;
%mask = sext <4 x i1> %c to <4 x i32>
%mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
%not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
%and1 = and <4 x i32> %not_mask_flip1, %a
%and2 = and <4 x i32> %mask_flip1, %b
%or = or <4 x i32> %and1, %and2
ret <4 x i32> %or
}
; Allow the transform even if the mask values have multiple uses because
; there's still a net reduction of instructions from removing the and/and/or.
define <4 x i32> @vec_sel_xor_multi_use(<4 x i32> %a, <4 x i32> %b, <4 x i1> %c) {
; CHECK-LABEL: @vec_sel_xor_multi_use(
; CHECK-NEXT: [[TMP1:%.*]] = xor <4 x i1> [[C:%.*]], <i1 true, i1 false, i1 false, i1 false>
; CHECK-NEXT: [[MASK_FLIP1:%.*]] = sext <4 x i1> [[TMP1]] to <4 x i32>
; CHECK-NEXT: [[TMP2:%.*]] = xor <4 x i1> [[C]], <i1 false, i1 true, i1 true, i1 true>
; CHECK-NEXT: [[TMP3:%.*]] = select <4 x i1> [[TMP2]], <4 x i32> [[A:%.*]], <4 x i32> [[B:%.*]]
; CHECK-NEXT: [[ADD:%.*]] = add <4 x i32> [[TMP3]], [[MASK_FLIP1]]
; CHECK-NEXT: ret <4 x i32> [[ADD]]
;
%mask = sext <4 x i1> %c to <4 x i32>
%mask_flip1 = xor <4 x i32> %mask, <i32 -1, i32 0, i32 0, i32 0>
%not_mask_flip1 = xor <4 x i32> %mask, <i32 0, i32 -1, i32 -1, i32 -1>
%and1 = and <4 x i32> %not_mask_flip1, %a
%and2 = and <4 x i32> %mask_flip1, %b
%or = or <4 x i32> %and1, %and2
%add = add <4 x i32> %or, %mask_flip1
ret <4 x i32> %add
}
; The 'ashr' guarantees that we have a bitmask, so this is select with truncated condition.
define i32 @allSignBits(i32 %cond, i32 %tval, i32 %fval) {
; CHECK-LABEL: @allSignBits(
; CHECK-NEXT: [[TMP1:%.*]] = icmp slt i32 [[COND:%.*]], 0
; CHECK-NEXT: [[TMP2:%.*]] = select i1 [[TMP1]], i32 [[TVAL:%.*]], i32 [[FVAL:%.*]]
; CHECK-NEXT: ret i32 [[TMP2]]
;
%bitmask = ashr i32 %cond, 31
%not_bitmask = xor i32 %bitmask, -1
%a1 = and i32 %tval, %bitmask
%a2 = and i32 %not_bitmask, %fval
%sel = or i32 %a1, %a2
ret i32 %sel
}
define <4 x i8> @allSignBits_vec(<4 x i8> %cond, <4 x i8> %tval, <4 x i8> %fval) {
; CHECK-LABEL: @allSignBits_vec(
; CHECK-NEXT: [[TMP1:%.*]] = icmp sgt <4 x i8> [[COND:%.*]], <i8 -1, i8 -1, i8 -1, i8 -1>
; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i8> [[FVAL:%.*]], <4 x i8> [[TVAL:%.*]]
; CHECK-NEXT: ret <4 x i8> [[TMP2]]
;
%bitmask = ashr <4 x i8> %cond, <i8 7, i8 7, i8 7, i8 7>
%not_bitmask = xor <4 x i8> %bitmask, <i8 -1, i8 -1, i8 -1, i8 -1>
%a1 = and <4 x i8> %tval, %bitmask
%a2 = and <4 x i8> %fval, %not_bitmask
%sel = or <4 x i8> %a2, %a1
ret <4 x i8> %sel
}
; Negative test - make sure that bitcasts from FP do not cause a crash.
define <2 x i64> @fp_bitcast(<4 x i1> %cmp, <2 x double> %a, <2 x double> %b) {
; CHECK-LABEL: @fp_bitcast(
; CHECK-NEXT: [[SIA:%.*]] = fptosi <2 x double> [[A:%.*]] to <2 x i64>
; CHECK-NEXT: [[SIB:%.*]] = fptosi <2 x double> [[B:%.*]] to <2 x i64>
; CHECK-NEXT: [[BC1:%.*]] = bitcast <2 x double> [[A]] to <2 x i64>
; CHECK-NEXT: [[AND1:%.*]] = and <2 x i64> [[SIA]], [[BC1]]
; CHECK-NEXT: [[BC2:%.*]] = bitcast <2 x double> [[B]] to <2 x i64>
; CHECK-NEXT: [[AND2:%.*]] = and <2 x i64> [[SIB]], [[BC2]]
; CHECK-NEXT: [[OR:%.*]] = or <2 x i64> [[AND2]], [[AND1]]
; CHECK-NEXT: ret <2 x i64> [[OR]]
;
%sia = fptosi <2 x double> %a to <2 x i64>
%sib = fptosi <2 x double> %b to <2 x i64>
%bc1 = bitcast <2 x double> %a to <2 x i64>
%and1 = and <2 x i64> %sia, %bc1
%bc2 = bitcast <2 x double> %b to <2 x i64>
%and2 = and <2 x i64> %sib, %bc2
%or = or <2 x i64> %and2, %and1
ret <2 x i64> %or
}
define <4 x i32> @computesignbits_through_shuffles(<4 x float> %x, <4 x float> %y, <4 x float> %z) {
; CHECK-LABEL: @computesignbits_through_shuffles(
; CHECK-NEXT: [[CMP:%.*]] = fcmp ole <4 x float> [[X:%.*]], [[Y:%.*]]
; CHECK-NEXT: [[SEXT:%.*]] = sext <4 x i1> [[CMP]] to <4 x i32>
; CHECK-NEXT: [[S1:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
; CHECK-NEXT: [[S2:%.*]] = shufflevector <4 x i32> [[SEXT]], <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
; CHECK-NEXT: [[SHUF_OR1:%.*]] = or <4 x i32> [[S1]], [[S2]]
; CHECK-NEXT: [[S3:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
; CHECK-NEXT: [[S4:%.*]] = shufflevector <4 x i32> [[SHUF_OR1]], <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
; CHECK-NEXT: [[SHUF_OR2:%.*]] = or <4 x i32> [[S3]], [[S4]]
; CHECK-NEXT: [[TMP1:%.*]] = trunc <4 x i32> [[SHUF_OR2]] to <4 x i1>
; CHECK-NEXT: [[DOTV:%.*]] = select <4 x i1> [[TMP1]], <4 x float> [[Z:%.*]], <4 x float> [[X]]
; CHECK-NEXT: [[TMP2:%.*]] = bitcast <4 x float> [[DOTV]] to <4 x i32>
; CHECK-NEXT: ret <4 x i32> [[TMP2]]
;
%cmp = fcmp ole <4 x float> %x, %y
%sext = sext <4 x i1> %cmp to <4 x i32>
%s1 = shufflevector <4 x i32> %sext, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s2 = shufflevector <4 x i32> %sext, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%shuf_or1 = or <4 x i32> %s1, %s2
%s3 = shufflevector <4 x i32> %shuf_or1, <4 x i32> undef, <4 x i32> <i32 0, i32 0, i32 1, i32 1>
%s4 = shufflevector <4 x i32> %shuf_or1, <4 x i32> undef, <4 x i32> <i32 2, i32 2, i32 3, i32 3>
%shuf_or2 = or <4 x i32> %s3, %s4
%not_or2 = xor <4 x i32> %shuf_or2, <i32 -1, i32 -1, i32 -1, i32 -1>
%xbc = bitcast <4 x float> %x to <4 x i32>
%zbc = bitcast <4 x float> %z to <4 x i32>
%and1 = and <4 x i32> %not_or2, %xbc
%and2 = and <4 x i32> %shuf_or2, %zbc
%sel = or <4 x i32> %and1, %and2
ret <4 x i32> %sel
}
define <4 x i32> @computesignbits_through_two_input_shuffle(<4 x i32> %x, <4 x i32> %y, <4 x i1> %cond1, <4 x i1> %cond2) {
; CHECK-LABEL: @computesignbits_through_two_input_shuffle(
; CHECK-NEXT: [[SEXT1:%.*]] = sext <4 x i1> [[COND1:%.*]] to <4 x i32>
; CHECK-NEXT: [[SEXT2:%.*]] = sext <4 x i1> [[COND2:%.*]] to <4 x i32>
; CHECK-NEXT: [[COND:%.*]] = shufflevector <4 x i32> [[SEXT1]], <4 x i32> [[SEXT2]], <4 x i32> <i32 0, i32 2, i32 4, i32 6>
; CHECK-NEXT: [[TMP1:%.*]] = trunc <4 x i32> [[COND]] to <4 x i1>
; CHECK-NEXT: [[TMP2:%.*]] = select <4 x i1> [[TMP1]], <4 x i32> [[Y:%.*]], <4 x i32> [[X:%.*]]
; CHECK-NEXT: ret <4 x i32> [[TMP2]]
;
%sext1 = sext <4 x i1> %cond1 to <4 x i32>
%sext2 = sext <4 x i1> %cond2 to <4 x i32>
%cond = shufflevector <4 x i32> %sext1, <4 x i32> %sext2, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
%notcond = xor <4 x i32> %cond, <i32 -1, i32 -1, i32 -1, i32 -1>
%and1 = and <4 x i32> %notcond, %x
%and2 = and <4 x i32> %cond, %y
%sel = or <4 x i32> %and1, %and2
ret <4 x i32> %sel
}