llvm-project/clang/lib/Sema/SemaObjCProperty.cpp

2833 lines
119 KiB
C++

//===--- SemaObjCProperty.cpp - Semantic Analysis for ObjC @property ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for Objective C @property and
// @synthesize declarations.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaInternal.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/Initialization.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Grammar actions.
//===----------------------------------------------------------------------===//
/// getImpliedARCOwnership - Given a set of property attributes and a
/// type, infer an expected lifetime. The type's ownership qualification
/// is not considered.
///
/// Returns OCL_None if the attributes as stated do not imply an ownership.
/// Never returns OCL_Autoreleasing.
static Qualifiers::ObjCLifetime
getImpliedARCOwnership(ObjCPropertyAttribute::Kind attrs, QualType type) {
// retain, strong, copy, weak, and unsafe_unretained are only legal
// on properties of retainable pointer type.
if (attrs &
(ObjCPropertyAttribute::kind_retain | ObjCPropertyAttribute::kind_strong |
ObjCPropertyAttribute::kind_copy)) {
return Qualifiers::OCL_Strong;
} else if (attrs & ObjCPropertyAttribute::kind_weak) {
return Qualifiers::OCL_Weak;
} else if (attrs & ObjCPropertyAttribute::kind_unsafe_unretained) {
return Qualifiers::OCL_ExplicitNone;
}
// assign can appear on other types, so we have to check the
// property type.
if (attrs & ObjCPropertyAttribute::kind_assign &&
type->isObjCRetainableType()) {
return Qualifiers::OCL_ExplicitNone;
}
return Qualifiers::OCL_None;
}
/// Check the internal consistency of a property declaration with
/// an explicit ownership qualifier.
static void checkPropertyDeclWithOwnership(Sema &S,
ObjCPropertyDecl *property) {
if (property->isInvalidDecl()) return;
ObjCPropertyAttribute::Kind propertyKind = property->getPropertyAttributes();
Qualifiers::ObjCLifetime propertyLifetime
= property->getType().getObjCLifetime();
assert(propertyLifetime != Qualifiers::OCL_None);
Qualifiers::ObjCLifetime expectedLifetime
= getImpliedARCOwnership(propertyKind, property->getType());
if (!expectedLifetime) {
// We have a lifetime qualifier but no dominating property
// attribute. That's okay, but restore reasonable invariants by
// setting the property attribute according to the lifetime
// qualifier.
ObjCPropertyAttribute::Kind attr;
if (propertyLifetime == Qualifiers::OCL_Strong) {
attr = ObjCPropertyAttribute::kind_strong;
} else if (propertyLifetime == Qualifiers::OCL_Weak) {
attr = ObjCPropertyAttribute::kind_weak;
} else {
assert(propertyLifetime == Qualifiers::OCL_ExplicitNone);
attr = ObjCPropertyAttribute::kind_unsafe_unretained;
}
property->setPropertyAttributes(attr);
return;
}
if (propertyLifetime == expectedLifetime) return;
property->setInvalidDecl();
S.Diag(property->getLocation(),
diag::err_arc_inconsistent_property_ownership)
<< property->getDeclName()
<< expectedLifetime
<< propertyLifetime;
}
/// Check this Objective-C property against a property declared in the
/// given protocol.
static void
CheckPropertyAgainstProtocol(Sema &S, ObjCPropertyDecl *Prop,
ObjCProtocolDecl *Proto,
llvm::SmallPtrSetImpl<ObjCProtocolDecl *> &Known) {
// Have we seen this protocol before?
if (!Known.insert(Proto).second)
return;
// Look for a property with the same name.
DeclContext::lookup_result R = Proto->lookup(Prop->getDeclName());
for (unsigned I = 0, N = R.size(); I != N; ++I) {
if (ObjCPropertyDecl *ProtoProp = dyn_cast<ObjCPropertyDecl>(R[I])) {
S.DiagnosePropertyMismatch(Prop, ProtoProp, Proto->getIdentifier(), true);
return;
}
}
// Check this property against any protocols we inherit.
for (auto *P : Proto->protocols())
CheckPropertyAgainstProtocol(S, Prop, P, Known);
}
static unsigned deducePropertyOwnershipFromType(Sema &S, QualType T) {
// In GC mode, just look for the __weak qualifier.
if (S.getLangOpts().getGC() != LangOptions::NonGC) {
if (T.isObjCGCWeak())
return ObjCPropertyAttribute::kind_weak;
// In ARC/MRC, look for an explicit ownership qualifier.
// For some reason, this only applies to __weak.
} else if (auto ownership = T.getObjCLifetime()) {
switch (ownership) {
case Qualifiers::OCL_Weak:
return ObjCPropertyAttribute::kind_weak;
case Qualifiers::OCL_Strong:
return ObjCPropertyAttribute::kind_strong;
case Qualifiers::OCL_ExplicitNone:
return ObjCPropertyAttribute::kind_unsafe_unretained;
case Qualifiers::OCL_Autoreleasing:
case Qualifiers::OCL_None:
return 0;
}
llvm_unreachable("bad qualifier");
}
return 0;
}
static const unsigned OwnershipMask =
(ObjCPropertyAttribute::kind_assign | ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_copy | ObjCPropertyAttribute::kind_weak |
ObjCPropertyAttribute::kind_strong |
ObjCPropertyAttribute::kind_unsafe_unretained);
static unsigned getOwnershipRule(unsigned attr) {
unsigned result = attr & OwnershipMask;
// From an ownership perspective, assign and unsafe_unretained are
// identical; make sure one also implies the other.
if (result & (ObjCPropertyAttribute::kind_assign |
ObjCPropertyAttribute::kind_unsafe_unretained)) {
result |= ObjCPropertyAttribute::kind_assign |
ObjCPropertyAttribute::kind_unsafe_unretained;
}
return result;
}
Decl *Sema::ActOnProperty(Scope *S, SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
ObjCDeclSpec &ODS,
Selector GetterSel,
Selector SetterSel,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC) {
unsigned Attributes = ODS.getPropertyAttributes();
FD.D.setObjCWeakProperty((Attributes & ObjCPropertyAttribute::kind_weak) !=
0);
TypeSourceInfo *TSI = GetTypeForDeclarator(FD.D, S);
QualType T = TSI->getType();
if (!getOwnershipRule(Attributes)) {
Attributes |= deducePropertyOwnershipFromType(*this, T);
}
bool isReadWrite = ((Attributes & ObjCPropertyAttribute::kind_readwrite) ||
// default is readwrite!
!(Attributes & ObjCPropertyAttribute::kind_readonly));
// Proceed with constructing the ObjCPropertyDecls.
ObjCContainerDecl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
ObjCPropertyDecl *Res = nullptr;
if (ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
if (CDecl->IsClassExtension()) {
Res = HandlePropertyInClassExtension(S, AtLoc, LParenLoc,
FD,
GetterSel, ODS.getGetterNameLoc(),
SetterSel, ODS.getSetterNameLoc(),
isReadWrite, Attributes,
ODS.getPropertyAttributes(),
T, TSI, MethodImplKind);
if (!Res)
return nullptr;
}
}
if (!Res) {
Res = CreatePropertyDecl(S, ClassDecl, AtLoc, LParenLoc, FD,
GetterSel, ODS.getGetterNameLoc(), SetterSel,
ODS.getSetterNameLoc(), isReadWrite, Attributes,
ODS.getPropertyAttributes(), T, TSI,
MethodImplKind);
if (lexicalDC)
Res->setLexicalDeclContext(lexicalDC);
}
// Validate the attributes on the @property.
CheckObjCPropertyAttributes(Res, AtLoc, Attributes,
(isa<ObjCInterfaceDecl>(ClassDecl) ||
isa<ObjCProtocolDecl>(ClassDecl)));
// Check consistency if the type has explicit ownership qualification.
if (Res->getType().getObjCLifetime())
checkPropertyDeclWithOwnership(*this, Res);
llvm::SmallPtrSet<ObjCProtocolDecl *, 16> KnownProtos;
if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
// For a class, compare the property against a property in our superclass.
bool FoundInSuper = false;
ObjCInterfaceDecl *CurrentInterfaceDecl = IFace;
while (ObjCInterfaceDecl *Super = CurrentInterfaceDecl->getSuperClass()) {
DeclContext::lookup_result R = Super->lookup(Res->getDeclName());
for (unsigned I = 0, N = R.size(); I != N; ++I) {
if (ObjCPropertyDecl *SuperProp = dyn_cast<ObjCPropertyDecl>(R[I])) {
DiagnosePropertyMismatch(Res, SuperProp, Super->getIdentifier(), false);
FoundInSuper = true;
break;
}
}
if (FoundInSuper)
break;
else
CurrentInterfaceDecl = Super;
}
if (FoundInSuper) {
// Also compare the property against a property in our protocols.
for (auto *P : CurrentInterfaceDecl->protocols()) {
CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
}
} else {
// Slower path: look in all protocols we referenced.
for (auto *P : IFace->all_referenced_protocols()) {
CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
}
}
} else if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
// We don't check if class extension. Because properties in class extension
// are meant to override some of the attributes and checking has already done
// when property in class extension is constructed.
if (!Cat->IsClassExtension())
for (auto *P : Cat->protocols())
CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
} else {
ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(ClassDecl);
for (auto *P : Proto->protocols())
CheckPropertyAgainstProtocol(*this, Res, P, KnownProtos);
}
ActOnDocumentableDecl(Res);
return Res;
}
static ObjCPropertyAttribute::Kind
makePropertyAttributesAsWritten(unsigned Attributes) {
unsigned attributesAsWritten = 0;
if (Attributes & ObjCPropertyAttribute::kind_readonly)
attributesAsWritten |= ObjCPropertyAttribute::kind_readonly;
if (Attributes & ObjCPropertyAttribute::kind_readwrite)
attributesAsWritten |= ObjCPropertyAttribute::kind_readwrite;
if (Attributes & ObjCPropertyAttribute::kind_getter)
attributesAsWritten |= ObjCPropertyAttribute::kind_getter;
if (Attributes & ObjCPropertyAttribute::kind_setter)
attributesAsWritten |= ObjCPropertyAttribute::kind_setter;
if (Attributes & ObjCPropertyAttribute::kind_assign)
attributesAsWritten |= ObjCPropertyAttribute::kind_assign;
if (Attributes & ObjCPropertyAttribute::kind_retain)
attributesAsWritten |= ObjCPropertyAttribute::kind_retain;
if (Attributes & ObjCPropertyAttribute::kind_strong)
attributesAsWritten |= ObjCPropertyAttribute::kind_strong;
if (Attributes & ObjCPropertyAttribute::kind_weak)
attributesAsWritten |= ObjCPropertyAttribute::kind_weak;
if (Attributes & ObjCPropertyAttribute::kind_copy)
attributesAsWritten |= ObjCPropertyAttribute::kind_copy;
if (Attributes & ObjCPropertyAttribute::kind_unsafe_unretained)
attributesAsWritten |= ObjCPropertyAttribute::kind_unsafe_unretained;
if (Attributes & ObjCPropertyAttribute::kind_nonatomic)
attributesAsWritten |= ObjCPropertyAttribute::kind_nonatomic;
if (Attributes & ObjCPropertyAttribute::kind_atomic)
attributesAsWritten |= ObjCPropertyAttribute::kind_atomic;
if (Attributes & ObjCPropertyAttribute::kind_class)
attributesAsWritten |= ObjCPropertyAttribute::kind_class;
if (Attributes & ObjCPropertyAttribute::kind_direct)
attributesAsWritten |= ObjCPropertyAttribute::kind_direct;
return (ObjCPropertyAttribute::Kind)attributesAsWritten;
}
static bool LocPropertyAttribute( ASTContext &Context, const char *attrName,
SourceLocation LParenLoc, SourceLocation &Loc) {
if (LParenLoc.isMacroID())
return false;
SourceManager &SM = Context.getSourceManager();
std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(LParenLoc);
// Try to load the file buffer.
bool invalidTemp = false;
StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
if (invalidTemp)
return false;
const char *tokenBegin = file.data() + locInfo.second;
// Lex from the start of the given location.
Lexer lexer(SM.getLocForStartOfFile(locInfo.first),
Context.getLangOpts(),
file.begin(), tokenBegin, file.end());
Token Tok;
do {
lexer.LexFromRawLexer(Tok);
if (Tok.is(tok::raw_identifier) && Tok.getRawIdentifier() == attrName) {
Loc = Tok.getLocation();
return true;
}
} while (Tok.isNot(tok::r_paren));
return false;
}
/// Check for a mismatch in the atomicity of the given properties.
static void checkAtomicPropertyMismatch(Sema &S,
ObjCPropertyDecl *OldProperty,
ObjCPropertyDecl *NewProperty,
bool PropagateAtomicity) {
// If the atomicity of both matches, we're done.
bool OldIsAtomic = (OldProperty->getPropertyAttributes() &
ObjCPropertyAttribute::kind_nonatomic) == 0;
bool NewIsAtomic = (NewProperty->getPropertyAttributes() &
ObjCPropertyAttribute::kind_nonatomic) == 0;
if (OldIsAtomic == NewIsAtomic) return;
// Determine whether the given property is readonly and implicitly
// atomic.
auto isImplicitlyReadonlyAtomic = [](ObjCPropertyDecl *Property) -> bool {
// Is it readonly?
auto Attrs = Property->getPropertyAttributes();
if ((Attrs & ObjCPropertyAttribute::kind_readonly) == 0)
return false;
// Is it nonatomic?
if (Attrs & ObjCPropertyAttribute::kind_nonatomic)
return false;
// Was 'atomic' specified directly?
if (Property->getPropertyAttributesAsWritten() &
ObjCPropertyAttribute::kind_atomic)
return false;
return true;
};
// If we're allowed to propagate atomicity, and the new property did
// not specify atomicity at all, propagate.
const unsigned AtomicityMask = (ObjCPropertyAttribute::kind_atomic |
ObjCPropertyAttribute::kind_nonatomic);
if (PropagateAtomicity &&
((NewProperty->getPropertyAttributesAsWritten() & AtomicityMask) == 0)) {
unsigned Attrs = NewProperty->getPropertyAttributes();
Attrs = Attrs & ~AtomicityMask;
if (OldIsAtomic)
Attrs |= ObjCPropertyAttribute::kind_atomic;
else
Attrs |= ObjCPropertyAttribute::kind_nonatomic;
NewProperty->overwritePropertyAttributes(Attrs);
return;
}
// One of the properties is atomic; if it's a readonly property, and
// 'atomic' wasn't explicitly specified, we're okay.
if ((OldIsAtomic && isImplicitlyReadonlyAtomic(OldProperty)) ||
(NewIsAtomic && isImplicitlyReadonlyAtomic(NewProperty)))
return;
// Diagnose the conflict.
const IdentifierInfo *OldContextName;
auto *OldDC = OldProperty->getDeclContext();
if (auto Category = dyn_cast<ObjCCategoryDecl>(OldDC))
OldContextName = Category->getClassInterface()->getIdentifier();
else
OldContextName = cast<ObjCContainerDecl>(OldDC)->getIdentifier();
S.Diag(NewProperty->getLocation(), diag::warn_property_attribute)
<< NewProperty->getDeclName() << "atomic"
<< OldContextName;
S.Diag(OldProperty->getLocation(), diag::note_property_declare);
}
ObjCPropertyDecl *
Sema::HandlePropertyInClassExtension(Scope *S,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
SourceLocation GetterNameLoc,
Selector SetterSel,
SourceLocation SetterNameLoc,
const bool isReadWrite,
unsigned &Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TSI,
tok::ObjCKeywordKind MethodImplKind) {
ObjCCategoryDecl *CDecl = cast<ObjCCategoryDecl>(CurContext);
// Diagnose if this property is already in continuation class.
DeclContext *DC = CurContext;
IdentifierInfo *PropertyId = FD.D.getIdentifier();
ObjCInterfaceDecl *CCPrimary = CDecl->getClassInterface();
// We need to look in the @interface to see if the @property was
// already declared.
if (!CCPrimary) {
Diag(CDecl->getLocation(), diag::err_continuation_class);
return nullptr;
}
bool isClassProperty =
(AttributesAsWritten & ObjCPropertyAttribute::kind_class) ||
(Attributes & ObjCPropertyAttribute::kind_class);
// Find the property in the extended class's primary class or
// extensions.
ObjCPropertyDecl *PIDecl = CCPrimary->FindPropertyVisibleInPrimaryClass(
PropertyId, ObjCPropertyDecl::getQueryKind(isClassProperty));
// If we found a property in an extension, complain.
if (PIDecl && isa<ObjCCategoryDecl>(PIDecl->getDeclContext())) {
Diag(AtLoc, diag::err_duplicate_property);
Diag(PIDecl->getLocation(), diag::note_property_declare);
return nullptr;
}
// Check for consistency with the previous declaration, if there is one.
if (PIDecl) {
// A readonly property declared in the primary class can be refined
// by adding a readwrite property within an extension.
// Anything else is an error.
if (!(PIDecl->isReadOnly() && isReadWrite)) {
// Tailor the diagnostics for the common case where a readwrite
// property is declared both in the @interface and the continuation.
// This is a common error where the user often intended the original
// declaration to be readonly.
unsigned diag =
(Attributes & ObjCPropertyAttribute::kind_readwrite) &&
(PIDecl->getPropertyAttributesAsWritten() &
ObjCPropertyAttribute::kind_readwrite)
? diag::err_use_continuation_class_redeclaration_readwrite
: diag::err_use_continuation_class;
Diag(AtLoc, diag)
<< CCPrimary->getDeclName();
Diag(PIDecl->getLocation(), diag::note_property_declare);
return nullptr;
}
// Check for consistency of getters.
if (PIDecl->getGetterName() != GetterSel) {
// If the getter was written explicitly, complain.
if (AttributesAsWritten & ObjCPropertyAttribute::kind_getter) {
Diag(AtLoc, diag::warn_property_redecl_getter_mismatch)
<< PIDecl->getGetterName() << GetterSel;
Diag(PIDecl->getLocation(), diag::note_property_declare);
}
// Always adopt the getter from the original declaration.
GetterSel = PIDecl->getGetterName();
Attributes |= ObjCPropertyAttribute::kind_getter;
}
// Check consistency of ownership.
unsigned ExistingOwnership
= getOwnershipRule(PIDecl->getPropertyAttributes());
unsigned NewOwnership = getOwnershipRule(Attributes);
if (ExistingOwnership && NewOwnership != ExistingOwnership) {
// If the ownership was written explicitly, complain.
if (getOwnershipRule(AttributesAsWritten)) {
Diag(AtLoc, diag::warn_property_attr_mismatch);
Diag(PIDecl->getLocation(), diag::note_property_declare);
}
// Take the ownership from the original property.
Attributes = (Attributes & ~OwnershipMask) | ExistingOwnership;
}
// If the redeclaration is 'weak' but the original property is not,
if ((Attributes & ObjCPropertyAttribute::kind_weak) &&
!(PIDecl->getPropertyAttributesAsWritten() &
ObjCPropertyAttribute::kind_weak) &&
PIDecl->getType()->getAs<ObjCObjectPointerType>() &&
PIDecl->getType().getObjCLifetime() == Qualifiers::OCL_None) {
Diag(AtLoc, diag::warn_property_implicitly_mismatched);
Diag(PIDecl->getLocation(), diag::note_property_declare);
}
}
// Create a new ObjCPropertyDecl with the DeclContext being
// the class extension.
ObjCPropertyDecl *PDecl = CreatePropertyDecl(S, CDecl, AtLoc, LParenLoc,
FD, GetterSel, GetterNameLoc,
SetterSel, SetterNameLoc,
isReadWrite,
Attributes, AttributesAsWritten,
T, TSI, MethodImplKind, DC);
// If there was no declaration of a property with the same name in
// the primary class, we're done.
if (!PIDecl) {
ProcessPropertyDecl(PDecl);
return PDecl;
}
if (!Context.hasSameType(PIDecl->getType(), PDecl->getType())) {
bool IncompatibleObjC = false;
QualType ConvertedType;
// Relax the strict type matching for property type in continuation class.
// Allow property object type of continuation class to be different as long
// as it narrows the object type in its primary class property. Note that
// this conversion is safe only because the wider type is for a 'readonly'
// property in primary class and 'narrowed' type for a 'readwrite' property
// in continuation class.
QualType PrimaryClassPropertyT = Context.getCanonicalType(PIDecl->getType());
QualType ClassExtPropertyT = Context.getCanonicalType(PDecl->getType());
if (!isa<ObjCObjectPointerType>(PrimaryClassPropertyT) ||
!isa<ObjCObjectPointerType>(ClassExtPropertyT) ||
(!isObjCPointerConversion(ClassExtPropertyT, PrimaryClassPropertyT,
ConvertedType, IncompatibleObjC))
|| IncompatibleObjC) {
Diag(AtLoc,
diag::err_type_mismatch_continuation_class) << PDecl->getType();
Diag(PIDecl->getLocation(), diag::note_property_declare);
return nullptr;
}
}
// Check that atomicity of property in class extension matches the previous
// declaration.
checkAtomicPropertyMismatch(*this, PIDecl, PDecl, true);
// Make sure getter/setter are appropriately synthesized.
ProcessPropertyDecl(PDecl);
return PDecl;
}
ObjCPropertyDecl *Sema::CreatePropertyDecl(Scope *S,
ObjCContainerDecl *CDecl,
SourceLocation AtLoc,
SourceLocation LParenLoc,
FieldDeclarator &FD,
Selector GetterSel,
SourceLocation GetterNameLoc,
Selector SetterSel,
SourceLocation SetterNameLoc,
const bool isReadWrite,
const unsigned Attributes,
const unsigned AttributesAsWritten,
QualType T,
TypeSourceInfo *TInfo,
tok::ObjCKeywordKind MethodImplKind,
DeclContext *lexicalDC){
IdentifierInfo *PropertyId = FD.D.getIdentifier();
// Property defaults to 'assign' if it is readwrite, unless this is ARC
// and the type is retainable.
bool isAssign;
if (Attributes & (ObjCPropertyAttribute::kind_assign |
ObjCPropertyAttribute::kind_unsafe_unretained)) {
isAssign = true;
} else if (getOwnershipRule(Attributes) || !isReadWrite) {
isAssign = false;
} else {
isAssign = (!getLangOpts().ObjCAutoRefCount ||
!T->isObjCRetainableType());
}
// Issue a warning if property is 'assign' as default and its
// object, which is gc'able conforms to NSCopying protocol
if (getLangOpts().getGC() != LangOptions::NonGC && isAssign &&
!(Attributes & ObjCPropertyAttribute::kind_assign)) {
if (const ObjCObjectPointerType *ObjPtrTy =
T->getAs<ObjCObjectPointerType>()) {
ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface();
if (IDecl)
if (ObjCProtocolDecl* PNSCopying =
LookupProtocol(&Context.Idents.get("NSCopying"), AtLoc))
if (IDecl->ClassImplementsProtocol(PNSCopying, true))
Diag(AtLoc, diag::warn_implements_nscopying) << PropertyId;
}
}
if (T->isObjCObjectType()) {
SourceLocation StarLoc = TInfo->getTypeLoc().getEndLoc();
StarLoc = getLocForEndOfToken(StarLoc);
Diag(FD.D.getIdentifierLoc(), diag::err_statically_allocated_object)
<< FixItHint::CreateInsertion(StarLoc, "*");
T = Context.getObjCObjectPointerType(T);
SourceLocation TLoc = TInfo->getTypeLoc().getBeginLoc();
TInfo = Context.getTrivialTypeSourceInfo(T, TLoc);
}
DeclContext *DC = CDecl;
ObjCPropertyDecl *PDecl = ObjCPropertyDecl::Create(Context, DC,
FD.D.getIdentifierLoc(),
PropertyId, AtLoc,
LParenLoc, T, TInfo);
bool isClassProperty =
(AttributesAsWritten & ObjCPropertyAttribute::kind_class) ||
(Attributes & ObjCPropertyAttribute::kind_class);
// Class property and instance property can have the same name.
if (ObjCPropertyDecl *prevDecl = ObjCPropertyDecl::findPropertyDecl(
DC, PropertyId, ObjCPropertyDecl::getQueryKind(isClassProperty))) {
Diag(PDecl->getLocation(), diag::err_duplicate_property);
Diag(prevDecl->getLocation(), diag::note_property_declare);
PDecl->setInvalidDecl();
}
else {
DC->addDecl(PDecl);
if (lexicalDC)
PDecl->setLexicalDeclContext(lexicalDC);
}
if (T->isArrayType() || T->isFunctionType()) {
Diag(AtLoc, diag::err_property_type) << T;
PDecl->setInvalidDecl();
}
ProcessDeclAttributes(S, PDecl, FD.D);
// Regardless of setter/getter attribute, we save the default getter/setter
// selector names in anticipation of declaration of setter/getter methods.
PDecl->setGetterName(GetterSel, GetterNameLoc);
PDecl->setSetterName(SetterSel, SetterNameLoc);
PDecl->setPropertyAttributesAsWritten(
makePropertyAttributesAsWritten(AttributesAsWritten));
if (Attributes & ObjCPropertyAttribute::kind_readonly)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_readonly);
if (Attributes & ObjCPropertyAttribute::kind_getter)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_getter);
if (Attributes & ObjCPropertyAttribute::kind_setter)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_setter);
if (isReadWrite)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_readwrite);
if (Attributes & ObjCPropertyAttribute::kind_retain)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_retain);
if (Attributes & ObjCPropertyAttribute::kind_strong)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_strong);
if (Attributes & ObjCPropertyAttribute::kind_weak)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_weak);
if (Attributes & ObjCPropertyAttribute::kind_copy)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_copy);
if (Attributes & ObjCPropertyAttribute::kind_unsafe_unretained)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_unsafe_unretained);
if (isAssign)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_assign);
// In the semantic attributes, one of nonatomic or atomic is always set.
if (Attributes & ObjCPropertyAttribute::kind_nonatomic)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_nonatomic);
else
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_atomic);
// 'unsafe_unretained' is alias for 'assign'.
if (Attributes & ObjCPropertyAttribute::kind_unsafe_unretained)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_assign);
if (isAssign)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_unsafe_unretained);
if (MethodImplKind == tok::objc_required)
PDecl->setPropertyImplementation(ObjCPropertyDecl::Required);
else if (MethodImplKind == tok::objc_optional)
PDecl->setPropertyImplementation(ObjCPropertyDecl::Optional);
if (Attributes & ObjCPropertyAttribute::kind_nullability)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_nullability);
if (Attributes & ObjCPropertyAttribute::kind_null_resettable)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_null_resettable);
if (Attributes & ObjCPropertyAttribute::kind_class)
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_class);
if ((Attributes & ObjCPropertyAttribute::kind_direct) ||
CDecl->hasAttr<ObjCDirectMembersAttr>()) {
if (isa<ObjCProtocolDecl>(CDecl)) {
Diag(PDecl->getLocation(), diag::err_objc_direct_on_protocol) << true;
} else if (getLangOpts().ObjCRuntime.allowsDirectDispatch()) {
PDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_direct);
} else {
Diag(PDecl->getLocation(), diag::warn_objc_direct_property_ignored)
<< PDecl->getDeclName();
}
}
return PDecl;
}
static void checkARCPropertyImpl(Sema &S, SourceLocation propertyImplLoc,
ObjCPropertyDecl *property,
ObjCIvarDecl *ivar) {
if (property->isInvalidDecl() || ivar->isInvalidDecl()) return;
QualType ivarType = ivar->getType();
Qualifiers::ObjCLifetime ivarLifetime = ivarType.getObjCLifetime();
// The lifetime implied by the property's attributes.
Qualifiers::ObjCLifetime propertyLifetime =
getImpliedARCOwnership(property->getPropertyAttributes(),
property->getType());
// We're fine if they match.
if (propertyLifetime == ivarLifetime) return;
// None isn't a valid lifetime for an object ivar in ARC, and
// __autoreleasing is never valid; don't diagnose twice.
if ((ivarLifetime == Qualifiers::OCL_None &&
S.getLangOpts().ObjCAutoRefCount) ||
ivarLifetime == Qualifiers::OCL_Autoreleasing)
return;
// If the ivar is private, and it's implicitly __unsafe_unretained
// because of its type, then pretend it was actually implicitly
// __strong. This is only sound because we're processing the
// property implementation before parsing any method bodies.
if (ivarLifetime == Qualifiers::OCL_ExplicitNone &&
propertyLifetime == Qualifiers::OCL_Strong &&
ivar->getAccessControl() == ObjCIvarDecl::Private) {
SplitQualType split = ivarType.split();
if (split.Quals.hasObjCLifetime()) {
assert(ivarType->isObjCARCImplicitlyUnretainedType());
split.Quals.setObjCLifetime(Qualifiers::OCL_Strong);
ivarType = S.Context.getQualifiedType(split);
ivar->setType(ivarType);
return;
}
}
switch (propertyLifetime) {
case Qualifiers::OCL_Strong:
S.Diag(ivar->getLocation(), diag::err_arc_strong_property_ownership)
<< property->getDeclName()
<< ivar->getDeclName()
<< ivarLifetime;
break;
case Qualifiers::OCL_Weak:
S.Diag(ivar->getLocation(), diag::err_weak_property)
<< property->getDeclName()
<< ivar->getDeclName();
break;
case Qualifiers::OCL_ExplicitNone:
S.Diag(ivar->getLocation(), diag::err_arc_assign_property_ownership)
<< property->getDeclName() << ivar->getDeclName()
<< ((property->getPropertyAttributesAsWritten() &
ObjCPropertyAttribute::kind_assign) != 0);
break;
case Qualifiers::OCL_Autoreleasing:
llvm_unreachable("properties cannot be autoreleasing");
case Qualifiers::OCL_None:
// Any other property should be ignored.
return;
}
S.Diag(property->getLocation(), diag::note_property_declare);
if (propertyImplLoc.isValid())
S.Diag(propertyImplLoc, diag::note_property_synthesize);
}
/// setImpliedPropertyAttributeForReadOnlyProperty -
/// This routine evaludates life-time attributes for a 'readonly'
/// property with no known lifetime of its own, using backing
/// 'ivar's attribute, if any. If no backing 'ivar', property's
/// life-time is assumed 'strong'.
static void setImpliedPropertyAttributeForReadOnlyProperty(
ObjCPropertyDecl *property, ObjCIvarDecl *ivar) {
Qualifiers::ObjCLifetime propertyLifetime =
getImpliedARCOwnership(property->getPropertyAttributes(),
property->getType());
if (propertyLifetime != Qualifiers::OCL_None)
return;
if (!ivar) {
// if no backing ivar, make property 'strong'.
property->setPropertyAttributes(ObjCPropertyAttribute::kind_strong);
return;
}
// property assumes owenership of backing ivar.
QualType ivarType = ivar->getType();
Qualifiers::ObjCLifetime ivarLifetime = ivarType.getObjCLifetime();
if (ivarLifetime == Qualifiers::OCL_Strong)
property->setPropertyAttributes(ObjCPropertyAttribute::kind_strong);
else if (ivarLifetime == Qualifiers::OCL_Weak)
property->setPropertyAttributes(ObjCPropertyAttribute::kind_weak);
}
static bool isIncompatiblePropertyAttribute(unsigned Attr1, unsigned Attr2,
ObjCPropertyAttribute::Kind Kind) {
return (Attr1 & Kind) != (Attr2 & Kind);
}
static bool areIncompatiblePropertyAttributes(unsigned Attr1, unsigned Attr2,
unsigned Kinds) {
return ((Attr1 & Kinds) != 0) != ((Attr2 & Kinds) != 0);
}
/// SelectPropertyForSynthesisFromProtocols - Finds the most appropriate
/// property declaration that should be synthesised in all of the inherited
/// protocols. It also diagnoses properties declared in inherited protocols with
/// mismatched types or attributes, since any of them can be candidate for
/// synthesis.
static ObjCPropertyDecl *
SelectPropertyForSynthesisFromProtocols(Sema &S, SourceLocation AtLoc,
ObjCInterfaceDecl *ClassDecl,
ObjCPropertyDecl *Property) {
assert(isa<ObjCProtocolDecl>(Property->getDeclContext()) &&
"Expected a property from a protocol");
ObjCInterfaceDecl::ProtocolPropertySet ProtocolSet;
ObjCInterfaceDecl::PropertyDeclOrder Properties;
for (const auto *PI : ClassDecl->all_referenced_protocols()) {
if (const ObjCProtocolDecl *PDecl = PI->getDefinition())
PDecl->collectInheritedProtocolProperties(Property, ProtocolSet,
Properties);
}
if (ObjCInterfaceDecl *SDecl = ClassDecl->getSuperClass()) {
while (SDecl) {
for (const auto *PI : SDecl->all_referenced_protocols()) {
if (const ObjCProtocolDecl *PDecl = PI->getDefinition())
PDecl->collectInheritedProtocolProperties(Property, ProtocolSet,
Properties);
}
SDecl = SDecl->getSuperClass();
}
}
if (Properties.empty())
return Property;
ObjCPropertyDecl *OriginalProperty = Property;
size_t SelectedIndex = 0;
for (const auto &Prop : llvm::enumerate(Properties)) {
// Select the 'readwrite' property if such property exists.
if (Property->isReadOnly() && !Prop.value()->isReadOnly()) {
Property = Prop.value();
SelectedIndex = Prop.index();
}
}
if (Property != OriginalProperty) {
// Check that the old property is compatible with the new one.
Properties[SelectedIndex] = OriginalProperty;
}
QualType RHSType = S.Context.getCanonicalType(Property->getType());
unsigned OriginalAttributes = Property->getPropertyAttributesAsWritten();
enum MismatchKind {
IncompatibleType = 0,
HasNoExpectedAttribute,
HasUnexpectedAttribute,
DifferentGetter,
DifferentSetter
};
// Represents a property from another protocol that conflicts with the
// selected declaration.
struct MismatchingProperty {
const ObjCPropertyDecl *Prop;
MismatchKind Kind;
StringRef AttributeName;
};
SmallVector<MismatchingProperty, 4> Mismatches;
for (ObjCPropertyDecl *Prop : Properties) {
// Verify the property attributes.
unsigned Attr = Prop->getPropertyAttributesAsWritten();
if (Attr != OriginalAttributes) {
auto Diag = [&](bool OriginalHasAttribute, StringRef AttributeName) {
MismatchKind Kind = OriginalHasAttribute ? HasNoExpectedAttribute
: HasUnexpectedAttribute;
Mismatches.push_back({Prop, Kind, AttributeName});
};
// The ownership might be incompatible unless the property has no explicit
// ownership.
bool HasOwnership =
(Attr & (ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong |
ObjCPropertyAttribute::kind_copy |
ObjCPropertyAttribute::kind_assign |
ObjCPropertyAttribute::kind_unsafe_unretained |
ObjCPropertyAttribute::kind_weak)) != 0;
if (HasOwnership &&
isIncompatiblePropertyAttribute(OriginalAttributes, Attr,
ObjCPropertyAttribute::kind_copy)) {
Diag(OriginalAttributes & ObjCPropertyAttribute::kind_copy, "copy");
continue;
}
if (HasOwnership && areIncompatiblePropertyAttributes(
OriginalAttributes, Attr,
ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong)) {
Diag(OriginalAttributes & (ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong),
"retain (or strong)");
continue;
}
if (isIncompatiblePropertyAttribute(OriginalAttributes, Attr,
ObjCPropertyAttribute::kind_atomic)) {
Diag(OriginalAttributes & ObjCPropertyAttribute::kind_atomic, "atomic");
continue;
}
}
if (Property->getGetterName() != Prop->getGetterName()) {
Mismatches.push_back({Prop, DifferentGetter, ""});
continue;
}
if (!Property->isReadOnly() && !Prop->isReadOnly() &&
Property->getSetterName() != Prop->getSetterName()) {
Mismatches.push_back({Prop, DifferentSetter, ""});
continue;
}
QualType LHSType = S.Context.getCanonicalType(Prop->getType());
if (!S.Context.propertyTypesAreCompatible(LHSType, RHSType)) {
bool IncompatibleObjC = false;
QualType ConvertedType;
if (!S.isObjCPointerConversion(RHSType, LHSType, ConvertedType, IncompatibleObjC)
|| IncompatibleObjC) {
Mismatches.push_back({Prop, IncompatibleType, ""});
continue;
}
}
}
if (Mismatches.empty())
return Property;
// Diagnose incompability.
{
bool HasIncompatibleAttributes = false;
for (const auto &Note : Mismatches)
HasIncompatibleAttributes =
Note.Kind != IncompatibleType ? true : HasIncompatibleAttributes;
// Promote the warning to an error if there are incompatible attributes or
// incompatible types together with readwrite/readonly incompatibility.
auto Diag = S.Diag(Property->getLocation(),
Property != OriginalProperty || HasIncompatibleAttributes
? diag::err_protocol_property_mismatch
: diag::warn_protocol_property_mismatch);
Diag << Mismatches[0].Kind;
switch (Mismatches[0].Kind) {
case IncompatibleType:
Diag << Property->getType();
break;
case HasNoExpectedAttribute:
case HasUnexpectedAttribute:
Diag << Mismatches[0].AttributeName;
break;
case DifferentGetter:
Diag << Property->getGetterName();
break;
case DifferentSetter:
Diag << Property->getSetterName();
break;
}
}
for (const auto &Note : Mismatches) {
auto Diag =
S.Diag(Note.Prop->getLocation(), diag::note_protocol_property_declare)
<< Note.Kind;
switch (Note.Kind) {
case IncompatibleType:
Diag << Note.Prop->getType();
break;
case HasNoExpectedAttribute:
case HasUnexpectedAttribute:
Diag << Note.AttributeName;
break;
case DifferentGetter:
Diag << Note.Prop->getGetterName();
break;
case DifferentSetter:
Diag << Note.Prop->getSetterName();
break;
}
}
if (AtLoc.isValid())
S.Diag(AtLoc, diag::note_property_synthesize);
return Property;
}
/// Determine whether any storage attributes were written on the property.
static bool hasWrittenStorageAttribute(ObjCPropertyDecl *Prop,
ObjCPropertyQueryKind QueryKind) {
if (Prop->getPropertyAttributesAsWritten() & OwnershipMask) return true;
// If this is a readwrite property in a class extension that refines
// a readonly property in the original class definition, check it as
// well.
// If it's a readonly property, we're not interested.
if (Prop->isReadOnly()) return false;
// Is it declared in an extension?
auto Category = dyn_cast<ObjCCategoryDecl>(Prop->getDeclContext());
if (!Category || !Category->IsClassExtension()) return false;
// Find the corresponding property in the primary class definition.
auto OrigClass = Category->getClassInterface();
for (auto Found : OrigClass->lookup(Prop->getDeclName())) {
if (ObjCPropertyDecl *OrigProp = dyn_cast<ObjCPropertyDecl>(Found))
return OrigProp->getPropertyAttributesAsWritten() & OwnershipMask;
}
// Look through all of the protocols.
for (const auto *Proto : OrigClass->all_referenced_protocols()) {
if (ObjCPropertyDecl *OrigProp = Proto->FindPropertyDeclaration(
Prop->getIdentifier(), QueryKind))
return OrigProp->getPropertyAttributesAsWritten() & OwnershipMask;
}
return false;
}
/// Create a synthesized property accessor stub inside the \@implementation.
static ObjCMethodDecl *
RedeclarePropertyAccessor(ASTContext &Context, ObjCImplementationDecl *Impl,
ObjCMethodDecl *AccessorDecl, SourceLocation AtLoc,
SourceLocation PropertyLoc) {
ObjCMethodDecl *Decl = AccessorDecl;
ObjCMethodDecl *ImplDecl = ObjCMethodDecl::Create(
Context, AtLoc.isValid() ? AtLoc : Decl->getBeginLoc(),
PropertyLoc.isValid() ? PropertyLoc : Decl->getEndLoc(),
Decl->getSelector(), Decl->getReturnType(),
Decl->getReturnTypeSourceInfo(), Impl, Decl->isInstanceMethod(),
Decl->isVariadic(), Decl->isPropertyAccessor(),
/* isSynthesized*/ true, Decl->isImplicit(), Decl->isDefined(),
Decl->getImplementationControl(), Decl->hasRelatedResultType());
ImplDecl->getMethodFamily();
if (Decl->hasAttrs())
ImplDecl->setAttrs(Decl->getAttrs());
ImplDecl->setSelfDecl(Decl->getSelfDecl());
ImplDecl->setCmdDecl(Decl->getCmdDecl());
SmallVector<SourceLocation, 1> SelLocs;
Decl->getSelectorLocs(SelLocs);
ImplDecl->setMethodParams(Context, Decl->parameters(), SelLocs);
ImplDecl->setLexicalDeclContext(Impl);
ImplDecl->setDefined(false);
return ImplDecl;
}
/// ActOnPropertyImplDecl - This routine performs semantic checks and
/// builds the AST node for a property implementation declaration; declared
/// as \@synthesize or \@dynamic.
///
Decl *Sema::ActOnPropertyImplDecl(Scope *S,
SourceLocation AtLoc,
SourceLocation PropertyLoc,
bool Synthesize,
IdentifierInfo *PropertyId,
IdentifierInfo *PropertyIvar,
SourceLocation PropertyIvarLoc,
ObjCPropertyQueryKind QueryKind) {
ObjCContainerDecl *ClassImpDecl =
dyn_cast<ObjCContainerDecl>(CurContext);
// Make sure we have a context for the property implementation declaration.
if (!ClassImpDecl) {
Diag(AtLoc, diag::err_missing_property_context);
return nullptr;
}
if (PropertyIvarLoc.isInvalid())
PropertyIvarLoc = PropertyLoc;
SourceLocation PropertyDiagLoc = PropertyLoc;
if (PropertyDiagLoc.isInvalid())
PropertyDiagLoc = ClassImpDecl->getBeginLoc();
ObjCPropertyDecl *property = nullptr;
ObjCInterfaceDecl *IDecl = nullptr;
// Find the class or category class where this property must have
// a declaration.
ObjCImplementationDecl *IC = nullptr;
ObjCCategoryImplDecl *CatImplClass = nullptr;
if ((IC = dyn_cast<ObjCImplementationDecl>(ClassImpDecl))) {
IDecl = IC->getClassInterface();
// We always synthesize an interface for an implementation
// without an interface decl. So, IDecl is always non-zero.
assert(IDecl &&
"ActOnPropertyImplDecl - @implementation without @interface");
// Look for this property declaration in the @implementation's @interface
property = IDecl->FindPropertyDeclaration(PropertyId, QueryKind);
if (!property) {
Diag(PropertyLoc, diag::err_bad_property_decl) << IDecl->getDeclName();
return nullptr;
}
if (property->isClassProperty() && Synthesize) {
Diag(PropertyLoc, diag::err_synthesize_on_class_property) << PropertyId;
return nullptr;
}
unsigned PIkind = property->getPropertyAttributesAsWritten();
if ((PIkind & (ObjCPropertyAttribute::kind_atomic |
ObjCPropertyAttribute::kind_nonatomic)) == 0) {
if (AtLoc.isValid())
Diag(AtLoc, diag::warn_implicit_atomic_property);
else
Diag(IC->getLocation(), diag::warn_auto_implicit_atomic_property);
Diag(property->getLocation(), diag::note_property_declare);
}
if (const ObjCCategoryDecl *CD =
dyn_cast<ObjCCategoryDecl>(property->getDeclContext())) {
if (!CD->IsClassExtension()) {
Diag(PropertyLoc, diag::err_category_property) << CD->getDeclName();
Diag(property->getLocation(), diag::note_property_declare);
return nullptr;
}
}
if (Synthesize && (PIkind & ObjCPropertyAttribute::kind_readonly) &&
property->hasAttr<IBOutletAttr>() && !AtLoc.isValid()) {
bool ReadWriteProperty = false;
// Search into the class extensions and see if 'readonly property is
// redeclared 'readwrite', then no warning is to be issued.
for (auto *Ext : IDecl->known_extensions()) {
DeclContext::lookup_result R = Ext->lookup(property->getDeclName());
if (!R.empty())
if (ObjCPropertyDecl *ExtProp = dyn_cast<ObjCPropertyDecl>(R[0])) {
PIkind = ExtProp->getPropertyAttributesAsWritten();
if (PIkind & ObjCPropertyAttribute::kind_readwrite) {
ReadWriteProperty = true;
break;
}
}
}
if (!ReadWriteProperty) {
Diag(property->getLocation(), diag::warn_auto_readonly_iboutlet_property)
<< property;
SourceLocation readonlyLoc;
if (LocPropertyAttribute(Context, "readonly",
property->getLParenLoc(), readonlyLoc)) {
SourceLocation endLoc =
readonlyLoc.getLocWithOffset(strlen("readonly")-1);
SourceRange ReadonlySourceRange(readonlyLoc, endLoc);
Diag(property->getLocation(),
diag::note_auto_readonly_iboutlet_fixup_suggest) <<
FixItHint::CreateReplacement(ReadonlySourceRange, "readwrite");
}
}
}
if (Synthesize && isa<ObjCProtocolDecl>(property->getDeclContext()))
property = SelectPropertyForSynthesisFromProtocols(*this, AtLoc, IDecl,
property);
} else if ((CatImplClass = dyn_cast<ObjCCategoryImplDecl>(ClassImpDecl))) {
if (Synthesize) {
Diag(AtLoc, diag::err_synthesize_category_decl);
return nullptr;
}
IDecl = CatImplClass->getClassInterface();
if (!IDecl) {
Diag(AtLoc, diag::err_missing_property_interface);
return nullptr;
}
ObjCCategoryDecl *Category =
IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier());
// If category for this implementation not found, it is an error which
// has already been reported eralier.
if (!Category)
return nullptr;
// Look for this property declaration in @implementation's category
property = Category->FindPropertyDeclaration(PropertyId, QueryKind);
if (!property) {
Diag(PropertyLoc, diag::err_bad_category_property_decl)
<< Category->getDeclName();
return nullptr;
}
} else {
Diag(AtLoc, diag::err_bad_property_context);
return nullptr;
}
ObjCIvarDecl *Ivar = nullptr;
bool CompleteTypeErr = false;
bool compat = true;
// Check that we have a valid, previously declared ivar for @synthesize
if (Synthesize) {
// @synthesize
if (!PropertyIvar)
PropertyIvar = PropertyId;
// Check that this is a previously declared 'ivar' in 'IDecl' interface
ObjCInterfaceDecl *ClassDeclared;
Ivar = IDecl->lookupInstanceVariable(PropertyIvar, ClassDeclared);
QualType PropType = property->getType();
QualType PropertyIvarType = PropType.getNonReferenceType();
if (RequireCompleteType(PropertyDiagLoc, PropertyIvarType,
diag::err_incomplete_synthesized_property,
property->getDeclName())) {
Diag(property->getLocation(), diag::note_property_declare);
CompleteTypeErr = true;
}
if (getLangOpts().ObjCAutoRefCount &&
(property->getPropertyAttributesAsWritten() &
ObjCPropertyAttribute::kind_readonly) &&
PropertyIvarType->isObjCRetainableType()) {
setImpliedPropertyAttributeForReadOnlyProperty(property, Ivar);
}
ObjCPropertyAttribute::Kind kind = property->getPropertyAttributes();
bool isARCWeak = false;
if (kind & ObjCPropertyAttribute::kind_weak) {
// Add GC __weak to the ivar type if the property is weak.
if (getLangOpts().getGC() != LangOptions::NonGC) {
assert(!getLangOpts().ObjCAutoRefCount);
if (PropertyIvarType.isObjCGCStrong()) {
Diag(PropertyDiagLoc, diag::err_gc_weak_property_strong_type);
Diag(property->getLocation(), diag::note_property_declare);
} else {
PropertyIvarType =
Context.getObjCGCQualType(PropertyIvarType, Qualifiers::Weak);
}
// Otherwise, check whether ARC __weak is enabled and works with
// the property type.
} else {
if (!getLangOpts().ObjCWeak) {
// Only complain here when synthesizing an ivar.
if (!Ivar) {
Diag(PropertyDiagLoc,
getLangOpts().ObjCWeakRuntime
? diag::err_synthesizing_arc_weak_property_disabled
: diag::err_synthesizing_arc_weak_property_no_runtime);
Diag(property->getLocation(), diag::note_property_declare);
}
CompleteTypeErr = true; // suppress later diagnostics about the ivar
} else {
isARCWeak = true;
if (const ObjCObjectPointerType *ObjT =
PropertyIvarType->getAs<ObjCObjectPointerType>()) {
const ObjCInterfaceDecl *ObjI = ObjT->getInterfaceDecl();
if (ObjI && ObjI->isArcWeakrefUnavailable()) {
Diag(property->getLocation(),
diag::err_arc_weak_unavailable_property)
<< PropertyIvarType;
Diag(ClassImpDecl->getLocation(), diag::note_implemented_by_class)
<< ClassImpDecl->getName();
}
}
}
}
}
if (AtLoc.isInvalid()) {
// Check when default synthesizing a property that there is
// an ivar matching property name and issue warning; since this
// is the most common case of not using an ivar used for backing
// property in non-default synthesis case.
ObjCInterfaceDecl *ClassDeclared=nullptr;
ObjCIvarDecl *originalIvar =
IDecl->lookupInstanceVariable(property->getIdentifier(),
ClassDeclared);
if (originalIvar) {
Diag(PropertyDiagLoc,
diag::warn_autosynthesis_property_ivar_match)
<< PropertyId << (Ivar == nullptr) << PropertyIvar
<< originalIvar->getIdentifier();
Diag(property->getLocation(), diag::note_property_declare);
Diag(originalIvar->getLocation(), diag::note_ivar_decl);
}
}
if (!Ivar) {
// In ARC, give the ivar a lifetime qualifier based on the
// property attributes.
if ((getLangOpts().ObjCAutoRefCount || isARCWeak) &&
!PropertyIvarType.getObjCLifetime() &&
PropertyIvarType->isObjCRetainableType()) {
// It's an error if we have to do this and the user didn't
// explicitly write an ownership attribute on the property.
if (!hasWrittenStorageAttribute(property, QueryKind) &&
!(kind & ObjCPropertyAttribute::kind_strong)) {
Diag(PropertyDiagLoc,
diag::err_arc_objc_property_default_assign_on_object);
Diag(property->getLocation(), diag::note_property_declare);
} else {
Qualifiers::ObjCLifetime lifetime =
getImpliedARCOwnership(kind, PropertyIvarType);
assert(lifetime && "no lifetime for property?");
Qualifiers qs;
qs.addObjCLifetime(lifetime);
PropertyIvarType = Context.getQualifiedType(PropertyIvarType, qs);
}
}
Ivar = ObjCIvarDecl::Create(Context, ClassImpDecl,
PropertyIvarLoc,PropertyIvarLoc, PropertyIvar,
PropertyIvarType, /*TInfo=*/nullptr,
ObjCIvarDecl::Private,
(Expr *)nullptr, true);
if (RequireNonAbstractType(PropertyIvarLoc,
PropertyIvarType,
diag::err_abstract_type_in_decl,
AbstractSynthesizedIvarType)) {
Diag(property->getLocation(), diag::note_property_declare);
// An abstract type is as bad as an incomplete type.
CompleteTypeErr = true;
}
if (!CompleteTypeErr) {
const RecordType *RecordTy = PropertyIvarType->getAs<RecordType>();
if (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember()) {
Diag(PropertyIvarLoc, diag::err_synthesize_variable_sized_ivar)
<< PropertyIvarType;
CompleteTypeErr = true; // suppress later diagnostics about the ivar
}
}
if (CompleteTypeErr)
Ivar->setInvalidDecl();
ClassImpDecl->addDecl(Ivar);
IDecl->makeDeclVisibleInContext(Ivar);
if (getLangOpts().ObjCRuntime.isFragile())
Diag(PropertyDiagLoc, diag::err_missing_property_ivar_decl)
<< PropertyId;
// Note! I deliberately want it to fall thru so, we have a
// a property implementation and to avoid future warnings.
} else if (getLangOpts().ObjCRuntime.isNonFragile() &&
!declaresSameEntity(ClassDeclared, IDecl)) {
Diag(PropertyDiagLoc, diag::err_ivar_in_superclass_use)
<< property->getDeclName() << Ivar->getDeclName()
<< ClassDeclared->getDeclName();
Diag(Ivar->getLocation(), diag::note_previous_access_declaration)
<< Ivar << Ivar->getName();
// Note! I deliberately want it to fall thru so more errors are caught.
}
property->setPropertyIvarDecl(Ivar);
QualType IvarType = Context.getCanonicalType(Ivar->getType());
// Check that type of property and its ivar are type compatible.
if (!Context.hasSameType(PropertyIvarType, IvarType)) {
if (isa<ObjCObjectPointerType>(PropertyIvarType)
&& isa<ObjCObjectPointerType>(IvarType))
compat =
Context.canAssignObjCInterfaces(
PropertyIvarType->getAs<ObjCObjectPointerType>(),
IvarType->getAs<ObjCObjectPointerType>());
else {
compat = (CheckAssignmentConstraints(PropertyIvarLoc, PropertyIvarType,
IvarType)
== Compatible);
}
if (!compat) {
Diag(PropertyDiagLoc, diag::err_property_ivar_type)
<< property->getDeclName() << PropType
<< Ivar->getDeclName() << IvarType;
Diag(Ivar->getLocation(), diag::note_ivar_decl);
// Note! I deliberately want it to fall thru so, we have a
// a property implementation and to avoid future warnings.
}
else {
// FIXME! Rules for properties are somewhat different that those
// for assignments. Use a new routine to consolidate all cases;
// specifically for property redeclarations as well as for ivars.
QualType lhsType =Context.getCanonicalType(PropertyIvarType).getUnqualifiedType();
QualType rhsType =Context.getCanonicalType(IvarType).getUnqualifiedType();
if (lhsType != rhsType &&
lhsType->isArithmeticType()) {
Diag(PropertyDiagLoc, diag::err_property_ivar_type)
<< property->getDeclName() << PropType
<< Ivar->getDeclName() << IvarType;
Diag(Ivar->getLocation(), diag::note_ivar_decl);
// Fall thru - see previous comment
}
}
// __weak is explicit. So it works on Canonical type.
if ((PropType.isObjCGCWeak() && !IvarType.isObjCGCWeak() &&
getLangOpts().getGC() != LangOptions::NonGC)) {
Diag(PropertyDiagLoc, diag::err_weak_property)
<< property->getDeclName() << Ivar->getDeclName();
Diag(Ivar->getLocation(), diag::note_ivar_decl);
// Fall thru - see previous comment
}
// Fall thru - see previous comment
if ((property->getType()->isObjCObjectPointerType() ||
PropType.isObjCGCStrong()) && IvarType.isObjCGCWeak() &&
getLangOpts().getGC() != LangOptions::NonGC) {
Diag(PropertyDiagLoc, diag::err_strong_property)
<< property->getDeclName() << Ivar->getDeclName();
// Fall thru - see previous comment
}
}
if (getLangOpts().ObjCAutoRefCount || isARCWeak ||
Ivar->getType().getObjCLifetime())
checkARCPropertyImpl(*this, PropertyLoc, property, Ivar);
} else if (PropertyIvar)
// @dynamic
Diag(PropertyDiagLoc, diag::err_dynamic_property_ivar_decl);
assert (property && "ActOnPropertyImplDecl - property declaration missing");
ObjCPropertyImplDecl *PIDecl =
ObjCPropertyImplDecl::Create(Context, CurContext, AtLoc, PropertyLoc,
property,
(Synthesize ?
ObjCPropertyImplDecl::Synthesize
: ObjCPropertyImplDecl::Dynamic),
Ivar, PropertyIvarLoc);
if (CompleteTypeErr || !compat)
PIDecl->setInvalidDecl();
if (ObjCMethodDecl *getterMethod = property->getGetterMethodDecl()) {
getterMethod->createImplicitParams(Context, IDecl);
// Redeclare the getter within the implementation as DeclContext.
if (Synthesize) {
// If the method hasn't been overridden, create a synthesized implementation.
ObjCMethodDecl *OMD = ClassImpDecl->getMethod(
getterMethod->getSelector(), getterMethod->isInstanceMethod());
if (!OMD)
OMD = RedeclarePropertyAccessor(Context, IC, getterMethod, AtLoc,
PropertyLoc);
PIDecl->setGetterMethodDecl(OMD);
}
if (getLangOpts().CPlusPlus && Synthesize && !CompleteTypeErr &&
Ivar->getType()->isRecordType()) {
// For Objective-C++, need to synthesize the AST for the IVAR object to be
// returned by the getter as it must conform to C++'s copy-return rules.
// FIXME. Eventually we want to do this for Objective-C as well.
SynthesizedFunctionScope Scope(*this, getterMethod);
ImplicitParamDecl *SelfDecl = getterMethod->getSelfDecl();
DeclRefExpr *SelfExpr = new (Context)
DeclRefExpr(Context, SelfDecl, false, SelfDecl->getType(), VK_LValue,
PropertyDiagLoc);
MarkDeclRefReferenced(SelfExpr);
Expr *LoadSelfExpr = ImplicitCastExpr::Create(
Context, SelfDecl->getType(), CK_LValueToRValue, SelfExpr, nullptr,
VK_RValue, FPOptionsOverride());
Expr *IvarRefExpr =
new (Context) ObjCIvarRefExpr(Ivar,
Ivar->getUsageType(SelfDecl->getType()),
PropertyDiagLoc,
Ivar->getLocation(),
LoadSelfExpr, true, true);
ExprResult Res = PerformCopyInitialization(
InitializedEntity::InitializeResult(PropertyDiagLoc,
getterMethod->getReturnType(),
/*NRVO=*/false),
PropertyDiagLoc, IvarRefExpr);
if (!Res.isInvalid()) {
Expr *ResExpr = Res.getAs<Expr>();
if (ResExpr)
ResExpr = MaybeCreateExprWithCleanups(ResExpr);
PIDecl->setGetterCXXConstructor(ResExpr);
}
}
if (property->hasAttr<NSReturnsNotRetainedAttr>() &&
!getterMethod->hasAttr<NSReturnsNotRetainedAttr>()) {
Diag(getterMethod->getLocation(),
diag::warn_property_getter_owning_mismatch);
Diag(property->getLocation(), diag::note_property_declare);
}
if (getLangOpts().ObjCAutoRefCount && Synthesize)
switch (getterMethod->getMethodFamily()) {
case OMF_retain:
case OMF_retainCount:
case OMF_release:
case OMF_autorelease:
Diag(getterMethod->getLocation(), diag::err_arc_illegal_method_def)
<< 1 << getterMethod->getSelector();
break;
default:
break;
}
}
if (ObjCMethodDecl *setterMethod = property->getSetterMethodDecl()) {
setterMethod->createImplicitParams(Context, IDecl);
// Redeclare the setter within the implementation as DeclContext.
if (Synthesize) {
ObjCMethodDecl *OMD = ClassImpDecl->getMethod(
setterMethod->getSelector(), setterMethod->isInstanceMethod());
if (!OMD)
OMD = RedeclarePropertyAccessor(Context, IC, setterMethod,
AtLoc, PropertyLoc);
PIDecl->setSetterMethodDecl(OMD);
}
if (getLangOpts().CPlusPlus && Synthesize && !CompleteTypeErr &&
Ivar->getType()->isRecordType()) {
// FIXME. Eventually we want to do this for Objective-C as well.
SynthesizedFunctionScope Scope(*this, setterMethod);
ImplicitParamDecl *SelfDecl = setterMethod->getSelfDecl();
DeclRefExpr *SelfExpr = new (Context)
DeclRefExpr(Context, SelfDecl, false, SelfDecl->getType(), VK_LValue,
PropertyDiagLoc);
MarkDeclRefReferenced(SelfExpr);
Expr *LoadSelfExpr = ImplicitCastExpr::Create(
Context, SelfDecl->getType(), CK_LValueToRValue, SelfExpr, nullptr,
VK_RValue, FPOptionsOverride());
Expr *lhs =
new (Context) ObjCIvarRefExpr(Ivar,
Ivar->getUsageType(SelfDecl->getType()),
PropertyDiagLoc,
Ivar->getLocation(),
LoadSelfExpr, true, true);
ObjCMethodDecl::param_iterator P = setterMethod->param_begin();
ParmVarDecl *Param = (*P);
QualType T = Param->getType().getNonReferenceType();
DeclRefExpr *rhs = new (Context)
DeclRefExpr(Context, Param, false, T, VK_LValue, PropertyDiagLoc);
MarkDeclRefReferenced(rhs);
ExprResult Res = BuildBinOp(S, PropertyDiagLoc,
BO_Assign, lhs, rhs);
if (property->getPropertyAttributes() &
ObjCPropertyAttribute::kind_atomic) {
Expr *callExpr = Res.getAs<Expr>();
if (const CXXOperatorCallExpr *CXXCE =
dyn_cast_or_null<CXXOperatorCallExpr>(callExpr))
if (const FunctionDecl *FuncDecl = CXXCE->getDirectCallee())
if (!FuncDecl->isTrivial())
if (property->getType()->isReferenceType()) {
Diag(PropertyDiagLoc,
diag::err_atomic_property_nontrivial_assign_op)
<< property->getType();
Diag(FuncDecl->getBeginLoc(), diag::note_callee_decl)
<< FuncDecl;
}
}
PIDecl->setSetterCXXAssignment(Res.getAs<Expr>());
}
}
if (IC) {
if (Synthesize)
if (ObjCPropertyImplDecl *PPIDecl =
IC->FindPropertyImplIvarDecl(PropertyIvar)) {
Diag(PropertyLoc, diag::err_duplicate_ivar_use)
<< PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
<< PropertyIvar;
Diag(PPIDecl->getLocation(), diag::note_previous_use);
}
if (ObjCPropertyImplDecl *PPIDecl
= IC->FindPropertyImplDecl(PropertyId, QueryKind)) {
Diag(PropertyLoc, diag::err_property_implemented) << PropertyId;
Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
return nullptr;
}
IC->addPropertyImplementation(PIDecl);
if (getLangOpts().ObjCDefaultSynthProperties &&
getLangOpts().ObjCRuntime.isNonFragile() &&
!IDecl->isObjCRequiresPropertyDefs()) {
// Diagnose if an ivar was lazily synthesdized due to a previous
// use and if 1) property is @dynamic or 2) property is synthesized
// but it requires an ivar of different name.
ObjCInterfaceDecl *ClassDeclared=nullptr;
ObjCIvarDecl *Ivar = nullptr;
if (!Synthesize)
Ivar = IDecl->lookupInstanceVariable(PropertyId, ClassDeclared);
else {
if (PropertyIvar && PropertyIvar != PropertyId)
Ivar = IDecl->lookupInstanceVariable(PropertyId, ClassDeclared);
}
// Issue diagnostics only if Ivar belongs to current class.
if (Ivar && Ivar->getSynthesize() &&
declaresSameEntity(IC->getClassInterface(), ClassDeclared)) {
Diag(Ivar->getLocation(), diag::err_undeclared_var_use)
<< PropertyId;
Ivar->setInvalidDecl();
}
}
} else {
if (Synthesize)
if (ObjCPropertyImplDecl *PPIDecl =
CatImplClass->FindPropertyImplIvarDecl(PropertyIvar)) {
Diag(PropertyDiagLoc, diag::err_duplicate_ivar_use)
<< PropertyId << PPIDecl->getPropertyDecl()->getIdentifier()
<< PropertyIvar;
Diag(PPIDecl->getLocation(), diag::note_previous_use);
}
if (ObjCPropertyImplDecl *PPIDecl =
CatImplClass->FindPropertyImplDecl(PropertyId, QueryKind)) {
Diag(PropertyDiagLoc, diag::err_property_implemented) << PropertyId;
Diag(PPIDecl->getLocation(), diag::note_previous_declaration);
return nullptr;
}
CatImplClass->addPropertyImplementation(PIDecl);
}
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic &&
PIDecl->getPropertyDecl() &&
PIDecl->getPropertyDecl()->isDirectProperty()) {
Diag(PropertyLoc, diag::err_objc_direct_dynamic_property);
Diag(PIDecl->getPropertyDecl()->getLocation(),
diag::note_previous_declaration);
return nullptr;
}
return PIDecl;
}
//===----------------------------------------------------------------------===//
// Helper methods.
//===----------------------------------------------------------------------===//
/// DiagnosePropertyMismatch - Compares two properties for their
/// attributes and types and warns on a variety of inconsistencies.
///
void
Sema::DiagnosePropertyMismatch(ObjCPropertyDecl *Property,
ObjCPropertyDecl *SuperProperty,
const IdentifierInfo *inheritedName,
bool OverridingProtocolProperty) {
ObjCPropertyAttribute::Kind CAttr = Property->getPropertyAttributes();
ObjCPropertyAttribute::Kind SAttr = SuperProperty->getPropertyAttributes();
// We allow readonly properties without an explicit ownership
// (assign/unsafe_unretained/weak/retain/strong/copy) in super class
// to be overridden by a property with any explicit ownership in the subclass.
if (!OverridingProtocolProperty &&
!getOwnershipRule(SAttr) && getOwnershipRule(CAttr))
;
else {
if ((CAttr & ObjCPropertyAttribute::kind_readonly) &&
(SAttr & ObjCPropertyAttribute::kind_readwrite))
Diag(Property->getLocation(), diag::warn_readonly_property)
<< Property->getDeclName() << inheritedName;
if ((CAttr & ObjCPropertyAttribute::kind_copy) !=
(SAttr & ObjCPropertyAttribute::kind_copy))
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "copy" << inheritedName;
else if (!(SAttr & ObjCPropertyAttribute::kind_readonly)) {
unsigned CAttrRetain = (CAttr & (ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong));
unsigned SAttrRetain = (SAttr & (ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong));
bool CStrong = (CAttrRetain != 0);
bool SStrong = (SAttrRetain != 0);
if (CStrong != SStrong)
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "retain (or strong)" << inheritedName;
}
}
// Check for nonatomic; note that nonatomic is effectively
// meaningless for readonly properties, so don't diagnose if the
// atomic property is 'readonly'.
checkAtomicPropertyMismatch(*this, SuperProperty, Property, false);
// Readonly properties from protocols can be implemented as "readwrite"
// with a custom setter name.
if (Property->getSetterName() != SuperProperty->getSetterName() &&
!(SuperProperty->isReadOnly() &&
isa<ObjCProtocolDecl>(SuperProperty->getDeclContext()))) {
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "setter" << inheritedName;
Diag(SuperProperty->getLocation(), diag::note_property_declare);
}
if (Property->getGetterName() != SuperProperty->getGetterName()) {
Diag(Property->getLocation(), diag::warn_property_attribute)
<< Property->getDeclName() << "getter" << inheritedName;
Diag(SuperProperty->getLocation(), diag::note_property_declare);
}
QualType LHSType =
Context.getCanonicalType(SuperProperty->getType());
QualType RHSType =
Context.getCanonicalType(Property->getType());
if (!Context.propertyTypesAreCompatible(LHSType, RHSType)) {
// Do cases not handled in above.
// FIXME. For future support of covariant property types, revisit this.
bool IncompatibleObjC = false;
QualType ConvertedType;
if (!isObjCPointerConversion(RHSType, LHSType,
ConvertedType, IncompatibleObjC) ||
IncompatibleObjC) {
Diag(Property->getLocation(), diag::warn_property_types_are_incompatible)
<< Property->getType() << SuperProperty->getType() << inheritedName;
Diag(SuperProperty->getLocation(), diag::note_property_declare);
}
}
}
bool Sema::DiagnosePropertyAccessorMismatch(ObjCPropertyDecl *property,
ObjCMethodDecl *GetterMethod,
SourceLocation Loc) {
if (!GetterMethod)
return false;
QualType GetterType = GetterMethod->getReturnType().getNonReferenceType();
QualType PropertyRValueType =
property->getType().getNonReferenceType().getAtomicUnqualifiedType();
bool compat = Context.hasSameType(PropertyRValueType, GetterType);
if (!compat) {
const ObjCObjectPointerType *propertyObjCPtr = nullptr;
const ObjCObjectPointerType *getterObjCPtr = nullptr;
if ((propertyObjCPtr =
PropertyRValueType->getAs<ObjCObjectPointerType>()) &&
(getterObjCPtr = GetterType->getAs<ObjCObjectPointerType>()))
compat = Context.canAssignObjCInterfaces(getterObjCPtr, propertyObjCPtr);
else if (CheckAssignmentConstraints(Loc, GetterType, PropertyRValueType)
!= Compatible) {
Diag(Loc, diag::err_property_accessor_type)
<< property->getDeclName() << PropertyRValueType
<< GetterMethod->getSelector() << GetterType;
Diag(GetterMethod->getLocation(), diag::note_declared_at);
return true;
} else {
compat = true;
QualType lhsType = Context.getCanonicalType(PropertyRValueType);
QualType rhsType =Context.getCanonicalType(GetterType).getUnqualifiedType();
if (lhsType != rhsType && lhsType->isArithmeticType())
compat = false;
}
}
if (!compat) {
Diag(Loc, diag::warn_accessor_property_type_mismatch)
<< property->getDeclName()
<< GetterMethod->getSelector();
Diag(GetterMethod->getLocation(), diag::note_declared_at);
return true;
}
return false;
}
/// CollectImmediateProperties - This routine collects all properties in
/// the class and its conforming protocols; but not those in its super class.
static void
CollectImmediateProperties(ObjCContainerDecl *CDecl,
ObjCContainerDecl::PropertyMap &PropMap,
ObjCContainerDecl::PropertyMap &SuperPropMap,
bool CollectClassPropsOnly = false,
bool IncludeProtocols = true) {
if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
for (auto *Prop : IDecl->properties()) {
if (CollectClassPropsOnly && !Prop->isClassProperty())
continue;
PropMap[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] =
Prop;
}
// Collect the properties from visible extensions.
for (auto *Ext : IDecl->visible_extensions())
CollectImmediateProperties(Ext, PropMap, SuperPropMap,
CollectClassPropsOnly, IncludeProtocols);
if (IncludeProtocols) {
// Scan through class's protocols.
for (auto *PI : IDecl->all_referenced_protocols())
CollectImmediateProperties(PI, PropMap, SuperPropMap,
CollectClassPropsOnly);
}
}
if (ObjCCategoryDecl *CATDecl = dyn_cast<ObjCCategoryDecl>(CDecl)) {
for (auto *Prop : CATDecl->properties()) {
if (CollectClassPropsOnly && !Prop->isClassProperty())
continue;
PropMap[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] =
Prop;
}
if (IncludeProtocols) {
// Scan through class's protocols.
for (auto *PI : CATDecl->protocols())
CollectImmediateProperties(PI, PropMap, SuperPropMap,
CollectClassPropsOnly);
}
}
else if (ObjCProtocolDecl *PDecl = dyn_cast<ObjCProtocolDecl>(CDecl)) {
for (auto *Prop : PDecl->properties()) {
if (CollectClassPropsOnly && !Prop->isClassProperty())
continue;
ObjCPropertyDecl *PropertyFromSuper =
SuperPropMap[std::make_pair(Prop->getIdentifier(),
Prop->isClassProperty())];
// Exclude property for protocols which conform to class's super-class,
// as super-class has to implement the property.
if (!PropertyFromSuper ||
PropertyFromSuper->getIdentifier() != Prop->getIdentifier()) {
ObjCPropertyDecl *&PropEntry =
PropMap[std::make_pair(Prop->getIdentifier(),
Prop->isClassProperty())];
if (!PropEntry)
PropEntry = Prop;
}
}
// Scan through protocol's protocols.
for (auto *PI : PDecl->protocols())
CollectImmediateProperties(PI, PropMap, SuperPropMap,
CollectClassPropsOnly);
}
}
/// CollectSuperClassPropertyImplementations - This routine collects list of
/// properties to be implemented in super class(s) and also coming from their
/// conforming protocols.
static void CollectSuperClassPropertyImplementations(ObjCInterfaceDecl *CDecl,
ObjCInterfaceDecl::PropertyMap &PropMap) {
if (ObjCInterfaceDecl *SDecl = CDecl->getSuperClass()) {
ObjCInterfaceDecl::PropertyDeclOrder PO;
while (SDecl) {
SDecl->collectPropertiesToImplement(PropMap, PO);
SDecl = SDecl->getSuperClass();
}
}
}
/// IvarBacksCurrentMethodAccessor - This routine returns 'true' if 'IV' is
/// an ivar synthesized for 'Method' and 'Method' is a property accessor
/// declared in class 'IFace'.
bool
Sema::IvarBacksCurrentMethodAccessor(ObjCInterfaceDecl *IFace,
ObjCMethodDecl *Method, ObjCIvarDecl *IV) {
if (!IV->getSynthesize())
return false;
ObjCMethodDecl *IMD = IFace->lookupMethod(Method->getSelector(),
Method->isInstanceMethod());
if (!IMD || !IMD->isPropertyAccessor())
return false;
// look up a property declaration whose one of its accessors is implemented
// by this method.
for (const auto *Property : IFace->instance_properties()) {
if ((Property->getGetterName() == IMD->getSelector() ||
Property->getSetterName() == IMD->getSelector()) &&
(Property->getPropertyIvarDecl() == IV))
return true;
}
// Also look up property declaration in class extension whose one of its
// accessors is implemented by this method.
for (const auto *Ext : IFace->known_extensions())
for (const auto *Property : Ext->instance_properties())
if ((Property->getGetterName() == IMD->getSelector() ||
Property->getSetterName() == IMD->getSelector()) &&
(Property->getPropertyIvarDecl() == IV))
return true;
return false;
}
static bool SuperClassImplementsProperty(ObjCInterfaceDecl *IDecl,
ObjCPropertyDecl *Prop) {
bool SuperClassImplementsGetter = false;
bool SuperClassImplementsSetter = false;
if (Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_readonly)
SuperClassImplementsSetter = true;
while (IDecl->getSuperClass()) {
ObjCInterfaceDecl *SDecl = IDecl->getSuperClass();
if (!SuperClassImplementsGetter && SDecl->getInstanceMethod(Prop->getGetterName()))
SuperClassImplementsGetter = true;
if (!SuperClassImplementsSetter && SDecl->getInstanceMethod(Prop->getSetterName()))
SuperClassImplementsSetter = true;
if (SuperClassImplementsGetter && SuperClassImplementsSetter)
return true;
IDecl = IDecl->getSuperClass();
}
return false;
}
/// Default synthesizes all properties which must be synthesized
/// in class's \@implementation.
void Sema::DefaultSynthesizeProperties(Scope *S, ObjCImplDecl *IMPDecl,
ObjCInterfaceDecl *IDecl,
SourceLocation AtEnd) {
ObjCInterfaceDecl::PropertyMap PropMap;
ObjCInterfaceDecl::PropertyDeclOrder PropertyOrder;
IDecl->collectPropertiesToImplement(PropMap, PropertyOrder);
if (PropMap.empty())
return;
ObjCInterfaceDecl::PropertyMap SuperPropMap;
CollectSuperClassPropertyImplementations(IDecl, SuperPropMap);
for (unsigned i = 0, e = PropertyOrder.size(); i != e; i++) {
ObjCPropertyDecl *Prop = PropertyOrder[i];
// Is there a matching property synthesize/dynamic?
if (Prop->isInvalidDecl() ||
Prop->isClassProperty() ||
Prop->getPropertyImplementation() == ObjCPropertyDecl::Optional)
continue;
// Property may have been synthesized by user.
if (IMPDecl->FindPropertyImplDecl(
Prop->getIdentifier(), Prop->getQueryKind()))
continue;
ObjCMethodDecl *ImpMethod = IMPDecl->getInstanceMethod(Prop->getGetterName());
if (ImpMethod && !ImpMethod->getBody()) {
if (Prop->getPropertyAttributes() & ObjCPropertyAttribute::kind_readonly)
continue;
ImpMethod = IMPDecl->getInstanceMethod(Prop->getSetterName());
if (ImpMethod && !ImpMethod->getBody())
continue;
}
if (ObjCPropertyImplDecl *PID =
IMPDecl->FindPropertyImplIvarDecl(Prop->getIdentifier())) {
Diag(Prop->getLocation(), diag::warn_no_autosynthesis_shared_ivar_property)
<< Prop->getIdentifier();
if (PID->getLocation().isValid())
Diag(PID->getLocation(), diag::note_property_synthesize);
continue;
}
ObjCPropertyDecl *PropInSuperClass =
SuperPropMap[std::make_pair(Prop->getIdentifier(),
Prop->isClassProperty())];
if (ObjCProtocolDecl *Proto =
dyn_cast<ObjCProtocolDecl>(Prop->getDeclContext())) {
// We won't auto-synthesize properties declared in protocols.
// Suppress the warning if class's superclass implements property's
// getter and implements property's setter (if readwrite property).
// Or, if property is going to be implemented in its super class.
if (!SuperClassImplementsProperty(IDecl, Prop) && !PropInSuperClass) {
Diag(IMPDecl->getLocation(),
diag::warn_auto_synthesizing_protocol_property)
<< Prop << Proto;
Diag(Prop->getLocation(), diag::note_property_declare);
std::string FixIt =
(Twine("@synthesize ") + Prop->getName() + ";\n\n").str();
Diag(AtEnd, diag::note_add_synthesize_directive)
<< FixItHint::CreateInsertion(AtEnd, FixIt);
}
continue;
}
// If property to be implemented in the super class, ignore.
if (PropInSuperClass) {
if ((Prop->getPropertyAttributes() &
ObjCPropertyAttribute::kind_readwrite) &&
(PropInSuperClass->getPropertyAttributes() &
ObjCPropertyAttribute::kind_readonly) &&
!IMPDecl->getInstanceMethod(Prop->getSetterName()) &&
!IDecl->HasUserDeclaredSetterMethod(Prop)) {
Diag(Prop->getLocation(), diag::warn_no_autosynthesis_property)
<< Prop->getIdentifier();
Diag(PropInSuperClass->getLocation(), diag::note_property_declare);
} else {
Diag(Prop->getLocation(), diag::warn_autosynthesis_property_in_superclass)
<< Prop->getIdentifier();
Diag(PropInSuperClass->getLocation(), diag::note_property_declare);
Diag(IMPDecl->getLocation(), diag::note_while_in_implementation);
}
continue;
}
// We use invalid SourceLocations for the synthesized ivars since they
// aren't really synthesized at a particular location; they just exist.
// Saying that they are located at the @implementation isn't really going
// to help users.
ObjCPropertyImplDecl *PIDecl = dyn_cast_or_null<ObjCPropertyImplDecl>(
ActOnPropertyImplDecl(S, SourceLocation(), SourceLocation(),
true,
/* property = */ Prop->getIdentifier(),
/* ivar = */ Prop->getDefaultSynthIvarName(Context),
Prop->getLocation(), Prop->getQueryKind()));
if (PIDecl && !Prop->isUnavailable()) {
Diag(Prop->getLocation(), diag::warn_missing_explicit_synthesis);
Diag(IMPDecl->getLocation(), diag::note_while_in_implementation);
}
}
}
void Sema::DefaultSynthesizeProperties(Scope *S, Decl *D,
SourceLocation AtEnd) {
if (!LangOpts.ObjCDefaultSynthProperties || LangOpts.ObjCRuntime.isFragile())
return;
ObjCImplementationDecl *IC=dyn_cast_or_null<ObjCImplementationDecl>(D);
if (!IC)
return;
if (ObjCInterfaceDecl* IDecl = IC->getClassInterface())
if (!IDecl->isObjCRequiresPropertyDefs())
DefaultSynthesizeProperties(S, IC, IDecl, AtEnd);
}
static void DiagnoseUnimplementedAccessor(
Sema &S, ObjCInterfaceDecl *PrimaryClass, Selector Method,
ObjCImplDecl *IMPDecl, ObjCContainerDecl *CDecl, ObjCCategoryDecl *C,
ObjCPropertyDecl *Prop,
llvm::SmallPtrSet<const ObjCMethodDecl *, 8> &SMap) {
// Check to see if we have a corresponding selector in SMap and with the
// right method type.
auto I = llvm::find_if(SMap, [&](const ObjCMethodDecl *x) {
return x->getSelector() == Method &&
x->isClassMethod() == Prop->isClassProperty();
});
// When reporting on missing property setter/getter implementation in
// categories, do not report when they are declared in primary class,
// class's protocol, or one of it super classes. This is because,
// the class is going to implement them.
if (I == SMap.end() &&
(PrimaryClass == nullptr ||
!PrimaryClass->lookupPropertyAccessor(Method, C,
Prop->isClassProperty()))) {
unsigned diag =
isa<ObjCCategoryDecl>(CDecl)
? (Prop->isClassProperty()
? diag::warn_impl_required_in_category_for_class_property
: diag::warn_setter_getter_impl_required_in_category)
: (Prop->isClassProperty()
? diag::warn_impl_required_for_class_property
: diag::warn_setter_getter_impl_required);
S.Diag(IMPDecl->getLocation(), diag) << Prop->getDeclName() << Method;
S.Diag(Prop->getLocation(), diag::note_property_declare);
if (S.LangOpts.ObjCDefaultSynthProperties &&
S.LangOpts.ObjCRuntime.isNonFragile())
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CDecl))
if (const ObjCInterfaceDecl *RID = ID->isObjCRequiresPropertyDefs())
S.Diag(RID->getLocation(), diag::note_suppressed_class_declare);
}
}
void Sema::DiagnoseUnimplementedProperties(Scope *S, ObjCImplDecl* IMPDecl,
ObjCContainerDecl *CDecl,
bool SynthesizeProperties) {
ObjCContainerDecl::PropertyMap PropMap;
ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
// Since we don't synthesize class properties, we should emit diagnose even
// if SynthesizeProperties is true.
ObjCContainerDecl::PropertyMap NoNeedToImplPropMap;
// Gather properties which need not be implemented in this class
// or category.
if (!IDecl)
if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
// For categories, no need to implement properties declared in
// its primary class (and its super classes) if property is
// declared in one of those containers.
if ((IDecl = C->getClassInterface())) {
ObjCInterfaceDecl::PropertyDeclOrder PO;
IDecl->collectPropertiesToImplement(NoNeedToImplPropMap, PO);
}
}
if (IDecl)
CollectSuperClassPropertyImplementations(IDecl, NoNeedToImplPropMap);
// When SynthesizeProperties is true, we only check class properties.
CollectImmediateProperties(CDecl, PropMap, NoNeedToImplPropMap,
SynthesizeProperties/*CollectClassPropsOnly*/);
// Scan the @interface to see if any of the protocols it adopts
// require an explicit implementation, via attribute
// 'objc_protocol_requires_explicit_implementation'.
if (IDecl) {
std::unique_ptr<ObjCContainerDecl::PropertyMap> LazyMap;
for (auto *PDecl : IDecl->all_referenced_protocols()) {
if (!PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
continue;
// Lazily construct a set of all the properties in the @interface
// of the class, without looking at the superclass. We cannot
// use the call to CollectImmediateProperties() above as that
// utilizes information from the super class's properties as well
// as scans the adopted protocols. This work only triggers for protocols
// with the attribute, which is very rare, and only occurs when
// analyzing the @implementation.
if (!LazyMap) {
ObjCContainerDecl::PropertyMap NoNeedToImplPropMap;
LazyMap.reset(new ObjCContainerDecl::PropertyMap());
CollectImmediateProperties(CDecl, *LazyMap, NoNeedToImplPropMap,
/* CollectClassPropsOnly */ false,
/* IncludeProtocols */ false);
}
// Add the properties of 'PDecl' to the list of properties that
// need to be implemented.
for (auto *PropDecl : PDecl->properties()) {
if ((*LazyMap)[std::make_pair(PropDecl->getIdentifier(),
PropDecl->isClassProperty())])
continue;
PropMap[std::make_pair(PropDecl->getIdentifier(),
PropDecl->isClassProperty())] = PropDecl;
}
}
}
if (PropMap.empty())
return;
llvm::DenseSet<ObjCPropertyDecl *> PropImplMap;
for (const auto *I : IMPDecl->property_impls())
PropImplMap.insert(I->getPropertyDecl());
llvm::SmallPtrSet<const ObjCMethodDecl *, 8> InsMap;
// Collect property accessors implemented in current implementation.
for (const auto *I : IMPDecl->methods())
InsMap.insert(I);
ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
ObjCInterfaceDecl *PrimaryClass = nullptr;
if (C && !C->IsClassExtension())
if ((PrimaryClass = C->getClassInterface()))
// Report unimplemented properties in the category as well.
if (ObjCImplDecl *IMP = PrimaryClass->getImplementation()) {
// When reporting on missing setter/getters, do not report when
// setter/getter is implemented in category's primary class
// implementation.
for (const auto *I : IMP->methods())
InsMap.insert(I);
}
for (ObjCContainerDecl::PropertyMap::iterator
P = PropMap.begin(), E = PropMap.end(); P != E; ++P) {
ObjCPropertyDecl *Prop = P->second;
// Is there a matching property synthesize/dynamic?
if (Prop->isInvalidDecl() ||
Prop->getPropertyImplementation() == ObjCPropertyDecl::Optional ||
PropImplMap.count(Prop) ||
Prop->getAvailability() == AR_Unavailable)
continue;
// Diagnose unimplemented getters and setters.
DiagnoseUnimplementedAccessor(*this,
PrimaryClass, Prop->getGetterName(), IMPDecl, CDecl, C, Prop, InsMap);
if (!Prop->isReadOnly())
DiagnoseUnimplementedAccessor(*this,
PrimaryClass, Prop->getSetterName(),
IMPDecl, CDecl, C, Prop, InsMap);
}
}
void Sema::diagnoseNullResettableSynthesizedSetters(const ObjCImplDecl *impDecl) {
for (const auto *propertyImpl : impDecl->property_impls()) {
const auto *property = propertyImpl->getPropertyDecl();
// Warn about null_resettable properties with synthesized setters,
// because the setter won't properly handle nil.
if (propertyImpl->getPropertyImplementation() ==
ObjCPropertyImplDecl::Synthesize &&
(property->getPropertyAttributes() &
ObjCPropertyAttribute::kind_null_resettable) &&
property->getGetterMethodDecl() && property->getSetterMethodDecl()) {
auto *getterImpl = propertyImpl->getGetterMethodDecl();
auto *setterImpl = propertyImpl->getSetterMethodDecl();
if ((!getterImpl || getterImpl->isSynthesizedAccessorStub()) &&
(!setterImpl || setterImpl->isSynthesizedAccessorStub())) {
SourceLocation loc = propertyImpl->getLocation();
if (loc.isInvalid())
loc = impDecl->getBeginLoc();
Diag(loc, diag::warn_null_resettable_setter)
<< setterImpl->getSelector() << property->getDeclName();
}
}
}
}
void
Sema::AtomicPropertySetterGetterRules (ObjCImplDecl* IMPDecl,
ObjCInterfaceDecl* IDecl) {
// Rules apply in non-GC mode only
if (getLangOpts().getGC() != LangOptions::NonGC)
return;
ObjCContainerDecl::PropertyMap PM;
for (auto *Prop : IDecl->properties())
PM[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] = Prop;
for (const auto *Ext : IDecl->known_extensions())
for (auto *Prop : Ext->properties())
PM[std::make_pair(Prop->getIdentifier(), Prop->isClassProperty())] = Prop;
for (ObjCContainerDecl::PropertyMap::iterator I = PM.begin(), E = PM.end();
I != E; ++I) {
const ObjCPropertyDecl *Property = I->second;
ObjCMethodDecl *GetterMethod = nullptr;
ObjCMethodDecl *SetterMethod = nullptr;
unsigned Attributes = Property->getPropertyAttributes();
unsigned AttributesAsWritten = Property->getPropertyAttributesAsWritten();
if (!(AttributesAsWritten & ObjCPropertyAttribute::kind_atomic) &&
!(AttributesAsWritten & ObjCPropertyAttribute::kind_nonatomic)) {
GetterMethod = Property->isClassProperty() ?
IMPDecl->getClassMethod(Property->getGetterName()) :
IMPDecl->getInstanceMethod(Property->getGetterName());
SetterMethod = Property->isClassProperty() ?
IMPDecl->getClassMethod(Property->getSetterName()) :
IMPDecl->getInstanceMethod(Property->getSetterName());
if (GetterMethod && GetterMethod->isSynthesizedAccessorStub())
GetterMethod = nullptr;
if (SetterMethod && SetterMethod->isSynthesizedAccessorStub())
SetterMethod = nullptr;
if (GetterMethod) {
Diag(GetterMethod->getLocation(),
diag::warn_default_atomic_custom_getter_setter)
<< Property->getIdentifier() << 0;
Diag(Property->getLocation(), diag::note_property_declare);
}
if (SetterMethod) {
Diag(SetterMethod->getLocation(),
diag::warn_default_atomic_custom_getter_setter)
<< Property->getIdentifier() << 1;
Diag(Property->getLocation(), diag::note_property_declare);
}
}
// We only care about readwrite atomic property.
if ((Attributes & ObjCPropertyAttribute::kind_nonatomic) ||
!(Attributes & ObjCPropertyAttribute::kind_readwrite))
continue;
if (const ObjCPropertyImplDecl *PIDecl = IMPDecl->FindPropertyImplDecl(
Property->getIdentifier(), Property->getQueryKind())) {
if (PIDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
continue;
GetterMethod = PIDecl->getGetterMethodDecl();
SetterMethod = PIDecl->getSetterMethodDecl();
if (GetterMethod && GetterMethod->isSynthesizedAccessorStub())
GetterMethod = nullptr;
if (SetterMethod && SetterMethod->isSynthesizedAccessorStub())
SetterMethod = nullptr;
if ((bool)GetterMethod ^ (bool)SetterMethod) {
SourceLocation MethodLoc =
(GetterMethod ? GetterMethod->getLocation()
: SetterMethod->getLocation());
Diag(MethodLoc, diag::warn_atomic_property_rule)
<< Property->getIdentifier() << (GetterMethod != nullptr)
<< (SetterMethod != nullptr);
// fixit stuff.
if (Property->getLParenLoc().isValid() &&
!(AttributesAsWritten & ObjCPropertyAttribute::kind_atomic)) {
// @property () ... case.
SourceLocation AfterLParen =
getLocForEndOfToken(Property->getLParenLoc());
StringRef NonatomicStr = AttributesAsWritten? "nonatomic, "
: "nonatomic";
Diag(Property->getLocation(),
diag::note_atomic_property_fixup_suggest)
<< FixItHint::CreateInsertion(AfterLParen, NonatomicStr);
} else if (Property->getLParenLoc().isInvalid()) {
//@property id etc.
SourceLocation startLoc =
Property->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
Diag(Property->getLocation(),
diag::note_atomic_property_fixup_suggest)
<< FixItHint::CreateInsertion(startLoc, "(nonatomic) ");
} else
Diag(MethodLoc, diag::note_atomic_property_fixup_suggest);
Diag(Property->getLocation(), diag::note_property_declare);
}
}
}
}
void Sema::DiagnoseOwningPropertyGetterSynthesis(const ObjCImplementationDecl *D) {
if (getLangOpts().getGC() == LangOptions::GCOnly)
return;
for (const auto *PID : D->property_impls()) {
const ObjCPropertyDecl *PD = PID->getPropertyDecl();
if (PD && !PD->hasAttr<NSReturnsNotRetainedAttr>() &&
!PD->isClassProperty()) {
ObjCMethodDecl *IM = PID->getGetterMethodDecl();
if (IM && !IM->isSynthesizedAccessorStub())
continue;
ObjCMethodDecl *method = PD->getGetterMethodDecl();
if (!method)
continue;
ObjCMethodFamily family = method->getMethodFamily();
if (family == OMF_alloc || family == OMF_copy ||
family == OMF_mutableCopy || family == OMF_new) {
if (getLangOpts().ObjCAutoRefCount)
Diag(PD->getLocation(), diag::err_cocoa_naming_owned_rule);
else
Diag(PD->getLocation(), diag::warn_cocoa_naming_owned_rule);
// Look for a getter explicitly declared alongside the property.
// If we find one, use its location for the note.
SourceLocation noteLoc = PD->getLocation();
SourceLocation fixItLoc;
for (auto *getterRedecl : method->redecls()) {
if (getterRedecl->isImplicit())
continue;
if (getterRedecl->getDeclContext() != PD->getDeclContext())
continue;
noteLoc = getterRedecl->getLocation();
fixItLoc = getterRedecl->getEndLoc();
}
Preprocessor &PP = getPreprocessor();
TokenValue tokens[] = {
tok::kw___attribute, tok::l_paren, tok::l_paren,
PP.getIdentifierInfo("objc_method_family"), tok::l_paren,
PP.getIdentifierInfo("none"), tok::r_paren,
tok::r_paren, tok::r_paren
};
StringRef spelling = "__attribute__((objc_method_family(none)))";
StringRef macroName = PP.getLastMacroWithSpelling(noteLoc, tokens);
if (!macroName.empty())
spelling = macroName;
auto noteDiag = Diag(noteLoc, diag::note_cocoa_naming_declare_family)
<< method->getDeclName() << spelling;
if (fixItLoc.isValid()) {
SmallString<64> fixItText(" ");
fixItText += spelling;
noteDiag << FixItHint::CreateInsertion(fixItLoc, fixItText);
}
}
}
}
}
void Sema::DiagnoseMissingDesignatedInitOverrides(
const ObjCImplementationDecl *ImplD,
const ObjCInterfaceDecl *IFD) {
assert(IFD->hasDesignatedInitializers());
const ObjCInterfaceDecl *SuperD = IFD->getSuperClass();
if (!SuperD)
return;
SelectorSet InitSelSet;
for (const auto *I : ImplD->instance_methods())
if (I->getMethodFamily() == OMF_init)
InitSelSet.insert(I->getSelector());
SmallVector<const ObjCMethodDecl *, 8> DesignatedInits;
SuperD->getDesignatedInitializers(DesignatedInits);
for (SmallVector<const ObjCMethodDecl *, 8>::iterator
I = DesignatedInits.begin(), E = DesignatedInits.end(); I != E; ++I) {
const ObjCMethodDecl *MD = *I;
if (!InitSelSet.count(MD->getSelector())) {
// Don't emit a diagnostic if the overriding method in the subclass is
// marked as unavailable.
bool Ignore = false;
if (auto *IMD = IFD->getInstanceMethod(MD->getSelector())) {
Ignore = IMD->isUnavailable();
} else {
// Check the methods declared in the class extensions too.
for (auto *Ext : IFD->visible_extensions())
if (auto *IMD = Ext->getInstanceMethod(MD->getSelector())) {
Ignore = IMD->isUnavailable();
break;
}
}
if (!Ignore) {
Diag(ImplD->getLocation(),
diag::warn_objc_implementation_missing_designated_init_override)
<< MD->getSelector();
Diag(MD->getLocation(), diag::note_objc_designated_init_marked_here);
}
}
}
}
/// AddPropertyAttrs - Propagates attributes from a property to the
/// implicitly-declared getter or setter for that property.
static void AddPropertyAttrs(Sema &S, ObjCMethodDecl *PropertyMethod,
ObjCPropertyDecl *Property) {
// Should we just clone all attributes over?
for (const auto *A : Property->attrs()) {
if (isa<DeprecatedAttr>(A) ||
isa<UnavailableAttr>(A) ||
isa<AvailabilityAttr>(A))
PropertyMethod->addAttr(A->clone(S.Context));
}
}
/// ProcessPropertyDecl - Make sure that any user-defined setter/getter methods
/// have the property type and issue diagnostics if they don't.
/// Also synthesize a getter/setter method if none exist (and update the
/// appropriate lookup tables.
void Sema::ProcessPropertyDecl(ObjCPropertyDecl *property) {
ObjCMethodDecl *GetterMethod, *SetterMethod;
ObjCContainerDecl *CD = cast<ObjCContainerDecl>(property->getDeclContext());
if (CD->isInvalidDecl())
return;
bool IsClassProperty = property->isClassProperty();
GetterMethod = IsClassProperty ?
CD->getClassMethod(property->getGetterName()) :
CD->getInstanceMethod(property->getGetterName());
// if setter or getter is not found in class extension, it might be
// in the primary class.
if (!GetterMethod)
if (const ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CD))
if (CatDecl->IsClassExtension())
GetterMethod = IsClassProperty ? CatDecl->getClassInterface()->
getClassMethod(property->getGetterName()) :
CatDecl->getClassInterface()->
getInstanceMethod(property->getGetterName());
SetterMethod = IsClassProperty ?
CD->getClassMethod(property->getSetterName()) :
CD->getInstanceMethod(property->getSetterName());
if (!SetterMethod)
if (const ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CD))
if (CatDecl->IsClassExtension())
SetterMethod = IsClassProperty ? CatDecl->getClassInterface()->
getClassMethod(property->getSetterName()) :
CatDecl->getClassInterface()->
getInstanceMethod(property->getSetterName());
DiagnosePropertyAccessorMismatch(property, GetterMethod,
property->getLocation());
// synthesizing accessors must not result in a direct method that is not
// monomorphic
if (!GetterMethod) {
if (const ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CD)) {
auto *ExistingGetter = CatDecl->getClassInterface()->lookupMethod(
property->getGetterName(), !IsClassProperty, true, false, CatDecl);
if (ExistingGetter) {
if (ExistingGetter->isDirectMethod() || property->isDirectProperty()) {
Diag(property->getLocation(), diag::err_objc_direct_duplicate_decl)
<< property->isDirectProperty() << 1 /* property */
<< ExistingGetter->isDirectMethod()
<< ExistingGetter->getDeclName();
Diag(ExistingGetter->getLocation(), diag::note_previous_declaration);
}
}
}
}
if (!property->isReadOnly() && !SetterMethod) {
if (const ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CD)) {
auto *ExistingSetter = CatDecl->getClassInterface()->lookupMethod(
property->getSetterName(), !IsClassProperty, true, false, CatDecl);
if (ExistingSetter) {
if (ExistingSetter->isDirectMethod() || property->isDirectProperty()) {
Diag(property->getLocation(), diag::err_objc_direct_duplicate_decl)
<< property->isDirectProperty() << 1 /* property */
<< ExistingSetter->isDirectMethod()
<< ExistingSetter->getDeclName();
Diag(ExistingSetter->getLocation(), diag::note_previous_declaration);
}
}
}
}
if (!property->isReadOnly() && SetterMethod) {
if (Context.getCanonicalType(SetterMethod->getReturnType()) !=
Context.VoidTy)
Diag(SetterMethod->getLocation(), diag::err_setter_type_void);
if (SetterMethod->param_size() != 1 ||
!Context.hasSameUnqualifiedType(
(*SetterMethod->param_begin())->getType().getNonReferenceType(),
property->getType().getNonReferenceType())) {
Diag(property->getLocation(),
diag::warn_accessor_property_type_mismatch)
<< property->getDeclName()
<< SetterMethod->getSelector();
Diag(SetterMethod->getLocation(), diag::note_declared_at);
}
}
// Synthesize getter/setter methods if none exist.
// Find the default getter and if one not found, add one.
// FIXME: The synthesized property we set here is misleading. We almost always
// synthesize these methods unless the user explicitly provided prototypes
// (which is odd, but allowed). Sema should be typechecking that the
// declarations jive in that situation (which it is not currently).
if (!GetterMethod) {
// No instance/class method of same name as property getter name was found.
// Declare a getter method and add it to the list of methods
// for this class.
SourceLocation Loc = property->getLocation();
// The getter returns the declared property type with all qualifiers
// removed.
QualType resultTy = property->getType().getAtomicUnqualifiedType();
// If the property is null_resettable, the getter returns nonnull.
if (property->getPropertyAttributes() &
ObjCPropertyAttribute::kind_null_resettable) {
QualType modifiedTy = resultTy;
if (auto nullability = AttributedType::stripOuterNullability(modifiedTy)) {
if (*nullability == NullabilityKind::Unspecified)
resultTy = Context.getAttributedType(attr::TypeNonNull,
modifiedTy, modifiedTy);
}
}
GetterMethod = ObjCMethodDecl::Create(
Context, Loc, Loc, property->getGetterName(), resultTy, nullptr, CD,
!IsClassProperty, /*isVariadic=*/false,
/*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true, /*isDefined=*/false,
(property->getPropertyImplementation() == ObjCPropertyDecl::Optional)
? ObjCMethodDecl::Optional
: ObjCMethodDecl::Required);
CD->addDecl(GetterMethod);
AddPropertyAttrs(*this, GetterMethod, property);
if (property->isDirectProperty())
GetterMethod->addAttr(ObjCDirectAttr::CreateImplicit(Context, Loc));
if (property->hasAttr<NSReturnsNotRetainedAttr>())
GetterMethod->addAttr(NSReturnsNotRetainedAttr::CreateImplicit(Context,
Loc));
if (property->hasAttr<ObjCReturnsInnerPointerAttr>())
GetterMethod->addAttr(
ObjCReturnsInnerPointerAttr::CreateImplicit(Context, Loc));
if (const SectionAttr *SA = property->getAttr<SectionAttr>())
GetterMethod->addAttr(SectionAttr::CreateImplicit(
Context, SA->getName(), Loc, AttributeCommonInfo::AS_GNU,
SectionAttr::GNU_section));
if (getLangOpts().ObjCAutoRefCount)
CheckARCMethodDecl(GetterMethod);
} else
// A user declared getter will be synthesize when @synthesize of
// the property with the same name is seen in the @implementation
GetterMethod->setPropertyAccessor(true);
GetterMethod->createImplicitParams(Context,
GetterMethod->getClassInterface());
property->setGetterMethodDecl(GetterMethod);
// Skip setter if property is read-only.
if (!property->isReadOnly()) {
// Find the default setter and if one not found, add one.
if (!SetterMethod) {
// No instance/class method of same name as property setter name was
// found.
// Declare a setter method and add it to the list of methods
// for this class.
SourceLocation Loc = property->getLocation();
SetterMethod =
ObjCMethodDecl::Create(Context, Loc, Loc,
property->getSetterName(), Context.VoidTy,
nullptr, CD, !IsClassProperty,
/*isVariadic=*/false,
/*isPropertyAccessor=*/true,
/*isSynthesizedAccessorStub=*/false,
/*isImplicitlyDeclared=*/true,
/*isDefined=*/false,
(property->getPropertyImplementation() ==
ObjCPropertyDecl::Optional) ?
ObjCMethodDecl::Optional :
ObjCMethodDecl::Required);
// Remove all qualifiers from the setter's parameter type.
QualType paramTy =
property->getType().getUnqualifiedType().getAtomicUnqualifiedType();
// If the property is null_resettable, the setter accepts a
// nullable value.
if (property->getPropertyAttributes() &
ObjCPropertyAttribute::kind_null_resettable) {
QualType modifiedTy = paramTy;
if (auto nullability = AttributedType::stripOuterNullability(modifiedTy)){
if (*nullability == NullabilityKind::Unspecified)
paramTy = Context.getAttributedType(attr::TypeNullable,
modifiedTy, modifiedTy);
}
}
// Invent the arguments for the setter. We don't bother making a
// nice name for the argument.
ParmVarDecl *Argument = ParmVarDecl::Create(Context, SetterMethod,
Loc, Loc,
property->getIdentifier(),
paramTy,
/*TInfo=*/nullptr,
SC_None,
nullptr);
SetterMethod->setMethodParams(Context, Argument, None);
AddPropertyAttrs(*this, SetterMethod, property);
if (property->isDirectProperty())
SetterMethod->addAttr(ObjCDirectAttr::CreateImplicit(Context, Loc));
CD->addDecl(SetterMethod);
if (const SectionAttr *SA = property->getAttr<SectionAttr>())
SetterMethod->addAttr(SectionAttr::CreateImplicit(
Context, SA->getName(), Loc, AttributeCommonInfo::AS_GNU,
SectionAttr::GNU_section));
// It's possible for the user to have set a very odd custom
// setter selector that causes it to have a method family.
if (getLangOpts().ObjCAutoRefCount)
CheckARCMethodDecl(SetterMethod);
} else
// A user declared setter will be synthesize when @synthesize of
// the property with the same name is seen in the @implementation
SetterMethod->setPropertyAccessor(true);
SetterMethod->createImplicitParams(Context,
SetterMethod->getClassInterface());
property->setSetterMethodDecl(SetterMethod);
}
// Add any synthesized methods to the global pool. This allows us to
// handle the following, which is supported by GCC (and part of the design).
//
// @interface Foo
// @property double bar;
// @end
//
// void thisIsUnfortunate() {
// id foo;
// double bar = [foo bar];
// }
//
if (!IsClassProperty) {
if (GetterMethod)
AddInstanceMethodToGlobalPool(GetterMethod);
if (SetterMethod)
AddInstanceMethodToGlobalPool(SetterMethod);
} else {
if (GetterMethod)
AddFactoryMethodToGlobalPool(GetterMethod);
if (SetterMethod)
AddFactoryMethodToGlobalPool(SetterMethod);
}
ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(CD);
if (!CurrentClass) {
if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(CD))
CurrentClass = Cat->getClassInterface();
else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(CD))
CurrentClass = Impl->getClassInterface();
}
if (GetterMethod)
CheckObjCMethodOverrides(GetterMethod, CurrentClass, Sema::RTC_Unknown);
if (SetterMethod)
CheckObjCMethodOverrides(SetterMethod, CurrentClass, Sema::RTC_Unknown);
}
void Sema::CheckObjCPropertyAttributes(Decl *PDecl,
SourceLocation Loc,
unsigned &Attributes,
bool propertyInPrimaryClass) {
// FIXME: Improve the reported location.
if (!PDecl || PDecl->isInvalidDecl())
return;
if ((Attributes & ObjCPropertyAttribute::kind_readonly) &&
(Attributes & ObjCPropertyAttribute::kind_readwrite))
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "readonly" << "readwrite";
ObjCPropertyDecl *PropertyDecl = cast<ObjCPropertyDecl>(PDecl);
QualType PropertyTy = PropertyDecl->getType();
// Check for copy or retain on non-object types.
if ((Attributes &
(ObjCPropertyAttribute::kind_weak | ObjCPropertyAttribute::kind_copy |
ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong)) &&
!PropertyTy->isObjCRetainableType() &&
!PropertyDecl->hasAttr<ObjCNSObjectAttr>()) {
Diag(Loc, diag::err_objc_property_requires_object)
<< (Attributes & ObjCPropertyAttribute::kind_weak
? "weak"
: Attributes & ObjCPropertyAttribute::kind_copy
? "copy"
: "retain (or strong)");
Attributes &=
~(ObjCPropertyAttribute::kind_weak | ObjCPropertyAttribute::kind_copy |
ObjCPropertyAttribute::kind_retain |
ObjCPropertyAttribute::kind_strong);
PropertyDecl->setInvalidDecl();
}
// Check for assign on object types.
if ((Attributes & ObjCPropertyAttribute::kind_assign) &&
!(Attributes & ObjCPropertyAttribute::kind_unsafe_unretained) &&
PropertyTy->isObjCRetainableType() &&
!PropertyTy->isObjCARCImplicitlyUnretainedType()) {
Diag(Loc, diag::warn_objc_property_assign_on_object);
}
// Check for more than one of { assign, copy, retain }.
if (Attributes & ObjCPropertyAttribute::kind_assign) {
if (Attributes & ObjCPropertyAttribute::kind_copy) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "copy";
Attributes &= ~ObjCPropertyAttribute::kind_copy;
}
if (Attributes & ObjCPropertyAttribute::kind_retain) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "retain";
Attributes &= ~ObjCPropertyAttribute::kind_retain;
}
if (Attributes & ObjCPropertyAttribute::kind_strong) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "strong";
Attributes &= ~ObjCPropertyAttribute::kind_strong;
}
if (getLangOpts().ObjCAutoRefCount &&
(Attributes & ObjCPropertyAttribute::kind_weak)) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "assign" << "weak";
Attributes &= ~ObjCPropertyAttribute::kind_weak;
}
if (PropertyDecl->hasAttr<IBOutletCollectionAttr>())
Diag(Loc, diag::warn_iboutletcollection_property_assign);
} else if (Attributes & ObjCPropertyAttribute::kind_unsafe_unretained) {
if (Attributes & ObjCPropertyAttribute::kind_copy) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "unsafe_unretained" << "copy";
Attributes &= ~ObjCPropertyAttribute::kind_copy;
}
if (Attributes & ObjCPropertyAttribute::kind_retain) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "unsafe_unretained" << "retain";
Attributes &= ~ObjCPropertyAttribute::kind_retain;
}
if (Attributes & ObjCPropertyAttribute::kind_strong) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "unsafe_unretained" << "strong";
Attributes &= ~ObjCPropertyAttribute::kind_strong;
}
if (getLangOpts().ObjCAutoRefCount &&
(Attributes & ObjCPropertyAttribute::kind_weak)) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "unsafe_unretained" << "weak";
Attributes &= ~ObjCPropertyAttribute::kind_weak;
}
} else if (Attributes & ObjCPropertyAttribute::kind_copy) {
if (Attributes & ObjCPropertyAttribute::kind_retain) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "copy" << "retain";
Attributes &= ~ObjCPropertyAttribute::kind_retain;
}
if (Attributes & ObjCPropertyAttribute::kind_strong) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "copy" << "strong";
Attributes &= ~ObjCPropertyAttribute::kind_strong;
}
if (Attributes & ObjCPropertyAttribute::kind_weak) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "copy" << "weak";
Attributes &= ~ObjCPropertyAttribute::kind_weak;
}
} else if ((Attributes & ObjCPropertyAttribute::kind_retain) &&
(Attributes & ObjCPropertyAttribute::kind_weak)) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive) << "retain"
<< "weak";
Attributes &= ~ObjCPropertyAttribute::kind_retain;
} else if ((Attributes & ObjCPropertyAttribute::kind_strong) &&
(Attributes & ObjCPropertyAttribute::kind_weak)) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive) << "strong"
<< "weak";
Attributes &= ~ObjCPropertyAttribute::kind_weak;
}
if (Attributes & ObjCPropertyAttribute::kind_weak) {
// 'weak' and 'nonnull' are mutually exclusive.
if (auto nullability = PropertyTy->getNullability(Context)) {
if (*nullability == NullabilityKind::NonNull)
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive)
<< "nonnull" << "weak";
}
}
if ((Attributes & ObjCPropertyAttribute::kind_atomic) &&
(Attributes & ObjCPropertyAttribute::kind_nonatomic)) {
Diag(Loc, diag::err_objc_property_attr_mutually_exclusive) << "atomic"
<< "nonatomic";
Attributes &= ~ObjCPropertyAttribute::kind_atomic;
}
// Warn if user supplied no assignment attribute, property is
// readwrite, and this is an object type.
if (!getOwnershipRule(Attributes) && PropertyTy->isObjCRetainableType()) {
if (Attributes & ObjCPropertyAttribute::kind_readonly) {
// do nothing
} else if (getLangOpts().ObjCAutoRefCount) {
// With arc, @property definitions should default to strong when
// not specified.
PropertyDecl->setPropertyAttributes(ObjCPropertyAttribute::kind_strong);
} else if (PropertyTy->isObjCObjectPointerType()) {
bool isAnyClassTy = (PropertyTy->isObjCClassType() ||
PropertyTy->isObjCQualifiedClassType());
// In non-gc, non-arc mode, 'Class' is treated as a 'void *' no need to
// issue any warning.
if (isAnyClassTy && getLangOpts().getGC() == LangOptions::NonGC)
;
else if (propertyInPrimaryClass) {
// Don't issue warning on property with no life time in class
// extension as it is inherited from property in primary class.
// Skip this warning in gc-only mode.
if (getLangOpts().getGC() != LangOptions::GCOnly)
Diag(Loc, diag::warn_objc_property_no_assignment_attribute);
// If non-gc code warn that this is likely inappropriate.
if (getLangOpts().getGC() == LangOptions::NonGC)
Diag(Loc, diag::warn_objc_property_default_assign_on_object);
}
}
// FIXME: Implement warning dependent on NSCopying being
// implemented. See also:
// <rdar://5168496&4855821&5607453&5096644&4947311&5698469&4947014&5168496>
// (please trim this list while you are at it).
}
if (!(Attributes & ObjCPropertyAttribute::kind_copy) &&
!(Attributes & ObjCPropertyAttribute::kind_readonly) &&
getLangOpts().getGC() == LangOptions::GCOnly &&
PropertyTy->isBlockPointerType())
Diag(Loc, diag::warn_objc_property_copy_missing_on_block);
else if ((Attributes & ObjCPropertyAttribute::kind_retain) &&
!(Attributes & ObjCPropertyAttribute::kind_readonly) &&
!(Attributes & ObjCPropertyAttribute::kind_strong) &&
PropertyTy->isBlockPointerType())
Diag(Loc, diag::warn_objc_property_retain_of_block);
if ((Attributes & ObjCPropertyAttribute::kind_readonly) &&
(Attributes & ObjCPropertyAttribute::kind_setter))
Diag(Loc, diag::warn_objc_readonly_property_has_setter);
}