forked from OSchip/llvm-project
10179 lines
399 KiB
C++
10179 lines
399 KiB
C++
//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for initializers.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ExprOpenMP.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/Designator.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace clang;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Sema Initialization Checking
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Check whether T is compatible with a wide character type (wchar_t,
|
|
/// char16_t or char32_t).
|
|
static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
|
|
if (Context.typesAreCompatible(Context.getWideCharType(), T))
|
|
return true;
|
|
if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
|
|
return Context.typesAreCompatible(Context.Char16Ty, T) ||
|
|
Context.typesAreCompatible(Context.Char32Ty, T);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
enum StringInitFailureKind {
|
|
SIF_None,
|
|
SIF_NarrowStringIntoWideChar,
|
|
SIF_WideStringIntoChar,
|
|
SIF_IncompatWideStringIntoWideChar,
|
|
SIF_UTF8StringIntoPlainChar,
|
|
SIF_PlainStringIntoUTF8Char,
|
|
SIF_Other
|
|
};
|
|
|
|
/// Check whether the array of type AT can be initialized by the Init
|
|
/// expression by means of string initialization. Returns SIF_None if so,
|
|
/// otherwise returns a StringInitFailureKind that describes why the
|
|
/// initialization would not work.
|
|
static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
|
|
ASTContext &Context) {
|
|
if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
|
|
return SIF_Other;
|
|
|
|
// See if this is a string literal or @encode.
|
|
Init = Init->IgnoreParens();
|
|
|
|
// Handle @encode, which is a narrow string.
|
|
if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
|
|
return SIF_None;
|
|
|
|
// Otherwise we can only handle string literals.
|
|
StringLiteral *SL = dyn_cast<StringLiteral>(Init);
|
|
if (!SL)
|
|
return SIF_Other;
|
|
|
|
const QualType ElemTy =
|
|
Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
|
|
|
|
switch (SL->getKind()) {
|
|
case StringLiteral::UTF8:
|
|
// char8_t array can be initialized with a UTF-8 string.
|
|
if (ElemTy->isChar8Type())
|
|
return SIF_None;
|
|
LLVM_FALLTHROUGH;
|
|
case StringLiteral::Ascii:
|
|
// char array can be initialized with a narrow string.
|
|
// Only allow char x[] = "foo"; not char x[] = L"foo";
|
|
if (ElemTy->isCharType())
|
|
return (SL->getKind() == StringLiteral::UTF8 &&
|
|
Context.getLangOpts().Char8)
|
|
? SIF_UTF8StringIntoPlainChar
|
|
: SIF_None;
|
|
if (ElemTy->isChar8Type())
|
|
return SIF_PlainStringIntoUTF8Char;
|
|
if (IsWideCharCompatible(ElemTy, Context))
|
|
return SIF_NarrowStringIntoWideChar;
|
|
return SIF_Other;
|
|
// C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
|
|
// "An array with element type compatible with a qualified or unqualified
|
|
// version of wchar_t, char16_t, or char32_t may be initialized by a wide
|
|
// string literal with the corresponding encoding prefix (L, u, or U,
|
|
// respectively), optionally enclosed in braces.
|
|
case StringLiteral::UTF16:
|
|
if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
|
|
return SIF_None;
|
|
if (ElemTy->isCharType() || ElemTy->isChar8Type())
|
|
return SIF_WideStringIntoChar;
|
|
if (IsWideCharCompatible(ElemTy, Context))
|
|
return SIF_IncompatWideStringIntoWideChar;
|
|
return SIF_Other;
|
|
case StringLiteral::UTF32:
|
|
if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
|
|
return SIF_None;
|
|
if (ElemTy->isCharType() || ElemTy->isChar8Type())
|
|
return SIF_WideStringIntoChar;
|
|
if (IsWideCharCompatible(ElemTy, Context))
|
|
return SIF_IncompatWideStringIntoWideChar;
|
|
return SIF_Other;
|
|
case StringLiteral::Wide:
|
|
if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
|
|
return SIF_None;
|
|
if (ElemTy->isCharType() || ElemTy->isChar8Type())
|
|
return SIF_WideStringIntoChar;
|
|
if (IsWideCharCompatible(ElemTy, Context))
|
|
return SIF_IncompatWideStringIntoWideChar;
|
|
return SIF_Other;
|
|
}
|
|
|
|
llvm_unreachable("missed a StringLiteral kind?");
|
|
}
|
|
|
|
static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
|
|
ASTContext &Context) {
|
|
const ArrayType *arrayType = Context.getAsArrayType(declType);
|
|
if (!arrayType)
|
|
return SIF_Other;
|
|
return IsStringInit(init, arrayType, Context);
|
|
}
|
|
|
|
bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
|
|
return ::IsStringInit(Init, AT, Context) == SIF_None;
|
|
}
|
|
|
|
/// Update the type of a string literal, including any surrounding parentheses,
|
|
/// to match the type of the object which it is initializing.
|
|
static void updateStringLiteralType(Expr *E, QualType Ty) {
|
|
while (true) {
|
|
E->setType(Ty);
|
|
E->setValueKind(VK_RValue);
|
|
if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
|
|
break;
|
|
} else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
E = PE->getSubExpr();
|
|
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
assert(UO->getOpcode() == UO_Extension);
|
|
E = UO->getSubExpr();
|
|
} else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
|
|
E = GSE->getResultExpr();
|
|
} else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
|
|
E = CE->getChosenSubExpr();
|
|
} else {
|
|
llvm_unreachable("unexpected expr in string literal init");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Fix a compound literal initializing an array so it's correctly marked
|
|
/// as an rvalue.
|
|
static void updateGNUCompoundLiteralRValue(Expr *E) {
|
|
while (true) {
|
|
E->setValueKind(VK_RValue);
|
|
if (isa<CompoundLiteralExpr>(E)) {
|
|
break;
|
|
} else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
|
|
E = PE->getSubExpr();
|
|
} else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
assert(UO->getOpcode() == UO_Extension);
|
|
E = UO->getSubExpr();
|
|
} else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
|
|
E = GSE->getResultExpr();
|
|
} else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
|
|
E = CE->getChosenSubExpr();
|
|
} else {
|
|
llvm_unreachable("unexpected expr in array compound literal init");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
|
|
Sema &S) {
|
|
// Get the length of the string as parsed.
|
|
auto *ConstantArrayTy =
|
|
cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
|
|
uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
|
|
|
|
if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
|
|
// C99 6.7.8p14. We have an array of character type with unknown size
|
|
// being initialized to a string literal.
|
|
llvm::APInt ConstVal(32, StrLength);
|
|
// Return a new array type (C99 6.7.8p22).
|
|
DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
|
|
ConstVal, nullptr,
|
|
ArrayType::Normal, 0);
|
|
updateStringLiteralType(Str, DeclT);
|
|
return;
|
|
}
|
|
|
|
const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
|
|
|
|
// We have an array of character type with known size. However,
|
|
// the size may be smaller or larger than the string we are initializing.
|
|
// FIXME: Avoid truncation for 64-bit length strings.
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
|
|
// For Pascal strings it's OK to strip off the terminating null character,
|
|
// so the example below is valid:
|
|
//
|
|
// unsigned char a[2] = "\pa";
|
|
if (SL->isPascal())
|
|
StrLength--;
|
|
}
|
|
|
|
// [dcl.init.string]p2
|
|
if (StrLength > CAT->getSize().getZExtValue())
|
|
S.Diag(Str->getBeginLoc(),
|
|
diag::err_initializer_string_for_char_array_too_long)
|
|
<< Str->getSourceRange();
|
|
} else {
|
|
// C99 6.7.8p14.
|
|
if (StrLength-1 > CAT->getSize().getZExtValue())
|
|
S.Diag(Str->getBeginLoc(),
|
|
diag::ext_initializer_string_for_char_array_too_long)
|
|
<< Str->getSourceRange();
|
|
}
|
|
|
|
// Set the type to the actual size that we are initializing. If we have
|
|
// something like:
|
|
// char x[1] = "foo";
|
|
// then this will set the string literal's type to char[1].
|
|
updateStringLiteralType(Str, DeclT);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Semantic checking for initializer lists.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
/// Semantic checking for initializer lists.
|
|
///
|
|
/// The InitListChecker class contains a set of routines that each
|
|
/// handle the initialization of a certain kind of entity, e.g.,
|
|
/// arrays, vectors, struct/union types, scalars, etc. The
|
|
/// InitListChecker itself performs a recursive walk of the subobject
|
|
/// structure of the type to be initialized, while stepping through
|
|
/// the initializer list one element at a time. The IList and Index
|
|
/// parameters to each of the Check* routines contain the active
|
|
/// (syntactic) initializer list and the index into that initializer
|
|
/// list that represents the current initializer. Each routine is
|
|
/// responsible for moving that Index forward as it consumes elements.
|
|
///
|
|
/// Each Check* routine also has a StructuredList/StructuredIndex
|
|
/// arguments, which contains the current "structured" (semantic)
|
|
/// initializer list and the index into that initializer list where we
|
|
/// are copying initializers as we map them over to the semantic
|
|
/// list. Once we have completed our recursive walk of the subobject
|
|
/// structure, we will have constructed a full semantic initializer
|
|
/// list.
|
|
///
|
|
/// C99 designators cause changes in the initializer list traversal,
|
|
/// because they make the initialization "jump" into a specific
|
|
/// subobject and then continue the initialization from that
|
|
/// point. CheckDesignatedInitializer() recursively steps into the
|
|
/// designated subobject and manages backing out the recursion to
|
|
/// initialize the subobjects after the one designated.
|
|
///
|
|
/// If an initializer list contains any designators, we build a placeholder
|
|
/// structured list even in 'verify only' mode, so that we can track which
|
|
/// elements need 'empty' initializtion.
|
|
class InitListChecker {
|
|
Sema &SemaRef;
|
|
bool hadError = false;
|
|
bool VerifyOnly; // No diagnostics.
|
|
bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
|
|
bool InOverloadResolution;
|
|
InitListExpr *FullyStructuredList = nullptr;
|
|
NoInitExpr *DummyExpr = nullptr;
|
|
|
|
NoInitExpr *getDummyInit() {
|
|
if (!DummyExpr)
|
|
DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
|
|
return DummyExpr;
|
|
}
|
|
|
|
void CheckImplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *ParentIList, QualType T,
|
|
unsigned &Index, InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckExplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &T,
|
|
InitListExpr *StructuredList,
|
|
bool TopLevelObject = false);
|
|
void CheckListElementTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckSubElementType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType ElemType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckComplexType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckScalarType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckReferenceType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckVectorType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
void CheckStructUnionTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
CXXRecordDecl::base_class_range Bases,
|
|
RecordDecl::field_iterator Field,
|
|
bool SubobjectIsDesignatorContext, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject = false);
|
|
void CheckArrayType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
llvm::APSInt elementIndex,
|
|
bool SubobjectIsDesignatorContext, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex);
|
|
bool CheckDesignatedInitializer(const InitializedEntity &Entity,
|
|
InitListExpr *IList, DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
QualType &CurrentObjectType,
|
|
RecordDecl::field_iterator *NextField,
|
|
llvm::APSInt *NextElementIndex,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool FinishSubobjectInit,
|
|
bool TopLevelObject);
|
|
InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
|
|
QualType CurrentObjectType,
|
|
InitListExpr *StructuredList,
|
|
unsigned StructuredIndex,
|
|
SourceRange InitRange,
|
|
bool IsFullyOverwritten = false);
|
|
void UpdateStructuredListElement(InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
Expr *expr);
|
|
InitListExpr *createInitListExpr(QualType CurrentObjectType,
|
|
SourceRange InitRange,
|
|
unsigned ExpectedNumInits);
|
|
int numArrayElements(QualType DeclType);
|
|
int numStructUnionElements(QualType DeclType);
|
|
|
|
ExprResult PerformEmptyInit(SourceLocation Loc,
|
|
const InitializedEntity &Entity);
|
|
|
|
/// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
|
|
void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
|
|
bool FullyOverwritten = true) {
|
|
// Overriding an initializer via a designator is valid with C99 designated
|
|
// initializers, but ill-formed with C++20 designated initializers.
|
|
unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
|
|
? diag::ext_initializer_overrides
|
|
: diag::warn_initializer_overrides;
|
|
|
|
if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
|
|
// In overload resolution, we have to strictly enforce the rules, and so
|
|
// don't allow any overriding of prior initializers. This matters for a
|
|
// case such as:
|
|
//
|
|
// union U { int a, b; };
|
|
// struct S { int a, b; };
|
|
// void f(U), f(S);
|
|
//
|
|
// Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
|
|
// consistency, we disallow all overriding of prior initializers in
|
|
// overload resolution, not only overriding of union members.
|
|
hadError = true;
|
|
} else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
|
|
// If we'll be keeping around the old initializer but overwriting part of
|
|
// the object it initialized, and that object is not trivially
|
|
// destructible, this can leak. Don't allow that, not even as an
|
|
// extension.
|
|
//
|
|
// FIXME: It might be reasonable to allow this in cases where the part of
|
|
// the initializer that we're overriding has trivial destruction.
|
|
DiagID = diag::err_initializer_overrides_destructed;
|
|
} else if (!OldInit->getSourceRange().isValid()) {
|
|
// We need to check on source range validity because the previous
|
|
// initializer does not have to be an explicit initializer. e.g.,
|
|
//
|
|
// struct P { int a, b; };
|
|
// struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
|
|
//
|
|
// There is an overwrite taking place because the first braced initializer
|
|
// list "{ .a = 2 }" already provides value for .p.b (which is zero).
|
|
//
|
|
// Such overwrites are harmless, so we don't diagnose them. (Note that in
|
|
// C++, this cannot be reached unless we've already seen and diagnosed a
|
|
// different conformance issue, such as a mixture of designated and
|
|
// non-designated initializers or a multi-level designator.)
|
|
return;
|
|
}
|
|
|
|
if (!VerifyOnly) {
|
|
SemaRef.Diag(NewInitRange.getBegin(), DiagID)
|
|
<< NewInitRange << FullyOverwritten << OldInit->getType();
|
|
SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
|
|
<< (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
|
|
<< OldInit->getSourceRange();
|
|
}
|
|
}
|
|
|
|
// Explanation on the "FillWithNoInit" mode:
|
|
//
|
|
// Assume we have the following definitions (Case#1):
|
|
// struct P { char x[6][6]; } xp = { .x[1] = "bar" };
|
|
// struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
|
|
//
|
|
// l.lp.x[1][0..1] should not be filled with implicit initializers because the
|
|
// "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
|
|
//
|
|
// But if we have (Case#2):
|
|
// struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
|
|
//
|
|
// l.lp.x[1][0..1] are implicitly initialized and do not use values from the
|
|
// "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
|
|
//
|
|
// To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
|
|
// in the InitListExpr, the "holes" in Case#1 are filled not with empty
|
|
// initializers but with special "NoInitExpr" place holders, which tells the
|
|
// CodeGen not to generate any initializers for these parts.
|
|
void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
|
|
const InitializedEntity &ParentEntity,
|
|
InitListExpr *ILE, bool &RequiresSecondPass,
|
|
bool FillWithNoInit);
|
|
void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
|
|
const InitializedEntity &ParentEntity,
|
|
InitListExpr *ILE, bool &RequiresSecondPass,
|
|
bool FillWithNoInit = false);
|
|
void FillInEmptyInitializations(const InitializedEntity &Entity,
|
|
InitListExpr *ILE, bool &RequiresSecondPass,
|
|
InitListExpr *OuterILE, unsigned OuterIndex,
|
|
bool FillWithNoInit = false);
|
|
bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
|
|
Expr *InitExpr, FieldDecl *Field,
|
|
bool TopLevelObject);
|
|
void CheckEmptyInitializable(const InitializedEntity &Entity,
|
|
SourceLocation Loc);
|
|
|
|
public:
|
|
InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
|
|
QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
|
|
bool InOverloadResolution = false);
|
|
bool HadError() { return hadError; }
|
|
|
|
// Retrieves the fully-structured initializer list used for
|
|
// semantic analysis and code generation.
|
|
InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
|
|
const InitializedEntity &Entity) {
|
|
InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
|
|
true);
|
|
MultiExprArg SubInit;
|
|
Expr *InitExpr;
|
|
InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
|
|
|
|
// C++ [dcl.init.aggr]p7:
|
|
// If there are fewer initializer-clauses in the list than there are
|
|
// members in the aggregate, then each member not explicitly initialized
|
|
// ...
|
|
bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
|
|
Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
|
|
if (EmptyInitList) {
|
|
// C++1y / DR1070:
|
|
// shall be initialized [...] from an empty initializer list.
|
|
//
|
|
// We apply the resolution of this DR to C++11 but not C++98, since C++98
|
|
// does not have useful semantics for initialization from an init list.
|
|
// We treat this as copy-initialization, because aggregate initialization
|
|
// always performs copy-initialization on its elements.
|
|
//
|
|
// Only do this if we're initializing a class type, to avoid filling in
|
|
// the initializer list where possible.
|
|
InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
|
|
InitListExpr(SemaRef.Context, Loc, None, Loc);
|
|
InitExpr->setType(SemaRef.Context.VoidTy);
|
|
SubInit = InitExpr;
|
|
Kind = InitializationKind::CreateCopy(Loc, Loc);
|
|
} else {
|
|
// C++03:
|
|
// shall be value-initialized.
|
|
}
|
|
|
|
InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
|
|
// libstdc++4.6 marks the vector default constructor as explicit in
|
|
// _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
|
|
// stlport does so too. Look for std::__debug for libstdc++, and for
|
|
// std:: for stlport. This is effectively a compiler-side implementation of
|
|
// LWG2193.
|
|
if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
|
|
InitializationSequence::FK_ExplicitConstructor) {
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult O =
|
|
InitSeq.getFailedCandidateSet()
|
|
.BestViableFunction(SemaRef, Kind.getLocation(), Best);
|
|
(void)O;
|
|
assert(O == OR_Success && "Inconsistent overload resolution");
|
|
CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
|
|
CXXRecordDecl *R = CtorDecl->getParent();
|
|
|
|
if (CtorDecl->getMinRequiredArguments() == 0 &&
|
|
CtorDecl->isExplicit() && R->getDeclName() &&
|
|
SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
|
|
bool IsInStd = false;
|
|
for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
|
|
ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
|
|
if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
|
|
IsInStd = true;
|
|
}
|
|
|
|
if (IsInStd && llvm::StringSwitch<bool>(R->getName())
|
|
.Cases("basic_string", "deque", "forward_list", true)
|
|
.Cases("list", "map", "multimap", "multiset", true)
|
|
.Cases("priority_queue", "queue", "set", "stack", true)
|
|
.Cases("unordered_map", "unordered_set", "vector", true)
|
|
.Default(false)) {
|
|
InitSeq.InitializeFrom(
|
|
SemaRef, Entity,
|
|
InitializationKind::CreateValue(Loc, Loc, Loc, true),
|
|
MultiExprArg(), /*TopLevelOfInitList=*/false,
|
|
TreatUnavailableAsInvalid);
|
|
// Emit a warning for this. System header warnings aren't shown
|
|
// by default, but people working on system headers should see it.
|
|
if (!VerifyOnly) {
|
|
SemaRef.Diag(CtorDecl->getLocation(),
|
|
diag::warn_invalid_initializer_from_system_header);
|
|
if (Entity.getKind() == InitializedEntity::EK_Member)
|
|
SemaRef.Diag(Entity.getDecl()->getLocation(),
|
|
diag::note_used_in_initialization_here);
|
|
else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
|
|
SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!InitSeq) {
|
|
if (!VerifyOnly) {
|
|
InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
|
|
if (Entity.getKind() == InitializedEntity::EK_Member)
|
|
SemaRef.Diag(Entity.getDecl()->getLocation(),
|
|
diag::note_in_omitted_aggregate_initializer)
|
|
<< /*field*/1 << Entity.getDecl();
|
|
else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
|
|
bool IsTrailingArrayNewMember =
|
|
Entity.getParent() &&
|
|
Entity.getParent()->isVariableLengthArrayNew();
|
|
SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
|
|
<< (IsTrailingArrayNewMember ? 2 : /*array element*/0)
|
|
<< Entity.getElementIndex();
|
|
}
|
|
}
|
|
hadError = true;
|
|
return ExprError();
|
|
}
|
|
|
|
return VerifyOnly ? ExprResult()
|
|
: InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
|
|
}
|
|
|
|
void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
|
|
SourceLocation Loc) {
|
|
// If we're building a fully-structured list, we'll check this at the end
|
|
// once we know which elements are actually initialized. Otherwise, we know
|
|
// that there are no designators so we can just check now.
|
|
if (FullyStructuredList)
|
|
return;
|
|
PerformEmptyInit(Loc, Entity);
|
|
}
|
|
|
|
void InitListChecker::FillInEmptyInitForBase(
|
|
unsigned Init, const CXXBaseSpecifier &Base,
|
|
const InitializedEntity &ParentEntity, InitListExpr *ILE,
|
|
bool &RequiresSecondPass, bool FillWithNoInit) {
|
|
InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
|
|
SemaRef.Context, &Base, false, &ParentEntity);
|
|
|
|
if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
|
|
ExprResult BaseInit = FillWithNoInit
|
|
? new (SemaRef.Context) NoInitExpr(Base.getType())
|
|
: PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
|
|
if (BaseInit.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (!VerifyOnly) {
|
|
assert(Init < ILE->getNumInits() && "should have been expanded");
|
|
ILE->setInit(Init, BaseInit.getAs<Expr>());
|
|
}
|
|
} else if (InitListExpr *InnerILE =
|
|
dyn_cast<InitListExpr>(ILE->getInit(Init))) {
|
|
FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
|
|
ILE, Init, FillWithNoInit);
|
|
} else if (DesignatedInitUpdateExpr *InnerDIUE =
|
|
dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
|
|
FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
|
|
RequiresSecondPass, ILE, Init,
|
|
/*FillWithNoInit =*/true);
|
|
}
|
|
}
|
|
|
|
void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
|
|
const InitializedEntity &ParentEntity,
|
|
InitListExpr *ILE,
|
|
bool &RequiresSecondPass,
|
|
bool FillWithNoInit) {
|
|
SourceLocation Loc = ILE->getEndLoc();
|
|
unsigned NumInits = ILE->getNumInits();
|
|
InitializedEntity MemberEntity
|
|
= InitializedEntity::InitializeMember(Field, &ParentEntity);
|
|
|
|
if (Init >= NumInits || !ILE->getInit(Init)) {
|
|
if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
|
|
if (!RType->getDecl()->isUnion())
|
|
assert((Init < NumInits || VerifyOnly) &&
|
|
"This ILE should have been expanded");
|
|
|
|
if (FillWithNoInit) {
|
|
assert(!VerifyOnly && "should not fill with no-init in verify-only mode");
|
|
Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
|
|
if (Init < NumInits)
|
|
ILE->setInit(Init, Filler);
|
|
else
|
|
ILE->updateInit(SemaRef.Context, Init, Filler);
|
|
return;
|
|
}
|
|
// C++1y [dcl.init.aggr]p7:
|
|
// If there are fewer initializer-clauses in the list than there are
|
|
// members in the aggregate, then each member not explicitly initialized
|
|
// shall be initialized from its brace-or-equal-initializer [...]
|
|
if (Field->hasInClassInitializer()) {
|
|
if (VerifyOnly)
|
|
return;
|
|
|
|
ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
|
|
if (DIE.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
|
|
if (Init < NumInits)
|
|
ILE->setInit(Init, DIE.get());
|
|
else {
|
|
ILE->updateInit(SemaRef.Context, Init, DIE.get());
|
|
RequiresSecondPass = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (Field->getType()->isReferenceType()) {
|
|
if (!VerifyOnly) {
|
|
// C++ [dcl.init.aggr]p9:
|
|
// If an incomplete or empty initializer-list leaves a
|
|
// member of reference type uninitialized, the program is
|
|
// ill-formed.
|
|
SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
|
|
<< Field->getType()
|
|
<< ILE->getSyntacticForm()->getSourceRange();
|
|
SemaRef.Diag(Field->getLocation(),
|
|
diag::note_uninit_reference_member);
|
|
}
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
|
|
if (MemberInit.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (hadError || VerifyOnly) {
|
|
// Do nothing
|
|
} else if (Init < NumInits) {
|
|
ILE->setInit(Init, MemberInit.getAs<Expr>());
|
|
} else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
|
|
// Empty initialization requires a constructor call, so
|
|
// extend the initializer list to include the constructor
|
|
// call and make a note that we'll need to take another pass
|
|
// through the initializer list.
|
|
ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
|
|
RequiresSecondPass = true;
|
|
}
|
|
} else if (InitListExpr *InnerILE
|
|
= dyn_cast<InitListExpr>(ILE->getInit(Init))) {
|
|
FillInEmptyInitializations(MemberEntity, InnerILE,
|
|
RequiresSecondPass, ILE, Init, FillWithNoInit);
|
|
} else if (DesignatedInitUpdateExpr *InnerDIUE =
|
|
dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
|
|
FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
|
|
RequiresSecondPass, ILE, Init,
|
|
/*FillWithNoInit =*/true);
|
|
}
|
|
}
|
|
|
|
/// Recursively replaces NULL values within the given initializer list
|
|
/// with expressions that perform value-initialization of the
|
|
/// appropriate type, and finish off the InitListExpr formation.
|
|
void
|
|
InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
|
|
InitListExpr *ILE,
|
|
bool &RequiresSecondPass,
|
|
InitListExpr *OuterILE,
|
|
unsigned OuterIndex,
|
|
bool FillWithNoInit) {
|
|
assert((ILE->getType() != SemaRef.Context.VoidTy) &&
|
|
"Should not have void type");
|
|
|
|
// We don't need to do any checks when just filling NoInitExprs; that can't
|
|
// fail.
|
|
if (FillWithNoInit && VerifyOnly)
|
|
return;
|
|
|
|
// If this is a nested initializer list, we might have changed its contents
|
|
// (and therefore some of its properties, such as instantiation-dependence)
|
|
// while filling it in. Inform the outer initializer list so that its state
|
|
// can be updated to match.
|
|
// FIXME: We should fully build the inner initializers before constructing
|
|
// the outer InitListExpr instead of mutating AST nodes after they have
|
|
// been used as subexpressions of other nodes.
|
|
struct UpdateOuterILEWithUpdatedInit {
|
|
InitListExpr *Outer;
|
|
unsigned OuterIndex;
|
|
~UpdateOuterILEWithUpdatedInit() {
|
|
if (Outer)
|
|
Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
|
|
}
|
|
} UpdateOuterRAII = {OuterILE, OuterIndex};
|
|
|
|
// A transparent ILE is not performing aggregate initialization and should
|
|
// not be filled in.
|
|
if (ILE->isTransparent())
|
|
return;
|
|
|
|
if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
|
|
const RecordDecl *RDecl = RType->getDecl();
|
|
if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
|
|
FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
|
|
Entity, ILE, RequiresSecondPass, FillWithNoInit);
|
|
else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
|
|
cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
|
|
for (auto *Field : RDecl->fields()) {
|
|
if (Field->hasInClassInitializer()) {
|
|
FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
|
|
FillWithNoInit);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// The fields beyond ILE->getNumInits() are default initialized, so in
|
|
// order to leave them uninitialized, the ILE is expanded and the extra
|
|
// fields are then filled with NoInitExpr.
|
|
unsigned NumElems = numStructUnionElements(ILE->getType());
|
|
if (RDecl->hasFlexibleArrayMember())
|
|
++NumElems;
|
|
if (!VerifyOnly && ILE->getNumInits() < NumElems)
|
|
ILE->resizeInits(SemaRef.Context, NumElems);
|
|
|
|
unsigned Init = 0;
|
|
|
|
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
|
|
for (auto &Base : CXXRD->bases()) {
|
|
if (hadError)
|
|
return;
|
|
|
|
FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
|
|
FillWithNoInit);
|
|
++Init;
|
|
}
|
|
}
|
|
|
|
for (auto *Field : RDecl->fields()) {
|
|
if (Field->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (hadError)
|
|
return;
|
|
|
|
FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
|
|
FillWithNoInit);
|
|
if (hadError)
|
|
return;
|
|
|
|
++Init;
|
|
|
|
// Only look at the first initialization of a union.
|
|
if (RDecl->isUnion())
|
|
break;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
QualType ElementType;
|
|
|
|
InitializedEntity ElementEntity = Entity;
|
|
unsigned NumInits = ILE->getNumInits();
|
|
unsigned NumElements = NumInits;
|
|
if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
|
|
ElementType = AType->getElementType();
|
|
if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
|
|
NumElements = CAType->getSize().getZExtValue();
|
|
// For an array new with an unknown bound, ask for one additional element
|
|
// in order to populate the array filler.
|
|
if (Entity.isVariableLengthArrayNew())
|
|
++NumElements;
|
|
ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
|
|
0, Entity);
|
|
} else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
|
|
ElementType = VType->getElementType();
|
|
NumElements = VType->getNumElements();
|
|
ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
|
|
0, Entity);
|
|
} else
|
|
ElementType = ILE->getType();
|
|
|
|
bool SkipEmptyInitChecks = false;
|
|
for (unsigned Init = 0; Init != NumElements; ++Init) {
|
|
if (hadError)
|
|
return;
|
|
|
|
if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
|
|
ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
|
|
ElementEntity.setElementIndex(Init);
|
|
|
|
if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
|
|
return;
|
|
|
|
Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
|
|
if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
|
|
ILE->setInit(Init, ILE->getArrayFiller());
|
|
else if (!InitExpr && !ILE->hasArrayFiller()) {
|
|
// In VerifyOnly mode, there's no point performing empty initialization
|
|
// more than once.
|
|
if (SkipEmptyInitChecks)
|
|
continue;
|
|
|
|
Expr *Filler = nullptr;
|
|
|
|
if (FillWithNoInit)
|
|
Filler = new (SemaRef.Context) NoInitExpr(ElementType);
|
|
else {
|
|
ExprResult ElementInit =
|
|
PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
|
|
if (ElementInit.isInvalid()) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
Filler = ElementInit.getAs<Expr>();
|
|
}
|
|
|
|
if (hadError) {
|
|
// Do nothing
|
|
} else if (VerifyOnly) {
|
|
SkipEmptyInitChecks = true;
|
|
} else if (Init < NumInits) {
|
|
// For arrays, just set the expression used for value-initialization
|
|
// of the "holes" in the array.
|
|
if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
|
|
ILE->setArrayFiller(Filler);
|
|
else
|
|
ILE->setInit(Init, Filler);
|
|
} else {
|
|
// For arrays, just set the expression used for value-initialization
|
|
// of the rest of elements and exit.
|
|
if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
|
|
ILE->setArrayFiller(Filler);
|
|
return;
|
|
}
|
|
|
|
if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
|
|
// Empty initialization requires a constructor call, so
|
|
// extend the initializer list to include the constructor
|
|
// call and make a note that we'll need to take another pass
|
|
// through the initializer list.
|
|
ILE->updateInit(SemaRef.Context, Init, Filler);
|
|
RequiresSecondPass = true;
|
|
}
|
|
}
|
|
} else if (InitListExpr *InnerILE
|
|
= dyn_cast_or_null<InitListExpr>(InitExpr)) {
|
|
FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
|
|
ILE, Init, FillWithNoInit);
|
|
} else if (DesignatedInitUpdateExpr *InnerDIUE =
|
|
dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
|
|
FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
|
|
RequiresSecondPass, ILE, Init,
|
|
/*FillWithNoInit =*/true);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool hasAnyDesignatedInits(const InitListExpr *IL) {
|
|
for (const Stmt *Init : *IL)
|
|
if (Init && isa<DesignatedInitExpr>(Init))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
|
|
InitListExpr *IL, QualType &T, bool VerifyOnly,
|
|
bool TreatUnavailableAsInvalid,
|
|
bool InOverloadResolution)
|
|
: SemaRef(S), VerifyOnly(VerifyOnly),
|
|
TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
|
|
InOverloadResolution(InOverloadResolution) {
|
|
if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
|
|
FullyStructuredList =
|
|
createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
|
|
|
|
// FIXME: Check that IL isn't already the semantic form of some other
|
|
// InitListExpr. If it is, we'd create a broken AST.
|
|
if (!VerifyOnly)
|
|
FullyStructuredList->setSyntacticForm(IL);
|
|
}
|
|
|
|
CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
|
|
/*TopLevelObject=*/true);
|
|
|
|
if (!hadError && FullyStructuredList) {
|
|
bool RequiresSecondPass = false;
|
|
FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
|
|
/*OuterILE=*/nullptr, /*OuterIndex=*/0);
|
|
if (RequiresSecondPass && !hadError)
|
|
FillInEmptyInitializations(Entity, FullyStructuredList,
|
|
RequiresSecondPass, nullptr, 0);
|
|
}
|
|
if (hadError && FullyStructuredList)
|
|
FullyStructuredList->markError();
|
|
}
|
|
|
|
int InitListChecker::numArrayElements(QualType DeclType) {
|
|
// FIXME: use a proper constant
|
|
int maxElements = 0x7FFFFFFF;
|
|
if (const ConstantArrayType *CAT =
|
|
SemaRef.Context.getAsConstantArrayType(DeclType)) {
|
|
maxElements = static_cast<int>(CAT->getSize().getZExtValue());
|
|
}
|
|
return maxElements;
|
|
}
|
|
|
|
int InitListChecker::numStructUnionElements(QualType DeclType) {
|
|
RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
|
|
int InitializableMembers = 0;
|
|
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
|
|
InitializableMembers += CXXRD->getNumBases();
|
|
for (const auto *Field : structDecl->fields())
|
|
if (!Field->isUnnamedBitfield())
|
|
++InitializableMembers;
|
|
|
|
if (structDecl->isUnion())
|
|
return std::min(InitializableMembers, 1);
|
|
return InitializableMembers - structDecl->hasFlexibleArrayMember();
|
|
}
|
|
|
|
/// Determine whether Entity is an entity for which it is idiomatic to elide
|
|
/// the braces in aggregate initialization.
|
|
static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
|
|
// Recursive initialization of the one and only field within an aggregate
|
|
// class is considered idiomatic. This case arises in particular for
|
|
// initialization of std::array, where the C++ standard suggests the idiom of
|
|
//
|
|
// std::array<T, N> arr = {1, 2, 3};
|
|
//
|
|
// (where std::array is an aggregate struct containing a single array field.
|
|
|
|
// FIXME: Should aggregate initialization of a struct with a single
|
|
// base class and no members also suppress the warning?
|
|
if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
|
|
return false;
|
|
|
|
auto *ParentRD =
|
|
Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
|
|
if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
|
|
if (CXXRD->getNumBases())
|
|
return false;
|
|
|
|
auto FieldIt = ParentRD->field_begin();
|
|
assert(FieldIt != ParentRD->field_end() &&
|
|
"no fields but have initializer for member?");
|
|
return ++FieldIt == ParentRD->field_end();
|
|
}
|
|
|
|
/// Check whether the range of the initializer \p ParentIList from element
|
|
/// \p Index onwards can be used to initialize an object of type \p T. Update
|
|
/// \p Index to indicate how many elements of the list were consumed.
|
|
///
|
|
/// This also fills in \p StructuredList, from element \p StructuredIndex
|
|
/// onwards, with the fully-braced, desugared form of the initialization.
|
|
void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *ParentIList,
|
|
QualType T, unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
int maxElements = 0;
|
|
|
|
if (T->isArrayType())
|
|
maxElements = numArrayElements(T);
|
|
else if (T->isRecordType())
|
|
maxElements = numStructUnionElements(T);
|
|
else if (T->isVectorType())
|
|
maxElements = T->castAs<VectorType>()->getNumElements();
|
|
else
|
|
llvm_unreachable("CheckImplicitInitList(): Illegal type");
|
|
|
|
if (maxElements == 0) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
|
|
diag::err_implicit_empty_initializer);
|
|
++Index;
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
// Build a structured initializer list corresponding to this subobject.
|
|
InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
|
|
ParentIList, Index, T, StructuredList, StructuredIndex,
|
|
SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
|
|
ParentIList->getSourceRange().getEnd()));
|
|
unsigned StructuredSubobjectInitIndex = 0;
|
|
|
|
// Check the element types and build the structural subobject.
|
|
unsigned StartIndex = Index;
|
|
CheckListElementTypes(Entity, ParentIList, T,
|
|
/*SubobjectIsDesignatorContext=*/false, Index,
|
|
StructuredSubobjectInitList,
|
|
StructuredSubobjectInitIndex);
|
|
|
|
if (StructuredSubobjectInitList) {
|
|
StructuredSubobjectInitList->setType(T);
|
|
|
|
unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
|
|
// Update the structured sub-object initializer so that it's ending
|
|
// range corresponds with the end of the last initializer it used.
|
|
if (EndIndex < ParentIList->getNumInits() &&
|
|
ParentIList->getInit(EndIndex)) {
|
|
SourceLocation EndLoc
|
|
= ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
|
|
StructuredSubobjectInitList->setRBraceLoc(EndLoc);
|
|
}
|
|
|
|
// Complain about missing braces.
|
|
if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
|
|
!ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
|
|
!isIdiomaticBraceElisionEntity(Entity)) {
|
|
SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
|
|
diag::warn_missing_braces)
|
|
<< StructuredSubobjectInitList->getSourceRange()
|
|
<< FixItHint::CreateInsertion(
|
|
StructuredSubobjectInitList->getBeginLoc(), "{")
|
|
<< FixItHint::CreateInsertion(
|
|
SemaRef.getLocForEndOfToken(
|
|
StructuredSubobjectInitList->getEndLoc()),
|
|
"}");
|
|
}
|
|
|
|
// Warn if this type won't be an aggregate in future versions of C++.
|
|
auto *CXXRD = T->getAsCXXRecordDecl();
|
|
if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
|
|
SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
|
|
diag::warn_cxx20_compat_aggregate_init_with_ctors)
|
|
<< StructuredSubobjectInitList->getSourceRange() << T;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Warn that \p Entity was of scalar type and was initialized by a
|
|
/// single-element braced initializer list.
|
|
static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
|
|
SourceRange Braces) {
|
|
// Don't warn during template instantiation. If the initialization was
|
|
// non-dependent, we warned during the initial parse; otherwise, the
|
|
// type might not be scalar in some uses of the template.
|
|
if (S.inTemplateInstantiation())
|
|
return;
|
|
|
|
unsigned DiagID = 0;
|
|
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
case InitializedEntity::EK_Result:
|
|
// Extra braces here are suspicious.
|
|
DiagID = diag::warn_braces_around_init;
|
|
break;
|
|
|
|
case InitializedEntity::EK_Member:
|
|
// Warn on aggregate initialization but not on ctor init list or
|
|
// default member initializer.
|
|
if (Entity.getParent())
|
|
DiagID = diag::warn_braces_around_init;
|
|
break;
|
|
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
// No warning, might be direct-list-initialization.
|
|
// FIXME: Should we warn for copy-list-initialization in these cases?
|
|
break;
|
|
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
// No warning, braces are part of the syntax of the underlying construct.
|
|
break;
|
|
|
|
case InitializedEntity::EK_RelatedResult:
|
|
// No warning, we already warned when initializing the result.
|
|
break;
|
|
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_Delegating:
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_Binding:
|
|
case InitializedEntity::EK_StmtExprResult:
|
|
llvm_unreachable("unexpected braced scalar init");
|
|
}
|
|
|
|
if (DiagID) {
|
|
S.Diag(Braces.getBegin(), DiagID)
|
|
<< Entity.getType()->isSizelessBuiltinType() << Braces
|
|
<< FixItHint::CreateRemoval(Braces.getBegin())
|
|
<< FixItHint::CreateRemoval(Braces.getEnd());
|
|
}
|
|
}
|
|
|
|
/// Check whether the initializer \p IList (that was written with explicit
|
|
/// braces) can be used to initialize an object of type \p T.
|
|
///
|
|
/// This also fills in \p StructuredList with the fully-braced, desugared
|
|
/// form of the initialization.
|
|
void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &T,
|
|
InitListExpr *StructuredList,
|
|
bool TopLevelObject) {
|
|
unsigned Index = 0, StructuredIndex = 0;
|
|
CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
|
|
Index, StructuredList, StructuredIndex, TopLevelObject);
|
|
if (StructuredList) {
|
|
QualType ExprTy = T;
|
|
if (!ExprTy->isArrayType())
|
|
ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
|
|
if (!VerifyOnly)
|
|
IList->setType(ExprTy);
|
|
StructuredList->setType(ExprTy);
|
|
}
|
|
if (hadError)
|
|
return;
|
|
|
|
// Don't complain for incomplete types, since we'll get an error elsewhere.
|
|
if (Index < IList->getNumInits() && !T->isIncompleteType()) {
|
|
// We have leftover initializers
|
|
bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
|
|
(SemaRef.getLangOpts().OpenCL && T->isVectorType());
|
|
hadError = ExtraInitsIsError;
|
|
if (VerifyOnly) {
|
|
return;
|
|
} else if (StructuredIndex == 1 &&
|
|
IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
|
|
SIF_None) {
|
|
unsigned DK =
|
|
ExtraInitsIsError
|
|
? diag::err_excess_initializers_in_char_array_initializer
|
|
: diag::ext_excess_initializers_in_char_array_initializer;
|
|
SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
|
|
<< IList->getInit(Index)->getSourceRange();
|
|
} else if (T->isSizelessBuiltinType()) {
|
|
unsigned DK = ExtraInitsIsError
|
|
? diag::err_excess_initializers_for_sizeless_type
|
|
: diag::ext_excess_initializers_for_sizeless_type;
|
|
SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
|
|
<< T << IList->getInit(Index)->getSourceRange();
|
|
} else {
|
|
int initKind = T->isArrayType() ? 0 :
|
|
T->isVectorType() ? 1 :
|
|
T->isScalarType() ? 2 :
|
|
T->isUnionType() ? 3 :
|
|
4;
|
|
|
|
unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
|
|
: diag::ext_excess_initializers;
|
|
SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
|
|
<< initKind << IList->getInit(Index)->getSourceRange();
|
|
}
|
|
}
|
|
|
|
if (!VerifyOnly) {
|
|
if (T->isScalarType() && IList->getNumInits() == 1 &&
|
|
!isa<InitListExpr>(IList->getInit(0)))
|
|
warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
|
|
|
|
// Warn if this is a class type that won't be an aggregate in future
|
|
// versions of C++.
|
|
auto *CXXRD = T->getAsCXXRecordDecl();
|
|
if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
|
|
// Don't warn if there's an equivalent default constructor that would be
|
|
// used instead.
|
|
bool HasEquivCtor = false;
|
|
if (IList->getNumInits() == 0) {
|
|
auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
|
|
HasEquivCtor = CD && !CD->isDeleted();
|
|
}
|
|
|
|
if (!HasEquivCtor) {
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
diag::warn_cxx20_compat_aggregate_init_with_ctors)
|
|
<< IList->getSourceRange() << T;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
QualType &DeclType,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
|
|
// Explicitly braced initializer for complex type can be real+imaginary
|
|
// parts.
|
|
CheckComplexType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isScalarType()) {
|
|
CheckScalarType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isVectorType()) {
|
|
CheckVectorType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isRecordType()) {
|
|
assert(DeclType->isAggregateType() &&
|
|
"non-aggregate records should be handed in CheckSubElementType");
|
|
RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
|
|
auto Bases =
|
|
CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
|
|
CXXRecordDecl::base_class_iterator());
|
|
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
|
|
Bases = CXXRD->bases();
|
|
CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
|
|
SubobjectIsDesignatorContext, Index, StructuredList,
|
|
StructuredIndex, TopLevelObject);
|
|
} else if (DeclType->isArrayType()) {
|
|
llvm::APSInt Zero(
|
|
SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
|
|
false);
|
|
CheckArrayType(Entity, IList, DeclType, Zero,
|
|
SubobjectIsDesignatorContext, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
|
|
// This type is invalid, issue a diagnostic.
|
|
++Index;
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
|
|
<< DeclType;
|
|
hadError = true;
|
|
} else if (DeclType->isReferenceType()) {
|
|
CheckReferenceType(Entity, IList, DeclType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (DeclType->isObjCObjectType()) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
|
|
hadError = true;
|
|
} else if (DeclType->isOCLIntelSubgroupAVCType() ||
|
|
DeclType->isSizelessBuiltinType()) {
|
|
// Checks for scalar type are sufficient for these types too.
|
|
CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
|
|
StructuredIndex);
|
|
} else {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
|
|
<< DeclType;
|
|
hadError = true;
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
QualType ElemType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
Expr *expr = IList->getInit(Index);
|
|
|
|
if (ElemType->isReferenceType())
|
|
return CheckReferenceType(Entity, IList, ElemType, Index,
|
|
StructuredList, StructuredIndex);
|
|
|
|
if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
|
|
if (SubInitList->getNumInits() == 1 &&
|
|
IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
|
|
SIF_None) {
|
|
// FIXME: It would be more faithful and no less correct to include an
|
|
// InitListExpr in the semantic form of the initializer list in this case.
|
|
expr = SubInitList->getInit(0);
|
|
}
|
|
// Nested aggregate initialization and C++ initialization are handled later.
|
|
} else if (isa<ImplicitValueInitExpr>(expr)) {
|
|
// This happens during template instantiation when we see an InitListExpr
|
|
// that we've already checked once.
|
|
assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
|
|
"found implicit initialization for the wrong type");
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
|
|
// C++ [dcl.init.aggr]p2:
|
|
// Each member is copy-initialized from the corresponding
|
|
// initializer-clause.
|
|
|
|
// FIXME: Better EqualLoc?
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
|
|
|
|
// Vector elements can be initialized from other vectors in which case
|
|
// we need initialization entity with a type of a vector (and not a vector
|
|
// element!) initializing multiple vector elements.
|
|
auto TmpEntity =
|
|
(ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
|
|
? InitializedEntity::InitializeTemporary(ElemType)
|
|
: Entity;
|
|
|
|
InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
|
|
/*TopLevelOfInitList*/ true);
|
|
|
|
// C++14 [dcl.init.aggr]p13:
|
|
// If the assignment-expression can initialize a member, the member is
|
|
// initialized. Otherwise [...] brace elision is assumed
|
|
//
|
|
// Brace elision is never performed if the element is not an
|
|
// assignment-expression.
|
|
if (Seq || isa<InitListExpr>(expr)) {
|
|
if (!VerifyOnly) {
|
|
ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
|
|
if (Result.isInvalid())
|
|
hadError = true;
|
|
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
Result.getAs<Expr>());
|
|
} else if (!Seq) {
|
|
hadError = true;
|
|
} else if (StructuredList) {
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
getDummyInit());
|
|
}
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
// Fall through for subaggregate initialization
|
|
} else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
|
|
// FIXME: Need to handle atomic aggregate types with implicit init lists.
|
|
return CheckScalarType(Entity, IList, ElemType, Index,
|
|
StructuredList, StructuredIndex);
|
|
} else if (const ArrayType *arrayType =
|
|
SemaRef.Context.getAsArrayType(ElemType)) {
|
|
// arrayType can be incomplete if we're initializing a flexible
|
|
// array member. There's nothing we can do with the completed
|
|
// type here, though.
|
|
|
|
if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
|
|
// FIXME: Should we do this checking in verify-only mode?
|
|
if (!VerifyOnly)
|
|
CheckStringInit(expr, ElemType, arrayType, SemaRef);
|
|
if (StructuredList)
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
// Fall through for subaggregate initialization.
|
|
|
|
} else {
|
|
assert((ElemType->isRecordType() || ElemType->isVectorType() ||
|
|
ElemType->isOpenCLSpecificType()) && "Unexpected type");
|
|
|
|
// C99 6.7.8p13:
|
|
//
|
|
// The initializer for a structure or union object that has
|
|
// automatic storage duration shall be either an initializer
|
|
// list as described below, or a single expression that has
|
|
// compatible structure or union type. In the latter case, the
|
|
// initial value of the object, including unnamed members, is
|
|
// that of the expression.
|
|
ExprResult ExprRes = expr;
|
|
if (SemaRef.CheckSingleAssignmentConstraints(
|
|
ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
|
|
if (ExprRes.isInvalid())
|
|
hadError = true;
|
|
else {
|
|
ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
|
|
if (ExprRes.isInvalid())
|
|
hadError = true;
|
|
}
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
ExprRes.getAs<Expr>());
|
|
++Index;
|
|
return;
|
|
}
|
|
ExprRes.get();
|
|
// Fall through for subaggregate initialization
|
|
}
|
|
|
|
// C++ [dcl.init.aggr]p12:
|
|
//
|
|
// [...] Otherwise, if the member is itself a non-empty
|
|
// subaggregate, brace elision is assumed and the initializer is
|
|
// considered for the initialization of the first member of
|
|
// the subaggregate.
|
|
// OpenCL vector initializer is handled elsewhere.
|
|
if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
|
|
ElemType->isAggregateType()) {
|
|
CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
|
|
StructuredIndex);
|
|
++StructuredIndex;
|
|
} else {
|
|
if (!VerifyOnly) {
|
|
// We cannot initialize this element, so let PerformCopyInitialization
|
|
// produce the appropriate diagnostic. We already checked that this
|
|
// initialization will fail.
|
|
ExprResult Copy =
|
|
SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
|
|
/*TopLevelOfInitList=*/true);
|
|
(void)Copy;
|
|
assert(Copy.isInvalid() &&
|
|
"expected non-aggregate initialization to fail");
|
|
}
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
assert(Index == 0 && "Index in explicit init list must be zero");
|
|
|
|
// As an extension, clang supports complex initializers, which initialize
|
|
// a complex number component-wise. When an explicit initializer list for
|
|
// a complex number contains two two initializers, this extension kicks in:
|
|
// it exepcts the initializer list to contain two elements convertible to
|
|
// the element type of the complex type. The first element initializes
|
|
// the real part, and the second element intitializes the imaginary part.
|
|
|
|
if (IList->getNumInits() != 2)
|
|
return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
|
|
StructuredIndex);
|
|
|
|
// This is an extension in C. (The builtin _Complex type does not exist
|
|
// in the C++ standard.)
|
|
if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
|
|
<< IList->getSourceRange();
|
|
|
|
// Initialize the complex number.
|
|
QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
ElementEntity.setElementIndex(Index);
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
}
|
|
|
|
void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
if (Index >= IList->getNumInits()) {
|
|
if (!VerifyOnly) {
|
|
if (DeclType->isSizelessBuiltinType())
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
SemaRef.getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_empty_sizeless_initializer
|
|
: diag::err_empty_sizeless_initializer)
|
|
<< DeclType << IList->getSourceRange();
|
|
else
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
SemaRef.getLangOpts().CPlusPlus11
|
|
? diag::warn_cxx98_compat_empty_scalar_initializer
|
|
: diag::err_empty_scalar_initializer)
|
|
<< IList->getSourceRange();
|
|
}
|
|
hadError = !SemaRef.getLangOpts().CPlusPlus11;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
Expr *expr = IList->getInit(Index);
|
|
if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
|
|
// FIXME: This is invalid, and accepting it causes overload resolution
|
|
// to pick the wrong overload in some corner cases.
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
|
|
<< DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
|
|
|
|
CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
|
|
StructuredIndex);
|
|
return;
|
|
} else if (isa<DesignatedInitExpr>(expr)) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(expr->getBeginLoc(),
|
|
diag::err_designator_for_scalar_or_sizeless_init)
|
|
<< DeclType->isSizelessBuiltinType() << DeclType
|
|
<< expr->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
ExprResult Result;
|
|
if (VerifyOnly) {
|
|
if (SemaRef.CanPerformCopyInitialization(Entity, expr))
|
|
Result = getDummyInit();
|
|
else
|
|
Result = ExprError();
|
|
} else {
|
|
Result =
|
|
SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
|
|
/*TopLevelOfInitList=*/true);
|
|
}
|
|
|
|
Expr *ResultExpr = nullptr;
|
|
|
|
if (Result.isInvalid())
|
|
hadError = true; // types weren't compatible.
|
|
else {
|
|
ResultExpr = Result.getAs<Expr>();
|
|
|
|
if (ResultExpr != expr && !VerifyOnly) {
|
|
// The type was promoted, update initializer list.
|
|
// FIXME: Why are we updating the syntactic init list?
|
|
IList->setInit(Index, ResultExpr);
|
|
}
|
|
}
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
|
|
++Index;
|
|
}
|
|
|
|
void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
if (Index >= IList->getNumInits()) {
|
|
// FIXME: It would be wonderful if we could point at the actual member. In
|
|
// general, it would be useful to pass location information down the stack,
|
|
// so that we know the location (or decl) of the "current object" being
|
|
// initialized.
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
diag::err_init_reference_member_uninitialized)
|
|
<< DeclType << IList->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
Expr *expr = IList->getInit(Index);
|
|
if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
|
|
<< DeclType << IList->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
ExprResult Result;
|
|
if (VerifyOnly) {
|
|
if (SemaRef.CanPerformCopyInitialization(Entity,expr))
|
|
Result = getDummyInit();
|
|
else
|
|
Result = ExprError();
|
|
} else {
|
|
Result =
|
|
SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
|
|
/*TopLevelOfInitList=*/true);
|
|
}
|
|
|
|
if (Result.isInvalid())
|
|
hadError = true;
|
|
|
|
expr = Result.getAs<Expr>();
|
|
// FIXME: Why are we updating the syntactic init list?
|
|
if (!VerifyOnly && expr)
|
|
IList->setInit(Index, expr);
|
|
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
|
|
++Index;
|
|
}
|
|
|
|
void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType DeclType,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
const VectorType *VT = DeclType->castAs<VectorType>();
|
|
unsigned maxElements = VT->getNumElements();
|
|
unsigned numEltsInit = 0;
|
|
QualType elementType = VT->getElementType();
|
|
|
|
if (Index >= IList->getNumInits()) {
|
|
// Make sure the element type can be value-initialized.
|
|
CheckEmptyInitializable(
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
|
|
IList->getEndLoc());
|
|
return;
|
|
}
|
|
|
|
if (!SemaRef.getLangOpts().OpenCL) {
|
|
// If the initializing element is a vector, try to copy-initialize
|
|
// instead of breaking it apart (which is doomed to failure anyway).
|
|
Expr *Init = IList->getInit(Index);
|
|
if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
|
|
ExprResult Result;
|
|
if (VerifyOnly) {
|
|
if (SemaRef.CanPerformCopyInitialization(Entity, Init))
|
|
Result = getDummyInit();
|
|
else
|
|
Result = ExprError();
|
|
} else {
|
|
Result =
|
|
SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
|
|
/*TopLevelOfInitList=*/true);
|
|
}
|
|
|
|
Expr *ResultExpr = nullptr;
|
|
if (Result.isInvalid())
|
|
hadError = true; // types weren't compatible.
|
|
else {
|
|
ResultExpr = Result.getAs<Expr>();
|
|
|
|
if (ResultExpr != Init && !VerifyOnly) {
|
|
// The type was promoted, update initializer list.
|
|
// FIXME: Why are we updating the syntactic init list?
|
|
IList->setInit(Index, ResultExpr);
|
|
}
|
|
}
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (Index >= IList->getNumInits()) {
|
|
CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
|
|
break;
|
|
}
|
|
|
|
ElementEntity.setElementIndex(Index);
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
|
|
if (VerifyOnly)
|
|
return;
|
|
|
|
bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
|
|
const VectorType *T = Entity.getType()->castAs<VectorType>();
|
|
if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
|
|
T->getVectorKind() == VectorType::NeonPolyVector)) {
|
|
// The ability to use vector initializer lists is a GNU vector extension
|
|
// and is unrelated to the NEON intrinsics in arm_neon.h. On little
|
|
// endian machines it works fine, however on big endian machines it
|
|
// exhibits surprising behaviour:
|
|
//
|
|
// uint32x2_t x = {42, 64};
|
|
// return vget_lane_u32(x, 0); // Will return 64.
|
|
//
|
|
// Because of this, explicitly call out that it is non-portable.
|
|
//
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
diag::warn_neon_vector_initializer_non_portable);
|
|
|
|
const char *typeCode;
|
|
unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
|
|
|
|
if (elementType->isFloatingType())
|
|
typeCode = "f";
|
|
else if (elementType->isSignedIntegerType())
|
|
typeCode = "s";
|
|
else if (elementType->isUnsignedIntegerType())
|
|
typeCode = "u";
|
|
else
|
|
llvm_unreachable("Invalid element type!");
|
|
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
SemaRef.Context.getTypeSize(VT) > 64
|
|
? diag::note_neon_vector_initializer_non_portable_q
|
|
: diag::note_neon_vector_initializer_non_portable)
|
|
<< typeCode << typeSize;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
// OpenCL initializers allows vectors to be constructed from vectors.
|
|
for (unsigned i = 0; i < maxElements; ++i) {
|
|
// Don't attempt to go past the end of the init list
|
|
if (Index >= IList->getNumInits())
|
|
break;
|
|
|
|
ElementEntity.setElementIndex(Index);
|
|
|
|
QualType IType = IList->getInit(Index)->getType();
|
|
if (!IType->isVectorType()) {
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
++numEltsInit;
|
|
} else {
|
|
QualType VecType;
|
|
const VectorType *IVT = IType->castAs<VectorType>();
|
|
unsigned numIElts = IVT->getNumElements();
|
|
|
|
if (IType->isExtVectorType())
|
|
VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
|
|
else
|
|
VecType = SemaRef.Context.getVectorType(elementType, numIElts,
|
|
IVT->getVectorKind());
|
|
CheckSubElementType(ElementEntity, IList, VecType, Index,
|
|
StructuredList, StructuredIndex);
|
|
numEltsInit += numIElts;
|
|
}
|
|
}
|
|
|
|
// OpenCL requires all elements to be initialized.
|
|
if (numEltsInit != maxElements) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IList->getBeginLoc(),
|
|
diag::err_vector_incorrect_num_initializers)
|
|
<< (numEltsInit < maxElements) << maxElements << numEltsInit;
|
|
hadError = true;
|
|
}
|
|
}
|
|
|
|
/// Check if the type of a class element has an accessible destructor, and marks
|
|
/// it referenced. Returns true if we shouldn't form a reference to the
|
|
/// destructor.
|
|
///
|
|
/// Aggregate initialization requires a class element's destructor be
|
|
/// accessible per 11.6.1 [dcl.init.aggr]:
|
|
///
|
|
/// The destructor for each element of class type is potentially invoked
|
|
/// (15.4 [class.dtor]) from the context where the aggregate initialization
|
|
/// occurs.
|
|
static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
|
|
Sema &SemaRef) {
|
|
auto *CXXRD = ElementType->getAsCXXRecordDecl();
|
|
if (!CXXRD)
|
|
return false;
|
|
|
|
CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
|
|
SemaRef.CheckDestructorAccess(Loc, Destructor,
|
|
SemaRef.PDiag(diag::err_access_dtor_temp)
|
|
<< ElementType);
|
|
SemaRef.MarkFunctionReferenced(Loc, Destructor);
|
|
return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
|
|
}
|
|
|
|
void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
|
|
InitListExpr *IList, QualType &DeclType,
|
|
llvm::APSInt elementIndex,
|
|
bool SubobjectIsDesignatorContext,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex) {
|
|
const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
|
|
|
|
if (!VerifyOnly) {
|
|
if (checkDestructorReference(arrayType->getElementType(),
|
|
IList->getEndLoc(), SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check for the special-case of initializing an array with a string.
|
|
if (Index < IList->getNumInits()) {
|
|
if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
|
|
SIF_None) {
|
|
// We place the string literal directly into the resulting
|
|
// initializer list. This is the only place where the structure
|
|
// of the structured initializer list doesn't match exactly,
|
|
// because doing so would involve allocating one character
|
|
// constant for each string.
|
|
// FIXME: Should we do these checks in verify-only mode too?
|
|
if (!VerifyOnly)
|
|
CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
|
|
if (StructuredList) {
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
IList->getInit(Index));
|
|
StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
|
|
}
|
|
++Index;
|
|
return;
|
|
}
|
|
}
|
|
if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
|
|
// Check for VLAs; in standard C it would be possible to check this
|
|
// earlier, but I don't know where clang accepts VLAs (gcc accepts
|
|
// them in all sorts of strange places).
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
|
|
diag::err_variable_object_no_init)
|
|
<< VAT->getSizeExpr()->getSourceRange();
|
|
hadError = true;
|
|
++Index;
|
|
++StructuredIndex;
|
|
return;
|
|
}
|
|
|
|
// We might know the maximum number of elements in advance.
|
|
llvm::APSInt maxElements(elementIndex.getBitWidth(),
|
|
elementIndex.isUnsigned());
|
|
bool maxElementsKnown = false;
|
|
if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
|
|
maxElements = CAT->getSize();
|
|
elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
|
|
elementIndex.setIsUnsigned(maxElements.isUnsigned());
|
|
maxElementsKnown = true;
|
|
}
|
|
|
|
QualType elementType = arrayType->getElementType();
|
|
while (Index < IList->getNumInits()) {
|
|
Expr *Init = IList->getInit(Index);
|
|
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
|
|
// If we're not the subobject that matches up with the '{' for
|
|
// the designator, we shouldn't be handling the
|
|
// designator. Return immediately.
|
|
if (!SubobjectIsDesignatorContext)
|
|
return;
|
|
|
|
// Handle this designated initializer. elementIndex will be
|
|
// updated to be the next array element we'll initialize.
|
|
if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
|
|
DeclType, nullptr, &elementIndex, Index,
|
|
StructuredList, StructuredIndex, true,
|
|
false)) {
|
|
hadError = true;
|
|
continue;
|
|
}
|
|
|
|
if (elementIndex.getBitWidth() > maxElements.getBitWidth())
|
|
maxElements = maxElements.extend(elementIndex.getBitWidth());
|
|
else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
|
|
elementIndex = elementIndex.extend(maxElements.getBitWidth());
|
|
elementIndex.setIsUnsigned(maxElements.isUnsigned());
|
|
|
|
// If the array is of incomplete type, keep track of the number of
|
|
// elements in the initializer.
|
|
if (!maxElementsKnown && elementIndex > maxElements)
|
|
maxElements = elementIndex;
|
|
|
|
continue;
|
|
}
|
|
|
|
// If we know the maximum number of elements, and we've already
|
|
// hit it, stop consuming elements in the initializer list.
|
|
if (maxElementsKnown && elementIndex == maxElements)
|
|
break;
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
|
|
Entity);
|
|
// Check this element.
|
|
CheckSubElementType(ElementEntity, IList, elementType, Index,
|
|
StructuredList, StructuredIndex);
|
|
++elementIndex;
|
|
|
|
// If the array is of incomplete type, keep track of the number of
|
|
// elements in the initializer.
|
|
if (!maxElementsKnown && elementIndex > maxElements)
|
|
maxElements = elementIndex;
|
|
}
|
|
if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
|
|
// If this is an incomplete array type, the actual type needs to
|
|
// be calculated here.
|
|
llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
|
|
if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
|
|
// Sizing an array implicitly to zero is not allowed by ISO C,
|
|
// but is supported by GNU.
|
|
SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
|
|
}
|
|
|
|
DeclType = SemaRef.Context.getConstantArrayType(
|
|
elementType, maxElements, nullptr, ArrayType::Normal, 0);
|
|
}
|
|
if (!hadError) {
|
|
// If there are any members of the array that get value-initialized, check
|
|
// that is possible. That happens if we know the bound and don't have
|
|
// enough elements, or if we're performing an array new with an unknown
|
|
// bound.
|
|
if ((maxElementsKnown && elementIndex < maxElements) ||
|
|
Entity.isVariableLengthArrayNew())
|
|
CheckEmptyInitializable(
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
|
|
IList->getEndLoc());
|
|
}
|
|
}
|
|
|
|
bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
|
|
Expr *InitExpr,
|
|
FieldDecl *Field,
|
|
bool TopLevelObject) {
|
|
// Handle GNU flexible array initializers.
|
|
unsigned FlexArrayDiag;
|
|
if (isa<InitListExpr>(InitExpr) &&
|
|
cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
|
|
// Empty flexible array init always allowed as an extension
|
|
FlexArrayDiag = diag::ext_flexible_array_init;
|
|
} else if (SemaRef.getLangOpts().CPlusPlus) {
|
|
// Disallow flexible array init in C++; it is not required for gcc
|
|
// compatibility, and it needs work to IRGen correctly in general.
|
|
FlexArrayDiag = diag::err_flexible_array_init;
|
|
} else if (!TopLevelObject) {
|
|
// Disallow flexible array init on non-top-level object
|
|
FlexArrayDiag = diag::err_flexible_array_init;
|
|
} else if (Entity.getKind() != InitializedEntity::EK_Variable) {
|
|
// Disallow flexible array init on anything which is not a variable.
|
|
FlexArrayDiag = diag::err_flexible_array_init;
|
|
} else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
|
|
// Disallow flexible array init on local variables.
|
|
FlexArrayDiag = diag::err_flexible_array_init;
|
|
} else {
|
|
// Allow other cases.
|
|
FlexArrayDiag = diag::ext_flexible_array_init;
|
|
}
|
|
|
|
if (!VerifyOnly) {
|
|
SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
|
|
<< InitExpr->getBeginLoc();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< Field;
|
|
}
|
|
|
|
return FlexArrayDiag != diag::ext_flexible_array_init;
|
|
}
|
|
|
|
void InitListChecker::CheckStructUnionTypes(
|
|
const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
|
|
CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
|
|
bool SubobjectIsDesignatorContext, unsigned &Index,
|
|
InitListExpr *StructuredList, unsigned &StructuredIndex,
|
|
bool TopLevelObject) {
|
|
RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
|
|
|
|
// If the record is invalid, some of it's members are invalid. To avoid
|
|
// confusion, we forgo checking the intializer for the entire record.
|
|
if (structDecl->isInvalidDecl()) {
|
|
// Assume it was supposed to consume a single initializer.
|
|
++Index;
|
|
hadError = true;
|
|
return;
|
|
}
|
|
|
|
if (DeclType->isUnionType() && IList->getNumInits() == 0) {
|
|
RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
|
|
|
|
if (!VerifyOnly)
|
|
for (FieldDecl *FD : RD->fields()) {
|
|
QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
|
|
if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If there's a default initializer, use it.
|
|
if (isa<CXXRecordDecl>(RD) &&
|
|
cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
|
|
if (!StructuredList)
|
|
return;
|
|
for (RecordDecl::field_iterator FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (Field->hasInClassInitializer()) {
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
// FIXME: Actually build a CXXDefaultInitExpr?
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Value-initialize the first member of the union that isn't an unnamed
|
|
// bitfield.
|
|
for (RecordDecl::field_iterator FieldEnd = RD->field_end();
|
|
Field != FieldEnd; ++Field) {
|
|
if (!Field->isUnnamedBitfield()) {
|
|
CheckEmptyInitializable(
|
|
InitializedEntity::InitializeMember(*Field, &Entity),
|
|
IList->getEndLoc());
|
|
if (StructuredList)
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool InitializedSomething = false;
|
|
|
|
// If we have any base classes, they are initialized prior to the fields.
|
|
for (auto &Base : Bases) {
|
|
Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
|
|
|
|
// Designated inits always initialize fields, so if we see one, all
|
|
// remaining base classes have no explicit initializer.
|
|
if (Init && isa<DesignatedInitExpr>(Init))
|
|
Init = nullptr;
|
|
|
|
SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
|
|
InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
|
|
SemaRef.Context, &Base, false, &Entity);
|
|
if (Init) {
|
|
CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
InitializedSomething = true;
|
|
} else {
|
|
CheckEmptyInitializable(BaseEntity, InitLoc);
|
|
}
|
|
|
|
if (!VerifyOnly)
|
|
if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If structDecl is a forward declaration, this loop won't do
|
|
// anything except look at designated initializers; That's okay,
|
|
// because an error should get printed out elsewhere. It might be
|
|
// worthwhile to skip over the rest of the initializer, though.
|
|
RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
|
|
RecordDecl::field_iterator FieldEnd = RD->field_end();
|
|
bool CheckForMissingFields =
|
|
!IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
|
|
bool HasDesignatedInit = false;
|
|
|
|
while (Index < IList->getNumInits()) {
|
|
Expr *Init = IList->getInit(Index);
|
|
SourceLocation InitLoc = Init->getBeginLoc();
|
|
|
|
if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
|
|
// If we're not the subobject that matches up with the '{' for
|
|
// the designator, we shouldn't be handling the
|
|
// designator. Return immediately.
|
|
if (!SubobjectIsDesignatorContext)
|
|
return;
|
|
|
|
HasDesignatedInit = true;
|
|
|
|
// Handle this designated initializer. Field will be updated to
|
|
// the next field that we'll be initializing.
|
|
if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
|
|
DeclType, &Field, nullptr, Index,
|
|
StructuredList, StructuredIndex,
|
|
true, TopLevelObject))
|
|
hadError = true;
|
|
else if (!VerifyOnly) {
|
|
// Find the field named by the designated initializer.
|
|
RecordDecl::field_iterator F = RD->field_begin();
|
|
while (std::next(F) != Field)
|
|
++F;
|
|
QualType ET = SemaRef.Context.getBaseElementType(F->getType());
|
|
if (checkDestructorReference(ET, InitLoc, SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
InitializedSomething = true;
|
|
|
|
// Disable check for missing fields when designators are used.
|
|
// This matches gcc behaviour.
|
|
CheckForMissingFields = false;
|
|
continue;
|
|
}
|
|
|
|
if (Field == FieldEnd) {
|
|
// We've run out of fields. We're done.
|
|
break;
|
|
}
|
|
|
|
// We've already initialized a member of a union. We're done.
|
|
if (InitializedSomething && DeclType->isUnionType())
|
|
break;
|
|
|
|
// If we've hit the flexible array member at the end, we're done.
|
|
if (Field->getType()->isIncompleteArrayType())
|
|
break;
|
|
|
|
if (Field->isUnnamedBitfield()) {
|
|
// Don't initialize unnamed bitfields, e.g. "int : 20;"
|
|
++Field;
|
|
continue;
|
|
}
|
|
|
|
// Make sure we can use this declaration.
|
|
bool InvalidUse;
|
|
if (VerifyOnly)
|
|
InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
|
|
else
|
|
InvalidUse = SemaRef.DiagnoseUseOfDecl(
|
|
*Field, IList->getInit(Index)->getBeginLoc());
|
|
if (InvalidUse) {
|
|
++Index;
|
|
++Field;
|
|
hadError = true;
|
|
continue;
|
|
}
|
|
|
|
if (!VerifyOnly) {
|
|
QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
|
|
if (checkDestructorReference(ET, InitLoc, SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
InitializedSomething = true;
|
|
|
|
if (DeclType->isUnionType() && StructuredList) {
|
|
// Initialize the first field within the union.
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
}
|
|
|
|
++Field;
|
|
}
|
|
|
|
// Emit warnings for missing struct field initializers.
|
|
if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
|
|
Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
|
|
!DeclType->isUnionType()) {
|
|
// It is possible we have one or more unnamed bitfields remaining.
|
|
// Find first (if any) named field and emit warning.
|
|
for (RecordDecl::field_iterator it = Field, end = RD->field_end();
|
|
it != end; ++it) {
|
|
if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
|
|
SemaRef.Diag(IList->getSourceRange().getEnd(),
|
|
diag::warn_missing_field_initializers) << *it;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check that any remaining fields can be value-initialized if we're not
|
|
// building a structured list. (If we are, we'll check this later.)
|
|
if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
|
|
!Field->getType()->isIncompleteArrayType()) {
|
|
for (; Field != FieldEnd && !hadError; ++Field) {
|
|
if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
|
|
CheckEmptyInitializable(
|
|
InitializedEntity::InitializeMember(*Field, &Entity),
|
|
IList->getEndLoc());
|
|
}
|
|
}
|
|
|
|
// Check that the types of the remaining fields have accessible destructors.
|
|
if (!VerifyOnly) {
|
|
// If the initializer expression has a designated initializer, check the
|
|
// elements for which a designated initializer is not provided too.
|
|
RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
|
|
: Field;
|
|
for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
|
|
QualType ET = SemaRef.Context.getBaseElementType(I->getType());
|
|
if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
|
|
hadError = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
|
|
Index >= IList->getNumInits())
|
|
return;
|
|
|
|
if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
|
|
TopLevelObject)) {
|
|
hadError = true;
|
|
++Index;
|
|
return;
|
|
}
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
|
|
if (isa<InitListExpr>(IList->getInit(Index)))
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
else
|
|
CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, StructuredIndex);
|
|
}
|
|
|
|
/// Expand a field designator that refers to a member of an
|
|
/// anonymous struct or union into a series of field designators that
|
|
/// refers to the field within the appropriate subobject.
|
|
///
|
|
static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
|
|
DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
IndirectFieldDecl *IndirectField) {
|
|
typedef DesignatedInitExpr::Designator Designator;
|
|
|
|
// Build the replacement designators.
|
|
SmallVector<Designator, 4> Replacements;
|
|
for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
|
|
PE = IndirectField->chain_end(); PI != PE; ++PI) {
|
|
if (PI + 1 == PE)
|
|
Replacements.push_back(Designator((IdentifierInfo *)nullptr,
|
|
DIE->getDesignator(DesigIdx)->getDotLoc(),
|
|
DIE->getDesignator(DesigIdx)->getFieldLoc()));
|
|
else
|
|
Replacements.push_back(Designator((IdentifierInfo *)nullptr,
|
|
SourceLocation(), SourceLocation()));
|
|
assert(isa<FieldDecl>(*PI));
|
|
Replacements.back().setField(cast<FieldDecl>(*PI));
|
|
}
|
|
|
|
// Expand the current designator into the set of replacement
|
|
// designators, so we have a full subobject path down to where the
|
|
// member of the anonymous struct/union is actually stored.
|
|
DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
|
|
&Replacements[0] + Replacements.size());
|
|
}
|
|
|
|
static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
|
|
DesignatedInitExpr *DIE) {
|
|
unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
|
|
SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
|
|
for (unsigned I = 0; I < NumIndexExprs; ++I)
|
|
IndexExprs[I] = DIE->getSubExpr(I + 1);
|
|
return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
|
|
IndexExprs,
|
|
DIE->getEqualOrColonLoc(),
|
|
DIE->usesGNUSyntax(), DIE->getInit());
|
|
}
|
|
|
|
namespace {
|
|
|
|
// Callback to only accept typo corrections that are for field members of
|
|
// the given struct or union.
|
|
class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
|
|
public:
|
|
explicit FieldInitializerValidatorCCC(RecordDecl *RD)
|
|
: Record(RD) {}
|
|
|
|
bool ValidateCandidate(const TypoCorrection &candidate) override {
|
|
FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
|
|
return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
|
|
}
|
|
|
|
std::unique_ptr<CorrectionCandidateCallback> clone() override {
|
|
return std::make_unique<FieldInitializerValidatorCCC>(*this);
|
|
}
|
|
|
|
private:
|
|
RecordDecl *Record;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Check the well-formedness of a C99 designated initializer.
|
|
///
|
|
/// Determines whether the designated initializer @p DIE, which
|
|
/// resides at the given @p Index within the initializer list @p
|
|
/// IList, is well-formed for a current object of type @p DeclType
|
|
/// (C99 6.7.8). The actual subobject that this designator refers to
|
|
/// within the current subobject is returned in either
|
|
/// @p NextField or @p NextElementIndex (whichever is appropriate).
|
|
///
|
|
/// @param IList The initializer list in which this designated
|
|
/// initializer occurs.
|
|
///
|
|
/// @param DIE The designated initializer expression.
|
|
///
|
|
/// @param DesigIdx The index of the current designator.
|
|
///
|
|
/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
|
|
/// into which the designation in @p DIE should refer.
|
|
///
|
|
/// @param NextField If non-NULL and the first designator in @p DIE is
|
|
/// a field, this will be set to the field declaration corresponding
|
|
/// to the field named by the designator. On input, this is expected to be
|
|
/// the next field that would be initialized in the absence of designation,
|
|
/// if the complete object being initialized is a struct.
|
|
///
|
|
/// @param NextElementIndex If non-NULL and the first designator in @p
|
|
/// DIE is an array designator or GNU array-range designator, this
|
|
/// will be set to the last index initialized by this designator.
|
|
///
|
|
/// @param Index Index into @p IList where the designated initializer
|
|
/// @p DIE occurs.
|
|
///
|
|
/// @param StructuredList The initializer list expression that
|
|
/// describes all of the subobject initializers in the order they'll
|
|
/// actually be initialized.
|
|
///
|
|
/// @returns true if there was an error, false otherwise.
|
|
bool
|
|
InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
|
|
InitListExpr *IList,
|
|
DesignatedInitExpr *DIE,
|
|
unsigned DesigIdx,
|
|
QualType &CurrentObjectType,
|
|
RecordDecl::field_iterator *NextField,
|
|
llvm::APSInt *NextElementIndex,
|
|
unsigned &Index,
|
|
InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
bool FinishSubobjectInit,
|
|
bool TopLevelObject) {
|
|
if (DesigIdx == DIE->size()) {
|
|
// C++20 designated initialization can result in direct-list-initialization
|
|
// of the designated subobject. This is the only way that we can end up
|
|
// performing direct initialization as part of aggregate initialization, so
|
|
// it needs special handling.
|
|
if (DIE->isDirectInit()) {
|
|
Expr *Init = DIE->getInit();
|
|
assert(isa<InitListExpr>(Init) &&
|
|
"designator result in direct non-list initialization?");
|
|
InitializationKind Kind = InitializationKind::CreateDirectList(
|
|
DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
|
|
InitializationSequence Seq(SemaRef, Entity, Kind, Init,
|
|
/*TopLevelOfInitList*/ true);
|
|
if (StructuredList) {
|
|
ExprResult Result = VerifyOnly
|
|
? getDummyInit()
|
|
: Seq.Perform(SemaRef, Entity, Kind, Init);
|
|
UpdateStructuredListElement(StructuredList, StructuredIndex,
|
|
Result.get());
|
|
}
|
|
++Index;
|
|
return !Seq;
|
|
}
|
|
|
|
// Check the actual initialization for the designated object type.
|
|
bool prevHadError = hadError;
|
|
|
|
// Temporarily remove the designator expression from the
|
|
// initializer list that the child calls see, so that we don't try
|
|
// to re-process the designator.
|
|
unsigned OldIndex = Index;
|
|
IList->setInit(OldIndex, DIE->getInit());
|
|
|
|
CheckSubElementType(Entity, IList, CurrentObjectType, Index,
|
|
StructuredList, StructuredIndex);
|
|
|
|
// Restore the designated initializer expression in the syntactic
|
|
// form of the initializer list.
|
|
if (IList->getInit(OldIndex) != DIE->getInit())
|
|
DIE->setInit(IList->getInit(OldIndex));
|
|
IList->setInit(OldIndex, DIE);
|
|
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
|
|
bool IsFirstDesignator = (DesigIdx == 0);
|
|
if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
|
|
// Determine the structural initializer list that corresponds to the
|
|
// current subobject.
|
|
if (IsFirstDesignator)
|
|
StructuredList = FullyStructuredList;
|
|
else {
|
|
Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
|
|
StructuredList->getInit(StructuredIndex) : nullptr;
|
|
if (!ExistingInit && StructuredList->hasArrayFiller())
|
|
ExistingInit = StructuredList->getArrayFiller();
|
|
|
|
if (!ExistingInit)
|
|
StructuredList = getStructuredSubobjectInit(
|
|
IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
|
|
SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
|
|
else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
|
|
StructuredList = Result;
|
|
else {
|
|
// We are creating an initializer list that initializes the
|
|
// subobjects of the current object, but there was already an
|
|
// initialization that completely initialized the current
|
|
// subobject, e.g., by a compound literal:
|
|
//
|
|
// struct X { int a, b; };
|
|
// struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
|
|
//
|
|
// Here, xs[0].a == 1 and xs[0].b == 3, since the second,
|
|
// designated initializer re-initializes only its current object
|
|
// subobject [0].b.
|
|
diagnoseInitOverride(ExistingInit,
|
|
SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
|
|
/*FullyOverwritten=*/false);
|
|
|
|
if (!VerifyOnly) {
|
|
if (DesignatedInitUpdateExpr *E =
|
|
dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
|
|
StructuredList = E->getUpdater();
|
|
else {
|
|
DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
|
|
DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
|
|
ExistingInit, DIE->getEndLoc());
|
|
StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
|
|
StructuredList = DIUE->getUpdater();
|
|
}
|
|
} else {
|
|
// We don't need to track the structured representation of a
|
|
// designated init update of an already-fully-initialized object in
|
|
// verify-only mode. The only reason we would need the structure is
|
|
// to determine where the uninitialized "holes" are, and in this
|
|
// case, we know there aren't any and we can't introduce any.
|
|
StructuredList = nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (D->isFieldDesignator()) {
|
|
// C99 6.7.8p7:
|
|
//
|
|
// If a designator has the form
|
|
//
|
|
// . identifier
|
|
//
|
|
// then the current object (defined below) shall have
|
|
// structure or union type and the identifier shall be the
|
|
// name of a member of that type.
|
|
const RecordType *RT = CurrentObjectType->getAs<RecordType>();
|
|
if (!RT) {
|
|
SourceLocation Loc = D->getDotLoc();
|
|
if (Loc.isInvalid())
|
|
Loc = D->getFieldLoc();
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
|
|
<< SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
FieldDecl *KnownField = D->getField();
|
|
if (!KnownField) {
|
|
IdentifierInfo *FieldName = D->getFieldName();
|
|
DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
|
|
for (NamedDecl *ND : Lookup) {
|
|
if (auto *FD = dyn_cast<FieldDecl>(ND)) {
|
|
KnownField = FD;
|
|
break;
|
|
}
|
|
if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
|
|
// In verify mode, don't modify the original.
|
|
if (VerifyOnly)
|
|
DIE = CloneDesignatedInitExpr(SemaRef, DIE);
|
|
ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
|
|
D = DIE->getDesignator(DesigIdx);
|
|
KnownField = cast<FieldDecl>(*IFD->chain_begin());
|
|
break;
|
|
}
|
|
}
|
|
if (!KnownField) {
|
|
if (VerifyOnly) {
|
|
++Index;
|
|
return true; // No typo correction when just trying this out.
|
|
}
|
|
|
|
// Name lookup found something, but it wasn't a field.
|
|
if (!Lookup.empty()) {
|
|
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
|
|
<< FieldName;
|
|
SemaRef.Diag(Lookup.front()->getLocation(),
|
|
diag::note_field_designator_found);
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
// Name lookup didn't find anything.
|
|
// Determine whether this was a typo for another field name.
|
|
FieldInitializerValidatorCCC CCC(RT->getDecl());
|
|
if (TypoCorrection Corrected = SemaRef.CorrectTypo(
|
|
DeclarationNameInfo(FieldName, D->getFieldLoc()),
|
|
Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
|
|
Sema::CTK_ErrorRecovery, RT->getDecl())) {
|
|
SemaRef.diagnoseTypo(
|
|
Corrected,
|
|
SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
|
|
<< FieldName << CurrentObjectType);
|
|
KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
|
|
hadError = true;
|
|
} else {
|
|
// Typo correction didn't find anything.
|
|
SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
|
|
<< FieldName << CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
unsigned NumBases = 0;
|
|
if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
|
|
NumBases = CXXRD->getNumBases();
|
|
|
|
unsigned FieldIndex = NumBases;
|
|
|
|
for (auto *FI : RT->getDecl()->fields()) {
|
|
if (FI->isUnnamedBitfield())
|
|
continue;
|
|
if (declaresSameEntity(KnownField, FI)) {
|
|
KnownField = FI;
|
|
break;
|
|
}
|
|
++FieldIndex;
|
|
}
|
|
|
|
RecordDecl::field_iterator Field =
|
|
RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
|
|
|
|
// All of the fields of a union are located at the same place in
|
|
// the initializer list.
|
|
if (RT->getDecl()->isUnion()) {
|
|
FieldIndex = 0;
|
|
if (StructuredList) {
|
|
FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
|
|
if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
|
|
assert(StructuredList->getNumInits() == 1
|
|
&& "A union should never have more than one initializer!");
|
|
|
|
Expr *ExistingInit = StructuredList->getInit(0);
|
|
if (ExistingInit) {
|
|
// We're about to throw away an initializer, emit warning.
|
|
diagnoseInitOverride(
|
|
ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
|
|
}
|
|
|
|
// remove existing initializer
|
|
StructuredList->resizeInits(SemaRef.Context, 0);
|
|
StructuredList->setInitializedFieldInUnion(nullptr);
|
|
}
|
|
|
|
StructuredList->setInitializedFieldInUnion(*Field);
|
|
}
|
|
}
|
|
|
|
// Make sure we can use this declaration.
|
|
bool InvalidUse;
|
|
if (VerifyOnly)
|
|
InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
|
|
else
|
|
InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
|
|
if (InvalidUse) {
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
// C++20 [dcl.init.list]p3:
|
|
// The ordered identifiers in the designators of the designated-
|
|
// initializer-list shall form a subsequence of the ordered identifiers
|
|
// in the direct non-static data members of T.
|
|
//
|
|
// Note that this is not a condition on forming the aggregate
|
|
// initialization, only on actually performing initialization,
|
|
// so it is not checked in VerifyOnly mode.
|
|
//
|
|
// FIXME: This is the only reordering diagnostic we produce, and it only
|
|
// catches cases where we have a top-level field designator that jumps
|
|
// backwards. This is the only such case that is reachable in an
|
|
// otherwise-valid C++20 program, so is the only case that's required for
|
|
// conformance, but for consistency, we should diagnose all the other
|
|
// cases where a designator takes us backwards too.
|
|
if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
|
|
NextField &&
|
|
(*NextField == RT->getDecl()->field_end() ||
|
|
(*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
|
|
// Find the field that we just initialized.
|
|
FieldDecl *PrevField = nullptr;
|
|
for (auto FI = RT->getDecl()->field_begin();
|
|
FI != RT->getDecl()->field_end(); ++FI) {
|
|
if (FI->isUnnamedBitfield())
|
|
continue;
|
|
if (*NextField != RT->getDecl()->field_end() &&
|
|
declaresSameEntity(*FI, **NextField))
|
|
break;
|
|
PrevField = *FI;
|
|
}
|
|
|
|
if (PrevField &&
|
|
PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
|
|
SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
|
|
<< KnownField << PrevField << DIE->getSourceRange();
|
|
|
|
unsigned OldIndex = NumBases + PrevField->getFieldIndex();
|
|
if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
|
|
if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
|
|
SemaRef.Diag(PrevInit->getBeginLoc(),
|
|
diag::note_previous_field_init)
|
|
<< PrevField << PrevInit->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Update the designator with the field declaration.
|
|
if (!VerifyOnly)
|
|
D->setField(*Field);
|
|
|
|
// Make sure that our non-designated initializer list has space
|
|
// for a subobject corresponding to this field.
|
|
if (StructuredList && FieldIndex >= StructuredList->getNumInits())
|
|
StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
|
|
|
|
// This designator names a flexible array member.
|
|
if (Field->getType()->isIncompleteArrayType()) {
|
|
bool Invalid = false;
|
|
if ((DesigIdx + 1) != DIE->size()) {
|
|
// We can't designate an object within the flexible array
|
|
// member (because GCC doesn't allow it).
|
|
if (!VerifyOnly) {
|
|
DesignatedInitExpr::Designator *NextD
|
|
= DIE->getDesignator(DesigIdx + 1);
|
|
SemaRef.Diag(NextD->getBeginLoc(),
|
|
diag::err_designator_into_flexible_array_member)
|
|
<< SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
}
|
|
Invalid = true;
|
|
}
|
|
|
|
if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
|
|
!isa<StringLiteral>(DIE->getInit())) {
|
|
// The initializer is not an initializer list.
|
|
if (!VerifyOnly) {
|
|
SemaRef.Diag(DIE->getInit()->getBeginLoc(),
|
|
diag::err_flexible_array_init_needs_braces)
|
|
<< DIE->getInit()->getSourceRange();
|
|
SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
|
|
<< *Field;
|
|
}
|
|
Invalid = true;
|
|
}
|
|
|
|
// Check GNU flexible array initializer.
|
|
if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
|
|
TopLevelObject))
|
|
Invalid = true;
|
|
|
|
if (Invalid) {
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
// Initialize the array.
|
|
bool prevHadError = hadError;
|
|
unsigned newStructuredIndex = FieldIndex;
|
|
unsigned OldIndex = Index;
|
|
IList->setInit(Index, DIE->getInit());
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
|
|
StructuredList, newStructuredIndex);
|
|
|
|
IList->setInit(OldIndex, DIE);
|
|
if (hadError && !prevHadError) {
|
|
++Field;
|
|
++FieldIndex;
|
|
if (NextField)
|
|
*NextField = Field;
|
|
StructuredIndex = FieldIndex;
|
|
return true;
|
|
}
|
|
} else {
|
|
// Recurse to check later designated subobjects.
|
|
QualType FieldType = Field->getType();
|
|
unsigned newStructuredIndex = FieldIndex;
|
|
|
|
InitializedEntity MemberEntity =
|
|
InitializedEntity::InitializeMember(*Field, &Entity);
|
|
if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
|
|
FieldType, nullptr, nullptr, Index,
|
|
StructuredList, newStructuredIndex,
|
|
FinishSubobjectInit, false))
|
|
return true;
|
|
}
|
|
|
|
// Find the position of the next field to be initialized in this
|
|
// subobject.
|
|
++Field;
|
|
++FieldIndex;
|
|
|
|
// If this the first designator, our caller will continue checking
|
|
// the rest of this struct/class/union subobject.
|
|
if (IsFirstDesignator) {
|
|
if (NextField)
|
|
*NextField = Field;
|
|
StructuredIndex = FieldIndex;
|
|
return false;
|
|
}
|
|
|
|
if (!FinishSubobjectInit)
|
|
return false;
|
|
|
|
// We've already initialized something in the union; we're done.
|
|
if (RT->getDecl()->isUnion())
|
|
return hadError;
|
|
|
|
// Check the remaining fields within this class/struct/union subobject.
|
|
bool prevHadError = hadError;
|
|
|
|
auto NoBases =
|
|
CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
|
|
CXXRecordDecl::base_class_iterator());
|
|
CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
|
|
false, Index, StructuredList, FieldIndex);
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
// C99 6.7.8p6:
|
|
//
|
|
// If a designator has the form
|
|
//
|
|
// [ constant-expression ]
|
|
//
|
|
// then the current object (defined below) shall have array
|
|
// type and the expression shall be an integer constant
|
|
// expression. If the array is of unknown size, any
|
|
// nonnegative value is valid.
|
|
//
|
|
// Additionally, cope with the GNU extension that permits
|
|
// designators of the form
|
|
//
|
|
// [ constant-expression ... constant-expression ]
|
|
const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
|
|
if (!AT) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
|
|
<< CurrentObjectType;
|
|
++Index;
|
|
return true;
|
|
}
|
|
|
|
Expr *IndexExpr = nullptr;
|
|
llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
|
|
if (D->isArrayDesignator()) {
|
|
IndexExpr = DIE->getArrayIndex(*D);
|
|
DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
|
|
DesignatedEndIndex = DesignatedStartIndex;
|
|
} else {
|
|
assert(D->isArrayRangeDesignator() && "Need array-range designator");
|
|
|
|
DesignatedStartIndex =
|
|
DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
|
|
DesignatedEndIndex =
|
|
DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
|
|
IndexExpr = DIE->getArrayRangeEnd(*D);
|
|
|
|
// Codegen can't handle evaluating array range designators that have side
|
|
// effects, because we replicate the AST value for each initialized element.
|
|
// As such, set the sawArrayRangeDesignator() bit if we initialize multiple
|
|
// elements with something that has a side effect, so codegen can emit an
|
|
// "error unsupported" error instead of miscompiling the app.
|
|
if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
|
|
DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
|
|
FullyStructuredList->sawArrayRangeDesignator();
|
|
}
|
|
|
|
if (isa<ConstantArrayType>(AT)) {
|
|
llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
|
|
DesignatedStartIndex
|
|
= DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
|
|
DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
|
|
DesignatedEndIndex
|
|
= DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
|
|
DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
|
|
if (DesignatedEndIndex >= MaxElements) {
|
|
if (!VerifyOnly)
|
|
SemaRef.Diag(IndexExpr->getBeginLoc(),
|
|
diag::err_array_designator_too_large)
|
|
<< DesignatedEndIndex.toString(10) << MaxElements.toString(10)
|
|
<< IndexExpr->getSourceRange();
|
|
++Index;
|
|
return true;
|
|
}
|
|
} else {
|
|
unsigned DesignatedIndexBitWidth =
|
|
ConstantArrayType::getMaxSizeBits(SemaRef.Context);
|
|
DesignatedStartIndex =
|
|
DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
|
|
DesignatedEndIndex =
|
|
DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
|
|
DesignatedStartIndex.setIsUnsigned(true);
|
|
DesignatedEndIndex.setIsUnsigned(true);
|
|
}
|
|
|
|
bool IsStringLiteralInitUpdate =
|
|
StructuredList && StructuredList->isStringLiteralInit();
|
|
if (IsStringLiteralInitUpdate && VerifyOnly) {
|
|
// We're just verifying an update to a string literal init. We don't need
|
|
// to split the string up into individual characters to do that.
|
|
StructuredList = nullptr;
|
|
} else if (IsStringLiteralInitUpdate) {
|
|
// We're modifying a string literal init; we have to decompose the string
|
|
// so we can modify the individual characters.
|
|
ASTContext &Context = SemaRef.Context;
|
|
Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
|
|
|
|
// Compute the character type
|
|
QualType CharTy = AT->getElementType();
|
|
|
|
// Compute the type of the integer literals.
|
|
QualType PromotedCharTy = CharTy;
|
|
if (CharTy->isPromotableIntegerType())
|
|
PromotedCharTy = Context.getPromotedIntegerType(CharTy);
|
|
unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
|
|
|
|
if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
|
|
// Get the length of the string.
|
|
uint64_t StrLen = SL->getLength();
|
|
if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
|
|
StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
|
|
StructuredList->resizeInits(Context, StrLen);
|
|
|
|
// Build a literal for each character in the string, and put them into
|
|
// the init list.
|
|
for (unsigned i = 0, e = StrLen; i != e; ++i) {
|
|
llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
|
|
Expr *Init = new (Context) IntegerLiteral(
|
|
Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
|
|
if (CharTy != PromotedCharTy)
|
|
Init =
|
|
ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
|
|
nullptr, VK_RValue, FPOptionsOverride());
|
|
StructuredList->updateInit(Context, i, Init);
|
|
}
|
|
} else {
|
|
ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
|
|
std::string Str;
|
|
Context.getObjCEncodingForType(E->getEncodedType(), Str);
|
|
|
|
// Get the length of the string.
|
|
uint64_t StrLen = Str.size();
|
|
if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
|
|
StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
|
|
StructuredList->resizeInits(Context, StrLen);
|
|
|
|
// Build a literal for each character in the string, and put them into
|
|
// the init list.
|
|
for (unsigned i = 0, e = StrLen; i != e; ++i) {
|
|
llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
|
|
Expr *Init = new (Context) IntegerLiteral(
|
|
Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
|
|
if (CharTy != PromotedCharTy)
|
|
Init =
|
|
ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, Init,
|
|
nullptr, VK_RValue, FPOptionsOverride());
|
|
StructuredList->updateInit(Context, i, Init);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Make sure that our non-designated initializer list has space
|
|
// for a subobject corresponding to this array element.
|
|
if (StructuredList &&
|
|
DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
|
|
StructuredList->resizeInits(SemaRef.Context,
|
|
DesignatedEndIndex.getZExtValue() + 1);
|
|
|
|
// Repeatedly perform subobject initializations in the range
|
|
// [DesignatedStartIndex, DesignatedEndIndex].
|
|
|
|
// Move to the next designator
|
|
unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
|
|
unsigned OldIndex = Index;
|
|
|
|
InitializedEntity ElementEntity =
|
|
InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
|
|
|
|
while (DesignatedStartIndex <= DesignatedEndIndex) {
|
|
// Recurse to check later designated subobjects.
|
|
QualType ElementType = AT->getElementType();
|
|
Index = OldIndex;
|
|
|
|
ElementEntity.setElementIndex(ElementIndex);
|
|
if (CheckDesignatedInitializer(
|
|
ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
|
|
nullptr, Index, StructuredList, ElementIndex,
|
|
FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
|
|
false))
|
|
return true;
|
|
|
|
// Move to the next index in the array that we'll be initializing.
|
|
++DesignatedStartIndex;
|
|
ElementIndex = DesignatedStartIndex.getZExtValue();
|
|
}
|
|
|
|
// If this the first designator, our caller will continue checking
|
|
// the rest of this array subobject.
|
|
if (IsFirstDesignator) {
|
|
if (NextElementIndex)
|
|
*NextElementIndex = DesignatedStartIndex;
|
|
StructuredIndex = ElementIndex;
|
|
return false;
|
|
}
|
|
|
|
if (!FinishSubobjectInit)
|
|
return false;
|
|
|
|
// Check the remaining elements within this array subobject.
|
|
bool prevHadError = hadError;
|
|
CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
|
|
/*SubobjectIsDesignatorContext=*/false, Index,
|
|
StructuredList, ElementIndex);
|
|
return hadError && !prevHadError;
|
|
}
|
|
|
|
// Get the structured initializer list for a subobject of type
|
|
// @p CurrentObjectType.
|
|
InitListExpr *
|
|
InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
|
|
QualType CurrentObjectType,
|
|
InitListExpr *StructuredList,
|
|
unsigned StructuredIndex,
|
|
SourceRange InitRange,
|
|
bool IsFullyOverwritten) {
|
|
if (!StructuredList)
|
|
return nullptr;
|
|
|
|
Expr *ExistingInit = nullptr;
|
|
if (StructuredIndex < StructuredList->getNumInits())
|
|
ExistingInit = StructuredList->getInit(StructuredIndex);
|
|
|
|
if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
|
|
// There might have already been initializers for subobjects of the current
|
|
// object, but a subsequent initializer list will overwrite the entirety
|
|
// of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
|
|
//
|
|
// struct P { char x[6]; };
|
|
// struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
|
|
//
|
|
// The first designated initializer is ignored, and l.x is just "f".
|
|
if (!IsFullyOverwritten)
|
|
return Result;
|
|
|
|
if (ExistingInit) {
|
|
// We are creating an initializer list that initializes the
|
|
// subobjects of the current object, but there was already an
|
|
// initialization that completely initialized the current
|
|
// subobject:
|
|
//
|
|
// struct X { int a, b; };
|
|
// struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
|
|
//
|
|
// Here, xs[0].a == 1 and xs[0].b == 3, since the second,
|
|
// designated initializer overwrites the [0].b initializer
|
|
// from the prior initialization.
|
|
//
|
|
// When the existing initializer is an expression rather than an
|
|
// initializer list, we cannot decompose and update it in this way.
|
|
// For example:
|
|
//
|
|
// struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
|
|
//
|
|
// This case is handled by CheckDesignatedInitializer.
|
|
diagnoseInitOverride(ExistingInit, InitRange);
|
|
}
|
|
|
|
unsigned ExpectedNumInits = 0;
|
|
if (Index < IList->getNumInits()) {
|
|
if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
|
|
ExpectedNumInits = Init->getNumInits();
|
|
else
|
|
ExpectedNumInits = IList->getNumInits() - Index;
|
|
}
|
|
|
|
InitListExpr *Result =
|
|
createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
|
|
|
|
// Link this new initializer list into the structured initializer
|
|
// lists.
|
|
StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
|
|
return Result;
|
|
}
|
|
|
|
InitListExpr *
|
|
InitListChecker::createInitListExpr(QualType CurrentObjectType,
|
|
SourceRange InitRange,
|
|
unsigned ExpectedNumInits) {
|
|
InitListExpr *Result
|
|
= new (SemaRef.Context) InitListExpr(SemaRef.Context,
|
|
InitRange.getBegin(), None,
|
|
InitRange.getEnd());
|
|
|
|
QualType ResultType = CurrentObjectType;
|
|
if (!ResultType->isArrayType())
|
|
ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
|
|
Result->setType(ResultType);
|
|
|
|
// Pre-allocate storage for the structured initializer list.
|
|
unsigned NumElements = 0;
|
|
|
|
if (const ArrayType *AType
|
|
= SemaRef.Context.getAsArrayType(CurrentObjectType)) {
|
|
if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
|
|
NumElements = CAType->getSize().getZExtValue();
|
|
// Simple heuristic so that we don't allocate a very large
|
|
// initializer with many empty entries at the end.
|
|
if (NumElements > ExpectedNumInits)
|
|
NumElements = 0;
|
|
}
|
|
} else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
|
|
NumElements = VType->getNumElements();
|
|
} else if (CurrentObjectType->isRecordType()) {
|
|
NumElements = numStructUnionElements(CurrentObjectType);
|
|
}
|
|
|
|
Result->reserveInits(SemaRef.Context, NumElements);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Update the initializer at index @p StructuredIndex within the
|
|
/// structured initializer list to the value @p expr.
|
|
void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
|
|
unsigned &StructuredIndex,
|
|
Expr *expr) {
|
|
// No structured initializer list to update
|
|
if (!StructuredList)
|
|
return;
|
|
|
|
if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
|
|
StructuredIndex, expr)) {
|
|
// This initializer overwrites a previous initializer.
|
|
// No need to diagnose when `expr` is nullptr because a more relevant
|
|
// diagnostic has already been issued and this diagnostic is potentially
|
|
// noise.
|
|
if (expr)
|
|
diagnoseInitOverride(PrevInit, expr->getSourceRange());
|
|
}
|
|
|
|
++StructuredIndex;
|
|
}
|
|
|
|
/// Determine whether we can perform aggregate initialization for the purposes
|
|
/// of overload resolution.
|
|
bool Sema::CanPerformAggregateInitializationForOverloadResolution(
|
|
const InitializedEntity &Entity, InitListExpr *From) {
|
|
QualType Type = Entity.getType();
|
|
InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
|
|
/*TreatUnavailableAsInvalid=*/false,
|
|
/*InOverloadResolution=*/true);
|
|
return !Check.HadError();
|
|
}
|
|
|
|
/// Check that the given Index expression is a valid array designator
|
|
/// value. This is essentially just a wrapper around
|
|
/// VerifyIntegerConstantExpression that also checks for negative values
|
|
/// and produces a reasonable diagnostic if there is a
|
|
/// failure. Returns the index expression, possibly with an implicit cast
|
|
/// added, on success. If everything went okay, Value will receive the
|
|
/// value of the constant expression.
|
|
static ExprResult
|
|
CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
|
|
SourceLocation Loc = Index->getBeginLoc();
|
|
|
|
// Make sure this is an integer constant expression.
|
|
ExprResult Result =
|
|
S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
|
|
if (Result.isInvalid())
|
|
return Result;
|
|
|
|
if (Value.isSigned() && Value.isNegative())
|
|
return S.Diag(Loc, diag::err_array_designator_negative)
|
|
<< Value.toString(10) << Index->getSourceRange();
|
|
|
|
Value.setIsUnsigned(true);
|
|
return Result;
|
|
}
|
|
|
|
ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
|
|
SourceLocation EqualOrColonLoc,
|
|
bool GNUSyntax,
|
|
ExprResult Init) {
|
|
typedef DesignatedInitExpr::Designator ASTDesignator;
|
|
|
|
bool Invalid = false;
|
|
SmallVector<ASTDesignator, 32> Designators;
|
|
SmallVector<Expr *, 32> InitExpressions;
|
|
|
|
// Build designators and check array designator expressions.
|
|
for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
|
|
const Designator &D = Desig.getDesignator(Idx);
|
|
switch (D.getKind()) {
|
|
case Designator::FieldDesignator:
|
|
Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
|
|
D.getFieldLoc()));
|
|
break;
|
|
|
|
case Designator::ArrayDesignator: {
|
|
Expr *Index = static_cast<Expr *>(D.getArrayIndex());
|
|
llvm::APSInt IndexValue;
|
|
if (!Index->isTypeDependent() && !Index->isValueDependent())
|
|
Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
|
|
if (!Index)
|
|
Invalid = true;
|
|
else {
|
|
Designators.push_back(ASTDesignator(InitExpressions.size(),
|
|
D.getLBracketLoc(),
|
|
D.getRBracketLoc()));
|
|
InitExpressions.push_back(Index);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Designator::ArrayRangeDesignator: {
|
|
Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
|
|
Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
|
|
llvm::APSInt StartValue;
|
|
llvm::APSInt EndValue;
|
|
bool StartDependent = StartIndex->isTypeDependent() ||
|
|
StartIndex->isValueDependent();
|
|
bool EndDependent = EndIndex->isTypeDependent() ||
|
|
EndIndex->isValueDependent();
|
|
if (!StartDependent)
|
|
StartIndex =
|
|
CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
|
|
if (!EndDependent)
|
|
EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
|
|
|
|
if (!StartIndex || !EndIndex)
|
|
Invalid = true;
|
|
else {
|
|
// Make sure we're comparing values with the same bit width.
|
|
if (StartDependent || EndDependent) {
|
|
// Nothing to compute.
|
|
} else if (StartValue.getBitWidth() > EndValue.getBitWidth())
|
|
EndValue = EndValue.extend(StartValue.getBitWidth());
|
|
else if (StartValue.getBitWidth() < EndValue.getBitWidth())
|
|
StartValue = StartValue.extend(EndValue.getBitWidth());
|
|
|
|
if (!StartDependent && !EndDependent && EndValue < StartValue) {
|
|
Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
|
|
<< StartValue.toString(10) << EndValue.toString(10)
|
|
<< StartIndex->getSourceRange() << EndIndex->getSourceRange();
|
|
Invalid = true;
|
|
} else {
|
|
Designators.push_back(ASTDesignator(InitExpressions.size(),
|
|
D.getLBracketLoc(),
|
|
D.getEllipsisLoc(),
|
|
D.getRBracketLoc()));
|
|
InitExpressions.push_back(StartIndex);
|
|
InitExpressions.push_back(EndIndex);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Invalid || Init.isInvalid())
|
|
return ExprError();
|
|
|
|
// Clear out the expressions within the designation.
|
|
Desig.ClearExprs(*this);
|
|
|
|
return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
|
|
EqualOrColonLoc, GNUSyntax,
|
|
Init.getAs<Expr>());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization entity
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
|
|
const InitializedEntity &Parent)
|
|
: Parent(&Parent), Index(Index)
|
|
{
|
|
if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
|
|
Kind = EK_ArrayElement;
|
|
Type = AT->getElementType();
|
|
} else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
|
|
Kind = EK_VectorElement;
|
|
Type = VT->getElementType();
|
|
} else {
|
|
const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
|
|
assert(CT && "Unexpected type");
|
|
Kind = EK_ComplexElement;
|
|
Type = CT->getElementType();
|
|
}
|
|
}
|
|
|
|
InitializedEntity
|
|
InitializedEntity::InitializeBase(ASTContext &Context,
|
|
const CXXBaseSpecifier *Base,
|
|
bool IsInheritedVirtualBase,
|
|
const InitializedEntity *Parent) {
|
|
InitializedEntity Result;
|
|
Result.Kind = EK_Base;
|
|
Result.Parent = Parent;
|
|
Result.Base = reinterpret_cast<uintptr_t>(Base);
|
|
if (IsInheritedVirtualBase)
|
|
Result.Base |= 0x01;
|
|
|
|
Result.Type = Base->getType();
|
|
return Result;
|
|
}
|
|
|
|
DeclarationName InitializedEntity::getName() const {
|
|
switch (getKind()) {
|
|
case EK_Parameter:
|
|
case EK_Parameter_CF_Audited: {
|
|
ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
|
|
return (D ? D->getDeclName() : DeclarationName());
|
|
}
|
|
|
|
case EK_Variable:
|
|
case EK_Member:
|
|
case EK_Binding:
|
|
case EK_TemplateParameter:
|
|
return Variable.VariableOrMember->getDeclName();
|
|
|
|
case EK_LambdaCapture:
|
|
return DeclarationName(Capture.VarID);
|
|
|
|
case EK_Result:
|
|
case EK_StmtExprResult:
|
|
case EK_Exception:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_Base:
|
|
case EK_Delegating:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_ComplexElement:
|
|
case EK_BlockElement:
|
|
case EK_LambdaToBlockConversionBlockElement:
|
|
case EK_CompoundLiteralInit:
|
|
case EK_RelatedResult:
|
|
return DeclarationName();
|
|
}
|
|
|
|
llvm_unreachable("Invalid EntityKind!");
|
|
}
|
|
|
|
ValueDecl *InitializedEntity::getDecl() const {
|
|
switch (getKind()) {
|
|
case EK_Variable:
|
|
case EK_Member:
|
|
case EK_Binding:
|
|
case EK_TemplateParameter:
|
|
return Variable.VariableOrMember;
|
|
|
|
case EK_Parameter:
|
|
case EK_Parameter_CF_Audited:
|
|
return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
|
|
|
|
case EK_Result:
|
|
case EK_StmtExprResult:
|
|
case EK_Exception:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_Base:
|
|
case EK_Delegating:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_ComplexElement:
|
|
case EK_BlockElement:
|
|
case EK_LambdaToBlockConversionBlockElement:
|
|
case EK_LambdaCapture:
|
|
case EK_CompoundLiteralInit:
|
|
case EK_RelatedResult:
|
|
return nullptr;
|
|
}
|
|
|
|
llvm_unreachable("Invalid EntityKind!");
|
|
}
|
|
|
|
bool InitializedEntity::allowsNRVO() const {
|
|
switch (getKind()) {
|
|
case EK_Result:
|
|
case EK_Exception:
|
|
return LocAndNRVO.NRVO;
|
|
|
|
case EK_StmtExprResult:
|
|
case EK_Variable:
|
|
case EK_Parameter:
|
|
case EK_Parameter_CF_Audited:
|
|
case EK_TemplateParameter:
|
|
case EK_Member:
|
|
case EK_Binding:
|
|
case EK_New:
|
|
case EK_Temporary:
|
|
case EK_CompoundLiteralInit:
|
|
case EK_Base:
|
|
case EK_Delegating:
|
|
case EK_ArrayElement:
|
|
case EK_VectorElement:
|
|
case EK_ComplexElement:
|
|
case EK_BlockElement:
|
|
case EK_LambdaToBlockConversionBlockElement:
|
|
case EK_LambdaCapture:
|
|
case EK_RelatedResult:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
|
|
assert(getParent() != this);
|
|
unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
|
|
for (unsigned I = 0; I != Depth; ++I)
|
|
OS << "`-";
|
|
|
|
switch (getKind()) {
|
|
case EK_Variable: OS << "Variable"; break;
|
|
case EK_Parameter: OS << "Parameter"; break;
|
|
case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
|
|
break;
|
|
case EK_TemplateParameter: OS << "TemplateParameter"; break;
|
|
case EK_Result: OS << "Result"; break;
|
|
case EK_StmtExprResult: OS << "StmtExprResult"; break;
|
|
case EK_Exception: OS << "Exception"; break;
|
|
case EK_Member: OS << "Member"; break;
|
|
case EK_Binding: OS << "Binding"; break;
|
|
case EK_New: OS << "New"; break;
|
|
case EK_Temporary: OS << "Temporary"; break;
|
|
case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
|
|
case EK_RelatedResult: OS << "RelatedResult"; break;
|
|
case EK_Base: OS << "Base"; break;
|
|
case EK_Delegating: OS << "Delegating"; break;
|
|
case EK_ArrayElement: OS << "ArrayElement " << Index; break;
|
|
case EK_VectorElement: OS << "VectorElement " << Index; break;
|
|
case EK_ComplexElement: OS << "ComplexElement " << Index; break;
|
|
case EK_BlockElement: OS << "Block"; break;
|
|
case EK_LambdaToBlockConversionBlockElement:
|
|
OS << "Block (lambda)";
|
|
break;
|
|
case EK_LambdaCapture:
|
|
OS << "LambdaCapture ";
|
|
OS << DeclarationName(Capture.VarID);
|
|
break;
|
|
}
|
|
|
|
if (auto *D = getDecl()) {
|
|
OS << " ";
|
|
D->printQualifiedName(OS);
|
|
}
|
|
|
|
OS << " '" << getType().getAsString() << "'\n";
|
|
|
|
return Depth + 1;
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void InitializedEntity::dump() const {
|
|
dumpImpl(llvm::errs());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization sequence
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void InitializationSequence::Step::Destroy() {
|
|
switch (Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue:
|
|
case SK_BindReference:
|
|
case SK_BindReferenceToTemporary:
|
|
case SK_FinalCopy:
|
|
case SK_ExtraneousCopyToTemporary:
|
|
case SK_UserConversion:
|
|
case SK_QualificationConversionRValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionLValue:
|
|
case SK_FunctionReferenceConversion:
|
|
case SK_AtomicConversion:
|
|
case SK_ListInitialization:
|
|
case SK_UnwrapInitList:
|
|
case SK_RewrapInitList:
|
|
case SK_ConstructorInitialization:
|
|
case SK_ConstructorInitializationFromList:
|
|
case SK_ZeroInitialization:
|
|
case SK_CAssignment:
|
|
case SK_StringInit:
|
|
case SK_ObjCObjectConversion:
|
|
case SK_ArrayLoopIndex:
|
|
case SK_ArrayLoopInit:
|
|
case SK_ArrayInit:
|
|
case SK_GNUArrayInit:
|
|
case SK_ParenthesizedArrayInit:
|
|
case SK_PassByIndirectCopyRestore:
|
|
case SK_PassByIndirectRestore:
|
|
case SK_ProduceObjCObject:
|
|
case SK_StdInitializerList:
|
|
case SK_StdInitializerListConstructorCall:
|
|
case SK_OCLSamplerInit:
|
|
case SK_OCLZeroOpaqueType:
|
|
break;
|
|
|
|
case SK_ConversionSequence:
|
|
case SK_ConversionSequenceNoNarrowing:
|
|
delete ICS;
|
|
}
|
|
}
|
|
|
|
bool InitializationSequence::isDirectReferenceBinding() const {
|
|
// There can be some lvalue adjustments after the SK_BindReference step.
|
|
for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
|
|
if (I->Kind == SK_BindReference)
|
|
return true;
|
|
if (I->Kind == SK_BindReferenceToTemporary)
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool InitializationSequence::isAmbiguous() const {
|
|
if (!Failed())
|
|
return false;
|
|
|
|
switch (getFailureKind()) {
|
|
case FK_TooManyInitsForReference:
|
|
case FK_ParenthesizedListInitForReference:
|
|
case FK_ArrayNeedsInitList:
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
case FK_ArrayNeedsInitListOrWideStringLiteral:
|
|
case FK_NarrowStringIntoWideCharArray:
|
|
case FK_WideStringIntoCharArray:
|
|
case FK_IncompatWideStringIntoWideChar:
|
|
case FK_PlainStringIntoUTF8Char:
|
|
case FK_UTF8StringIntoPlainChar:
|
|
case FK_AddressOfOverloadFailed: // FIXME: Could do better
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
case FK_NonConstLValueReferenceBindingToBitfield:
|
|
case FK_NonConstLValueReferenceBindingToVectorElement:
|
|
case FK_NonConstLValueReferenceBindingToMatrixElement:
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
case FK_RValueReferenceBindingToLValue:
|
|
case FK_ReferenceAddrspaceMismatchTemporary:
|
|
case FK_ReferenceInitDropsQualifiers:
|
|
case FK_ReferenceInitFailed:
|
|
case FK_ConversionFailed:
|
|
case FK_ConversionFromPropertyFailed:
|
|
case FK_TooManyInitsForScalar:
|
|
case FK_ParenthesizedListInitForScalar:
|
|
case FK_ReferenceBindingToInitList:
|
|
case FK_InitListBadDestinationType:
|
|
case FK_DefaultInitOfConst:
|
|
case FK_Incomplete:
|
|
case FK_ArrayTypeMismatch:
|
|
case FK_NonConstantArrayInit:
|
|
case FK_ListInitializationFailed:
|
|
case FK_VariableLengthArrayHasInitializer:
|
|
case FK_PlaceholderType:
|
|
case FK_ExplicitConstructor:
|
|
case FK_AddressOfUnaddressableFunction:
|
|
return false;
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
case FK_UserConversionOverloadFailed:
|
|
case FK_ConstructorOverloadFailed:
|
|
case FK_ListConstructorOverloadFailed:
|
|
return FailedOverloadResult == OR_Ambiguous;
|
|
}
|
|
|
|
llvm_unreachable("Invalid EntityKind!");
|
|
}
|
|
|
|
bool InitializationSequence::isConstructorInitialization() const {
|
|
return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
|
|
}
|
|
|
|
void
|
|
InitializationSequence
|
|
::AddAddressOverloadResolutionStep(FunctionDecl *Function,
|
|
DeclAccessPair Found,
|
|
bool HadMultipleCandidates) {
|
|
Step S;
|
|
S.Kind = SK_ResolveAddressOfOverloadedFunction;
|
|
S.Type = Function->getType();
|
|
S.Function.HadMultipleCandidates = HadMultipleCandidates;
|
|
S.Function.Function = Function;
|
|
S.Function.FoundDecl = Found;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
|
|
ExprValueKind VK) {
|
|
Step S;
|
|
switch (VK) {
|
|
case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
|
|
case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
|
|
case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
|
|
}
|
|
S.Type = BaseType;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddReferenceBindingStep(QualType T,
|
|
bool BindingTemporary) {
|
|
Step S;
|
|
S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddFinalCopy(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_FinalCopy;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ExtraneousCopyToTemporary;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void
|
|
InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
|
|
DeclAccessPair FoundDecl,
|
|
QualType T,
|
|
bool HadMultipleCandidates) {
|
|
Step S;
|
|
S.Kind = SK_UserConversion;
|
|
S.Type = T;
|
|
S.Function.HadMultipleCandidates = HadMultipleCandidates;
|
|
S.Function.Function = Function;
|
|
S.Function.FoundDecl = FoundDecl;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddQualificationConversionStep(QualType Ty,
|
|
ExprValueKind VK) {
|
|
Step S;
|
|
S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
|
|
switch (VK) {
|
|
case VK_RValue:
|
|
S.Kind = SK_QualificationConversionRValue;
|
|
break;
|
|
case VK_XValue:
|
|
S.Kind = SK_QualificationConversionXValue;
|
|
break;
|
|
case VK_LValue:
|
|
S.Kind = SK_QualificationConversionLValue;
|
|
break;
|
|
}
|
|
S.Type = Ty;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
|
|
Step S;
|
|
S.Kind = SK_FunctionReferenceConversion;
|
|
S.Type = Ty;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
|
|
Step S;
|
|
S.Kind = SK_AtomicConversion;
|
|
S.Type = Ty;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddConversionSequenceStep(
|
|
const ImplicitConversionSequence &ICS, QualType T,
|
|
bool TopLevelOfInitList) {
|
|
Step S;
|
|
S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
|
|
: SK_ConversionSequence;
|
|
S.Type = T;
|
|
S.ICS = new ImplicitConversionSequence(ICS);
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddListInitializationStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ListInitialization;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddConstructorInitializationStep(
|
|
DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
|
|
bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
|
|
Step S;
|
|
S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
|
|
: SK_ConstructorInitializationFromList
|
|
: SK_ConstructorInitialization;
|
|
S.Type = T;
|
|
S.Function.HadMultipleCandidates = HadMultipleCandidates;
|
|
S.Function.Function = Constructor;
|
|
S.Function.FoundDecl = FoundDecl;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddZeroInitializationStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ZeroInitialization;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddCAssignmentStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_CAssignment;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddStringInitStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_StringInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ObjCObjectConversion;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
|
|
Step S;
|
|
S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
|
|
Step S;
|
|
S.Kind = SK_ArrayLoopIndex;
|
|
S.Type = EltT;
|
|
Steps.insert(Steps.begin(), S);
|
|
|
|
S.Kind = SK_ArrayLoopInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ParenthesizedArrayInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
|
|
bool shouldCopy) {
|
|
Step s;
|
|
s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
|
|
: SK_PassByIndirectRestore);
|
|
s.Type = type;
|
|
Steps.push_back(s);
|
|
}
|
|
|
|
void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_ProduceObjCObject;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_StdInitializerList;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_OCLSamplerInit;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
|
|
Step S;
|
|
S.Kind = SK_OCLZeroOpaqueType;
|
|
S.Type = T;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::RewrapReferenceInitList(QualType T,
|
|
InitListExpr *Syntactic) {
|
|
assert(Syntactic->getNumInits() == 1 &&
|
|
"Can only rewrap trivial init lists.");
|
|
Step S;
|
|
S.Kind = SK_UnwrapInitList;
|
|
S.Type = Syntactic->getInit(0)->getType();
|
|
Steps.insert(Steps.begin(), S);
|
|
|
|
S.Kind = SK_RewrapInitList;
|
|
S.Type = T;
|
|
S.WrappingSyntacticList = Syntactic;
|
|
Steps.push_back(S);
|
|
}
|
|
|
|
void InitializationSequence::SetOverloadFailure(FailureKind Failure,
|
|
OverloadingResult Result) {
|
|
setSequenceKind(FailedSequence);
|
|
this->Failure = Failure;
|
|
this->FailedOverloadResult = Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Attempt initialization
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Tries to add a zero initializer. Returns true if that worked.
|
|
static bool
|
|
maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
|
|
const InitializedEntity &Entity) {
|
|
if (Entity.getKind() != InitializedEntity::EK_Variable)
|
|
return false;
|
|
|
|
VarDecl *VD = cast<VarDecl>(Entity.getDecl());
|
|
if (VD->getInit() || VD->getEndLoc().isMacroID())
|
|
return false;
|
|
|
|
QualType VariableTy = VD->getType().getCanonicalType();
|
|
SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
|
|
std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
|
|
if (!Init.empty()) {
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
Sequence.SetZeroInitializationFixit(Init, Loc);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void MaybeProduceObjCObject(Sema &S,
|
|
InitializationSequence &Sequence,
|
|
const InitializedEntity &Entity) {
|
|
if (!S.getLangOpts().ObjCAutoRefCount) return;
|
|
|
|
/// When initializing a parameter, produce the value if it's marked
|
|
/// __attribute__((ns_consumed)).
|
|
if (Entity.isParameterKind()) {
|
|
if (!Entity.isParameterConsumed())
|
|
return;
|
|
|
|
assert(Entity.getType()->isObjCRetainableType() &&
|
|
"consuming an object of unretainable type?");
|
|
Sequence.AddProduceObjCObjectStep(Entity.getType());
|
|
|
|
/// When initializing a return value, if the return type is a
|
|
/// retainable type, then returns need to immediately retain the
|
|
/// object. If an autorelease is required, it will be done at the
|
|
/// last instant.
|
|
} else if (Entity.getKind() == InitializedEntity::EK_Result ||
|
|
Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
|
|
if (!Entity.getType()->isObjCRetainableType())
|
|
return;
|
|
|
|
Sequence.AddProduceObjCObjectStep(Entity.getType());
|
|
}
|
|
}
|
|
|
|
static void TryListInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitListExpr *InitList,
|
|
InitializationSequence &Sequence,
|
|
bool TreatUnavailableAsInvalid);
|
|
|
|
/// When initializing from init list via constructor, handle
|
|
/// initialization of an object of type std::initializer_list<T>.
|
|
///
|
|
/// \return true if we have handled initialization of an object of type
|
|
/// std::initializer_list<T>, false otherwise.
|
|
static bool TryInitializerListConstruction(Sema &S,
|
|
InitListExpr *List,
|
|
QualType DestType,
|
|
InitializationSequence &Sequence,
|
|
bool TreatUnavailableAsInvalid) {
|
|
QualType E;
|
|
if (!S.isStdInitializerList(DestType, &E))
|
|
return false;
|
|
|
|
if (!S.isCompleteType(List->getExprLoc(), E)) {
|
|
Sequence.setIncompleteTypeFailure(E);
|
|
return true;
|
|
}
|
|
|
|
// Try initializing a temporary array from the init list.
|
|
QualType ArrayType = S.Context.getConstantArrayType(
|
|
E.withConst(),
|
|
llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
|
|
List->getNumInits()),
|
|
nullptr, clang::ArrayType::Normal, 0);
|
|
InitializedEntity HiddenArray =
|
|
InitializedEntity::InitializeTemporary(ArrayType);
|
|
InitializationKind Kind = InitializationKind::CreateDirectList(
|
|
List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
|
|
TryListInitialization(S, HiddenArray, Kind, List, Sequence,
|
|
TreatUnavailableAsInvalid);
|
|
if (Sequence)
|
|
Sequence.AddStdInitializerListConstructionStep(DestType);
|
|
return true;
|
|
}
|
|
|
|
/// Determine if the constructor has the signature of a copy or move
|
|
/// constructor for the type T of the class in which it was found. That is,
|
|
/// determine if its first parameter is of type T or reference to (possibly
|
|
/// cv-qualified) T.
|
|
static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
|
|
const ConstructorInfo &Info) {
|
|
if (Info.Constructor->getNumParams() == 0)
|
|
return false;
|
|
|
|
QualType ParmT =
|
|
Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
|
|
QualType ClassT =
|
|
Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
|
|
|
|
return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
|
|
}
|
|
|
|
static OverloadingResult
|
|
ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
|
|
MultiExprArg Args,
|
|
OverloadCandidateSet &CandidateSet,
|
|
QualType DestType,
|
|
DeclContext::lookup_result Ctors,
|
|
OverloadCandidateSet::iterator &Best,
|
|
bool CopyInitializing, bool AllowExplicit,
|
|
bool OnlyListConstructors, bool IsListInit,
|
|
bool SecondStepOfCopyInit = false) {
|
|
CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
|
|
CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
|
|
|
|
for (NamedDecl *D : Ctors) {
|
|
auto Info = getConstructorInfo(D);
|
|
if (!Info.Constructor || Info.Constructor->isInvalidDecl())
|
|
continue;
|
|
|
|
if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
|
|
continue;
|
|
|
|
// C++11 [over.best.ics]p4:
|
|
// ... and the constructor or user-defined conversion function is a
|
|
// candidate by
|
|
// - 13.3.1.3, when the argument is the temporary in the second step
|
|
// of a class copy-initialization, or
|
|
// - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
|
|
// - the second phase of 13.3.1.7 when the initializer list has exactly
|
|
// one element that is itself an initializer list, and the target is
|
|
// the first parameter of a constructor of class X, and the conversion
|
|
// is to X or reference to (possibly cv-qualified X),
|
|
// user-defined conversion sequences are not considered.
|
|
bool SuppressUserConversions =
|
|
SecondStepOfCopyInit ||
|
|
(IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
|
|
hasCopyOrMoveCtorParam(S.Context, Info));
|
|
|
|
if (Info.ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(
|
|
Info.ConstructorTmpl, Info.FoundDecl,
|
|
/*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading=*/false, AllowExplicit);
|
|
else {
|
|
// C++ [over.match.copy]p1:
|
|
// - When initializing a temporary to be bound to the first parameter
|
|
// of a constructor [for type T] that takes a reference to possibly
|
|
// cv-qualified T as its first argument, called with a single
|
|
// argument in the context of direct-initialization, explicit
|
|
// conversion functions are also considered.
|
|
// FIXME: What if a constructor template instantiates to such a signature?
|
|
bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
|
|
Args.size() == 1 &&
|
|
hasCopyOrMoveCtorParam(S.Context, Info);
|
|
S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
|
|
CandidateSet, SuppressUserConversions,
|
|
/*PartialOverloading=*/false, AllowExplicit,
|
|
AllowExplicitConv);
|
|
}
|
|
}
|
|
|
|
// FIXME: Work around a bug in C++17 guaranteed copy elision.
|
|
//
|
|
// When initializing an object of class type T by constructor
|
|
// ([over.match.ctor]) or by list-initialization ([over.match.list])
|
|
// from a single expression of class type U, conversion functions of
|
|
// U that convert to the non-reference type cv T are candidates.
|
|
// Explicit conversion functions are only candidates during
|
|
// direct-initialization.
|
|
//
|
|
// Note: SecondStepOfCopyInit is only ever true in this case when
|
|
// evaluating whether to produce a C++98 compatibility warning.
|
|
if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
|
|
!SecondStepOfCopyInit) {
|
|
Expr *Initializer = Args[0];
|
|
auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
|
|
if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
|
|
const auto &Conversions = SourceRD->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
D = D->getUnderlyingDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(
|
|
ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
|
|
CandidateSet, AllowExplicit, AllowExplicit,
|
|
/*AllowResultConversion*/ false);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
|
|
DestType, CandidateSet, AllowExplicit,
|
|
AllowExplicit,
|
|
/*AllowResultConversion*/ false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform overload resolution and return the result.
|
|
return CandidateSet.BestViableFunction(S, DeclLoc, Best);
|
|
}
|
|
|
|
/// Attempt initialization by constructor (C++ [dcl.init]), which
|
|
/// enumerates the constructors of the initialized entity and performs overload
|
|
/// resolution to select the best.
|
|
/// \param DestType The destination class type.
|
|
/// \param DestArrayType The destination type, which is either DestType or
|
|
/// a (possibly multidimensional) array of DestType.
|
|
/// \param IsListInit Is this list-initialization?
|
|
/// \param IsInitListCopy Is this non-list-initialization resulting from a
|
|
/// list-initialization from {x} where x is the same
|
|
/// type as the entity?
|
|
static void TryConstructorInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
MultiExprArg Args, QualType DestType,
|
|
QualType DestArrayType,
|
|
InitializationSequence &Sequence,
|
|
bool IsListInit = false,
|
|
bool IsInitListCopy = false) {
|
|
assert(((!IsListInit && !IsInitListCopy) ||
|
|
(Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
|
|
"IsListInit/IsInitListCopy must come with a single initializer list "
|
|
"argument.");
|
|
InitListExpr *ILE =
|
|
(IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
|
|
MultiExprArg UnwrappedArgs =
|
|
ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
|
|
|
|
// The type we're constructing needs to be complete.
|
|
if (!S.isCompleteType(Kind.getLocation(), DestType)) {
|
|
Sequence.setIncompleteTypeFailure(DestType);
|
|
return;
|
|
}
|
|
|
|
// C++17 [dcl.init]p17:
|
|
// - If the initializer expression is a prvalue and the cv-unqualified
|
|
// version of the source type is the same class as the class of the
|
|
// destination, the initializer expression is used to initialize the
|
|
// destination object.
|
|
// Per DR (no number yet), this does not apply when initializing a base
|
|
// class or delegating to another constructor from a mem-initializer.
|
|
// ObjC++: Lambda captured by the block in the lambda to block conversion
|
|
// should avoid copy elision.
|
|
if (S.getLangOpts().CPlusPlus17 &&
|
|
Entity.getKind() != InitializedEntity::EK_Base &&
|
|
Entity.getKind() != InitializedEntity::EK_Delegating &&
|
|
Entity.getKind() !=
|
|
InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
|
|
UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
|
|
S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
|
|
// Convert qualifications if necessary.
|
|
Sequence.AddQualificationConversionStep(DestType, VK_RValue);
|
|
if (ILE)
|
|
Sequence.RewrapReferenceInitList(DestType, ILE);
|
|
return;
|
|
}
|
|
|
|
const RecordType *DestRecordType = DestType->getAs<RecordType>();
|
|
assert(DestRecordType && "Constructor initialization requires record type");
|
|
CXXRecordDecl *DestRecordDecl
|
|
= cast<CXXRecordDecl>(DestRecordType->getDecl());
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
|
|
bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
|
|
|
|
// - Otherwise, if T is a class type, constructors are considered. The
|
|
// applicable constructors are enumerated, and the best one is chosen
|
|
// through overload resolution.
|
|
DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
|
|
|
|
OverloadingResult Result = OR_No_Viable_Function;
|
|
OverloadCandidateSet::iterator Best;
|
|
bool AsInitializerList = false;
|
|
|
|
// C++11 [over.match.list]p1, per DR1467:
|
|
// When objects of non-aggregate type T are list-initialized, such that
|
|
// 8.5.4 [dcl.init.list] specifies that overload resolution is performed
|
|
// according to the rules in this section, overload resolution selects
|
|
// the constructor in two phases:
|
|
//
|
|
// - Initially, the candidate functions are the initializer-list
|
|
// constructors of the class T and the argument list consists of the
|
|
// initializer list as a single argument.
|
|
if (IsListInit) {
|
|
AsInitializerList = true;
|
|
|
|
// If the initializer list has no elements and T has a default constructor,
|
|
// the first phase is omitted.
|
|
if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
|
|
Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
|
|
CandidateSet, DestType, Ctors, Best,
|
|
CopyInitialization, AllowExplicit,
|
|
/*OnlyListConstructors=*/true,
|
|
IsListInit);
|
|
}
|
|
|
|
// C++11 [over.match.list]p1:
|
|
// - If no viable initializer-list constructor is found, overload resolution
|
|
// is performed again, where the candidate functions are all the
|
|
// constructors of the class T and the argument list consists of the
|
|
// elements of the initializer list.
|
|
if (Result == OR_No_Viable_Function) {
|
|
AsInitializerList = false;
|
|
Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
|
|
CandidateSet, DestType, Ctors, Best,
|
|
CopyInitialization, AllowExplicit,
|
|
/*OnlyListConstructors=*/false,
|
|
IsListInit);
|
|
}
|
|
if (Result) {
|
|
Sequence.SetOverloadFailure(
|
|
IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
|
|
: InitializationSequence::FK_ConstructorOverloadFailed,
|
|
Result);
|
|
|
|
if (Result != OR_Deleted)
|
|
return;
|
|
}
|
|
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
// In C++17, ResolveConstructorOverload can select a conversion function
|
|
// instead of a constructor.
|
|
if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
|
|
// Add the user-defined conversion step that calls the conversion function.
|
|
QualType ConvType = CD->getConversionType();
|
|
assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&
|
|
"should not have selected this conversion function");
|
|
Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
|
|
HadMultipleCandidates);
|
|
if (!S.Context.hasSameType(ConvType, DestType))
|
|
Sequence.AddQualificationConversionStep(DestType, VK_RValue);
|
|
if (IsListInit)
|
|
Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
|
|
return;
|
|
}
|
|
|
|
CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
|
|
if (Result != OR_Deleted) {
|
|
// C++11 [dcl.init]p6:
|
|
// If a program calls for the default initialization of an object
|
|
// of a const-qualified type T, T shall be a class type with a
|
|
// user-provided default constructor.
|
|
// C++ core issue 253 proposal:
|
|
// If the implicit default constructor initializes all subobjects, no
|
|
// initializer should be required.
|
|
// The 253 proposal is for example needed to process libstdc++ headers
|
|
// in 5.x.
|
|
if (Kind.getKind() == InitializationKind::IK_Default &&
|
|
Entity.getType().isConstQualified()) {
|
|
if (!CtorDecl->getParent()->allowConstDefaultInit()) {
|
|
if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
|
|
Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// C++11 [over.match.list]p1:
|
|
// In copy-list-initialization, if an explicit constructor is chosen, the
|
|
// initializer is ill-formed.
|
|
if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// [class.copy.elision]p3:
|
|
// In some copy-initialization contexts, a two-stage overload resolution
|
|
// is performed.
|
|
// If the first overload resolution selects a deleted function, we also
|
|
// need the initialization sequence to decide whether to perform the second
|
|
// overload resolution.
|
|
// For deleted functions in other contexts, there is no need to get the
|
|
// initialization sequence.
|
|
if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
|
|
return;
|
|
|
|
// Add the constructor initialization step. Any cv-qualification conversion is
|
|
// subsumed by the initialization.
|
|
Sequence.AddConstructorInitializationStep(
|
|
Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
|
|
IsListInit | IsInitListCopy, AsInitializerList);
|
|
}
|
|
|
|
static bool
|
|
ResolveOverloadedFunctionForReferenceBinding(Sema &S,
|
|
Expr *Initializer,
|
|
QualType &SourceType,
|
|
QualType &UnqualifiedSourceType,
|
|
QualType UnqualifiedTargetType,
|
|
InitializationSequence &Sequence) {
|
|
if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
|
|
S.Context.OverloadTy) {
|
|
DeclAccessPair Found;
|
|
bool HadMultipleCandidates = false;
|
|
if (FunctionDecl *Fn
|
|
= S.ResolveAddressOfOverloadedFunction(Initializer,
|
|
UnqualifiedTargetType,
|
|
false, Found,
|
|
&HadMultipleCandidates)) {
|
|
Sequence.AddAddressOverloadResolutionStep(Fn, Found,
|
|
HadMultipleCandidates);
|
|
SourceType = Fn->getType();
|
|
UnqualifiedSourceType = SourceType.getUnqualifiedType();
|
|
} else if (!UnqualifiedTargetType->isRecordType()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void TryReferenceInitializationCore(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
QualType cv1T1, QualType T1,
|
|
Qualifiers T1Quals,
|
|
QualType cv2T2, QualType T2,
|
|
Qualifiers T2Quals,
|
|
InitializationSequence &Sequence);
|
|
|
|
static void TryValueInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitializationSequence &Sequence,
|
|
InitListExpr *InitList = nullptr);
|
|
|
|
/// Attempt list initialization of a reference.
|
|
static void TryReferenceListInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitListExpr *InitList,
|
|
InitializationSequence &Sequence,
|
|
bool TreatUnavailableAsInvalid) {
|
|
// First, catch C++03 where this isn't possible.
|
|
if (!S.getLangOpts().CPlusPlus11) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
|
|
return;
|
|
}
|
|
// Can't reference initialize a compound literal.
|
|
if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
|
|
return;
|
|
}
|
|
|
|
QualType DestType = Entity.getType();
|
|
QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
|
|
Qualifiers T1Quals;
|
|
QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
|
|
|
|
// Reference initialization via an initializer list works thus:
|
|
// If the initializer list consists of a single element that is
|
|
// reference-related to the referenced type, bind directly to that element
|
|
// (possibly creating temporaries).
|
|
// Otherwise, initialize a temporary with the initializer list and
|
|
// bind to that.
|
|
if (InitList->getNumInits() == 1) {
|
|
Expr *Initializer = InitList->getInit(0);
|
|
QualType cv2T2 = S.getCompletedType(Initializer);
|
|
Qualifiers T2Quals;
|
|
QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
|
|
|
|
// If this fails, creating a temporary wouldn't work either.
|
|
if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
|
|
T1, Sequence))
|
|
return;
|
|
|
|
SourceLocation DeclLoc = Initializer->getBeginLoc();
|
|
Sema::ReferenceCompareResult RefRelationship
|
|
= S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
|
|
if (RefRelationship >= Sema::Ref_Related) {
|
|
// Try to bind the reference here.
|
|
TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
|
|
T1Quals, cv2T2, T2, T2Quals, Sequence);
|
|
if (Sequence)
|
|
Sequence.RewrapReferenceInitList(cv1T1, InitList);
|
|
return;
|
|
}
|
|
|
|
// Update the initializer if we've resolved an overloaded function.
|
|
if (Sequence.step_begin() != Sequence.step_end())
|
|
Sequence.RewrapReferenceInitList(cv1T1, InitList);
|
|
}
|
|
|
|
// Not reference-related. Create a temporary and bind to that.
|
|
InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
|
|
|
|
TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
|
|
TreatUnavailableAsInvalid);
|
|
if (Sequence) {
|
|
if (DestType->isRValueReferenceType() ||
|
|
(T1Quals.hasConst() && !T1Quals.hasVolatile()))
|
|
Sequence.AddReferenceBindingStep(cv1T1, /*BindingTemporary=*/true);
|
|
else
|
|
Sequence.SetFailed(
|
|
InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
|
|
}
|
|
}
|
|
|
|
/// Attempt list initialization (C++0x [dcl.init.list])
|
|
static void TryListInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitListExpr *InitList,
|
|
InitializationSequence &Sequence,
|
|
bool TreatUnavailableAsInvalid) {
|
|
QualType DestType = Entity.getType();
|
|
|
|
// C++ doesn't allow scalar initialization with more than one argument.
|
|
// But C99 complex numbers are scalars and it makes sense there.
|
|
if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
|
|
!DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
|
|
Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
|
|
return;
|
|
}
|
|
if (DestType->isReferenceType()) {
|
|
TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
|
|
TreatUnavailableAsInvalid);
|
|
return;
|
|
}
|
|
|
|
if (DestType->isRecordType() &&
|
|
!S.isCompleteType(InitList->getBeginLoc(), DestType)) {
|
|
Sequence.setIncompleteTypeFailure(DestType);
|
|
return;
|
|
}
|
|
|
|
// C++11 [dcl.init.list]p3, per DR1467:
|
|
// - If T is a class type and the initializer list has a single element of
|
|
// type cv U, where U is T or a class derived from T, the object is
|
|
// initialized from that element (by copy-initialization for
|
|
// copy-list-initialization, or by direct-initialization for
|
|
// direct-list-initialization).
|
|
// - Otherwise, if T is a character array and the initializer list has a
|
|
// single element that is an appropriately-typed string literal
|
|
// (8.5.2 [dcl.init.string]), initialization is performed as described
|
|
// in that section.
|
|
// - Otherwise, if T is an aggregate, [...] (continue below).
|
|
if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
|
|
if (DestType->isRecordType()) {
|
|
QualType InitType = InitList->getInit(0)->getType();
|
|
if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
|
|
S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
|
|
Expr *InitListAsExpr = InitList;
|
|
TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
|
|
DestType, Sequence,
|
|
/*InitListSyntax*/false,
|
|
/*IsInitListCopy*/true);
|
|
return;
|
|
}
|
|
}
|
|
if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
|
|
Expr *SubInit[1] = {InitList->getInit(0)};
|
|
if (!isa<VariableArrayType>(DestAT) &&
|
|
IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
|
|
InitializationKind SubKind =
|
|
Kind.getKind() == InitializationKind::IK_DirectList
|
|
? InitializationKind::CreateDirect(Kind.getLocation(),
|
|
InitList->getLBraceLoc(),
|
|
InitList->getRBraceLoc())
|
|
: Kind;
|
|
Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
|
|
/*TopLevelOfInitList*/ true,
|
|
TreatUnavailableAsInvalid);
|
|
|
|
// TryStringLiteralInitialization() (in InitializeFrom()) will fail if
|
|
// the element is not an appropriately-typed string literal, in which
|
|
// case we should proceed as in C++11 (below).
|
|
if (Sequence) {
|
|
Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// C++11 [dcl.init.list]p3:
|
|
// - If T is an aggregate, aggregate initialization is performed.
|
|
if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
|
|
(S.getLangOpts().CPlusPlus11 &&
|
|
S.isStdInitializerList(DestType, nullptr))) {
|
|
if (S.getLangOpts().CPlusPlus11) {
|
|
// - Otherwise, if the initializer list has no elements and T is a
|
|
// class type with a default constructor, the object is
|
|
// value-initialized.
|
|
if (InitList->getNumInits() == 0) {
|
|
CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
|
|
if (S.LookupDefaultConstructor(RD)) {
|
|
TryValueInitialization(S, Entity, Kind, Sequence, InitList);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// - Otherwise, if T is a specialization of std::initializer_list<E>,
|
|
// an initializer_list object constructed [...]
|
|
if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
|
|
TreatUnavailableAsInvalid))
|
|
return;
|
|
|
|
// - Otherwise, if T is a class type, constructors are considered.
|
|
Expr *InitListAsExpr = InitList;
|
|
TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
|
|
DestType, Sequence, /*InitListSyntax*/true);
|
|
} else
|
|
Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
|
|
return;
|
|
}
|
|
|
|
if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
|
|
InitList->getNumInits() == 1) {
|
|
Expr *E = InitList->getInit(0);
|
|
|
|
// - Otherwise, if T is an enumeration with a fixed underlying type,
|
|
// the initializer-list has a single element v, and the initialization
|
|
// is direct-list-initialization, the object is initialized with the
|
|
// value T(v); if a narrowing conversion is required to convert v to
|
|
// the underlying type of T, the program is ill-formed.
|
|
auto *ET = DestType->getAs<EnumType>();
|
|
if (S.getLangOpts().CPlusPlus17 &&
|
|
Kind.getKind() == InitializationKind::IK_DirectList &&
|
|
ET && ET->getDecl()->isFixed() &&
|
|
!S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
|
|
(E->getType()->isIntegralOrEnumerationType() ||
|
|
E->getType()->isFloatingType())) {
|
|
// There are two ways that T(v) can work when T is an enumeration type.
|
|
// If there is either an implicit conversion sequence from v to T or
|
|
// a conversion function that can convert from v to T, then we use that.
|
|
// Otherwise, if v is of integral, enumeration, or floating-point type,
|
|
// it is converted to the enumeration type via its underlying type.
|
|
// There is no overlap possible between these two cases (except when the
|
|
// source value is already of the destination type), and the first
|
|
// case is handled by the general case for single-element lists below.
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
if (!E->isRValue())
|
|
ICS.Standard.First = ICK_Lvalue_To_Rvalue;
|
|
// If E is of a floating-point type, then the conversion is ill-formed
|
|
// due to narrowing, but go through the motions in order to produce the
|
|
// right diagnostic.
|
|
ICS.Standard.Second = E->getType()->isFloatingType()
|
|
? ICK_Floating_Integral
|
|
: ICK_Integral_Conversion;
|
|
ICS.Standard.setFromType(E->getType());
|
|
ICS.Standard.setToType(0, E->getType());
|
|
ICS.Standard.setToType(1, DestType);
|
|
ICS.Standard.setToType(2, DestType);
|
|
Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
|
|
/*TopLevelOfInitList*/true);
|
|
Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, if the initializer list has a single element of type E
|
|
// [...references are handled above...], the object or reference is
|
|
// initialized from that element (by copy-initialization for
|
|
// copy-list-initialization, or by direct-initialization for
|
|
// direct-list-initialization); if a narrowing conversion is required
|
|
// to convert the element to T, the program is ill-formed.
|
|
//
|
|
// Per core-24034, this is direct-initialization if we were performing
|
|
// direct-list-initialization and copy-initialization otherwise.
|
|
// We can't use InitListChecker for this, because it always performs
|
|
// copy-initialization. This only matters if we might use an 'explicit'
|
|
// conversion operator, or for the special case conversion of nullptr_t to
|
|
// bool, so we only need to handle those cases.
|
|
//
|
|
// FIXME: Why not do this in all cases?
|
|
Expr *Init = InitList->getInit(0);
|
|
if (Init->getType()->isRecordType() ||
|
|
(Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
|
|
InitializationKind SubKind =
|
|
Kind.getKind() == InitializationKind::IK_DirectList
|
|
? InitializationKind::CreateDirect(Kind.getLocation(),
|
|
InitList->getLBraceLoc(),
|
|
InitList->getRBraceLoc())
|
|
: Kind;
|
|
Expr *SubInit[1] = { Init };
|
|
Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
|
|
/*TopLevelOfInitList*/true,
|
|
TreatUnavailableAsInvalid);
|
|
if (Sequence)
|
|
Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
|
|
return;
|
|
}
|
|
}
|
|
|
|
InitListChecker CheckInitList(S, Entity, InitList,
|
|
DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
|
|
if (CheckInitList.HadError()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
|
|
return;
|
|
}
|
|
|
|
// Add the list initialization step with the built init list.
|
|
Sequence.AddListInitializationStep(DestType);
|
|
}
|
|
|
|
/// Try a reference initialization that involves calling a conversion
|
|
/// function.
|
|
static OverloadingResult TryRefInitWithConversionFunction(
|
|
Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
|
|
Expr *Initializer, bool AllowRValues, bool IsLValueRef,
|
|
InitializationSequence &Sequence) {
|
|
QualType DestType = Entity.getType();
|
|
QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
|
|
QualType T1 = cv1T1.getUnqualifiedType();
|
|
QualType cv2T2 = Initializer->getType();
|
|
QualType T2 = cv2T2.getUnqualifiedType();
|
|
|
|
assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&
|
|
"Must have incompatible references when binding via conversion");
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
|
|
// Determine whether we are allowed to call explicit conversion operators.
|
|
// Note that none of [over.match.copy], [over.match.conv], nor
|
|
// [over.match.ref] permit an explicit constructor to be chosen when
|
|
// initializing a reference, not even for direct-initialization.
|
|
bool AllowExplicitCtors = false;
|
|
bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
|
|
|
|
const RecordType *T1RecordType = nullptr;
|
|
if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
|
|
S.isCompleteType(Kind.getLocation(), T1)) {
|
|
// The type we're converting to is a class type. Enumerate its constructors
|
|
// to see if there is a suitable conversion.
|
|
CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
|
|
|
|
for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
|
|
auto Info = getConstructorInfo(D);
|
|
if (!Info.Constructor)
|
|
continue;
|
|
|
|
if (!Info.Constructor->isInvalidDecl() &&
|
|
Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
|
|
if (Info.ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(
|
|
Info.ConstructorTmpl, Info.FoundDecl,
|
|
/*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
|
|
/*SuppressUserConversions=*/true,
|
|
/*PartialOverloading*/ false, AllowExplicitCtors);
|
|
else
|
|
S.AddOverloadCandidate(
|
|
Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
|
|
/*SuppressUserConversions=*/true,
|
|
/*PartialOverloading*/ false, AllowExplicitCtors);
|
|
}
|
|
}
|
|
}
|
|
if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
|
|
return OR_No_Viable_Function;
|
|
|
|
const RecordType *T2RecordType = nullptr;
|
|
if ((T2RecordType = T2->getAs<RecordType>()) &&
|
|
S.isCompleteType(Kind.getLocation(), T2)) {
|
|
// The type we're converting from is a class type, enumerate its conversion
|
|
// functions.
|
|
CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
|
|
|
|
const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
// If the conversion function doesn't return a reference type,
|
|
// it can't be considered for this conversion unless we're allowed to
|
|
// consider rvalues.
|
|
// FIXME: Do we need to make sure that we only consider conversion
|
|
// candidates with reference-compatible results? That might be needed to
|
|
// break recursion.
|
|
if ((AllowRValues ||
|
|
Conv->getConversionType()->isLValueReferenceType())) {
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(
|
|
ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
|
|
CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
|
|
else
|
|
S.AddConversionCandidate(
|
|
Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
|
|
/*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
|
|
}
|
|
}
|
|
}
|
|
if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
|
|
return OR_No_Viable_Function;
|
|
|
|
SourceLocation DeclLoc = Initializer->getBeginLoc();
|
|
|
|
// Perform overload resolution. If it fails, return the failed result.
|
|
OverloadCandidateSet::iterator Best;
|
|
if (OverloadingResult Result
|
|
= CandidateSet.BestViableFunction(S, DeclLoc, Best))
|
|
return Result;
|
|
|
|
FunctionDecl *Function = Best->Function;
|
|
// This is the overload that will be used for this initialization step if we
|
|
// use this initialization. Mark it as referenced.
|
|
Function->setReferenced();
|
|
|
|
// Compute the returned type and value kind of the conversion.
|
|
QualType cv3T3;
|
|
if (isa<CXXConversionDecl>(Function))
|
|
cv3T3 = Function->getReturnType();
|
|
else
|
|
cv3T3 = T1;
|
|
|
|
ExprValueKind VK = VK_RValue;
|
|
if (cv3T3->isLValueReferenceType())
|
|
VK = VK_LValue;
|
|
else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
|
|
VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
|
|
cv3T3 = cv3T3.getNonLValueExprType(S.Context);
|
|
|
|
// Add the user-defined conversion step.
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
|
|
HadMultipleCandidates);
|
|
|
|
// Determine whether we'll need to perform derived-to-base adjustments or
|
|
// other conversions.
|
|
Sema::ReferenceConversions RefConv;
|
|
Sema::ReferenceCompareResult NewRefRelationship =
|
|
S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
|
|
|
|
// Add the final conversion sequence, if necessary.
|
|
if (NewRefRelationship == Sema::Ref_Incompatible) {
|
|
assert(!isa<CXXConstructorDecl>(Function) &&
|
|
"should not have conversion after constructor");
|
|
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard = Best->FinalConversion;
|
|
Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
|
|
|
|
// Every implicit conversion results in a prvalue, except for a glvalue
|
|
// derived-to-base conversion, which we handle below.
|
|
cv3T3 = ICS.Standard.getToType(2);
|
|
VK = VK_RValue;
|
|
}
|
|
|
|
// If the converted initializer is a prvalue, its type T4 is adjusted to
|
|
// type "cv1 T4" and the temporary materialization conversion is applied.
|
|
//
|
|
// We adjust the cv-qualifications to match the reference regardless of
|
|
// whether we have a prvalue so that the AST records the change. In this
|
|
// case, T4 is "cv3 T3".
|
|
QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
|
|
if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
|
|
Sequence.AddQualificationConversionStep(cv1T4, VK);
|
|
Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
|
|
VK = IsLValueRef ? VK_LValue : VK_XValue;
|
|
|
|
if (RefConv & Sema::ReferenceConversions::DerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
|
|
else if (RefConv & Sema::ReferenceConversions::ObjC)
|
|
Sequence.AddObjCObjectConversionStep(cv1T1);
|
|
else if (RefConv & Sema::ReferenceConversions::Function)
|
|
Sequence.AddFunctionReferenceConversionStep(cv1T1);
|
|
else if (RefConv & Sema::ReferenceConversions::Qualification) {
|
|
if (!S.Context.hasSameType(cv1T4, cv1T1))
|
|
Sequence.AddQualificationConversionStep(cv1T1, VK);
|
|
}
|
|
|
|
return OR_Success;
|
|
}
|
|
|
|
static void CheckCXX98CompatAccessibleCopy(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
Expr *CurInitExpr);
|
|
|
|
/// Attempt reference initialization (C++0x [dcl.init.ref])
|
|
static void TryReferenceInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence) {
|
|
QualType DestType = Entity.getType();
|
|
QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
|
|
Qualifiers T1Quals;
|
|
QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
|
|
QualType cv2T2 = S.getCompletedType(Initializer);
|
|
Qualifiers T2Quals;
|
|
QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
|
|
|
|
// If the initializer is the address of an overloaded function, try
|
|
// to resolve the overloaded function. If all goes well, T2 is the
|
|
// type of the resulting function.
|
|
if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
|
|
T1, Sequence))
|
|
return;
|
|
|
|
// Delegate everything else to a subfunction.
|
|
TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
|
|
T1Quals, cv2T2, T2, T2Quals, Sequence);
|
|
}
|
|
|
|
/// Determine whether an expression is a non-referenceable glvalue (one to
|
|
/// which a reference can never bind). Attempting to bind a reference to
|
|
/// such a glvalue will always create a temporary.
|
|
static bool isNonReferenceableGLValue(Expr *E) {
|
|
return E->refersToBitField() || E->refersToVectorElement() ||
|
|
E->refersToMatrixElement();
|
|
}
|
|
|
|
/// Reference initialization without resolving overloaded functions.
|
|
///
|
|
/// We also can get here in C if we call a builtin which is declared as
|
|
/// a function with a parameter of reference type (such as __builtin_va_end()).
|
|
static void TryReferenceInitializationCore(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
QualType cv1T1, QualType T1,
|
|
Qualifiers T1Quals,
|
|
QualType cv2T2, QualType T2,
|
|
Qualifiers T2Quals,
|
|
InitializationSequence &Sequence) {
|
|
QualType DestType = Entity.getType();
|
|
SourceLocation DeclLoc = Initializer->getBeginLoc();
|
|
|
|
// Compute some basic properties of the types and the initializer.
|
|
bool isLValueRef = DestType->isLValueReferenceType();
|
|
bool isRValueRef = !isLValueRef;
|
|
Expr::Classification InitCategory = Initializer->Classify(S.Context);
|
|
|
|
Sema::ReferenceConversions RefConv;
|
|
Sema::ReferenceCompareResult RefRelationship =
|
|
S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
|
|
|
|
// C++0x [dcl.init.ref]p5:
|
|
// A reference to type "cv1 T1" is initialized by an expression of type
|
|
// "cv2 T2" as follows:
|
|
//
|
|
// - If the reference is an lvalue reference and the initializer
|
|
// expression
|
|
// Note the analogous bullet points for rvalue refs to functions. Because
|
|
// there are no function rvalues in C++, rvalue refs to functions are treated
|
|
// like lvalue refs.
|
|
OverloadingResult ConvOvlResult = OR_Success;
|
|
bool T1Function = T1->isFunctionType();
|
|
if (isLValueRef || T1Function) {
|
|
if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
|
|
(RefRelationship == Sema::Ref_Compatible ||
|
|
(Kind.isCStyleOrFunctionalCast() &&
|
|
RefRelationship == Sema::Ref_Related))) {
|
|
// - is an lvalue (but is not a bit-field), and "cv1 T1" is
|
|
// reference-compatible with "cv2 T2," or
|
|
if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
|
|
Sema::ReferenceConversions::ObjC)) {
|
|
// If we're converting the pointee, add any qualifiers first;
|
|
// these qualifiers must all be top-level, so just convert to "cv1 T2".
|
|
if (RefConv & (Sema::ReferenceConversions::Qualification))
|
|
Sequence.AddQualificationConversionStep(
|
|
S.Context.getQualifiedType(T2, T1Quals),
|
|
Initializer->getValueKind());
|
|
if (RefConv & Sema::ReferenceConversions::DerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
|
|
else
|
|
Sequence.AddObjCObjectConversionStep(cv1T1);
|
|
} else if (RefConv & Sema::ReferenceConversions::Qualification) {
|
|
// Perform a (possibly multi-level) qualification conversion.
|
|
Sequence.AddQualificationConversionStep(cv1T1,
|
|
Initializer->getValueKind());
|
|
} else if (RefConv & Sema::ReferenceConversions::Function) {
|
|
Sequence.AddFunctionReferenceConversionStep(cv1T1);
|
|
}
|
|
|
|
// We only create a temporary here when binding a reference to a
|
|
// bit-field or vector element. Those cases are't supposed to be
|
|
// handled by this bullet, but the outcome is the same either way.
|
|
Sequence.AddReferenceBindingStep(cv1T1, false);
|
|
return;
|
|
}
|
|
|
|
// - has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to an
|
|
// lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
|
|
// with "cv3 T3" (this conversion is selected by enumerating the
|
|
// applicable conversion functions (13.3.1.6) and choosing the best
|
|
// one through overload resolution (13.3)),
|
|
// If we have an rvalue ref to function type here, the rhs must be
|
|
// an rvalue. DR1287 removed the "implicitly" here.
|
|
if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
|
|
(isLValueRef || InitCategory.isRValue())) {
|
|
if (S.getLangOpts().CPlusPlus) {
|
|
// Try conversion functions only for C++.
|
|
ConvOvlResult = TryRefInitWithConversionFunction(
|
|
S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
|
|
/*IsLValueRef*/ isLValueRef, Sequence);
|
|
if (ConvOvlResult == OR_Success)
|
|
return;
|
|
if (ConvOvlResult != OR_No_Viable_Function)
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
} else {
|
|
ConvOvlResult = OR_No_Viable_Function;
|
|
}
|
|
}
|
|
}
|
|
|
|
// - Otherwise, the reference shall be an lvalue reference to a
|
|
// non-volatile const type (i.e., cv1 shall be const), or the reference
|
|
// shall be an rvalue reference.
|
|
// For address spaces, we interpret this to mean that an addr space
|
|
// of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
|
|
if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
|
|
T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
|
|
if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
else if (!InitCategory.isLValue())
|
|
Sequence.SetFailed(
|
|
T1Quals.isAddressSpaceSupersetOf(T2Quals)
|
|
? InitializationSequence::
|
|
FK_NonConstLValueReferenceBindingToTemporary
|
|
: InitializationSequence::FK_ReferenceInitDropsQualifiers);
|
|
else {
|
|
InitializationSequence::FailureKind FK;
|
|
switch (RefRelationship) {
|
|
case Sema::Ref_Compatible:
|
|
if (Initializer->refersToBitField())
|
|
FK = InitializationSequence::
|
|
FK_NonConstLValueReferenceBindingToBitfield;
|
|
else if (Initializer->refersToVectorElement())
|
|
FK = InitializationSequence::
|
|
FK_NonConstLValueReferenceBindingToVectorElement;
|
|
else if (Initializer->refersToMatrixElement())
|
|
FK = InitializationSequence::
|
|
FK_NonConstLValueReferenceBindingToMatrixElement;
|
|
else
|
|
llvm_unreachable("unexpected kind of compatible initializer");
|
|
break;
|
|
case Sema::Ref_Related:
|
|
FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
|
|
break;
|
|
case Sema::Ref_Incompatible:
|
|
FK = InitializationSequence::
|
|
FK_NonConstLValueReferenceBindingToUnrelated;
|
|
break;
|
|
}
|
|
Sequence.SetFailed(FK);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// - If the initializer expression
|
|
// - is an
|
|
// [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
|
|
// [1z] rvalue (but not a bit-field) or
|
|
// function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
|
|
//
|
|
// Note: functions are handled above and below rather than here...
|
|
if (!T1Function &&
|
|
(RefRelationship == Sema::Ref_Compatible ||
|
|
(Kind.isCStyleOrFunctionalCast() &&
|
|
RefRelationship == Sema::Ref_Related)) &&
|
|
((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
|
|
(InitCategory.isPRValue() &&
|
|
(S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
|
|
T2->isArrayType())))) {
|
|
ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
|
|
if (InitCategory.isPRValue() && T2->isRecordType()) {
|
|
// The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
|
|
// compiler the freedom to perform a copy here or bind to the
|
|
// object, while C++0x requires that we bind directly to the
|
|
// object. Hence, we always bind to the object without making an
|
|
// extra copy. However, in C++03 requires that we check for the
|
|
// presence of a suitable copy constructor:
|
|
//
|
|
// The constructor that would be used to make the copy shall
|
|
// be callable whether or not the copy is actually done.
|
|
if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
|
|
Sequence.AddExtraneousCopyToTemporary(cv2T2);
|
|
else if (S.getLangOpts().CPlusPlus11)
|
|
CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
|
|
}
|
|
|
|
// C++1z [dcl.init.ref]/5.2.1.2:
|
|
// If the converted initializer is a prvalue, its type T4 is adjusted
|
|
// to type "cv1 T4" and the temporary materialization conversion is
|
|
// applied.
|
|
// Postpone address space conversions to after the temporary materialization
|
|
// conversion to allow creating temporaries in the alloca address space.
|
|
auto T1QualsIgnoreAS = T1Quals;
|
|
auto T2QualsIgnoreAS = T2Quals;
|
|
if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
|
|
T1QualsIgnoreAS.removeAddressSpace();
|
|
T2QualsIgnoreAS.removeAddressSpace();
|
|
}
|
|
QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
|
|
if (T1QualsIgnoreAS != T2QualsIgnoreAS)
|
|
Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
|
|
Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
|
|
ValueKind = isLValueRef ? VK_LValue : VK_XValue;
|
|
// Add addr space conversion if required.
|
|
if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
|
|
auto T4Quals = cv1T4.getQualifiers();
|
|
T4Quals.addAddressSpace(T1Quals.getAddressSpace());
|
|
QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
|
|
Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
|
|
cv1T4 = cv1T4WithAS;
|
|
}
|
|
|
|
// In any case, the reference is bound to the resulting glvalue (or to
|
|
// an appropriate base class subobject).
|
|
if (RefConv & Sema::ReferenceConversions::DerivedToBase)
|
|
Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
|
|
else if (RefConv & Sema::ReferenceConversions::ObjC)
|
|
Sequence.AddObjCObjectConversionStep(cv1T1);
|
|
else if (RefConv & Sema::ReferenceConversions::Qualification) {
|
|
if (!S.Context.hasSameType(cv1T4, cv1T1))
|
|
Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// - has a class type (i.e., T2 is a class type), where T1 is not
|
|
// reference-related to T2, and can be implicitly converted to an
|
|
// xvalue, class prvalue, or function lvalue of type "cv3 T3",
|
|
// where "cv1 T1" is reference-compatible with "cv3 T3",
|
|
//
|
|
// DR1287 removes the "implicitly" here.
|
|
if (T2->isRecordType()) {
|
|
if (RefRelationship == Sema::Ref_Incompatible) {
|
|
ConvOvlResult = TryRefInitWithConversionFunction(
|
|
S, Entity, Kind, Initializer, /*AllowRValues*/ true,
|
|
/*IsLValueRef*/ isLValueRef, Sequence);
|
|
if (ConvOvlResult)
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
|
|
return;
|
|
}
|
|
|
|
if (RefRelationship == Sema::Ref_Compatible &&
|
|
isRValueRef && InitCategory.isLValue()) {
|
|
Sequence.SetFailed(
|
|
InitializationSequence::FK_RValueReferenceBindingToLValue);
|
|
return;
|
|
}
|
|
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, a temporary of type "cv1 T1" is created and initialized
|
|
// from the initializer expression using the rules for a non-reference
|
|
// copy-initialization (8.5). The reference is then bound to the
|
|
// temporary. [...]
|
|
|
|
// Ignore address space of reference type at this point and perform address
|
|
// space conversion after the reference binding step.
|
|
QualType cv1T1IgnoreAS =
|
|
T1Quals.hasAddressSpace()
|
|
? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
|
|
: cv1T1;
|
|
|
|
InitializedEntity TempEntity =
|
|
InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
|
|
|
|
// FIXME: Why do we use an implicit conversion here rather than trying
|
|
// copy-initialization?
|
|
ImplicitConversionSequence ICS
|
|
= S.TryImplicitConversion(Initializer, TempEntity.getType(),
|
|
/*SuppressUserConversions=*/false,
|
|
Sema::AllowedExplicit::None,
|
|
/*FIXME:InOverloadResolution=*/false,
|
|
/*CStyle=*/Kind.isCStyleOrFunctionalCast(),
|
|
/*AllowObjCWritebackConversion=*/false);
|
|
|
|
if (ICS.isBad()) {
|
|
// FIXME: Use the conversion function set stored in ICS to turn
|
|
// this into an overloading ambiguity diagnostic. However, we need
|
|
// to keep that set as an OverloadCandidateSet rather than as some
|
|
// other kind of set.
|
|
if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_ReferenceInitOverloadFailed,
|
|
ConvOvlResult);
|
|
else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
|
|
Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
|
|
return;
|
|
} else {
|
|
Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
|
|
}
|
|
|
|
// [...] If T1 is reference-related to T2, cv1 must be the
|
|
// same cv-qualification as, or greater cv-qualification
|
|
// than, cv2; otherwise, the program is ill-formed.
|
|
unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
|
|
unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
|
|
if ((RefRelationship == Sema::Ref_Related &&
|
|
(T1CVRQuals | T2CVRQuals) != T1CVRQuals) ||
|
|
!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
|
|
Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
|
|
return;
|
|
}
|
|
|
|
// [...] If T1 is reference-related to T2 and the reference is an rvalue
|
|
// reference, the initializer expression shall not be an lvalue.
|
|
if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
|
|
InitCategory.isLValue()) {
|
|
Sequence.SetFailed(
|
|
InitializationSequence::FK_RValueReferenceBindingToLValue);
|
|
return;
|
|
}
|
|
|
|
Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
|
|
|
|
if (T1Quals.hasAddressSpace()) {
|
|
if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
|
|
LangAS::Default)) {
|
|
Sequence.SetFailed(
|
|
InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
|
|
return;
|
|
}
|
|
Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
|
|
: VK_XValue);
|
|
}
|
|
}
|
|
|
|
/// Attempt character array initialization from a string literal
|
|
/// (C++ [dcl.init.string], C99 6.7.8).
|
|
static void TryStringLiteralInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence) {
|
|
Sequence.AddStringInitStep(Entity.getType());
|
|
}
|
|
|
|
/// Attempt value initialization (C++ [dcl.init]p7).
|
|
static void TryValueInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitializationSequence &Sequence,
|
|
InitListExpr *InitList) {
|
|
assert((!InitList || InitList->getNumInits() == 0) &&
|
|
"Shouldn't use value-init for non-empty init lists");
|
|
|
|
// C++98 [dcl.init]p5, C++11 [dcl.init]p7:
|
|
//
|
|
// To value-initialize an object of type T means:
|
|
QualType T = Entity.getType();
|
|
|
|
// -- if T is an array type, then each element is value-initialized;
|
|
T = S.Context.getBaseElementType(T);
|
|
|
|
if (const RecordType *RT = T->getAs<RecordType>()) {
|
|
if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
|
|
bool NeedZeroInitialization = true;
|
|
// C++98:
|
|
// -- if T is a class type (clause 9) with a user-declared constructor
|
|
// (12.1), then the default constructor for T is called (and the
|
|
// initialization is ill-formed if T has no accessible default
|
|
// constructor);
|
|
// C++11:
|
|
// -- if T is a class type (clause 9) with either no default constructor
|
|
// (12.1 [class.ctor]) or a default constructor that is user-provided
|
|
// or deleted, then the object is default-initialized;
|
|
//
|
|
// Note that the C++11 rule is the same as the C++98 rule if there are no
|
|
// defaulted or deleted constructors, so we just use it unconditionally.
|
|
CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
|
|
if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
|
|
NeedZeroInitialization = false;
|
|
|
|
// -- if T is a (possibly cv-qualified) non-union class type without a
|
|
// user-provided or deleted default constructor, then the object is
|
|
// zero-initialized and, if T has a non-trivial default constructor,
|
|
// default-initialized;
|
|
// The 'non-union' here was removed by DR1502. The 'non-trivial default
|
|
// constructor' part was removed by DR1507.
|
|
if (NeedZeroInitialization)
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
|
|
// C++03:
|
|
// -- if T is a non-union class type without a user-declared constructor,
|
|
// then every non-static data member and base class component of T is
|
|
// value-initialized;
|
|
// [...] A program that calls for [...] value-initialization of an
|
|
// entity of reference type is ill-formed.
|
|
//
|
|
// C++11 doesn't need this handling, because value-initialization does not
|
|
// occur recursively there, and the implicit default constructor is
|
|
// defined as deleted in the problematic cases.
|
|
if (!S.getLangOpts().CPlusPlus11 &&
|
|
ClassDecl->hasUninitializedReferenceMember()) {
|
|
Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
|
|
return;
|
|
}
|
|
|
|
// If this is list-value-initialization, pass the empty init list on when
|
|
// building the constructor call. This affects the semantics of a few
|
|
// things (such as whether an explicit default constructor can be called).
|
|
Expr *InitListAsExpr = InitList;
|
|
MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
|
|
bool InitListSyntax = InitList;
|
|
|
|
// FIXME: Instead of creating a CXXConstructExpr of array type here,
|
|
// wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
|
|
return TryConstructorInitialization(
|
|
S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
|
|
}
|
|
}
|
|
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
}
|
|
|
|
/// Attempt default initialization (C++ [dcl.init]p6).
|
|
static void TryDefaultInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
InitializationSequence &Sequence) {
|
|
assert(Kind.getKind() == InitializationKind::IK_Default);
|
|
|
|
// C++ [dcl.init]p6:
|
|
// To default-initialize an object of type T means:
|
|
// - if T is an array type, each element is default-initialized;
|
|
QualType DestType = S.Context.getBaseElementType(Entity.getType());
|
|
|
|
// - if T is a (possibly cv-qualified) class type (Clause 9), the default
|
|
// constructor for T is called (and the initialization is ill-formed if
|
|
// T has no accessible default constructor);
|
|
if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
|
|
TryConstructorInitialization(S, Entity, Kind, None, DestType,
|
|
Entity.getType(), Sequence);
|
|
return;
|
|
}
|
|
|
|
// - otherwise, no initialization is performed.
|
|
|
|
// If a program calls for the default initialization of an object of
|
|
// a const-qualified type T, T shall be a class type with a user-provided
|
|
// default constructor.
|
|
if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
|
|
if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
|
|
Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
|
|
return;
|
|
}
|
|
|
|
// If the destination type has a lifetime property, zero-initialize it.
|
|
if (DestType.getQualifiers().hasObjCLifetime()) {
|
|
Sequence.AddZeroInitializationStep(Entity.getType());
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
|
|
/// which enumerates all conversion functions and performs overload resolution
|
|
/// to select the best.
|
|
static void TryUserDefinedConversion(Sema &S,
|
|
QualType DestType,
|
|
const InitializationKind &Kind,
|
|
Expr *Initializer,
|
|
InitializationSequence &Sequence,
|
|
bool TopLevelOfInitList) {
|
|
assert(!DestType->isReferenceType() && "References are handled elsewhere");
|
|
QualType SourceType = Initializer->getType();
|
|
assert((DestType->isRecordType() || SourceType->isRecordType()) &&
|
|
"Must have a class type to perform a user-defined conversion");
|
|
|
|
// Build the candidate set directly in the initialization sequence
|
|
// structure, so that it will persist if we fail.
|
|
OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
|
|
CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
|
|
CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
|
|
|
|
// Determine whether we are allowed to call explicit constructors or
|
|
// explicit conversion operators.
|
|
bool AllowExplicit = Kind.AllowExplicit();
|
|
|
|
if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
|
|
// The type we're converting to is a class type. Enumerate its constructors
|
|
// to see if there is a suitable conversion.
|
|
CXXRecordDecl *DestRecordDecl
|
|
= cast<CXXRecordDecl>(DestRecordType->getDecl());
|
|
|
|
// Try to complete the type we're converting to.
|
|
if (S.isCompleteType(Kind.getLocation(), DestType)) {
|
|
for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
|
|
auto Info = getConstructorInfo(D);
|
|
if (!Info.Constructor)
|
|
continue;
|
|
|
|
if (!Info.Constructor->isInvalidDecl() &&
|
|
Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
|
|
if (Info.ConstructorTmpl)
|
|
S.AddTemplateOverloadCandidate(
|
|
Info.ConstructorTmpl, Info.FoundDecl,
|
|
/*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
|
|
/*SuppressUserConversions=*/true,
|
|
/*PartialOverloading*/ false, AllowExplicit);
|
|
else
|
|
S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
|
|
Initializer, CandidateSet,
|
|
/*SuppressUserConversions=*/true,
|
|
/*PartialOverloading*/ false, AllowExplicit);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
SourceLocation DeclLoc = Initializer->getBeginLoc();
|
|
|
|
if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
|
|
// The type we're converting from is a class type, enumerate its conversion
|
|
// functions.
|
|
|
|
// We can only enumerate the conversion functions for a complete type; if
|
|
// the type isn't complete, simply skip this step.
|
|
if (S.isCompleteType(DeclLoc, SourceType)) {
|
|
CXXRecordDecl *SourceRecordDecl
|
|
= cast<CXXRecordDecl>(SourceRecordType->getDecl());
|
|
|
|
const auto &Conversions =
|
|
SourceRecordDecl->getVisibleConversionFunctions();
|
|
for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
|
|
NamedDecl *D = *I;
|
|
CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (isa<UsingShadowDecl>(D))
|
|
D = cast<UsingShadowDecl>(D)->getTargetDecl();
|
|
|
|
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
|
|
CXXConversionDecl *Conv;
|
|
if (ConvTemplate)
|
|
Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
|
|
else
|
|
Conv = cast<CXXConversionDecl>(D);
|
|
|
|
if (ConvTemplate)
|
|
S.AddTemplateConversionCandidate(
|
|
ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
|
|
CandidateSet, AllowExplicit, AllowExplicit);
|
|
else
|
|
S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
|
|
DestType, CandidateSet, AllowExplicit,
|
|
AllowExplicit);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform overload resolution. If it fails, return the failed result.
|
|
OverloadCandidateSet::iterator Best;
|
|
if (OverloadingResult Result
|
|
= CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
|
|
Sequence.SetOverloadFailure(
|
|
InitializationSequence::FK_UserConversionOverloadFailed, Result);
|
|
|
|
// [class.copy.elision]p3:
|
|
// In some copy-initialization contexts, a two-stage overload resolution
|
|
// is performed.
|
|
// If the first overload resolution selects a deleted function, we also
|
|
// need the initialization sequence to decide whether to perform the second
|
|
// overload resolution.
|
|
if (!(Result == OR_Deleted &&
|
|
Kind.getKind() == InitializationKind::IK_Copy))
|
|
return;
|
|
}
|
|
|
|
FunctionDecl *Function = Best->Function;
|
|
Function->setReferenced();
|
|
bool HadMultipleCandidates = (CandidateSet.size() > 1);
|
|
|
|
if (isa<CXXConstructorDecl>(Function)) {
|
|
// Add the user-defined conversion step. Any cv-qualification conversion is
|
|
// subsumed by the initialization. Per DR5, the created temporary is of the
|
|
// cv-unqualified type of the destination.
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl,
|
|
DestType.getUnqualifiedType(),
|
|
HadMultipleCandidates);
|
|
|
|
// C++14 and before:
|
|
// - if the function is a constructor, the call initializes a temporary
|
|
// of the cv-unqualified version of the destination type. The [...]
|
|
// temporary [...] is then used to direct-initialize, according to the
|
|
// rules above, the object that is the destination of the
|
|
// copy-initialization.
|
|
// Note that this just performs a simple object copy from the temporary.
|
|
//
|
|
// C++17:
|
|
// - if the function is a constructor, the call is a prvalue of the
|
|
// cv-unqualified version of the destination type whose return object
|
|
// is initialized by the constructor. The call is used to
|
|
// direct-initialize, according to the rules above, the object that
|
|
// is the destination of the copy-initialization.
|
|
// Therefore we need to do nothing further.
|
|
//
|
|
// FIXME: Mark this copy as extraneous.
|
|
if (!S.getLangOpts().CPlusPlus17)
|
|
Sequence.AddFinalCopy(DestType);
|
|
else if (DestType.hasQualifiers())
|
|
Sequence.AddQualificationConversionStep(DestType, VK_RValue);
|
|
return;
|
|
}
|
|
|
|
// Add the user-defined conversion step that calls the conversion function.
|
|
QualType ConvType = Function->getCallResultType();
|
|
Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
|
|
HadMultipleCandidates);
|
|
|
|
if (ConvType->getAs<RecordType>()) {
|
|
// The call is used to direct-initialize [...] the object that is the
|
|
// destination of the copy-initialization.
|
|
//
|
|
// In C++17, this does not call a constructor if we enter /17.6.1:
|
|
// - If the initializer expression is a prvalue and the cv-unqualified
|
|
// version of the source type is the same as the class of the
|
|
// destination [... do not make an extra copy]
|
|
//
|
|
// FIXME: Mark this copy as extraneous.
|
|
if (!S.getLangOpts().CPlusPlus17 ||
|
|
Function->getReturnType()->isReferenceType() ||
|
|
!S.Context.hasSameUnqualifiedType(ConvType, DestType))
|
|
Sequence.AddFinalCopy(DestType);
|
|
else if (!S.Context.hasSameType(ConvType, DestType))
|
|
Sequence.AddQualificationConversionStep(DestType, VK_RValue);
|
|
return;
|
|
}
|
|
|
|
// If the conversion following the call to the conversion function
|
|
// is interesting, add it as a separate step.
|
|
if (Best->FinalConversion.First || Best->FinalConversion.Second ||
|
|
Best->FinalConversion.Third) {
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard = Best->FinalConversion;
|
|
Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
|
|
}
|
|
}
|
|
|
|
/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
|
|
/// a function with a pointer return type contains a 'return false;' statement.
|
|
/// In C++11, 'false' is not a null pointer, so this breaks the build of any
|
|
/// code using that header.
|
|
///
|
|
/// Work around this by treating 'return false;' as zero-initializing the result
|
|
/// if it's used in a pointer-returning function in a system header.
|
|
static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const Expr *Init) {
|
|
return S.getLangOpts().CPlusPlus11 &&
|
|
Entity.getKind() == InitializedEntity::EK_Result &&
|
|
Entity.getType()->isPointerType() &&
|
|
isa<CXXBoolLiteralExpr>(Init) &&
|
|
!cast<CXXBoolLiteralExpr>(Init)->getValue() &&
|
|
S.getSourceManager().isInSystemHeader(Init->getExprLoc());
|
|
}
|
|
|
|
/// The non-zero enum values here are indexes into diagnostic alternatives.
|
|
enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
|
|
|
|
/// Determines whether this expression is an acceptable ICR source.
|
|
static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
|
|
bool isAddressOf, bool &isWeakAccess) {
|
|
// Skip parens.
|
|
e = e->IgnoreParens();
|
|
|
|
// Skip address-of nodes.
|
|
if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
|
|
if (op->getOpcode() == UO_AddrOf)
|
|
return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
|
|
isWeakAccess);
|
|
|
|
// Skip certain casts.
|
|
} else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
|
|
switch (ce->getCastKind()) {
|
|
case CK_Dependent:
|
|
case CK_BitCast:
|
|
case CK_LValueBitCast:
|
|
case CK_NoOp:
|
|
return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
|
|
|
|
case CK_ArrayToPointerDecay:
|
|
return IIK_nonscalar;
|
|
|
|
case CK_NullToPointer:
|
|
return IIK_okay;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If we have a declaration reference, it had better be a local variable.
|
|
} else if (isa<DeclRefExpr>(e)) {
|
|
// set isWeakAccess to true, to mean that there will be an implicit
|
|
// load which requires a cleanup.
|
|
if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
|
|
isWeakAccess = true;
|
|
|
|
if (!isAddressOf) return IIK_nonlocal;
|
|
|
|
VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
|
|
if (!var) return IIK_nonlocal;
|
|
|
|
return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
|
|
|
|
// If we have a conditional operator, check both sides.
|
|
} else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
|
|
if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
|
|
isWeakAccess))
|
|
return iik;
|
|
|
|
return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
|
|
|
|
// These are never scalar.
|
|
} else if (isa<ArraySubscriptExpr>(e)) {
|
|
return IIK_nonscalar;
|
|
|
|
// Otherwise, it needs to be a null pointer constant.
|
|
} else {
|
|
return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
|
|
? IIK_okay : IIK_nonlocal);
|
|
}
|
|
|
|
return IIK_nonlocal;
|
|
}
|
|
|
|
/// Check whether the given expression is a valid operand for an
|
|
/// indirect copy/restore.
|
|
static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
|
|
assert(src->isRValue());
|
|
bool isWeakAccess = false;
|
|
InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
|
|
// If isWeakAccess to true, there will be an implicit
|
|
// load which requires a cleanup.
|
|
if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
|
|
S.Cleanup.setExprNeedsCleanups(true);
|
|
|
|
if (iik == IIK_okay) return;
|
|
|
|
S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
|
|
<< ((unsigned) iik - 1) // shift index into diagnostic explanations
|
|
<< src->getSourceRange();
|
|
}
|
|
|
|
/// Determine whether we have compatible array types for the
|
|
/// purposes of GNU by-copy array initialization.
|
|
static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
|
|
const ArrayType *Source) {
|
|
// If the source and destination array types are equivalent, we're
|
|
// done.
|
|
if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
|
|
return true;
|
|
|
|
// Make sure that the element types are the same.
|
|
if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
|
|
return false;
|
|
|
|
// The only mismatch we allow is when the destination is an
|
|
// incomplete array type and the source is a constant array type.
|
|
return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
|
|
}
|
|
|
|
static bool tryObjCWritebackConversion(Sema &S,
|
|
InitializationSequence &Sequence,
|
|
const InitializedEntity &Entity,
|
|
Expr *Initializer) {
|
|
bool ArrayDecay = false;
|
|
QualType ArgType = Initializer->getType();
|
|
QualType ArgPointee;
|
|
if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
|
|
ArrayDecay = true;
|
|
ArgPointee = ArgArrayType->getElementType();
|
|
ArgType = S.Context.getPointerType(ArgPointee);
|
|
}
|
|
|
|
// Handle write-back conversion.
|
|
QualType ConvertedArgType;
|
|
if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
|
|
ConvertedArgType))
|
|
return false;
|
|
|
|
// We should copy unless we're passing to an argument explicitly
|
|
// marked 'out'.
|
|
bool ShouldCopy = true;
|
|
if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
|
|
ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
|
|
|
|
// Do we need an lvalue conversion?
|
|
if (ArrayDecay || Initializer->isGLValue()) {
|
|
ImplicitConversionSequence ICS;
|
|
ICS.setStandard();
|
|
ICS.Standard.setAsIdentityConversion();
|
|
|
|
QualType ResultType;
|
|
if (ArrayDecay) {
|
|
ICS.Standard.First = ICK_Array_To_Pointer;
|
|
ResultType = S.Context.getPointerType(ArgPointee);
|
|
} else {
|
|
ICS.Standard.First = ICK_Lvalue_To_Rvalue;
|
|
ResultType = Initializer->getType().getNonLValueExprType(S.Context);
|
|
}
|
|
|
|
Sequence.AddConversionSequenceStep(ICS, ResultType);
|
|
}
|
|
|
|
Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
|
|
return true;
|
|
}
|
|
|
|
static bool TryOCLSamplerInitialization(Sema &S,
|
|
InitializationSequence &Sequence,
|
|
QualType DestType,
|
|
Expr *Initializer) {
|
|
if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
|
|
(!Initializer->isIntegerConstantExpr(S.Context) &&
|
|
!Initializer->getType()->isSamplerT()))
|
|
return false;
|
|
|
|
Sequence.AddOCLSamplerInitStep(DestType);
|
|
return true;
|
|
}
|
|
|
|
static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
|
|
return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
|
|
(Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
|
|
}
|
|
|
|
static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
|
|
InitializationSequence &Sequence,
|
|
QualType DestType,
|
|
Expr *Initializer) {
|
|
if (!S.getLangOpts().OpenCL)
|
|
return false;
|
|
|
|
//
|
|
// OpenCL 1.2 spec, s6.12.10
|
|
//
|
|
// The event argument can also be used to associate the
|
|
// async_work_group_copy with a previous async copy allowing
|
|
// an event to be shared by multiple async copies; otherwise
|
|
// event should be zero.
|
|
//
|
|
if (DestType->isEventT() || DestType->isQueueT()) {
|
|
if (!IsZeroInitializer(Initializer, S))
|
|
return false;
|
|
|
|
Sequence.AddOCLZeroOpaqueTypeStep(DestType);
|
|
return true;
|
|
}
|
|
|
|
// We should allow zero initialization for all types defined in the
|
|
// cl_intel_device_side_avc_motion_estimation extension, except
|
|
// intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
|
|
if (S.getOpenCLOptions().isEnabled(
|
|
"cl_intel_device_side_avc_motion_estimation") &&
|
|
DestType->isOCLIntelSubgroupAVCType()) {
|
|
if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
|
|
DestType->isOCLIntelSubgroupAVCMceResultType())
|
|
return false;
|
|
if (!IsZeroInitializer(Initializer, S))
|
|
return false;
|
|
|
|
Sequence.AddOCLZeroOpaqueTypeStep(DestType);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
InitializationSequence::InitializationSequence(
|
|
Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
|
|
MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
|
|
: FailedOverloadResult(OR_Success),
|
|
FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
|
|
InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
|
|
TreatUnavailableAsInvalid);
|
|
}
|
|
|
|
/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
|
|
/// address of that function, this returns true. Otherwise, it returns false.
|
|
static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
|
|
auto *DRE = dyn_cast<DeclRefExpr>(E);
|
|
if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
|
|
return false;
|
|
|
|
return !S.checkAddressOfFunctionIsAvailable(
|
|
cast<FunctionDecl>(DRE->getDecl()));
|
|
}
|
|
|
|
/// Determine whether we can perform an elementwise array copy for this kind
|
|
/// of entity.
|
|
static bool canPerformArrayCopy(const InitializedEntity &Entity) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
// C++ [expr.prim.lambda]p24:
|
|
// For array members, the array elements are direct-initialized in
|
|
// increasing subscript order.
|
|
return true;
|
|
|
|
case InitializedEntity::EK_Variable:
|
|
// C++ [dcl.decomp]p1:
|
|
// [...] each element is copy-initialized or direct-initialized from the
|
|
// corresponding element of the assignment-expression [...]
|
|
return isa<DecompositionDecl>(Entity.getDecl());
|
|
|
|
case InitializedEntity::EK_Member:
|
|
// C++ [class.copy.ctor]p14:
|
|
// - if the member is an array, each element is direct-initialized with
|
|
// the corresponding subobject of x
|
|
return Entity.isImplicitMemberInitializer();
|
|
|
|
case InitializedEntity::EK_ArrayElement:
|
|
// All the above cases are intended to apply recursively, even though none
|
|
// of them actually say that.
|
|
if (auto *E = Entity.getParent())
|
|
return canPerformArrayCopy(*E);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void InitializationSequence::InitializeFrom(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
MultiExprArg Args,
|
|
bool TopLevelOfInitList,
|
|
bool TreatUnavailableAsInvalid) {
|
|
ASTContext &Context = S.Context;
|
|
|
|
// Eliminate non-overload placeholder types in the arguments. We
|
|
// need to do this before checking whether types are dependent
|
|
// because lowering a pseudo-object expression might well give us
|
|
// something of dependent type.
|
|
for (unsigned I = 0, E = Args.size(); I != E; ++I)
|
|
if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
|
|
// FIXME: should we be doing this here?
|
|
ExprResult result = S.CheckPlaceholderExpr(Args[I]);
|
|
if (result.isInvalid()) {
|
|
SetFailed(FK_PlaceholderType);
|
|
return;
|
|
}
|
|
Args[I] = result.get();
|
|
}
|
|
|
|
// C++0x [dcl.init]p16:
|
|
// The semantics of initializers are as follows. The destination type is
|
|
// the type of the object or reference being initialized and the source
|
|
// type is the type of the initializer expression. The source type is not
|
|
// defined when the initializer is a braced-init-list or when it is a
|
|
// parenthesized list of expressions.
|
|
QualType DestType = Entity.getType();
|
|
|
|
if (DestType->isDependentType() ||
|
|
Expr::hasAnyTypeDependentArguments(Args)) {
|
|
SequenceKind = DependentSequence;
|
|
return;
|
|
}
|
|
|
|
// Almost everything is a normal sequence.
|
|
setSequenceKind(NormalSequence);
|
|
|
|
QualType SourceType;
|
|
Expr *Initializer = nullptr;
|
|
if (Args.size() == 1) {
|
|
Initializer = Args[0];
|
|
if (S.getLangOpts().ObjC) {
|
|
if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
|
|
DestType, Initializer->getType(),
|
|
Initializer) ||
|
|
S.CheckConversionToObjCLiteral(DestType, Initializer))
|
|
Args[0] = Initializer;
|
|
}
|
|
if (!isa<InitListExpr>(Initializer))
|
|
SourceType = Initializer->getType();
|
|
}
|
|
|
|
// - If the initializer is a (non-parenthesized) braced-init-list, the
|
|
// object is list-initialized (8.5.4).
|
|
if (Kind.getKind() != InitializationKind::IK_Direct) {
|
|
if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
|
|
TryListInitialization(S, Entity, Kind, InitList, *this,
|
|
TreatUnavailableAsInvalid);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// - If the destination type is a reference type, see 8.5.3.
|
|
if (DestType->isReferenceType()) {
|
|
// C++0x [dcl.init.ref]p1:
|
|
// A variable declared to be a T& or T&&, that is, "reference to type T"
|
|
// (8.3.2), shall be initialized by an object, or function, of type T or
|
|
// by an object that can be converted into a T.
|
|
// (Therefore, multiple arguments are not permitted.)
|
|
if (Args.size() != 1)
|
|
SetFailed(FK_TooManyInitsForReference);
|
|
// C++17 [dcl.init.ref]p5:
|
|
// A reference [...] is initialized by an expression [...] as follows:
|
|
// If the initializer is not an expression, presumably we should reject,
|
|
// but the standard fails to actually say so.
|
|
else if (isa<InitListExpr>(Args[0]))
|
|
SetFailed(FK_ParenthesizedListInitForReference);
|
|
else
|
|
TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
|
|
return;
|
|
}
|
|
|
|
// - If the initializer is (), the object is value-initialized.
|
|
if (Kind.getKind() == InitializationKind::IK_Value ||
|
|
(Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
|
|
TryValueInitialization(S, Entity, Kind, *this);
|
|
return;
|
|
}
|
|
|
|
// Handle default initialization.
|
|
if (Kind.getKind() == InitializationKind::IK_Default) {
|
|
TryDefaultInitialization(S, Entity, Kind, *this);
|
|
return;
|
|
}
|
|
|
|
// - If the destination type is an array of characters, an array of
|
|
// char16_t, an array of char32_t, or an array of wchar_t, and the
|
|
// initializer is a string literal, see 8.5.2.
|
|
// - Otherwise, if the destination type is an array, the program is
|
|
// ill-formed.
|
|
if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
|
|
if (Initializer && isa<VariableArrayType>(DestAT)) {
|
|
SetFailed(FK_VariableLengthArrayHasInitializer);
|
|
return;
|
|
}
|
|
|
|
if (Initializer) {
|
|
switch (IsStringInit(Initializer, DestAT, Context)) {
|
|
case SIF_None:
|
|
TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
|
|
return;
|
|
case SIF_NarrowStringIntoWideChar:
|
|
SetFailed(FK_NarrowStringIntoWideCharArray);
|
|
return;
|
|
case SIF_WideStringIntoChar:
|
|
SetFailed(FK_WideStringIntoCharArray);
|
|
return;
|
|
case SIF_IncompatWideStringIntoWideChar:
|
|
SetFailed(FK_IncompatWideStringIntoWideChar);
|
|
return;
|
|
case SIF_PlainStringIntoUTF8Char:
|
|
SetFailed(FK_PlainStringIntoUTF8Char);
|
|
return;
|
|
case SIF_UTF8StringIntoPlainChar:
|
|
SetFailed(FK_UTF8StringIntoPlainChar);
|
|
return;
|
|
case SIF_Other:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Some kinds of initialization permit an array to be initialized from
|
|
// another array of the same type, and perform elementwise initialization.
|
|
if (Initializer && isa<ConstantArrayType>(DestAT) &&
|
|
S.Context.hasSameUnqualifiedType(Initializer->getType(),
|
|
Entity.getType()) &&
|
|
canPerformArrayCopy(Entity)) {
|
|
// If source is a prvalue, use it directly.
|
|
if (Initializer->getValueKind() == VK_RValue) {
|
|
AddArrayInitStep(DestType, /*IsGNUExtension*/false);
|
|
return;
|
|
}
|
|
|
|
// Emit element-at-a-time copy loop.
|
|
InitializedEntity Element =
|
|
InitializedEntity::InitializeElement(S.Context, 0, Entity);
|
|
QualType InitEltT =
|
|
Context.getAsArrayType(Initializer->getType())->getElementType();
|
|
OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
|
|
Initializer->getValueKind(),
|
|
Initializer->getObjectKind());
|
|
Expr *OVEAsExpr = &OVE;
|
|
InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
|
|
TreatUnavailableAsInvalid);
|
|
if (!Failed())
|
|
AddArrayInitLoopStep(Entity.getType(), InitEltT);
|
|
return;
|
|
}
|
|
|
|
// Note: as an GNU C extension, we allow initialization of an
|
|
// array from a compound literal that creates an array of the same
|
|
// type, so long as the initializer has no side effects.
|
|
if (!S.getLangOpts().CPlusPlus && Initializer &&
|
|
isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
|
|
Initializer->getType()->isArrayType()) {
|
|
const ArrayType *SourceAT
|
|
= Context.getAsArrayType(Initializer->getType());
|
|
if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
|
|
SetFailed(FK_ArrayTypeMismatch);
|
|
else if (Initializer->HasSideEffects(S.Context))
|
|
SetFailed(FK_NonConstantArrayInit);
|
|
else {
|
|
AddArrayInitStep(DestType, /*IsGNUExtension*/true);
|
|
}
|
|
}
|
|
// Note: as a GNU C++ extension, we allow list-initialization of a
|
|
// class member of array type from a parenthesized initializer list.
|
|
else if (S.getLangOpts().CPlusPlus &&
|
|
Entity.getKind() == InitializedEntity::EK_Member &&
|
|
Initializer && isa<InitListExpr>(Initializer)) {
|
|
TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
|
|
*this, TreatUnavailableAsInvalid);
|
|
AddParenthesizedArrayInitStep(DestType);
|
|
} else if (DestAT->getElementType()->isCharType())
|
|
SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
|
|
else if (IsWideCharCompatible(DestAT->getElementType(), Context))
|
|
SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
|
|
else
|
|
SetFailed(FK_ArrayNeedsInitList);
|
|
|
|
return;
|
|
}
|
|
|
|
// Determine whether we should consider writeback conversions for
|
|
// Objective-C ARC.
|
|
bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
|
|
Entity.isParameterKind();
|
|
|
|
if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
|
|
return;
|
|
|
|
// We're at the end of the line for C: it's either a write-back conversion
|
|
// or it's a C assignment. There's no need to check anything else.
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
// If allowed, check whether this is an Objective-C writeback conversion.
|
|
if (allowObjCWritebackConversion &&
|
|
tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
|
|
return;
|
|
}
|
|
|
|
if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
|
|
return;
|
|
|
|
// Handle initialization in C
|
|
AddCAssignmentStep(DestType);
|
|
MaybeProduceObjCObject(S, *this, Entity);
|
|
return;
|
|
}
|
|
|
|
assert(S.getLangOpts().CPlusPlus);
|
|
|
|
// - If the destination type is a (possibly cv-qualified) class type:
|
|
if (DestType->isRecordType()) {
|
|
// - If the initialization is direct-initialization, or if it is
|
|
// copy-initialization where the cv-unqualified version of the
|
|
// source type is the same class as, or a derived class of, the
|
|
// class of the destination, constructors are considered. [...]
|
|
if (Kind.getKind() == InitializationKind::IK_Direct ||
|
|
(Kind.getKind() == InitializationKind::IK_Copy &&
|
|
(Context.hasSameUnqualifiedType(SourceType, DestType) ||
|
|
S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
|
|
TryConstructorInitialization(S, Entity, Kind, Args,
|
|
DestType, DestType, *this);
|
|
// - Otherwise (i.e., for the remaining copy-initialization cases),
|
|
// user-defined conversion sequences that can convert from the source
|
|
// type to the destination type or (when a conversion function is
|
|
// used) to a derived class thereof are enumerated as described in
|
|
// 13.3.1.4, and the best one is chosen through overload resolution
|
|
// (13.3).
|
|
else
|
|
TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
|
|
TopLevelOfInitList);
|
|
return;
|
|
}
|
|
|
|
assert(Args.size() >= 1 && "Zero-argument case handled above");
|
|
|
|
// The remaining cases all need a source type.
|
|
if (Args.size() > 1) {
|
|
SetFailed(FK_TooManyInitsForScalar);
|
|
return;
|
|
} else if (isa<InitListExpr>(Args[0])) {
|
|
SetFailed(FK_ParenthesizedListInitForScalar);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, if the source type is a (possibly cv-qualified) class
|
|
// type, conversion functions are considered.
|
|
if (!SourceType.isNull() && SourceType->isRecordType()) {
|
|
// For a conversion to _Atomic(T) from either T or a class type derived
|
|
// from T, initialize the T object then convert to _Atomic type.
|
|
bool NeedAtomicConversion = false;
|
|
if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
|
|
if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
|
|
S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
|
|
Atomic->getValueType())) {
|
|
DestType = Atomic->getValueType();
|
|
NeedAtomicConversion = true;
|
|
}
|
|
}
|
|
|
|
TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
|
|
TopLevelOfInitList);
|
|
MaybeProduceObjCObject(S, *this, Entity);
|
|
if (!Failed() && NeedAtomicConversion)
|
|
AddAtomicConversionStep(Entity.getType());
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, if the initialization is direct-initialization, the source
|
|
// type is std::nullptr_t, and the destination type is bool, the initial
|
|
// value of the object being initialized is false.
|
|
if (!SourceType.isNull() && SourceType->isNullPtrType() &&
|
|
DestType->isBooleanType() &&
|
|
Kind.getKind() == InitializationKind::IK_Direct) {
|
|
AddConversionSequenceStep(
|
|
ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
|
|
Initializer->isGLValue()),
|
|
DestType);
|
|
return;
|
|
}
|
|
|
|
// - Otherwise, the initial value of the object being initialized is the
|
|
// (possibly converted) value of the initializer expression. Standard
|
|
// conversions (Clause 4) will be used, if necessary, to convert the
|
|
// initializer expression to the cv-unqualified version of the
|
|
// destination type; no user-defined conversions are considered.
|
|
|
|
ImplicitConversionSequence ICS
|
|
= S.TryImplicitConversion(Initializer, DestType,
|
|
/*SuppressUserConversions*/true,
|
|
Sema::AllowedExplicit::None,
|
|
/*InOverloadResolution*/ false,
|
|
/*CStyle=*/Kind.isCStyleOrFunctionalCast(),
|
|
allowObjCWritebackConversion);
|
|
|
|
if (ICS.isStandard() &&
|
|
ICS.Standard.Second == ICK_Writeback_Conversion) {
|
|
// Objective-C ARC writeback conversion.
|
|
|
|
// We should copy unless we're passing to an argument explicitly
|
|
// marked 'out'.
|
|
bool ShouldCopy = true;
|
|
if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
|
|
ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
|
|
|
|
// If there was an lvalue adjustment, add it as a separate conversion.
|
|
if (ICS.Standard.First == ICK_Array_To_Pointer ||
|
|
ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
|
|
ImplicitConversionSequence LvalueICS;
|
|
LvalueICS.setStandard();
|
|
LvalueICS.Standard.setAsIdentityConversion();
|
|
LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
|
|
LvalueICS.Standard.First = ICS.Standard.First;
|
|
AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
|
|
}
|
|
|
|
AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
|
|
} else if (ICS.isBad()) {
|
|
DeclAccessPair dap;
|
|
if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
|
|
AddZeroInitializationStep(Entity.getType());
|
|
} else if (Initializer->getType() == Context.OverloadTy &&
|
|
!S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
|
|
false, dap))
|
|
SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
|
|
else if (Initializer->getType()->isFunctionType() &&
|
|
isExprAnUnaddressableFunction(S, Initializer))
|
|
SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
|
|
else
|
|
SetFailed(InitializationSequence::FK_ConversionFailed);
|
|
} else {
|
|
AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
|
|
|
|
MaybeProduceObjCObject(S, *this, Entity);
|
|
}
|
|
}
|
|
|
|
InitializationSequence::~InitializationSequence() {
|
|
for (auto &S : Steps)
|
|
S.Destroy();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Perform initialization
|
|
//===----------------------------------------------------------------------===//
|
|
static Sema::AssignmentAction
|
|
getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
|
|
switch(Entity.getKind()) {
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_Delegating:
|
|
return Sema::AA_Initializing;
|
|
|
|
case InitializedEntity::EK_Parameter:
|
|
if (Entity.getDecl() &&
|
|
isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
|
|
return Sema::AA_Sending;
|
|
|
|
return Sema::AA_Passing;
|
|
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
if (Entity.getDecl() &&
|
|
isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
|
|
return Sema::AA_Sending;
|
|
|
|
return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
|
|
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
|
|
return Sema::AA_Returning;
|
|
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
// FIXME: Can we tell apart casting vs. converting?
|
|
return Sema::AA_Casting;
|
|
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
// This is really initialization, but refer to it as conversion for
|
|
// consistency with CheckConvertedConstantExpression.
|
|
return Sema::AA_Converting;
|
|
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Binding:
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
return Sema::AA_Initializing;
|
|
}
|
|
|
|
llvm_unreachable("Invalid EntityKind!");
|
|
}
|
|
|
|
/// Whether we should bind a created object as a temporary when
|
|
/// initializing the given entity.
|
|
static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_StmtExprResult:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_Delegating:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
return false;
|
|
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
case InitializedEntity::EK_Binding:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("missed an InitializedEntity kind?");
|
|
}
|
|
|
|
/// Whether the given entity, when initialized with an object
|
|
/// created for that initialization, requires destruction.
|
|
static bool shouldDestroyEntity(const InitializedEntity &Entity) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_StmtExprResult:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_Delegating:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
return false;
|
|
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Binding:
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Exception:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
return true;
|
|
}
|
|
|
|
llvm_unreachable("missed an InitializedEntity kind?");
|
|
}
|
|
|
|
/// Get the location at which initialization diagnostics should appear.
|
|
static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
|
|
Expr *Initializer) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_Result:
|
|
case InitializedEntity::EK_StmtExprResult:
|
|
return Entity.getReturnLoc();
|
|
|
|
case InitializedEntity::EK_Exception:
|
|
return Entity.getThrowLoc();
|
|
|
|
case InitializedEntity::EK_Variable:
|
|
case InitializedEntity::EK_Binding:
|
|
return Entity.getDecl()->getLocation();
|
|
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
return Entity.getCaptureLoc();
|
|
|
|
case InitializedEntity::EK_ArrayElement:
|
|
case InitializedEntity::EK_Member:
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_New:
|
|
case InitializedEntity::EK_Base:
|
|
case InitializedEntity::EK_Delegating:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
return Initializer->getBeginLoc();
|
|
}
|
|
llvm_unreachable("missed an InitializedEntity kind?");
|
|
}
|
|
|
|
/// Make a (potentially elidable) temporary copy of the object
|
|
/// provided by the given initializer by calling the appropriate copy
|
|
/// constructor.
|
|
///
|
|
/// \param S The Sema object used for type-checking.
|
|
///
|
|
/// \param T The type of the temporary object, which must either be
|
|
/// the type of the initializer expression or a superclass thereof.
|
|
///
|
|
/// \param Entity The entity being initialized.
|
|
///
|
|
/// \param CurInit The initializer expression.
|
|
///
|
|
/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
|
|
/// is permitted in C++03 (but not C++0x) when binding a reference to
|
|
/// an rvalue.
|
|
///
|
|
/// \returns An expression that copies the initializer expression into
|
|
/// a temporary object, or an error expression if a copy could not be
|
|
/// created.
|
|
static ExprResult CopyObject(Sema &S,
|
|
QualType T,
|
|
const InitializedEntity &Entity,
|
|
ExprResult CurInit,
|
|
bool IsExtraneousCopy) {
|
|
if (CurInit.isInvalid())
|
|
return CurInit;
|
|
// Determine which class type we're copying to.
|
|
Expr *CurInitExpr = (Expr *)CurInit.get();
|
|
CXXRecordDecl *Class = nullptr;
|
|
if (const RecordType *Record = T->getAs<RecordType>())
|
|
Class = cast<CXXRecordDecl>(Record->getDecl());
|
|
if (!Class)
|
|
return CurInit;
|
|
|
|
SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
|
|
|
|
// Make sure that the type we are copying is complete.
|
|
if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
|
|
return CurInit;
|
|
|
|
// Perform overload resolution using the class's constructors. Per
|
|
// C++11 [dcl.init]p16, second bullet for class types, this initialization
|
|
// is direct-initialization.
|
|
OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
|
|
DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
|
|
|
|
OverloadCandidateSet::iterator Best;
|
|
switch (ResolveConstructorOverload(
|
|
S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
|
|
/*CopyInitializing=*/false, /*AllowExplicit=*/true,
|
|
/*OnlyListConstructors=*/false, /*IsListInit=*/false,
|
|
/*SecondStepOfCopyInit=*/true)) {
|
|
case OR_Success:
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
|
|
? diag::ext_rvalue_to_reference_temp_copy_no_viable
|
|
: diag::err_temp_copy_no_viable)
|
|
<< (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange()),
|
|
S, OCD_AllCandidates, CurInitExpr);
|
|
if (!IsExtraneousCopy || S.isSFINAEContext())
|
|
return ExprError();
|
|
return CurInit;
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
|
|
<< (int)Entity.getKind()
|
|
<< CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange()),
|
|
S, OCD_AmbiguousCandidates, CurInitExpr);
|
|
return ExprError();
|
|
|
|
case OR_Deleted:
|
|
S.Diag(Loc, diag::err_temp_copy_deleted)
|
|
<< (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
S.NoteDeletedFunction(Best->Function);
|
|
return ExprError();
|
|
}
|
|
|
|
bool HadMultipleCandidates = CandidateSet.size() > 1;
|
|
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
|
CurInit.get(); // Ownership transferred into MultiExprArg, below.
|
|
|
|
S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
|
|
IsExtraneousCopy);
|
|
|
|
if (IsExtraneousCopy) {
|
|
// If this is a totally extraneous copy for C++03 reference
|
|
// binding purposes, just return the original initialization
|
|
// expression. We don't generate an (elided) copy operation here
|
|
// because doing so would require us to pass down a flag to avoid
|
|
// infinite recursion, where each step adds another extraneous,
|
|
// elidable copy.
|
|
|
|
// Instantiate the default arguments of any extra parameters in
|
|
// the selected copy constructor, as if we were going to create a
|
|
// proper call to the copy constructor.
|
|
for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
|
|
ParmVarDecl *Parm = Constructor->getParamDecl(I);
|
|
if (S.RequireCompleteType(Loc, Parm->getType(),
|
|
diag::err_call_incomplete_argument))
|
|
break;
|
|
|
|
// Build the default argument expression; we don't actually care
|
|
// if this succeeds or not, because this routine will complain
|
|
// if there was a problem.
|
|
S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
|
|
}
|
|
|
|
return CurInitExpr;
|
|
}
|
|
|
|
// Determine the arguments required to actually perform the
|
|
// constructor call (we might have derived-to-base conversions, or
|
|
// the copy constructor may have default arguments).
|
|
if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
// C++0x [class.copy]p32:
|
|
// When certain criteria are met, an implementation is allowed to
|
|
// omit the copy/move construction of a class object, even if the
|
|
// copy/move constructor and/or destructor for the object have
|
|
// side effects. [...]
|
|
// - when a temporary class object that has not been bound to a
|
|
// reference (12.2) would be copied/moved to a class object
|
|
// with the same cv-unqualified type, the copy/move operation
|
|
// can be omitted by constructing the temporary object
|
|
// directly into the target of the omitted copy/move
|
|
//
|
|
// Note that the other three bullets are handled elsewhere. Copy
|
|
// elision for return statements and throw expressions are handled as part
|
|
// of constructor initialization, while copy elision for exception handlers
|
|
// is handled by the run-time.
|
|
//
|
|
// FIXME: If the function parameter is not the same type as the temporary, we
|
|
// should still be able to elide the copy, but we don't have a way to
|
|
// represent in the AST how much should be elided in this case.
|
|
bool Elidable =
|
|
CurInitExpr->isTemporaryObject(S.Context, Class) &&
|
|
S.Context.hasSameUnqualifiedType(
|
|
Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
|
|
CurInitExpr->getType());
|
|
|
|
// Actually perform the constructor call.
|
|
CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
|
|
Elidable,
|
|
ConstructorArgs,
|
|
HadMultipleCandidates,
|
|
/*ListInit*/ false,
|
|
/*StdInitListInit*/ false,
|
|
/*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete,
|
|
SourceRange());
|
|
|
|
// If we're supposed to bind temporaries, do so.
|
|
if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
|
|
return CurInit;
|
|
}
|
|
|
|
/// Check whether elidable copy construction for binding a reference to
|
|
/// a temporary would have succeeded if we were building in C++98 mode, for
|
|
/// -Wc++98-compat.
|
|
static void CheckCXX98CompatAccessibleCopy(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
Expr *CurInitExpr) {
|
|
assert(S.getLangOpts().CPlusPlus11);
|
|
|
|
const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
|
|
if (!Record)
|
|
return;
|
|
|
|
SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
|
|
if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
|
|
return;
|
|
|
|
// Find constructors which would have been considered.
|
|
OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
|
|
DeclContext::lookup_result Ctors =
|
|
S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
|
|
|
|
// Perform overload resolution.
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult OR = ResolveConstructorOverload(
|
|
S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
|
|
/*CopyInitializing=*/false, /*AllowExplicit=*/true,
|
|
/*OnlyListConstructors=*/false, /*IsListInit=*/false,
|
|
/*SecondStepOfCopyInit=*/true);
|
|
|
|
PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
|
|
<< OR << (int)Entity.getKind() << CurInitExpr->getType()
|
|
<< CurInitExpr->getSourceRange();
|
|
|
|
switch (OR) {
|
|
case OR_Success:
|
|
S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
|
|
Best->FoundDecl, Entity, Diag);
|
|
// FIXME: Check default arguments as far as that's possible.
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
|
|
OCD_AllCandidates, CurInitExpr);
|
|
break;
|
|
|
|
case OR_Ambiguous:
|
|
CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
|
|
OCD_AmbiguousCandidates, CurInitExpr);
|
|
break;
|
|
|
|
case OR_Deleted:
|
|
S.Diag(Loc, Diag);
|
|
S.NoteDeletedFunction(Best->Function);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void InitializationSequence::PrintInitLocationNote(Sema &S,
|
|
const InitializedEntity &Entity) {
|
|
if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
|
|
if (Entity.getDecl()->getLocation().isInvalid())
|
|
return;
|
|
|
|
if (Entity.getDecl()->getDeclName())
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
|
|
<< Entity.getDecl()->getDeclName();
|
|
else
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
|
|
}
|
|
else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
|
|
Entity.getMethodDecl())
|
|
S.Diag(Entity.getMethodDecl()->getLocation(),
|
|
diag::note_method_return_type_change)
|
|
<< Entity.getMethodDecl()->getDeclName();
|
|
}
|
|
|
|
/// Returns true if the parameters describe a constructor initialization of
|
|
/// an explicit temporary object, e.g. "Point(x, y)".
|
|
static bool isExplicitTemporary(const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
unsigned NumArgs) {
|
|
switch (Entity.getKind()) {
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
switch (Kind.getKind()) {
|
|
case InitializationKind::IK_DirectList:
|
|
return true;
|
|
// FIXME: Hack to work around cast weirdness.
|
|
case InitializationKind::IK_Direct:
|
|
case InitializationKind::IK_Value:
|
|
return NumArgs != 1;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static ExprResult
|
|
PerformConstructorInitialization(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
MultiExprArg Args,
|
|
const InitializationSequence::Step& Step,
|
|
bool &ConstructorInitRequiresZeroInit,
|
|
bool IsListInitialization,
|
|
bool IsStdInitListInitialization,
|
|
SourceLocation LBraceLoc,
|
|
SourceLocation RBraceLoc) {
|
|
unsigned NumArgs = Args.size();
|
|
CXXConstructorDecl *Constructor
|
|
= cast<CXXConstructorDecl>(Step.Function.Function);
|
|
bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
|
|
|
|
// Build a call to the selected constructor.
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
|
SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
|
|
? Kind.getEqualLoc()
|
|
: Kind.getLocation();
|
|
|
|
if (Kind.getKind() == InitializationKind::IK_Default) {
|
|
// Force even a trivial, implicit default constructor to be
|
|
// semantically checked. We do this explicitly because we don't build
|
|
// the definition for completely trivial constructors.
|
|
assert(Constructor->getParent() && "No parent class for constructor.");
|
|
if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
|
|
Constructor->isTrivial() && !Constructor->isUsed(false)) {
|
|
S.runWithSufficientStackSpace(Loc, [&] {
|
|
S.DefineImplicitDefaultConstructor(Loc, Constructor);
|
|
});
|
|
}
|
|
}
|
|
|
|
ExprResult CurInit((Expr *)nullptr);
|
|
|
|
// C++ [over.match.copy]p1:
|
|
// - When initializing a temporary to be bound to the first parameter
|
|
// of a constructor that takes a reference to possibly cv-qualified
|
|
// T as its first argument, called with a single argument in the
|
|
// context of direct-initialization, explicit conversion functions
|
|
// are also considered.
|
|
bool AllowExplicitConv =
|
|
Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
|
|
hasCopyOrMoveCtorParam(S.Context,
|
|
getConstructorInfo(Step.Function.FoundDecl));
|
|
|
|
// Determine the arguments required to actually perform the constructor
|
|
// call.
|
|
if (S.CompleteConstructorCall(Constructor, Args,
|
|
Loc, ConstructorArgs,
|
|
AllowExplicitConv,
|
|
IsListInitialization))
|
|
return ExprError();
|
|
|
|
|
|
if (isExplicitTemporary(Entity, Kind, NumArgs)) {
|
|
// An explicitly-constructed temporary, e.g., X(1, 2).
|
|
if (S.DiagnoseUseOfDecl(Constructor, Loc))
|
|
return ExprError();
|
|
|
|
TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
|
|
SourceRange ParenOrBraceRange =
|
|
(Kind.getKind() == InitializationKind::IK_DirectList)
|
|
? SourceRange(LBraceLoc, RBraceLoc)
|
|
: Kind.getParenOrBraceRange();
|
|
|
|
if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
|
|
Step.Function.FoundDecl.getDecl())) {
|
|
Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
|
|
if (S.DiagnoseUseOfDecl(Constructor, Loc))
|
|
return ExprError();
|
|
}
|
|
S.MarkFunctionReferenced(Loc, Constructor);
|
|
|
|
CurInit = S.CheckForImmediateInvocation(
|
|
CXXTemporaryObjectExpr::Create(
|
|
S.Context, Constructor,
|
|
Entity.getType().getNonLValueExprType(S.Context), TSInfo,
|
|
ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
|
|
IsListInitialization, IsStdInitListInitialization,
|
|
ConstructorInitRequiresZeroInit),
|
|
Constructor);
|
|
} else {
|
|
CXXConstructExpr::ConstructionKind ConstructKind =
|
|
CXXConstructExpr::CK_Complete;
|
|
|
|
if (Entity.getKind() == InitializedEntity::EK_Base) {
|
|
ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
|
|
CXXConstructExpr::CK_VirtualBase :
|
|
CXXConstructExpr::CK_NonVirtualBase;
|
|
} else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
|
|
ConstructKind = CXXConstructExpr::CK_Delegating;
|
|
}
|
|
|
|
// Only get the parenthesis or brace range if it is a list initialization or
|
|
// direct construction.
|
|
SourceRange ParenOrBraceRange;
|
|
if (IsListInitialization)
|
|
ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
|
|
else if (Kind.getKind() == InitializationKind::IK_Direct)
|
|
ParenOrBraceRange = Kind.getParenOrBraceRange();
|
|
|
|
// If the entity allows NRVO, mark the construction as elidable
|
|
// unconditionally.
|
|
if (Entity.allowsNRVO())
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
|
|
Step.Function.FoundDecl,
|
|
Constructor, /*Elidable=*/true,
|
|
ConstructorArgs,
|
|
HadMultipleCandidates,
|
|
IsListInitialization,
|
|
IsStdInitListInitialization,
|
|
ConstructorInitRequiresZeroInit,
|
|
ConstructKind,
|
|
ParenOrBraceRange);
|
|
else
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
|
|
Step.Function.FoundDecl,
|
|
Constructor,
|
|
ConstructorArgs,
|
|
HadMultipleCandidates,
|
|
IsListInitialization,
|
|
IsStdInitListInitialization,
|
|
ConstructorInitRequiresZeroInit,
|
|
ConstructKind,
|
|
ParenOrBraceRange);
|
|
}
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
// Only check access if all of that succeeded.
|
|
S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
|
|
if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
|
|
return ExprError();
|
|
|
|
if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
|
|
if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
|
|
return ExprError();
|
|
|
|
if (shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.get());
|
|
|
|
return CurInit;
|
|
}
|
|
|
|
namespace {
|
|
enum LifetimeKind {
|
|
/// The lifetime of a temporary bound to this entity ends at the end of the
|
|
/// full-expression, and that's (probably) fine.
|
|
LK_FullExpression,
|
|
|
|
/// The lifetime of a temporary bound to this entity is extended to the
|
|
/// lifeitme of the entity itself.
|
|
LK_Extended,
|
|
|
|
/// The lifetime of a temporary bound to this entity probably ends too soon,
|
|
/// because the entity is allocated in a new-expression.
|
|
LK_New,
|
|
|
|
/// The lifetime of a temporary bound to this entity ends too soon, because
|
|
/// the entity is a return object.
|
|
LK_Return,
|
|
|
|
/// The lifetime of a temporary bound to this entity ends too soon, because
|
|
/// the entity is the result of a statement expression.
|
|
LK_StmtExprResult,
|
|
|
|
/// This is a mem-initializer: if it would extend a temporary (other than via
|
|
/// a default member initializer), the program is ill-formed.
|
|
LK_MemInitializer,
|
|
};
|
|
using LifetimeResult =
|
|
llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
|
|
}
|
|
|
|
/// Determine the declaration which an initialized entity ultimately refers to,
|
|
/// for the purpose of lifetime-extending a temporary bound to a reference in
|
|
/// the initialization of \p Entity.
|
|
static LifetimeResult getEntityLifetime(
|
|
const InitializedEntity *Entity,
|
|
const InitializedEntity *InitField = nullptr) {
|
|
// C++11 [class.temporary]p5:
|
|
switch (Entity->getKind()) {
|
|
case InitializedEntity::EK_Variable:
|
|
// The temporary [...] persists for the lifetime of the reference
|
|
return {Entity, LK_Extended};
|
|
|
|
case InitializedEntity::EK_Member:
|
|
// For subobjects, we look at the complete object.
|
|
if (Entity->getParent())
|
|
return getEntityLifetime(Entity->getParent(), Entity);
|
|
|
|
// except:
|
|
// C++17 [class.base.init]p8:
|
|
// A temporary expression bound to a reference member in a
|
|
// mem-initializer is ill-formed.
|
|
// C++17 [class.base.init]p11:
|
|
// A temporary expression bound to a reference member from a
|
|
// default member initializer is ill-formed.
|
|
//
|
|
// The context of p11 and its example suggest that it's only the use of a
|
|
// default member initializer from a constructor that makes the program
|
|
// ill-formed, not its mere existence, and that it can even be used by
|
|
// aggregate initialization.
|
|
return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
|
|
: LK_MemInitializer};
|
|
|
|
case InitializedEntity::EK_Binding:
|
|
// Per [dcl.decomp]p3, the binding is treated as a variable of reference
|
|
// type.
|
|
return {Entity, LK_Extended};
|
|
|
|
case InitializedEntity::EK_Parameter:
|
|
case InitializedEntity::EK_Parameter_CF_Audited:
|
|
// -- A temporary bound to a reference parameter in a function call
|
|
// persists until the completion of the full-expression containing
|
|
// the call.
|
|
return {nullptr, LK_FullExpression};
|
|
|
|
case InitializedEntity::EK_TemplateParameter:
|
|
// FIXME: This will always be ill-formed; should we eagerly diagnose it here?
|
|
return {nullptr, LK_FullExpression};
|
|
|
|
case InitializedEntity::EK_Result:
|
|
// -- The lifetime of a temporary bound to the returned value in a
|
|
// function return statement is not extended; the temporary is
|
|
// destroyed at the end of the full-expression in the return statement.
|
|
return {nullptr, LK_Return};
|
|
|
|
case InitializedEntity::EK_StmtExprResult:
|
|
// FIXME: Should we lifetime-extend through the result of a statement
|
|
// expression?
|
|
return {nullptr, LK_StmtExprResult};
|
|
|
|
case InitializedEntity::EK_New:
|
|
// -- A temporary bound to a reference in a new-initializer persists
|
|
// until the completion of the full-expression containing the
|
|
// new-initializer.
|
|
return {nullptr, LK_New};
|
|
|
|
case InitializedEntity::EK_Temporary:
|
|
case InitializedEntity::EK_CompoundLiteralInit:
|
|
case InitializedEntity::EK_RelatedResult:
|
|
// We don't yet know the storage duration of the surrounding temporary.
|
|
// Assume it's got full-expression duration for now, it will patch up our
|
|
// storage duration if that's not correct.
|
|
return {nullptr, LK_FullExpression};
|
|
|
|
case InitializedEntity::EK_ArrayElement:
|
|
// For subobjects, we look at the complete object.
|
|
return getEntityLifetime(Entity->getParent(), InitField);
|
|
|
|
case InitializedEntity::EK_Base:
|
|
// For subobjects, we look at the complete object.
|
|
if (Entity->getParent())
|
|
return getEntityLifetime(Entity->getParent(), InitField);
|
|
return {InitField, LK_MemInitializer};
|
|
|
|
case InitializedEntity::EK_Delegating:
|
|
// We can reach this case for aggregate initialization in a constructor:
|
|
// struct A { int &&r; };
|
|
// struct B : A { B() : A{0} {} };
|
|
// In this case, use the outermost field decl as the context.
|
|
return {InitField, LK_MemInitializer};
|
|
|
|
case InitializedEntity::EK_BlockElement:
|
|
case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
|
|
case InitializedEntity::EK_LambdaCapture:
|
|
case InitializedEntity::EK_VectorElement:
|
|
case InitializedEntity::EK_ComplexElement:
|
|
return {nullptr, LK_FullExpression};
|
|
|
|
case InitializedEntity::EK_Exception:
|
|
// FIXME: Can we diagnose lifetime problems with exceptions?
|
|
return {nullptr, LK_FullExpression};
|
|
}
|
|
llvm_unreachable("unknown entity kind");
|
|
}
|
|
|
|
namespace {
|
|
enum ReferenceKind {
|
|
/// Lifetime would be extended by a reference binding to a temporary.
|
|
RK_ReferenceBinding,
|
|
/// Lifetime would be extended by a std::initializer_list object binding to
|
|
/// its backing array.
|
|
RK_StdInitializerList,
|
|
};
|
|
|
|
/// A temporary or local variable. This will be one of:
|
|
/// * A MaterializeTemporaryExpr.
|
|
/// * A DeclRefExpr whose declaration is a local.
|
|
/// * An AddrLabelExpr.
|
|
/// * A BlockExpr for a block with captures.
|
|
using Local = Expr*;
|
|
|
|
/// Expressions we stepped over when looking for the local state. Any steps
|
|
/// that would inhibit lifetime extension or take us out of subexpressions of
|
|
/// the initializer are included.
|
|
struct IndirectLocalPathEntry {
|
|
enum EntryKind {
|
|
DefaultInit,
|
|
AddressOf,
|
|
VarInit,
|
|
LValToRVal,
|
|
LifetimeBoundCall,
|
|
TemporaryCopy,
|
|
LambdaCaptureInit,
|
|
GslReferenceInit,
|
|
GslPointerInit
|
|
} Kind;
|
|
Expr *E;
|
|
union {
|
|
const Decl *D = nullptr;
|
|
const LambdaCapture *Capture;
|
|
};
|
|
IndirectLocalPathEntry() {}
|
|
IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
|
|
IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
|
|
: Kind(K), E(E), D(D) {}
|
|
IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
|
|
: Kind(K), E(E), Capture(Capture) {}
|
|
};
|
|
|
|
using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
|
|
|
|
struct RevertToOldSizeRAII {
|
|
IndirectLocalPath &Path;
|
|
unsigned OldSize = Path.size();
|
|
RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
|
|
~RevertToOldSizeRAII() { Path.resize(OldSize); }
|
|
};
|
|
|
|
using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
|
|
ReferenceKind RK)>;
|
|
}
|
|
|
|
static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
|
|
for (auto E : Path)
|
|
if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool pathContainsInit(IndirectLocalPath &Path) {
|
|
return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
|
|
return E.Kind == IndirectLocalPathEntry::DefaultInit ||
|
|
E.Kind == IndirectLocalPathEntry::VarInit;
|
|
});
|
|
}
|
|
|
|
static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
|
|
Expr *Init, LocalVisitor Visit,
|
|
bool RevisitSubinits,
|
|
bool EnableLifetimeWarnings);
|
|
|
|
static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
|
|
Expr *Init, ReferenceKind RK,
|
|
LocalVisitor Visit,
|
|
bool EnableLifetimeWarnings);
|
|
|
|
template <typename T> static bool isRecordWithAttr(QualType Type) {
|
|
if (auto *RD = Type->getAsCXXRecordDecl())
|
|
return RD->hasAttr<T>();
|
|
return false;
|
|
}
|
|
|
|
// Decl::isInStdNamespace will return false for iterators in some STL
|
|
// implementations due to them being defined in a namespace outside of the std
|
|
// namespace.
|
|
static bool isInStlNamespace(const Decl *D) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
if (!DC)
|
|
return false;
|
|
if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
|
|
if (const IdentifierInfo *II = ND->getIdentifier()) {
|
|
StringRef Name = II->getName();
|
|
if (Name.size() >= 2 && Name.front() == '_' &&
|
|
(Name[1] == '_' || isUppercase(Name[1])))
|
|
return true;
|
|
}
|
|
|
|
return DC->isStdNamespace();
|
|
}
|
|
|
|
static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
|
|
if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
|
|
if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
|
|
return true;
|
|
if (!isInStlNamespace(Callee->getParent()))
|
|
return false;
|
|
if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
|
|
!isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
|
|
return false;
|
|
if (Callee->getReturnType()->isPointerType() ||
|
|
isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
|
|
if (!Callee->getIdentifier())
|
|
return false;
|
|
return llvm::StringSwitch<bool>(Callee->getName())
|
|
.Cases("begin", "rbegin", "cbegin", "crbegin", true)
|
|
.Cases("end", "rend", "cend", "crend", true)
|
|
.Cases("c_str", "data", "get", true)
|
|
// Map and set types.
|
|
.Cases("find", "equal_range", "lower_bound", "upper_bound", true)
|
|
.Default(false);
|
|
} else if (Callee->getReturnType()->isReferenceType()) {
|
|
if (!Callee->getIdentifier()) {
|
|
auto OO = Callee->getOverloadedOperator();
|
|
return OO == OverloadedOperatorKind::OO_Subscript ||
|
|
OO == OverloadedOperatorKind::OO_Star;
|
|
}
|
|
return llvm::StringSwitch<bool>(Callee->getName())
|
|
.Cases("front", "back", "at", "top", "value", true)
|
|
.Default(false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
|
|
if (!FD->getIdentifier() || FD->getNumParams() != 1)
|
|
return false;
|
|
const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
|
|
if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
|
|
return false;
|
|
if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
|
|
!isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
|
|
return false;
|
|
if (FD->getReturnType()->isPointerType() ||
|
|
isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
|
|
return llvm::StringSwitch<bool>(FD->getName())
|
|
.Cases("begin", "rbegin", "cbegin", "crbegin", true)
|
|
.Cases("end", "rend", "cend", "crend", true)
|
|
.Case("data", true)
|
|
.Default(false);
|
|
} else if (FD->getReturnType()->isReferenceType()) {
|
|
return llvm::StringSwitch<bool>(FD->getName())
|
|
.Cases("get", "any_cast", true)
|
|
.Default(false);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
|
|
LocalVisitor Visit) {
|
|
auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
|
|
// We are not interested in the temporary base objects of gsl Pointers:
|
|
// Temp().ptr; // Here ptr might not dangle.
|
|
if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
|
|
return;
|
|
// Once we initialized a value with a reference, it can no longer dangle.
|
|
if (!Value) {
|
|
for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
|
|
if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
|
|
continue;
|
|
if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
|
|
return;
|
|
break;
|
|
}
|
|
}
|
|
Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
|
|
: IndirectLocalPathEntry::GslReferenceInit,
|
|
Arg, D});
|
|
if (Arg->isGLValue())
|
|
visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
|
|
Visit,
|
|
/*EnableLifetimeWarnings=*/true);
|
|
else
|
|
visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
|
|
/*EnableLifetimeWarnings=*/true);
|
|
Path.pop_back();
|
|
};
|
|
|
|
if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
|
|
const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
|
|
if (MD && shouldTrackImplicitObjectArg(MD))
|
|
VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
|
|
!MD->getReturnType()->isReferenceType());
|
|
return;
|
|
} else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
|
|
FunctionDecl *Callee = OCE->getDirectCallee();
|
|
if (Callee && Callee->isCXXInstanceMember() &&
|
|
shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
|
|
VisitPointerArg(Callee, OCE->getArg(0),
|
|
!Callee->getReturnType()->isReferenceType());
|
|
return;
|
|
} else if (auto *CE = dyn_cast<CallExpr>(Call)) {
|
|
FunctionDecl *Callee = CE->getDirectCallee();
|
|
if (Callee && shouldTrackFirstArgument(Callee))
|
|
VisitPointerArg(Callee, CE->getArg(0),
|
|
!Callee->getReturnType()->isReferenceType());
|
|
return;
|
|
}
|
|
|
|
if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
|
|
const auto *Ctor = CCE->getConstructor();
|
|
const CXXRecordDecl *RD = Ctor->getParent();
|
|
if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
|
|
VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
|
|
}
|
|
}
|
|
|
|
static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
|
|
const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
|
|
if (!TSI)
|
|
return false;
|
|
// Don't declare this variable in the second operand of the for-statement;
|
|
// GCC miscompiles that by ending its lifetime before evaluating the
|
|
// third operand. See gcc.gnu.org/PR86769.
|
|
AttributedTypeLoc ATL;
|
|
for (TypeLoc TL = TSI->getTypeLoc();
|
|
(ATL = TL.getAsAdjusted<AttributedTypeLoc>());
|
|
TL = ATL.getModifiedLoc()) {
|
|
if (ATL.getAttrAs<LifetimeBoundAttr>())
|
|
return true;
|
|
}
|
|
|
|
// Assume that all assignment operators with a "normal" return type return
|
|
// *this, that is, an lvalue reference that is the same type as the implicit
|
|
// object parameter (or the LHS for a non-member operator$=).
|
|
OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
|
|
if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
|
|
QualType RetT = FD->getReturnType();
|
|
if (RetT->isLValueReferenceType()) {
|
|
ASTContext &Ctx = FD->getASTContext();
|
|
QualType LHST;
|
|
auto *MD = dyn_cast<CXXMethodDecl>(FD);
|
|
if (MD && MD->isCXXInstanceMember())
|
|
LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
|
|
else
|
|
LHST = MD->getParamDecl(0)->getType();
|
|
if (Ctx.hasSameType(RetT, LHST))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
|
|
LocalVisitor Visit) {
|
|
const FunctionDecl *Callee;
|
|
ArrayRef<Expr*> Args;
|
|
|
|
if (auto *CE = dyn_cast<CallExpr>(Call)) {
|
|
Callee = CE->getDirectCallee();
|
|
Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
|
|
} else {
|
|
auto *CCE = cast<CXXConstructExpr>(Call);
|
|
Callee = CCE->getConstructor();
|
|
Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
|
|
}
|
|
if (!Callee)
|
|
return;
|
|
|
|
Expr *ObjectArg = nullptr;
|
|
if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
|
|
ObjectArg = Args[0];
|
|
Args = Args.slice(1);
|
|
} else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
|
|
ObjectArg = MCE->getImplicitObjectArgument();
|
|
}
|
|
|
|
auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
|
|
Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
|
|
if (Arg->isGLValue())
|
|
visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
|
|
Visit,
|
|
/*EnableLifetimeWarnings=*/false);
|
|
else
|
|
visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
|
|
/*EnableLifetimeWarnings=*/false);
|
|
Path.pop_back();
|
|
};
|
|
|
|
if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
|
|
VisitLifetimeBoundArg(Callee, ObjectArg);
|
|
|
|
for (unsigned I = 0,
|
|
N = std::min<unsigned>(Callee->getNumParams(), Args.size());
|
|
I != N; ++I) {
|
|
if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
|
|
VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
|
|
}
|
|
}
|
|
|
|
/// Visit the locals that would be reachable through a reference bound to the
|
|
/// glvalue expression \c Init.
|
|
static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
|
|
Expr *Init, ReferenceKind RK,
|
|
LocalVisitor Visit,
|
|
bool EnableLifetimeWarnings) {
|
|
RevertToOldSizeRAII RAII(Path);
|
|
|
|
// Walk past any constructs which we can lifetime-extend across.
|
|
Expr *Old;
|
|
do {
|
|
Old = Init;
|
|
|
|
if (auto *FE = dyn_cast<FullExpr>(Init))
|
|
Init = FE->getSubExpr();
|
|
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
|
|
// If this is just redundant braces around an initializer, step over it.
|
|
if (ILE->isTransparent())
|
|
Init = ILE->getInit(0);
|
|
}
|
|
|
|
// Step over any subobject adjustments; we may have a materialized
|
|
// temporary inside them.
|
|
Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
|
|
|
|
// Per current approach for DR1376, look through casts to reference type
|
|
// when performing lifetime extension.
|
|
if (CastExpr *CE = dyn_cast<CastExpr>(Init))
|
|
if (CE->getSubExpr()->isGLValue())
|
|
Init = CE->getSubExpr();
|
|
|
|
// Per the current approach for DR1299, look through array element access
|
|
// on array glvalues when performing lifetime extension.
|
|
if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
|
|
Init = ASE->getBase();
|
|
auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
|
|
if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
|
|
Init = ICE->getSubExpr();
|
|
else
|
|
// We can't lifetime extend through this but we might still find some
|
|
// retained temporaries.
|
|
return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
|
|
// Step into CXXDefaultInitExprs so we can diagnose cases where a
|
|
// constructor inherits one as an implicit mem-initializer.
|
|
if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
|
|
Path.push_back(
|
|
{IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
|
|
Init = DIE->getExpr();
|
|
}
|
|
} while (Init != Old);
|
|
|
|
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
|
|
if (Visit(Path, Local(MTE), RK))
|
|
visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
|
|
if (isa<CallExpr>(Init)) {
|
|
if (EnableLifetimeWarnings)
|
|
handleGslAnnotatedTypes(Path, Init, Visit);
|
|
return visitLifetimeBoundArguments(Path, Init, Visit);
|
|
}
|
|
|
|
switch (Init->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass: {
|
|
// If we find the name of a local non-reference parameter, we could have a
|
|
// lifetime problem.
|
|
auto *DRE = cast<DeclRefExpr>(Init);
|
|
auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (VD && VD->hasLocalStorage() &&
|
|
!DRE->refersToEnclosingVariableOrCapture()) {
|
|
if (!VD->getType()->isReferenceType()) {
|
|
Visit(Path, Local(DRE), RK);
|
|
} else if (isa<ParmVarDecl>(DRE->getDecl())) {
|
|
// The lifetime of a reference parameter is unknown; assume it's OK
|
|
// for now.
|
|
break;
|
|
} else if (VD->getInit() && !isVarOnPath(Path, VD)) {
|
|
Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
|
|
visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
|
|
RK_ReferenceBinding, Visit,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Stmt::UnaryOperatorClass: {
|
|
// The only unary operator that make sense to handle here
|
|
// is Deref. All others don't resolve to a "name." This includes
|
|
// handling all sorts of rvalues passed to a unary operator.
|
|
const UnaryOperator *U = cast<UnaryOperator>(Init);
|
|
if (U->getOpcode() == UO_Deref)
|
|
visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
break;
|
|
}
|
|
|
|
case Stmt::OMPArraySectionExprClass: {
|
|
visitLocalsRetainedByInitializer(Path,
|
|
cast<OMPArraySectionExpr>(Init)->getBase(),
|
|
Visit, true, EnableLifetimeWarnings);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
case Stmt::BinaryConditionalOperatorClass: {
|
|
auto *C = cast<AbstractConditionalOperator>(Init);
|
|
if (!C->getTrueExpr()->getType()->isVoidType())
|
|
visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
|
|
EnableLifetimeWarnings);
|
|
if (!C->getFalseExpr()->getType()->isVoidType())
|
|
visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
|
|
EnableLifetimeWarnings);
|
|
break;
|
|
}
|
|
|
|
// FIXME: Visit the left-hand side of an -> or ->*.
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Visit the locals that would be reachable through an object initialized by
|
|
/// the prvalue expression \c Init.
|
|
static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
|
|
Expr *Init, LocalVisitor Visit,
|
|
bool RevisitSubinits,
|
|
bool EnableLifetimeWarnings) {
|
|
RevertToOldSizeRAII RAII(Path);
|
|
|
|
Expr *Old;
|
|
do {
|
|
Old = Init;
|
|
|
|
// Step into CXXDefaultInitExprs so we can diagnose cases where a
|
|
// constructor inherits one as an implicit mem-initializer.
|
|
if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
|
|
Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
|
|
Init = DIE->getExpr();
|
|
}
|
|
|
|
if (auto *FE = dyn_cast<FullExpr>(Init))
|
|
Init = FE->getSubExpr();
|
|
|
|
// Dig out the expression which constructs the extended temporary.
|
|
Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
|
|
|
|
if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
|
|
Init = BTE->getSubExpr();
|
|
|
|
Init = Init->IgnoreParens();
|
|
|
|
// Step over value-preserving rvalue casts.
|
|
if (auto *CE = dyn_cast<CastExpr>(Init)) {
|
|
switch (CE->getCastKind()) {
|
|
case CK_LValueToRValue:
|
|
// If we can match the lvalue to a const object, we can look at its
|
|
// initializer.
|
|
Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
|
|
return visitLocalsRetainedByReferenceBinding(
|
|
Path, Init, RK_ReferenceBinding,
|
|
[&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
|
|
auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (VD && VD->getType().isConstQualified() && VD->getInit() &&
|
|
!isVarOnPath(Path, VD)) {
|
|
Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
|
|
visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
} else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
|
|
if (MTE->getType().isConstQualified())
|
|
visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
|
|
true, EnableLifetimeWarnings);
|
|
}
|
|
return false;
|
|
}, EnableLifetimeWarnings);
|
|
|
|
// We assume that objects can be retained by pointers cast to integers,
|
|
// but not if the integer is cast to floating-point type or to _Complex.
|
|
// We assume that casts to 'bool' do not preserve enough information to
|
|
// retain a local object.
|
|
case CK_NoOp:
|
|
case CK_BitCast:
|
|
case CK_BaseToDerived:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_Dynamic:
|
|
case CK_ToUnion:
|
|
case CK_UserDefinedConversion:
|
|
case CK_ConstructorConversion:
|
|
case CK_IntegralToPointer:
|
|
case CK_PointerToIntegral:
|
|
case CK_VectorSplat:
|
|
case CK_IntegralCast:
|
|
case CK_CPointerToObjCPointerCast:
|
|
case CK_BlockPointerToObjCPointerCast:
|
|
case CK_AnyPointerToBlockPointerCast:
|
|
case CK_AddressSpaceConversion:
|
|
break;
|
|
|
|
case CK_ArrayToPointerDecay:
|
|
// Model array-to-pointer decay as taking the address of the array
|
|
// lvalue.
|
|
Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
|
|
return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
|
|
RK_ReferenceBinding, Visit,
|
|
EnableLifetimeWarnings);
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
Init = CE->getSubExpr();
|
|
}
|
|
} while (Old != Init);
|
|
|
|
// C++17 [dcl.init.list]p6:
|
|
// initializing an initializer_list object from the array extends the
|
|
// lifetime of the array exactly like binding a reference to a temporary.
|
|
if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
|
|
return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
|
|
RK_StdInitializerList, Visit,
|
|
EnableLifetimeWarnings);
|
|
|
|
if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
|
|
// We already visited the elements of this initializer list while
|
|
// performing the initialization. Don't visit them again unless we've
|
|
// changed the lifetime of the initialized entity.
|
|
if (!RevisitSubinits)
|
|
return;
|
|
|
|
if (ILE->isTransparent())
|
|
return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
|
|
RevisitSubinits,
|
|
EnableLifetimeWarnings);
|
|
|
|
if (ILE->getType()->isArrayType()) {
|
|
for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
|
|
visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
|
|
RevisitSubinits,
|
|
EnableLifetimeWarnings);
|
|
return;
|
|
}
|
|
|
|
if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
|
|
assert(RD->isAggregate() && "aggregate init on non-aggregate");
|
|
|
|
// If we lifetime-extend a braced initializer which is initializing an
|
|
// aggregate, and that aggregate contains reference members which are
|
|
// bound to temporaries, those temporaries are also lifetime-extended.
|
|
if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
|
|
ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
|
|
visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
|
|
RK_ReferenceBinding, Visit,
|
|
EnableLifetimeWarnings);
|
|
else {
|
|
unsigned Index = 0;
|
|
for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
|
|
visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
|
|
RevisitSubinits,
|
|
EnableLifetimeWarnings);
|
|
for (const auto *I : RD->fields()) {
|
|
if (Index >= ILE->getNumInits())
|
|
break;
|
|
if (I->isUnnamedBitfield())
|
|
continue;
|
|
Expr *SubInit = ILE->getInit(Index);
|
|
if (I->getType()->isReferenceType())
|
|
visitLocalsRetainedByReferenceBinding(Path, SubInit,
|
|
RK_ReferenceBinding, Visit,
|
|
EnableLifetimeWarnings);
|
|
else
|
|
// This might be either aggregate-initialization of a member or
|
|
// initialization of a std::initializer_list object. Regardless,
|
|
// we should recursively lifetime-extend that initializer.
|
|
visitLocalsRetainedByInitializer(Path, SubInit, Visit,
|
|
RevisitSubinits,
|
|
EnableLifetimeWarnings);
|
|
++Index;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The lifetime of an init-capture is that of the closure object constructed
|
|
// by a lambda-expression.
|
|
if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
|
|
LambdaExpr::capture_iterator CapI = LE->capture_begin();
|
|
for (Expr *E : LE->capture_inits()) {
|
|
assert(CapI != LE->capture_end());
|
|
const LambdaCapture &Cap = *CapI++;
|
|
if (!E)
|
|
continue;
|
|
if (Cap.capturesVariable())
|
|
Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
|
|
if (E->isGLValue())
|
|
visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
|
|
Visit, EnableLifetimeWarnings);
|
|
else
|
|
visitLocalsRetainedByInitializer(Path, E, Visit, true,
|
|
EnableLifetimeWarnings);
|
|
if (Cap.capturesVariable())
|
|
Path.pop_back();
|
|
}
|
|
}
|
|
|
|
// Assume that a copy or move from a temporary references the same objects
|
|
// that the temporary does.
|
|
if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
|
|
if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
|
|
if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
|
|
Expr *Arg = MTE->getSubExpr();
|
|
Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
|
|
CCE->getConstructor()});
|
|
visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
|
|
/*EnableLifetimeWarnings*/false);
|
|
Path.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
|
|
if (EnableLifetimeWarnings)
|
|
handleGslAnnotatedTypes(Path, Init, Visit);
|
|
return visitLifetimeBoundArguments(Path, Init, Visit);
|
|
}
|
|
|
|
switch (Init->getStmtClass()) {
|
|
case Stmt::UnaryOperatorClass: {
|
|
auto *UO = cast<UnaryOperator>(Init);
|
|
// If the initializer is the address of a local, we could have a lifetime
|
|
// problem.
|
|
if (UO->getOpcode() == UO_AddrOf) {
|
|
// If this is &rvalue, then it's ill-formed and we have already diagnosed
|
|
// it. Don't produce a redundant warning about the lifetime of the
|
|
// temporary.
|
|
if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
|
|
return;
|
|
|
|
Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
|
|
visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
|
|
RK_ReferenceBinding, Visit,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
// Handle pointer arithmetic.
|
|
auto *BO = cast<BinaryOperator>(Init);
|
|
BinaryOperatorKind BOK = BO->getOpcode();
|
|
if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
|
|
break;
|
|
|
|
if (BO->getLHS()->getType()->isPointerType())
|
|
visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
else if (BO->getRHS()->getType()->isPointerType())
|
|
visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
break;
|
|
}
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
case Stmt::BinaryConditionalOperatorClass: {
|
|
auto *C = cast<AbstractConditionalOperator>(Init);
|
|
// In C++, we can have a throw-expression operand, which has 'void' type
|
|
// and isn't interesting from a lifetime perspective.
|
|
if (!C->getTrueExpr()->getType()->isVoidType())
|
|
visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
if (!C->getFalseExpr()->getType()->isVoidType())
|
|
visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
|
|
EnableLifetimeWarnings);
|
|
break;
|
|
}
|
|
|
|
case Stmt::BlockExprClass:
|
|
if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
|
|
// This is a local block, whose lifetime is that of the function.
|
|
Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
|
|
}
|
|
break;
|
|
|
|
case Stmt::AddrLabelExprClass:
|
|
// We want to warn if the address of a label would escape the function.
|
|
Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Whether a path to an object supports lifetime extension.
|
|
enum PathLifetimeKind {
|
|
/// Lifetime-extend along this path.
|
|
Extend,
|
|
/// We should lifetime-extend, but we don't because (due to technical
|
|
/// limitations) we can't. This happens for default member initializers,
|
|
/// which we don't clone for every use, so we don't have a unique
|
|
/// MaterializeTemporaryExpr to update.
|
|
ShouldExtend,
|
|
/// Do not lifetime extend along this path.
|
|
NoExtend
|
|
};
|
|
|
|
/// Determine whether this is an indirect path to a temporary that we are
|
|
/// supposed to lifetime-extend along.
|
|
static PathLifetimeKind
|
|
shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
|
|
PathLifetimeKind Kind = PathLifetimeKind::Extend;
|
|
for (auto Elem : Path) {
|
|
if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
|
|
Kind = PathLifetimeKind::ShouldExtend;
|
|
else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
|
|
return PathLifetimeKind::NoExtend;
|
|
}
|
|
return Kind;
|
|
}
|
|
|
|
/// Find the range for the first interesting entry in the path at or after I.
|
|
static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
|
|
Expr *E) {
|
|
for (unsigned N = Path.size(); I != N; ++I) {
|
|
switch (Path[I].Kind) {
|
|
case IndirectLocalPathEntry::AddressOf:
|
|
case IndirectLocalPathEntry::LValToRVal:
|
|
case IndirectLocalPathEntry::LifetimeBoundCall:
|
|
case IndirectLocalPathEntry::TemporaryCopy:
|
|
case IndirectLocalPathEntry::GslReferenceInit:
|
|
case IndirectLocalPathEntry::GslPointerInit:
|
|
// These exist primarily to mark the path as not permitting or
|
|
// supporting lifetime extension.
|
|
break;
|
|
|
|
case IndirectLocalPathEntry::VarInit:
|
|
if (cast<VarDecl>(Path[I].D)->isImplicit())
|
|
return SourceRange();
|
|
LLVM_FALLTHROUGH;
|
|
case IndirectLocalPathEntry::DefaultInit:
|
|
return Path[I].E->getSourceRange();
|
|
|
|
case IndirectLocalPathEntry::LambdaCaptureInit:
|
|
if (!Path[I].Capture->capturesVariable())
|
|
continue;
|
|
return Path[I].E->getSourceRange();
|
|
}
|
|
}
|
|
return E->getSourceRange();
|
|
}
|
|
|
|
static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
|
|
for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
|
|
if (It->Kind == IndirectLocalPathEntry::VarInit)
|
|
continue;
|
|
if (It->Kind == IndirectLocalPathEntry::AddressOf)
|
|
continue;
|
|
return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
|
|
It->Kind == IndirectLocalPathEntry::GslReferenceInit;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
|
|
Expr *Init) {
|
|
LifetimeResult LR = getEntityLifetime(&Entity);
|
|
LifetimeKind LK = LR.getInt();
|
|
const InitializedEntity *ExtendingEntity = LR.getPointer();
|
|
|
|
// If this entity doesn't have an interesting lifetime, don't bother looking
|
|
// for temporaries within its initializer.
|
|
if (LK == LK_FullExpression)
|
|
return;
|
|
|
|
auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
|
|
ReferenceKind RK) -> bool {
|
|
SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
|
|
SourceLocation DiagLoc = DiagRange.getBegin();
|
|
|
|
auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
|
|
|
|
bool IsGslPtrInitWithGslTempOwner = false;
|
|
bool IsLocalGslOwner = false;
|
|
if (pathOnlyInitializesGslPointer(Path)) {
|
|
if (isa<DeclRefExpr>(L)) {
|
|
// We do not want to follow the references when returning a pointer originating
|
|
// from a local owner to avoid the following false positive:
|
|
// int &p = *localUniquePtr;
|
|
// someContainer.add(std::move(localUniquePtr));
|
|
// return p;
|
|
IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
|
|
if (pathContainsInit(Path) || !IsLocalGslOwner)
|
|
return false;
|
|
} else {
|
|
IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
|
|
isRecordWithAttr<OwnerAttr>(MTE->getType());
|
|
// Skipping a chain of initializing gsl::Pointer annotated objects.
|
|
// We are looking only for the final source to find out if it was
|
|
// a local or temporary owner or the address of a local variable/param.
|
|
if (!IsGslPtrInitWithGslTempOwner)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
switch (LK) {
|
|
case LK_FullExpression:
|
|
llvm_unreachable("already handled this");
|
|
|
|
case LK_Extended: {
|
|
if (!MTE) {
|
|
// The initialized entity has lifetime beyond the full-expression,
|
|
// and the local entity does too, so don't warn.
|
|
//
|
|
// FIXME: We should consider warning if a static / thread storage
|
|
// duration variable retains an automatic storage duration local.
|
|
return false;
|
|
}
|
|
|
|
if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
|
|
Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
|
|
return false;
|
|
}
|
|
|
|
switch (shouldLifetimeExtendThroughPath(Path)) {
|
|
case PathLifetimeKind::Extend:
|
|
// Update the storage duration of the materialized temporary.
|
|
// FIXME: Rebuild the expression instead of mutating it.
|
|
MTE->setExtendingDecl(ExtendingEntity->getDecl(),
|
|
ExtendingEntity->allocateManglingNumber());
|
|
// Also visit the temporaries lifetime-extended by this initializer.
|
|
return true;
|
|
|
|
case PathLifetimeKind::ShouldExtend:
|
|
// We're supposed to lifetime-extend the temporary along this path (per
|
|
// the resolution of DR1815), but we don't support that yet.
|
|
//
|
|
// FIXME: Properly handle this situation. Perhaps the easiest approach
|
|
// would be to clone the initializer expression on each use that would
|
|
// lifetime extend its temporaries.
|
|
Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
|
|
<< RK << DiagRange;
|
|
break;
|
|
|
|
case PathLifetimeKind::NoExtend:
|
|
// If the path goes through the initialization of a variable or field,
|
|
// it can't possibly reach a temporary created in this full-expression.
|
|
// We will have already diagnosed any problems with the initializer.
|
|
if (pathContainsInit(Path))
|
|
return false;
|
|
|
|
Diag(DiagLoc, diag::warn_dangling_variable)
|
|
<< RK << !Entity.getParent()
|
|
<< ExtendingEntity->getDecl()->isImplicit()
|
|
<< ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case LK_MemInitializer: {
|
|
if (isa<MaterializeTemporaryExpr>(L)) {
|
|
// Under C++ DR1696, if a mem-initializer (or a default member
|
|
// initializer used by the absence of one) would lifetime-extend a
|
|
// temporary, the program is ill-formed.
|
|
if (auto *ExtendingDecl =
|
|
ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
|
|
if (IsGslPtrInitWithGslTempOwner) {
|
|
Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
|
|
<< ExtendingDecl << DiagRange;
|
|
Diag(ExtendingDecl->getLocation(),
|
|
diag::note_ref_or_ptr_member_declared_here)
|
|
<< true;
|
|
return false;
|
|
}
|
|
bool IsSubobjectMember = ExtendingEntity != &Entity;
|
|
Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
|
|
PathLifetimeKind::NoExtend
|
|
? diag::err_dangling_member
|
|
: diag::warn_dangling_member)
|
|
<< ExtendingDecl << IsSubobjectMember << RK << DiagRange;
|
|
// Don't bother adding a note pointing to the field if we're inside
|
|
// its default member initializer; our primary diagnostic points to
|
|
// the same place in that case.
|
|
if (Path.empty() ||
|
|
Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
|
|
Diag(ExtendingDecl->getLocation(),
|
|
diag::note_lifetime_extending_member_declared_here)
|
|
<< RK << IsSubobjectMember;
|
|
}
|
|
} else {
|
|
// We have a mem-initializer but no particular field within it; this
|
|
// is either a base class or a delegating initializer directly
|
|
// initializing the base-class from something that doesn't live long
|
|
// enough.
|
|
//
|
|
// FIXME: Warn on this.
|
|
return false;
|
|
}
|
|
} else {
|
|
// Paths via a default initializer can only occur during error recovery
|
|
// (there's no other way that a default initializer can refer to a
|
|
// local). Don't produce a bogus warning on those cases.
|
|
if (pathContainsInit(Path))
|
|
return false;
|
|
|
|
// Suppress false positives for code like the one below:
|
|
// Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
|
|
if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
|
|
return false;
|
|
|
|
auto *DRE = dyn_cast<DeclRefExpr>(L);
|
|
auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
|
|
if (!VD) {
|
|
// A member was initialized to a local block.
|
|
// FIXME: Warn on this.
|
|
return false;
|
|
}
|
|
|
|
if (auto *Member =
|
|
ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
|
|
bool IsPointer = !Member->getType()->isReferenceType();
|
|
Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
|
|
: diag::warn_bind_ref_member_to_parameter)
|
|
<< Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
|
|
Diag(Member->getLocation(),
|
|
diag::note_ref_or_ptr_member_declared_here)
|
|
<< (unsigned)IsPointer;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case LK_New:
|
|
if (isa<MaterializeTemporaryExpr>(L)) {
|
|
if (IsGslPtrInitWithGslTempOwner)
|
|
Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
|
|
else
|
|
Diag(DiagLoc, RK == RK_ReferenceBinding
|
|
? diag::warn_new_dangling_reference
|
|
: diag::warn_new_dangling_initializer_list)
|
|
<< !Entity.getParent() << DiagRange;
|
|
} else {
|
|
// We can't determine if the allocation outlives the local declaration.
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case LK_Return:
|
|
case LK_StmtExprResult:
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
|
|
// We can't determine if the local variable outlives the statement
|
|
// expression.
|
|
if (LK == LK_StmtExprResult)
|
|
return false;
|
|
Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
|
|
<< Entity.getType()->isReferenceType() << DRE->getDecl()
|
|
<< isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
|
|
} else if (isa<BlockExpr>(L)) {
|
|
Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
|
|
} else if (isa<AddrLabelExpr>(L)) {
|
|
// Don't warn when returning a label from a statement expression.
|
|
// Leaving the scope doesn't end its lifetime.
|
|
if (LK == LK_StmtExprResult)
|
|
return false;
|
|
Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
|
|
} else {
|
|
Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
|
|
<< Entity.getType()->isReferenceType() << DiagRange;
|
|
}
|
|
break;
|
|
}
|
|
|
|
for (unsigned I = 0; I != Path.size(); ++I) {
|
|
auto Elem = Path[I];
|
|
|
|
switch (Elem.Kind) {
|
|
case IndirectLocalPathEntry::AddressOf:
|
|
case IndirectLocalPathEntry::LValToRVal:
|
|
// These exist primarily to mark the path as not permitting or
|
|
// supporting lifetime extension.
|
|
break;
|
|
|
|
case IndirectLocalPathEntry::LifetimeBoundCall:
|
|
case IndirectLocalPathEntry::TemporaryCopy:
|
|
case IndirectLocalPathEntry::GslPointerInit:
|
|
case IndirectLocalPathEntry::GslReferenceInit:
|
|
// FIXME: Consider adding a note for these.
|
|
break;
|
|
|
|
case IndirectLocalPathEntry::DefaultInit: {
|
|
auto *FD = cast<FieldDecl>(Elem.D);
|
|
Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
|
|
<< FD << nextPathEntryRange(Path, I + 1, L);
|
|
break;
|
|
}
|
|
|
|
case IndirectLocalPathEntry::VarInit: {
|
|
const VarDecl *VD = cast<VarDecl>(Elem.D);
|
|
Diag(VD->getLocation(), diag::note_local_var_initializer)
|
|
<< VD->getType()->isReferenceType()
|
|
<< VD->isImplicit() << VD->getDeclName()
|
|
<< nextPathEntryRange(Path, I + 1, L);
|
|
break;
|
|
}
|
|
|
|
case IndirectLocalPathEntry::LambdaCaptureInit:
|
|
if (!Elem.Capture->capturesVariable())
|
|
break;
|
|
// FIXME: We can't easily tell apart an init-capture from a nested
|
|
// capture of an init-capture.
|
|
const VarDecl *VD = Elem.Capture->getCapturedVar();
|
|
Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
|
|
<< VD << VD->isInitCapture() << Elem.Capture->isExplicit()
|
|
<< (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
|
|
<< nextPathEntryRange(Path, I + 1, L);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We didn't lifetime-extend, so don't go any further; we don't need more
|
|
// warnings or errors on inner temporaries within this one's initializer.
|
|
return false;
|
|
};
|
|
|
|
bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
|
|
diag::warn_dangling_lifetime_pointer, SourceLocation());
|
|
llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
|
|
if (Init->isGLValue())
|
|
visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
|
|
TemporaryVisitor,
|
|
EnableLifetimeWarnings);
|
|
else
|
|
visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
|
|
EnableLifetimeWarnings);
|
|
}
|
|
|
|
static void DiagnoseNarrowingInInitList(Sema &S,
|
|
const ImplicitConversionSequence &ICS,
|
|
QualType PreNarrowingType,
|
|
QualType EntityType,
|
|
const Expr *PostInit);
|
|
|
|
/// Provide warnings when std::move is used on construction.
|
|
static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
|
|
bool IsReturnStmt) {
|
|
if (!InitExpr)
|
|
return;
|
|
|
|
if (S.inTemplateInstantiation())
|
|
return;
|
|
|
|
QualType DestType = InitExpr->getType();
|
|
if (!DestType->isRecordType())
|
|
return;
|
|
|
|
unsigned DiagID = 0;
|
|
if (IsReturnStmt) {
|
|
const CXXConstructExpr *CCE =
|
|
dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
|
|
if (!CCE || CCE->getNumArgs() != 1)
|
|
return;
|
|
|
|
if (!CCE->getConstructor()->isCopyOrMoveConstructor())
|
|
return;
|
|
|
|
InitExpr = CCE->getArg(0)->IgnoreImpCasts();
|
|
}
|
|
|
|
// Find the std::move call and get the argument.
|
|
const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
|
|
if (!CE || !CE->isCallToStdMove())
|
|
return;
|
|
|
|
const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
|
|
|
|
if (IsReturnStmt) {
|
|
const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
|
|
if (!DRE || DRE->refersToEnclosingVariableOrCapture())
|
|
return;
|
|
|
|
const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
|
|
if (!VD || !VD->hasLocalStorage())
|
|
return;
|
|
|
|
// __block variables are not moved implicitly.
|
|
if (VD->hasAttr<BlocksAttr>())
|
|
return;
|
|
|
|
QualType SourceType = VD->getType();
|
|
if (!SourceType->isRecordType())
|
|
return;
|
|
|
|
if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
|
|
return;
|
|
}
|
|
|
|
// If we're returning a function parameter, copy elision
|
|
// is not possible.
|
|
if (isa<ParmVarDecl>(VD))
|
|
DiagID = diag::warn_redundant_move_on_return;
|
|
else
|
|
DiagID = diag::warn_pessimizing_move_on_return;
|
|
} else {
|
|
DiagID = diag::warn_pessimizing_move_on_initialization;
|
|
const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
|
|
if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
|
|
return;
|
|
}
|
|
|
|
S.Diag(CE->getBeginLoc(), DiagID);
|
|
|
|
// Get all the locations for a fix-it. Don't emit the fix-it if any location
|
|
// is within a macro.
|
|
SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
|
|
if (CallBegin.isMacroID())
|
|
return;
|
|
SourceLocation RParen = CE->getRParenLoc();
|
|
if (RParen.isMacroID())
|
|
return;
|
|
SourceLocation LParen;
|
|
SourceLocation ArgLoc = Arg->getBeginLoc();
|
|
|
|
// Special testing for the argument location. Since the fix-it needs the
|
|
// location right before the argument, the argument location can be in a
|
|
// macro only if it is at the beginning of the macro.
|
|
while (ArgLoc.isMacroID() &&
|
|
S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
|
|
ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
|
|
}
|
|
|
|
if (LParen.isMacroID())
|
|
return;
|
|
|
|
LParen = ArgLoc.getLocWithOffset(-1);
|
|
|
|
S.Diag(CE->getBeginLoc(), diag::note_remove_move)
|
|
<< FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
|
|
<< FixItHint::CreateRemoval(SourceRange(RParen, RParen));
|
|
}
|
|
|
|
static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
|
|
// Check to see if we are dereferencing a null pointer. If so, this is
|
|
// undefined behavior, so warn about it. This only handles the pattern
|
|
// "*null", which is a very syntactic check.
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
|
|
if (UO->getOpcode() == UO_Deref &&
|
|
UO->getSubExpr()->IgnoreParenCasts()->
|
|
isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
|
|
S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
|
|
S.PDiag(diag::warn_binding_null_to_reference)
|
|
<< UO->getSubExpr()->getSourceRange());
|
|
}
|
|
}
|
|
|
|
MaterializeTemporaryExpr *
|
|
Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
|
|
bool BoundToLvalueReference) {
|
|
auto MTE = new (Context)
|
|
MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
|
|
|
|
// Order an ExprWithCleanups for lifetime marks.
|
|
//
|
|
// TODO: It'll be good to have a single place to check the access of the
|
|
// destructor and generate ExprWithCleanups for various uses. Currently these
|
|
// are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
|
|
// but there may be a chance to merge them.
|
|
Cleanup.setExprNeedsCleanups(false);
|
|
return MTE;
|
|
}
|
|
|
|
ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
|
|
// In C++98, we don't want to implicitly create an xvalue.
|
|
// FIXME: This means that AST consumers need to deal with "prvalues" that
|
|
// denote materialized temporaries. Maybe we should add another ValueKind
|
|
// for "xvalue pretending to be a prvalue" for C++98 support.
|
|
if (!E->isRValue() || !getLangOpts().CPlusPlus11)
|
|
return E;
|
|
|
|
// C++1z [conv.rval]/1: T shall be a complete type.
|
|
// FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
|
|
// If so, we should check for a non-abstract class type here too.
|
|
QualType T = E->getType();
|
|
if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
|
|
return ExprError();
|
|
|
|
return CreateMaterializeTemporaryExpr(E->getType(), E, false);
|
|
}
|
|
|
|
ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
|
|
ExprValueKind VK,
|
|
CheckedConversionKind CCK) {
|
|
|
|
CastKind CK = CK_NoOp;
|
|
|
|
if (VK == VK_RValue) {
|
|
auto PointeeTy = Ty->getPointeeType();
|
|
auto ExprPointeeTy = E->getType()->getPointeeType();
|
|
if (!PointeeTy.isNull() &&
|
|
PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
|
|
CK = CK_AddressSpaceConversion;
|
|
} else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
|
|
CK = CK_AddressSpaceConversion;
|
|
}
|
|
|
|
return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
|
|
}
|
|
|
|
ExprResult InitializationSequence::Perform(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
MultiExprArg Args,
|
|
QualType *ResultType) {
|
|
if (Failed()) {
|
|
Diagnose(S, Entity, Kind, Args);
|
|
return ExprError();
|
|
}
|
|
if (!ZeroInitializationFixit.empty()) {
|
|
unsigned DiagID = diag::err_default_init_const;
|
|
if (Decl *D = Entity.getDecl())
|
|
if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
|
|
DiagID = diag::ext_default_init_const;
|
|
|
|
// The initialization would have succeeded with this fixit. Since the fixit
|
|
// is on the error, we need to build a valid AST in this case, so this isn't
|
|
// handled in the Failed() branch above.
|
|
QualType DestType = Entity.getType();
|
|
S.Diag(Kind.getLocation(), DiagID)
|
|
<< DestType << (bool)DestType->getAs<RecordType>()
|
|
<< FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
|
|
ZeroInitializationFixit);
|
|
}
|
|
|
|
if (getKind() == DependentSequence) {
|
|
// If the declaration is a non-dependent, incomplete array type
|
|
// that has an initializer, then its type will be completed once
|
|
// the initializer is instantiated.
|
|
if (ResultType && !Entity.getType()->isDependentType() &&
|
|
Args.size() == 1) {
|
|
QualType DeclType = Entity.getType();
|
|
if (const IncompleteArrayType *ArrayT
|
|
= S.Context.getAsIncompleteArrayType(DeclType)) {
|
|
// FIXME: We don't currently have the ability to accurately
|
|
// compute the length of an initializer list without
|
|
// performing full type-checking of the initializer list
|
|
// (since we have to determine where braces are implicitly
|
|
// introduced and such). So, we fall back to making the array
|
|
// type a dependently-sized array type with no specified
|
|
// bound.
|
|
if (isa<InitListExpr>((Expr *)Args[0])) {
|
|
SourceRange Brackets;
|
|
|
|
// Scavange the location of the brackets from the entity, if we can.
|
|
if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
|
|
if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
|
|
TypeLoc TL = TInfo->getTypeLoc();
|
|
if (IncompleteArrayTypeLoc ArrayLoc =
|
|
TL.getAs<IncompleteArrayTypeLoc>())
|
|
Brackets = ArrayLoc.getBracketsRange();
|
|
}
|
|
}
|
|
|
|
*ResultType
|
|
= S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
|
|
/*NumElts=*/nullptr,
|
|
ArrayT->getSizeModifier(),
|
|
ArrayT->getIndexTypeCVRQualifiers(),
|
|
Brackets);
|
|
}
|
|
|
|
}
|
|
}
|
|
if (Kind.getKind() == InitializationKind::IK_Direct &&
|
|
!Kind.isExplicitCast()) {
|
|
// Rebuild the ParenListExpr.
|
|
SourceRange ParenRange = Kind.getParenOrBraceRange();
|
|
return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
|
|
Args);
|
|
}
|
|
assert(Kind.getKind() == InitializationKind::IK_Copy ||
|
|
Kind.isExplicitCast() ||
|
|
Kind.getKind() == InitializationKind::IK_DirectList);
|
|
return ExprResult(Args[0]);
|
|
}
|
|
|
|
// No steps means no initialization.
|
|
if (Steps.empty())
|
|
return ExprResult((Expr *)nullptr);
|
|
|
|
if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
|
|
Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
|
|
!Entity.isParamOrTemplateParamKind()) {
|
|
// Produce a C++98 compatibility warning if we are initializing a reference
|
|
// from an initializer list. For parameters, we produce a better warning
|
|
// elsewhere.
|
|
Expr *Init = Args[0];
|
|
S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
|
|
<< Init->getSourceRange();
|
|
}
|
|
|
|
// OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
|
|
QualType ETy = Entity.getType();
|
|
bool HasGlobalAS = ETy.hasAddressSpace() &&
|
|
ETy.getAddressSpace() == LangAS::opencl_global;
|
|
|
|
if (S.getLangOpts().OpenCLVersion >= 200 &&
|
|
ETy->isAtomicType() && !HasGlobalAS &&
|
|
Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
|
|
S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
|
|
<< 1
|
|
<< SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
|
|
return ExprError();
|
|
}
|
|
|
|
QualType DestType = Entity.getType().getNonReferenceType();
|
|
// FIXME: Ugly hack around the fact that Entity.getType() is not
|
|
// the same as Entity.getDecl()->getType() in cases involving type merging,
|
|
// and we want latter when it makes sense.
|
|
if (ResultType)
|
|
*ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
|
|
Entity.getType();
|
|
|
|
ExprResult CurInit((Expr *)nullptr);
|
|
SmallVector<Expr*, 4> ArrayLoopCommonExprs;
|
|
|
|
// For initialization steps that start with a single initializer,
|
|
// grab the only argument out the Args and place it into the "current"
|
|
// initializer.
|
|
switch (Steps.front().Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue:
|
|
case SK_BindReference:
|
|
case SK_BindReferenceToTemporary:
|
|
case SK_FinalCopy:
|
|
case SK_ExtraneousCopyToTemporary:
|
|
case SK_UserConversion:
|
|
case SK_QualificationConversionLValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionRValue:
|
|
case SK_FunctionReferenceConversion:
|
|
case SK_AtomicConversion:
|
|
case SK_ConversionSequence:
|
|
case SK_ConversionSequenceNoNarrowing:
|
|
case SK_ListInitialization:
|
|
case SK_UnwrapInitList:
|
|
case SK_RewrapInitList:
|
|
case SK_CAssignment:
|
|
case SK_StringInit:
|
|
case SK_ObjCObjectConversion:
|
|
case SK_ArrayLoopIndex:
|
|
case SK_ArrayLoopInit:
|
|
case SK_ArrayInit:
|
|
case SK_GNUArrayInit:
|
|
case SK_ParenthesizedArrayInit:
|
|
case SK_PassByIndirectCopyRestore:
|
|
case SK_PassByIndirectRestore:
|
|
case SK_ProduceObjCObject:
|
|
case SK_StdInitializerList:
|
|
case SK_OCLSamplerInit:
|
|
case SK_OCLZeroOpaqueType: {
|
|
assert(Args.size() == 1);
|
|
CurInit = Args[0];
|
|
if (!CurInit.get()) return ExprError();
|
|
break;
|
|
}
|
|
|
|
case SK_ConstructorInitialization:
|
|
case SK_ConstructorInitializationFromList:
|
|
case SK_StdInitializerListConstructorCall:
|
|
case SK_ZeroInitialization:
|
|
break;
|
|
}
|
|
|
|
// Promote from an unevaluated context to an unevaluated list context in
|
|
// C++11 list-initialization; we need to instantiate entities usable in
|
|
// constant expressions here in order to perform narrowing checks =(
|
|
EnterExpressionEvaluationContext Evaluated(
|
|
S, EnterExpressionEvaluationContext::InitList,
|
|
CurInit.get() && isa<InitListExpr>(CurInit.get()));
|
|
|
|
// C++ [class.abstract]p2:
|
|
// no objects of an abstract class can be created except as subobjects
|
|
// of a class derived from it
|
|
auto checkAbstractType = [&](QualType T) -> bool {
|
|
if (Entity.getKind() == InitializedEntity::EK_Base ||
|
|
Entity.getKind() == InitializedEntity::EK_Delegating)
|
|
return false;
|
|
return S.RequireNonAbstractType(Kind.getLocation(), T,
|
|
diag::err_allocation_of_abstract_type);
|
|
};
|
|
|
|
// Walk through the computed steps for the initialization sequence,
|
|
// performing the specified conversions along the way.
|
|
bool ConstructorInitRequiresZeroInit = false;
|
|
for (step_iterator Step = step_begin(), StepEnd = step_end();
|
|
Step != StepEnd; ++Step) {
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
|
|
|
|
switch (Step->Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
// Overload resolution determined which function invoke; update the
|
|
// initializer to reflect that choice.
|
|
S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
|
|
if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
|
|
return ExprError();
|
|
CurInit = S.FixOverloadedFunctionReference(CurInit,
|
|
Step->Function.FoundDecl,
|
|
Step->Function.Function);
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseRValue:
|
|
case SK_CastDerivedToBaseXValue:
|
|
case SK_CastDerivedToBaseLValue: {
|
|
// We have a derived-to-base cast that produces either an rvalue or an
|
|
// lvalue. Perform that cast.
|
|
|
|
CXXCastPath BasePath;
|
|
|
|
// Casts to inaccessible base classes are allowed with C-style casts.
|
|
bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
|
|
if (S.CheckDerivedToBaseConversion(
|
|
SourceType, Step->Type, CurInit.get()->getBeginLoc(),
|
|
CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
|
|
return ExprError();
|
|
|
|
ExprValueKind VK =
|
|
Step->Kind == SK_CastDerivedToBaseLValue ?
|
|
VK_LValue :
|
|
(Step->Kind == SK_CastDerivedToBaseXValue ?
|
|
VK_XValue :
|
|
VK_RValue);
|
|
CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
|
|
CK_DerivedToBase, CurInit.get(),
|
|
&BasePath, VK, FPOptionsOverride());
|
|
break;
|
|
}
|
|
|
|
case SK_BindReference:
|
|
// Reference binding does not have any corresponding ASTs.
|
|
|
|
// Check exception specifications
|
|
if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
|
|
return ExprError();
|
|
|
|
// We don't check for e.g. function pointers here, since address
|
|
// availability checks should only occur when the function first decays
|
|
// into a pointer or reference.
|
|
if (CurInit.get()->getType()->isFunctionProtoType()) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
|
|
if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
|
|
if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
|
|
DRE->getBeginLoc()))
|
|
return ExprError();
|
|
}
|
|
}
|
|
}
|
|
|
|
CheckForNullPointerDereference(S, CurInit.get());
|
|
break;
|
|
|
|
case SK_BindReferenceToTemporary: {
|
|
// Make sure the "temporary" is actually an rvalue.
|
|
assert(CurInit.get()->isRValue() && "not a temporary");
|
|
|
|
// Check exception specifications
|
|
if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
|
|
return ExprError();
|
|
|
|
QualType MTETy = Step->Type;
|
|
|
|
// When this is an incomplete array type (such as when this is
|
|
// initializing an array of unknown bounds from an init list), use THAT
|
|
// type instead so that we propogate the array bounds.
|
|
if (MTETy->isIncompleteArrayType() &&
|
|
!CurInit.get()->getType()->isIncompleteArrayType() &&
|
|
S.Context.hasSameType(
|
|
MTETy->getPointeeOrArrayElementType(),
|
|
CurInit.get()->getType()->getPointeeOrArrayElementType()))
|
|
MTETy = CurInit.get()->getType();
|
|
|
|
// Materialize the temporary into memory.
|
|
MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
|
|
MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
|
|
CurInit = MTE;
|
|
|
|
// If we're extending this temporary to automatic storage duration -- we
|
|
// need to register its cleanup during the full-expression's cleanups.
|
|
if (MTE->getStorageDuration() == SD_Automatic &&
|
|
MTE->getType().isDestructedType())
|
|
S.Cleanup.setExprNeedsCleanups(true);
|
|
break;
|
|
}
|
|
|
|
case SK_FinalCopy:
|
|
if (checkAbstractType(Step->Type))
|
|
return ExprError();
|
|
|
|
// If the overall initialization is initializing a temporary, we already
|
|
// bound our argument if it was necessary to do so. If not (if we're
|
|
// ultimately initializing a non-temporary), our argument needs to be
|
|
// bound since it's initializing a function parameter.
|
|
// FIXME: This is a mess. Rationalize temporary destruction.
|
|
if (!shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.get());
|
|
CurInit = CopyObject(S, Step->Type, Entity, CurInit,
|
|
/*IsExtraneousCopy=*/false);
|
|
break;
|
|
|
|
case SK_ExtraneousCopyToTemporary:
|
|
CurInit = CopyObject(S, Step->Type, Entity, CurInit,
|
|
/*IsExtraneousCopy=*/true);
|
|
break;
|
|
|
|
case SK_UserConversion: {
|
|
// We have a user-defined conversion that invokes either a constructor
|
|
// or a conversion function.
|
|
CastKind CastKind;
|
|
FunctionDecl *Fn = Step->Function.Function;
|
|
DeclAccessPair FoundFn = Step->Function.FoundDecl;
|
|
bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
|
|
bool CreatedObject = false;
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
|
|
// Build a call to the selected constructor.
|
|
SmallVector<Expr*, 8> ConstructorArgs;
|
|
SourceLocation Loc = CurInit.get()->getBeginLoc();
|
|
|
|
// Determine the arguments required to actually perform the constructor
|
|
// call.
|
|
Expr *Arg = CurInit.get();
|
|
if (S.CompleteConstructorCall(Constructor,
|
|
MultiExprArg(&Arg, 1),
|
|
Loc, ConstructorArgs))
|
|
return ExprError();
|
|
|
|
// Build an expression that constructs a temporary.
|
|
CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
|
|
FoundFn, Constructor,
|
|
ConstructorArgs,
|
|
HadMultipleCandidates,
|
|
/*ListInit*/ false,
|
|
/*StdInitListInit*/ false,
|
|
/*ZeroInit*/ false,
|
|
CXXConstructExpr::CK_Complete,
|
|
SourceRange());
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
|
|
Entity);
|
|
if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
|
|
return ExprError();
|
|
|
|
CastKind = CK_ConstructorConversion;
|
|
CreatedObject = true;
|
|
} else {
|
|
// Build a call to the conversion function.
|
|
CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
|
|
S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
|
|
FoundFn);
|
|
if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
|
|
return ExprError();
|
|
|
|
CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
|
|
HadMultipleCandidates);
|
|
if (CurInit.isInvalid())
|
|
return ExprError();
|
|
|
|
CastKind = CK_UserDefinedConversion;
|
|
CreatedObject = Conversion->getReturnType()->isRecordType();
|
|
}
|
|
|
|
if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
|
|
return ExprError();
|
|
|
|
CurInit = ImplicitCastExpr::Create(
|
|
S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
|
|
CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
|
|
|
|
if (shouldBindAsTemporary(Entity))
|
|
// The overall entity is temporary, so this expression should be
|
|
// destroyed at the end of its full-expression.
|
|
CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
|
|
else if (CreatedObject && shouldDestroyEntity(Entity)) {
|
|
// The object outlasts the full-expression, but we need to prepare for
|
|
// a destructor being run on it.
|
|
// FIXME: It makes no sense to do this here. This should happen
|
|
// regardless of how we initialized the entity.
|
|
QualType T = CurInit.get()->getType();
|
|
if (const RecordType *Record = T->getAs<RecordType>()) {
|
|
CXXDestructorDecl *Destructor
|
|
= S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
|
|
S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
|
|
S.PDiag(diag::err_access_dtor_temp) << T);
|
|
S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
|
|
if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
|
|
return ExprError();
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SK_QualificationConversionLValue:
|
|
case SK_QualificationConversionXValue:
|
|
case SK_QualificationConversionRValue: {
|
|
// Perform a qualification conversion; these can never go wrong.
|
|
ExprValueKind VK =
|
|
Step->Kind == SK_QualificationConversionLValue
|
|
? VK_LValue
|
|
: (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
|
|
: VK_RValue);
|
|
CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
|
|
break;
|
|
}
|
|
|
|
case SK_FunctionReferenceConversion:
|
|
assert(CurInit.get()->isLValue() &&
|
|
"function reference should be lvalue");
|
|
CurInit =
|
|
S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
|
|
break;
|
|
|
|
case SK_AtomicConversion: {
|
|
assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic");
|
|
CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
|
|
CK_NonAtomicToAtomic, VK_RValue);
|
|
break;
|
|
}
|
|
|
|
case SK_ConversionSequence:
|
|
case SK_ConversionSequenceNoNarrowing: {
|
|
if (const auto *FromPtrType =
|
|
CurInit.get()->getType()->getAs<PointerType>()) {
|
|
if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
|
|
if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
|
|
!ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
|
|
// Do not check static casts here because they are checked earlier
|
|
// in Sema::ActOnCXXNamedCast()
|
|
if (!Kind.isStaticCast()) {
|
|
S.Diag(CurInit.get()->getExprLoc(),
|
|
diag::warn_noderef_to_dereferenceable_pointer)
|
|
<< CurInit.get()->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Sema::CheckedConversionKind CCK
|
|
= Kind.isCStyleCast()? Sema::CCK_CStyleCast
|
|
: Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
|
|
: Kind.isExplicitCast()? Sema::CCK_OtherCast
|
|
: Sema::CCK_ImplicitConversion;
|
|
ExprResult CurInitExprRes =
|
|
S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
|
|
getAssignmentAction(Entity), CCK);
|
|
if (CurInitExprRes.isInvalid())
|
|
return ExprError();
|
|
|
|
S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
|
|
|
|
CurInit = CurInitExprRes;
|
|
|
|
if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
|
|
S.getLangOpts().CPlusPlus)
|
|
DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
|
|
CurInit.get());
|
|
|
|
break;
|
|
}
|
|
|
|
case SK_ListInitialization: {
|
|
if (checkAbstractType(Step->Type))
|
|
return ExprError();
|
|
|
|
InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
|
|
// If we're not initializing the top-level entity, we need to create an
|
|
// InitializeTemporary entity for our target type.
|
|
QualType Ty = Step->Type;
|
|
bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
|
|
InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
|
|
InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
|
|
InitListChecker PerformInitList(S, InitEntity,
|
|
InitList, Ty, /*VerifyOnly=*/false,
|
|
/*TreatUnavailableAsInvalid=*/false);
|
|
if (PerformInitList.HadError())
|
|
return ExprError();
|
|
|
|
// Hack: We must update *ResultType if available in order to set the
|
|
// bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
|
|
// Worst case: 'const int (&arref)[] = {1, 2, 3};'.
|
|
if (ResultType &&
|
|
ResultType->getNonReferenceType()->isIncompleteArrayType()) {
|
|
if ((*ResultType)->isRValueReferenceType())
|
|
Ty = S.Context.getRValueReferenceType(Ty);
|
|
else if ((*ResultType)->isLValueReferenceType())
|
|
Ty = S.Context.getLValueReferenceType(Ty,
|
|
(*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
|
|
*ResultType = Ty;
|
|
}
|
|
|
|
InitListExpr *StructuredInitList =
|
|
PerformInitList.getFullyStructuredList();
|
|
CurInit.get();
|
|
CurInit = shouldBindAsTemporary(InitEntity)
|
|
? S.MaybeBindToTemporary(StructuredInitList)
|
|
: StructuredInitList;
|
|
break;
|
|
}
|
|
|
|
case SK_ConstructorInitializationFromList: {
|
|
if (checkAbstractType(Step->Type))
|
|
return ExprError();
|
|
|
|
// When an initializer list is passed for a parameter of type "reference
|
|
// to object", we don't get an EK_Temporary entity, but instead an
|
|
// EK_Parameter entity with reference type.
|
|
// FIXME: This is a hack. What we really should do is create a user
|
|
// conversion step for this case, but this makes it considerably more
|
|
// complicated. For now, this will do.
|
|
InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
|
|
Entity.getType().getNonReferenceType());
|
|
bool UseTemporary = Entity.getType()->isReferenceType();
|
|
assert(Args.size() == 1 && "expected a single argument for list init");
|
|
InitListExpr *InitList = cast<InitListExpr>(Args[0]);
|
|
S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
|
|
<< InitList->getSourceRange();
|
|
MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
|
|
CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
|
|
Entity,
|
|
Kind, Arg, *Step,
|
|
ConstructorInitRequiresZeroInit,
|
|
/*IsListInitialization*/true,
|
|
/*IsStdInitListInit*/false,
|
|
InitList->getLBraceLoc(),
|
|
InitList->getRBraceLoc());
|
|
break;
|
|
}
|
|
|
|
case SK_UnwrapInitList:
|
|
CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
|
|
break;
|
|
|
|
case SK_RewrapInitList: {
|
|
Expr *E = CurInit.get();
|
|
InitListExpr *Syntactic = Step->WrappingSyntacticList;
|
|
InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
|
|
Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
|
|
ILE->setSyntacticForm(Syntactic);
|
|
ILE->setType(E->getType());
|
|
ILE->setValueKind(E->getValueKind());
|
|
CurInit = ILE;
|
|
break;
|
|
}
|
|
|
|
case SK_ConstructorInitialization:
|
|
case SK_StdInitializerListConstructorCall: {
|
|
if (checkAbstractType(Step->Type))
|
|
return ExprError();
|
|
|
|
// When an initializer list is passed for a parameter of type "reference
|
|
// to object", we don't get an EK_Temporary entity, but instead an
|
|
// EK_Parameter entity with reference type.
|
|
// FIXME: This is a hack. What we really should do is create a user
|
|
// conversion step for this case, but this makes it considerably more
|
|
// complicated. For now, this will do.
|
|
InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
|
|
Entity.getType().getNonReferenceType());
|
|
bool UseTemporary = Entity.getType()->isReferenceType();
|
|
bool IsStdInitListInit =
|
|
Step->Kind == SK_StdInitializerListConstructorCall;
|
|
Expr *Source = CurInit.get();
|
|
SourceRange Range = Kind.hasParenOrBraceRange()
|
|
? Kind.getParenOrBraceRange()
|
|
: SourceRange();
|
|
CurInit = PerformConstructorInitialization(
|
|
S, UseTemporary ? TempEntity : Entity, Kind,
|
|
Source ? MultiExprArg(Source) : Args, *Step,
|
|
ConstructorInitRequiresZeroInit,
|
|
/*IsListInitialization*/ IsStdInitListInit,
|
|
/*IsStdInitListInitialization*/ IsStdInitListInit,
|
|
/*LBraceLoc*/ Range.getBegin(),
|
|
/*RBraceLoc*/ Range.getEnd());
|
|
break;
|
|
}
|
|
|
|
case SK_ZeroInitialization: {
|
|
step_iterator NextStep = Step;
|
|
++NextStep;
|
|
if (NextStep != StepEnd &&
|
|
(NextStep->Kind == SK_ConstructorInitialization ||
|
|
NextStep->Kind == SK_ConstructorInitializationFromList)) {
|
|
// The need for zero-initialization is recorded directly into
|
|
// the call to the object's constructor within the next step.
|
|
ConstructorInitRequiresZeroInit = true;
|
|
} else if (Kind.getKind() == InitializationKind::IK_Value &&
|
|
S.getLangOpts().CPlusPlus &&
|
|
!Kind.isImplicitValueInit()) {
|
|
TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
|
|
if (!TSInfo)
|
|
TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
|
|
Kind.getRange().getBegin());
|
|
|
|
CurInit = new (S.Context) CXXScalarValueInitExpr(
|
|
Entity.getType().getNonLValueExprType(S.Context), TSInfo,
|
|
Kind.getRange().getEnd());
|
|
} else {
|
|
CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case SK_CAssignment: {
|
|
QualType SourceType = CurInit.get()->getType();
|
|
|
|
// Save off the initial CurInit in case we need to emit a diagnostic
|
|
ExprResult InitialCurInit = CurInit;
|
|
ExprResult Result = CurInit;
|
|
Sema::AssignConvertType ConvTy =
|
|
S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
|
|
Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
|
|
if (Result.isInvalid())
|
|
return ExprError();
|
|
CurInit = Result;
|
|
|
|
// If this is a call, allow conversion to a transparent union.
|
|
ExprResult CurInitExprRes = CurInit;
|
|
if (ConvTy != Sema::Compatible &&
|
|
Entity.isParameterKind() &&
|
|
S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
|
|
== Sema::Compatible)
|
|
ConvTy = Sema::Compatible;
|
|
if (CurInitExprRes.isInvalid())
|
|
return ExprError();
|
|
CurInit = CurInitExprRes;
|
|
|
|
bool Complained;
|
|
if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
|
|
Step->Type, SourceType,
|
|
InitialCurInit.get(),
|
|
getAssignmentAction(Entity, true),
|
|
&Complained)) {
|
|
PrintInitLocationNote(S, Entity);
|
|
return ExprError();
|
|
} else if (Complained)
|
|
PrintInitLocationNote(S, Entity);
|
|
break;
|
|
}
|
|
|
|
case SK_StringInit: {
|
|
QualType Ty = Step->Type;
|
|
bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
|
|
CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
|
|
S.Context.getAsArrayType(Ty), S);
|
|
break;
|
|
}
|
|
|
|
case SK_ObjCObjectConversion:
|
|
CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
|
|
CK_ObjCObjectLValueCast,
|
|
CurInit.get()->getValueKind());
|
|
break;
|
|
|
|
case SK_ArrayLoopIndex: {
|
|
Expr *Cur = CurInit.get();
|
|
Expr *BaseExpr = new (S.Context)
|
|
OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
|
|
Cur->getValueKind(), Cur->getObjectKind(), Cur);
|
|
Expr *IndexExpr =
|
|
new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
|
|
CurInit = S.CreateBuiltinArraySubscriptExpr(
|
|
BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
|
|
ArrayLoopCommonExprs.push_back(BaseExpr);
|
|
break;
|
|
}
|
|
|
|
case SK_ArrayLoopInit: {
|
|
assert(!ArrayLoopCommonExprs.empty() &&
|
|
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit");
|
|
Expr *Common = ArrayLoopCommonExprs.pop_back_val();
|
|
CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
|
|
CurInit.get());
|
|
break;
|
|
}
|
|
|
|
case SK_GNUArrayInit:
|
|
// Okay: we checked everything before creating this step. Note that
|
|
// this is a GNU extension.
|
|
S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
|
|
<< Step->Type << CurInit.get()->getType()
|
|
<< CurInit.get()->getSourceRange();
|
|
updateGNUCompoundLiteralRValue(CurInit.get());
|
|
LLVM_FALLTHROUGH;
|
|
case SK_ArrayInit:
|
|
// If the destination type is an incomplete array type, update the
|
|
// type accordingly.
|
|
if (ResultType) {
|
|
if (const IncompleteArrayType *IncompleteDest
|
|
= S.Context.getAsIncompleteArrayType(Step->Type)) {
|
|
if (const ConstantArrayType *ConstantSource
|
|
= S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
|
|
*ResultType = S.Context.getConstantArrayType(
|
|
IncompleteDest->getElementType(),
|
|
ConstantSource->getSize(),
|
|
ConstantSource->getSizeExpr(),
|
|
ArrayType::Normal, 0);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case SK_ParenthesizedArrayInit:
|
|
// Okay: we checked everything before creating this step. Note that
|
|
// this is a GNU extension.
|
|
S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
|
|
<< CurInit.get()->getSourceRange();
|
|
break;
|
|
|
|
case SK_PassByIndirectCopyRestore:
|
|
case SK_PassByIndirectRestore:
|
|
checkIndirectCopyRestoreSource(S, CurInit.get());
|
|
CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
|
|
CurInit.get(), Step->Type,
|
|
Step->Kind == SK_PassByIndirectCopyRestore);
|
|
break;
|
|
|
|
case SK_ProduceObjCObject:
|
|
CurInit = ImplicitCastExpr::Create(
|
|
S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
|
|
VK_RValue, FPOptionsOverride());
|
|
break;
|
|
|
|
case SK_StdInitializerList: {
|
|
S.Diag(CurInit.get()->getExprLoc(),
|
|
diag::warn_cxx98_compat_initializer_list_init)
|
|
<< CurInit.get()->getSourceRange();
|
|
|
|
// Materialize the temporary into memory.
|
|
MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
|
|
CurInit.get()->getType(), CurInit.get(),
|
|
/*BoundToLvalueReference=*/false);
|
|
|
|
// Wrap it in a construction of a std::initializer_list<T>.
|
|
CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
|
|
|
|
// Bind the result, in case the library has given initializer_list a
|
|
// non-trivial destructor.
|
|
if (shouldBindAsTemporary(Entity))
|
|
CurInit = S.MaybeBindToTemporary(CurInit.get());
|
|
break;
|
|
}
|
|
|
|
case SK_OCLSamplerInit: {
|
|
// Sampler initialization have 5 cases:
|
|
// 1. function argument passing
|
|
// 1a. argument is a file-scope variable
|
|
// 1b. argument is a function-scope variable
|
|
// 1c. argument is one of caller function's parameters
|
|
// 2. variable initialization
|
|
// 2a. initializing a file-scope variable
|
|
// 2b. initializing a function-scope variable
|
|
//
|
|
// For file-scope variables, since they cannot be initialized by function
|
|
// call of __translate_sampler_initializer in LLVM IR, their references
|
|
// need to be replaced by a cast from their literal initializers to
|
|
// sampler type. Since sampler variables can only be used in function
|
|
// calls as arguments, we only need to replace them when handling the
|
|
// argument passing.
|
|
assert(Step->Type->isSamplerT() &&
|
|
"Sampler initialization on non-sampler type.");
|
|
Expr *Init = CurInit.get()->IgnoreParens();
|
|
QualType SourceType = Init->getType();
|
|
// Case 1
|
|
if (Entity.isParameterKind()) {
|
|
if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
|
|
S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
|
|
<< SourceType;
|
|
break;
|
|
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
|
|
auto Var = cast<VarDecl>(DRE->getDecl());
|
|
// Case 1b and 1c
|
|
// No cast from integer to sampler is needed.
|
|
if (!Var->hasGlobalStorage()) {
|
|
CurInit = ImplicitCastExpr::Create(
|
|
S.Context, Step->Type, CK_LValueToRValue, Init,
|
|
/*BasePath=*/nullptr, VK_RValue, FPOptionsOverride());
|
|
break;
|
|
}
|
|
// Case 1a
|
|
// For function call with a file-scope sampler variable as argument,
|
|
// get the integer literal.
|
|
// Do not diagnose if the file-scope variable does not have initializer
|
|
// since this has already been diagnosed when parsing the variable
|
|
// declaration.
|
|
if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
|
|
break;
|
|
Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
|
|
Var->getInit()))->getSubExpr();
|
|
SourceType = Init->getType();
|
|
}
|
|
} else {
|
|
// Case 2
|
|
// Check initializer is 32 bit integer constant.
|
|
// If the initializer is taken from global variable, do not diagnose since
|
|
// this has already been done when parsing the variable declaration.
|
|
if (!Init->isConstantInitializer(S.Context, false))
|
|
break;
|
|
|
|
if (!SourceType->isIntegerType() ||
|
|
32 != S.Context.getIntWidth(SourceType)) {
|
|
S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
|
|
<< SourceType;
|
|
break;
|
|
}
|
|
|
|
Expr::EvalResult EVResult;
|
|
Init->EvaluateAsInt(EVResult, S.Context);
|
|
llvm::APSInt Result = EVResult.Val.getInt();
|
|
const uint64_t SamplerValue = Result.getLimitedValue();
|
|
// 32-bit value of sampler's initializer is interpreted as
|
|
// bit-field with the following structure:
|
|
// |unspecified|Filter|Addressing Mode| Normalized Coords|
|
|
// |31 6|5 4|3 1| 0|
|
|
// This structure corresponds to enum values of sampler properties
|
|
// defined in SPIR spec v1.2 and also opencl-c.h
|
|
unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
|
|
unsigned FilterMode = (0x30 & SamplerValue) >> 4;
|
|
if (FilterMode != 1 && FilterMode != 2 &&
|
|
!S.getOpenCLOptions().isEnabled(
|
|
"cl_intel_device_side_avc_motion_estimation"))
|
|
S.Diag(Kind.getLocation(),
|
|
diag::warn_sampler_initializer_invalid_bits)
|
|
<< "Filter Mode";
|
|
if (AddressingMode > 4)
|
|
S.Diag(Kind.getLocation(),
|
|
diag::warn_sampler_initializer_invalid_bits)
|
|
<< "Addressing Mode";
|
|
}
|
|
|
|
// Cases 1a, 2a and 2b
|
|
// Insert cast from integer to sampler.
|
|
CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
|
|
CK_IntToOCLSampler);
|
|
break;
|
|
}
|
|
case SK_OCLZeroOpaqueType: {
|
|
assert((Step->Type->isEventT() || Step->Type->isQueueT() ||
|
|
Step->Type->isOCLIntelSubgroupAVCType()) &&
|
|
"Wrong type for initialization of OpenCL opaque type.");
|
|
|
|
CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
|
|
CK_ZeroToOCLOpaqueType,
|
|
CurInit.get()->getValueKind());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether the initializer has a shorter lifetime than the initialized
|
|
// entity, and if not, either lifetime-extend or warn as appropriate.
|
|
if (auto *Init = CurInit.get())
|
|
S.checkInitializerLifetime(Entity, Init);
|
|
|
|
// Diagnose non-fatal problems with the completed initialization.
|
|
if (Entity.getKind() == InitializedEntity::EK_Member &&
|
|
cast<FieldDecl>(Entity.getDecl())->isBitField())
|
|
S.CheckBitFieldInitialization(Kind.getLocation(),
|
|
cast<FieldDecl>(Entity.getDecl()),
|
|
CurInit.get());
|
|
|
|
// Check for std::move on construction.
|
|
if (const Expr *E = CurInit.get()) {
|
|
CheckMoveOnConstruction(S, E,
|
|
Entity.getKind() == InitializedEntity::EK_Result);
|
|
}
|
|
|
|
return CurInit;
|
|
}
|
|
|
|
/// Somewhere within T there is an uninitialized reference subobject.
|
|
/// Dig it out and diagnose it.
|
|
static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
|
|
QualType T) {
|
|
if (T->isReferenceType()) {
|
|
S.Diag(Loc, diag::err_reference_without_init)
|
|
<< T.getNonReferenceType();
|
|
return true;
|
|
}
|
|
|
|
CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
|
|
if (!RD || !RD->hasUninitializedReferenceMember())
|
|
return false;
|
|
|
|
for (const auto *FI : RD->fields()) {
|
|
if (FI->isUnnamedBitfield())
|
|
continue;
|
|
|
|
if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
|
|
S.Diag(Loc, diag::note_value_initialization_here) << RD;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
for (const auto &BI : RD->bases()) {
|
|
if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
|
|
S.Diag(Loc, diag::note_value_initialization_here) << RD;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Diagnose initialization failures
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Emit notes associated with an initialization that failed due to a
|
|
/// "simple" conversion failure.
|
|
static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
|
|
Expr *op) {
|
|
QualType destType = entity.getType();
|
|
if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
|
|
op->getType()->isObjCObjectPointerType()) {
|
|
|
|
// Emit a possible note about the conversion failing because the
|
|
// operand is a message send with a related result type.
|
|
S.EmitRelatedResultTypeNote(op);
|
|
|
|
// Emit a possible note about a return failing because we're
|
|
// expecting a related result type.
|
|
if (entity.getKind() == InitializedEntity::EK_Result)
|
|
S.EmitRelatedResultTypeNoteForReturn(destType);
|
|
}
|
|
QualType fromType = op->getType();
|
|
auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
|
|
auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
|
|
if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
|
|
destDecl->getDeclKind() == Decl::CXXRecord &&
|
|
!fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
|
|
!fromDecl->hasDefinition())
|
|
S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
|
|
<< S.getASTContext().getTagDeclType(fromDecl)
|
|
<< S.getASTContext().getTagDeclType(destDecl);
|
|
}
|
|
|
|
static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
|
|
InitListExpr *InitList) {
|
|
QualType DestType = Entity.getType();
|
|
|
|
QualType E;
|
|
if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
|
|
QualType ArrayType = S.Context.getConstantArrayType(
|
|
E.withConst(),
|
|
llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
|
|
InitList->getNumInits()),
|
|
nullptr, clang::ArrayType::Normal, 0);
|
|
InitializedEntity HiddenArray =
|
|
InitializedEntity::InitializeTemporary(ArrayType);
|
|
return diagnoseListInit(S, HiddenArray, InitList);
|
|
}
|
|
|
|
if (DestType->isReferenceType()) {
|
|
// A list-initialization failure for a reference means that we tried to
|
|
// create a temporary of the inner type (per [dcl.init.list]p3.6) and the
|
|
// inner initialization failed.
|
|
QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
|
|
diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
|
|
SourceLocation Loc = InitList->getBeginLoc();
|
|
if (auto *D = Entity.getDecl())
|
|
Loc = D->getLocation();
|
|
S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
|
|
return;
|
|
}
|
|
|
|
InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
|
|
/*VerifyOnly=*/false,
|
|
/*TreatUnavailableAsInvalid=*/false);
|
|
assert(DiagnoseInitList.HadError() &&
|
|
"Inconsistent init list check result.");
|
|
}
|
|
|
|
bool InitializationSequence::Diagnose(Sema &S,
|
|
const InitializedEntity &Entity,
|
|
const InitializationKind &Kind,
|
|
ArrayRef<Expr *> Args) {
|
|
if (!Failed())
|
|
return false;
|
|
|
|
// When we want to diagnose only one element of a braced-init-list,
|
|
// we need to factor it out.
|
|
Expr *OnlyArg;
|
|
if (Args.size() == 1) {
|
|
auto *List = dyn_cast<InitListExpr>(Args[0]);
|
|
if (List && List->getNumInits() == 1)
|
|
OnlyArg = List->getInit(0);
|
|
else
|
|
OnlyArg = Args[0];
|
|
}
|
|
else
|
|
OnlyArg = nullptr;
|
|
|
|
QualType DestType = Entity.getType();
|
|
switch (Failure) {
|
|
case FK_TooManyInitsForReference:
|
|
// FIXME: Customize for the initialized entity?
|
|
if (Args.empty()) {
|
|
// Dig out the reference subobject which is uninitialized and diagnose it.
|
|
// If this is value-initialization, this could be nested some way within
|
|
// the target type.
|
|
assert(Kind.getKind() == InitializationKind::IK_Value ||
|
|
DestType->isReferenceType());
|
|
bool Diagnosed =
|
|
DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
|
|
assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
|
|
(void)Diagnosed;
|
|
} else // FIXME: diagnostic below could be better!
|
|
S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
|
|
<< SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
|
|
break;
|
|
case FK_ParenthesizedListInitForReference:
|
|
S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
|
|
<< 1 << Entity.getType() << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitList:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
|
|
break;
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
|
|
break;
|
|
case FK_ArrayNeedsInitListOrWideStringLiteral:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
|
|
break;
|
|
case FK_NarrowStringIntoWideCharArray:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
|
|
break;
|
|
case FK_WideStringIntoCharArray:
|
|
S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
|
|
break;
|
|
case FK_IncompatWideStringIntoWideChar:
|
|
S.Diag(Kind.getLocation(),
|
|
diag::err_array_init_incompat_wide_string_into_wchar);
|
|
break;
|
|
case FK_PlainStringIntoUTF8Char:
|
|
S.Diag(Kind.getLocation(),
|
|
diag::err_array_init_plain_string_into_char8_t);
|
|
S.Diag(Args.front()->getBeginLoc(),
|
|
diag::note_array_init_plain_string_into_char8_t)
|
|
<< FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
|
|
break;
|
|
case FK_UTF8StringIntoPlainChar:
|
|
S.Diag(Kind.getLocation(),
|
|
diag::err_array_init_utf8_string_into_char)
|
|
<< S.getLangOpts().CPlusPlus20;
|
|
break;
|
|
case FK_ArrayTypeMismatch:
|
|
case FK_NonConstantArrayInit:
|
|
S.Diag(Kind.getLocation(),
|
|
(Failure == FK_ArrayTypeMismatch
|
|
? diag::err_array_init_different_type
|
|
: diag::err_array_init_non_constant_array))
|
|
<< DestType.getNonReferenceType()
|
|
<< OnlyArg->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_VariableLengthArrayHasInitializer:
|
|
S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_AddressOfOverloadFailed: {
|
|
DeclAccessPair Found;
|
|
S.ResolveAddressOfOverloadedFunction(OnlyArg,
|
|
DestType.getNonReferenceType(),
|
|
true,
|
|
Found);
|
|
break;
|
|
}
|
|
|
|
case FK_AddressOfUnaddressableFunction: {
|
|
auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
|
|
S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
|
|
OnlyArg->getBeginLoc());
|
|
break;
|
|
}
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
case FK_UserConversionOverloadFailed:
|
|
switch (FailedOverloadResult) {
|
|
case OR_Ambiguous:
|
|
|
|
FailedCandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Kind.getLocation(),
|
|
Failure == FK_UserConversionOverloadFailed
|
|
? (S.PDiag(diag::err_typecheck_ambiguous_condition)
|
|
<< OnlyArg->getType() << DestType
|
|
<< Args[0]->getSourceRange())
|
|
: (S.PDiag(diag::err_ref_init_ambiguous)
|
|
<< DestType << OnlyArg->getType()
|
|
<< Args[0]->getSourceRange())),
|
|
S, OCD_AmbiguousCandidates, Args);
|
|
break;
|
|
|
|
case OR_No_Viable_Function: {
|
|
auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
|
|
if (!S.RequireCompleteType(Kind.getLocation(),
|
|
DestType.getNonReferenceType(),
|
|
diag::err_typecheck_nonviable_condition_incomplete,
|
|
OnlyArg->getType(), Args[0]->getSourceRange()))
|
|
S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
|
|
<< (Entity.getKind() == InitializedEntity::EK_Result)
|
|
<< OnlyArg->getType() << Args[0]->getSourceRange()
|
|
<< DestType.getNonReferenceType();
|
|
|
|
FailedCandidateSet.NoteCandidates(S, Args, Cands);
|
|
break;
|
|
}
|
|
case OR_Deleted: {
|
|
S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
|
|
<< OnlyArg->getType() << DestType.getNonReferenceType()
|
|
<< Args[0]->getSourceRange();
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult Ovl
|
|
= FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
|
|
if (Ovl == OR_Deleted) {
|
|
S.NoteDeletedFunction(Best->Function);
|
|
} else {
|
|
llvm_unreachable("Inconsistent overload resolution?");
|
|
}
|
|
break;
|
|
}
|
|
|
|
case OR_Success:
|
|
llvm_unreachable("Conversion did not fail!");
|
|
}
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
if (isa<InitListExpr>(Args[0])) {
|
|
S.Diag(Kind.getLocation(),
|
|
diag::err_lvalue_reference_bind_to_initlist)
|
|
<< DestType.getNonReferenceType().isVolatileQualified()
|
|
<< DestType.getNonReferenceType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
S.Diag(Kind.getLocation(),
|
|
Failure == FK_NonConstLValueReferenceBindingToTemporary
|
|
? diag::err_lvalue_reference_bind_to_temporary
|
|
: diag::err_lvalue_reference_bind_to_unrelated)
|
|
<< DestType.getNonReferenceType().isVolatileQualified()
|
|
<< DestType.getNonReferenceType()
|
|
<< OnlyArg->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToBitfield: {
|
|
// We don't necessarily have an unambiguous source bit-field.
|
|
FieldDecl *BitField = Args[0]->getSourceBitField();
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
|
|
<< DestType.isVolatileQualified()
|
|
<< (BitField ? BitField->getDeclName() : DeclarationName())
|
|
<< (BitField != nullptr)
|
|
<< Args[0]->getSourceRange();
|
|
if (BitField)
|
|
S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
|
|
break;
|
|
}
|
|
|
|
case FK_NonConstLValueReferenceBindingToVectorElement:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
|
|
<< DestType.isVolatileQualified()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToMatrixElement:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
|
|
<< DestType.isVolatileQualified() << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_RValueReferenceBindingToLValue:
|
|
S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
|
|
<< DestType.getNonReferenceType() << OnlyArg->getType()
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ReferenceAddrspaceMismatchTemporary:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
|
|
<< DestType << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ReferenceInitDropsQualifiers: {
|
|
QualType SourceType = OnlyArg->getType();
|
|
QualType NonRefType = DestType.getNonReferenceType();
|
|
Qualifiers DroppedQualifiers =
|
|
SourceType.getQualifiers() - NonRefType.getQualifiers();
|
|
|
|
if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
|
|
SourceType.getQualifiers()))
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
|
|
<< NonRefType << SourceType << 1 /*addr space*/
|
|
<< Args[0]->getSourceRange();
|
|
else if (DroppedQualifiers.hasQualifiers())
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
|
|
<< NonRefType << SourceType << 0 /*cv quals*/
|
|
<< Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
|
|
<< DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
|
|
else
|
|
// FIXME: Consider decomposing the type and explaining which qualifiers
|
|
// were dropped where, or on which level a 'const' is missing, etc.
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
|
|
<< NonRefType << SourceType << 2 /*incompatible quals*/
|
|
<< Args[0]->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
case FK_ReferenceInitFailed:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
|
|
<< DestType.getNonReferenceType()
|
|
<< DestType.getNonReferenceType()->isIncompleteType()
|
|
<< OnlyArg->isLValue()
|
|
<< OnlyArg->getType()
|
|
<< Args[0]->getSourceRange();
|
|
emitBadConversionNotes(S, Entity, Args[0]);
|
|
break;
|
|
|
|
case FK_ConversionFailed: {
|
|
QualType FromType = OnlyArg->getType();
|
|
PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
|
|
<< (int)Entity.getKind()
|
|
<< DestType
|
|
<< OnlyArg->isLValue()
|
|
<< FromType
|
|
<< Args[0]->getSourceRange();
|
|
S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
|
|
S.Diag(Kind.getLocation(), PDiag);
|
|
emitBadConversionNotes(S, Entity, Args[0]);
|
|
break;
|
|
}
|
|
|
|
case FK_ConversionFromPropertyFailed:
|
|
// No-op. This error has already been reported.
|
|
break;
|
|
|
|
case FK_TooManyInitsForScalar: {
|
|
SourceRange R;
|
|
|
|
auto *InitList = dyn_cast<InitListExpr>(Args[0]);
|
|
if (InitList && InitList->getNumInits() >= 1) {
|
|
R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
|
|
} else {
|
|
assert(Args.size() > 1 && "Expected multiple initializers!");
|
|
R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
|
|
}
|
|
|
|
R.setBegin(S.getLocForEndOfToken(R.getBegin()));
|
|
if (Kind.isCStyleOrFunctionalCast())
|
|
S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
|
|
<< R;
|
|
else
|
|
S.Diag(Kind.getLocation(), diag::err_excess_initializers)
|
|
<< /*scalar=*/2 << R;
|
|
break;
|
|
}
|
|
|
|
case FK_ParenthesizedListInitForScalar:
|
|
S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
|
|
<< 0 << Entity.getType() << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ReferenceBindingToInitList:
|
|
S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
|
|
<< DestType.getNonReferenceType() << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_InitListBadDestinationType:
|
|
S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
|
|
<< (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
|
|
break;
|
|
|
|
case FK_ListConstructorOverloadFailed:
|
|
case FK_ConstructorOverloadFailed: {
|
|
SourceRange ArgsRange;
|
|
if (Args.size())
|
|
ArgsRange =
|
|
SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
|
|
|
|
if (Failure == FK_ListConstructorOverloadFailed) {
|
|
assert(Args.size() == 1 &&
|
|
"List construction from other than 1 argument.");
|
|
InitListExpr *InitList = cast<InitListExpr>(Args[0]);
|
|
Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
|
|
}
|
|
|
|
// FIXME: Using "DestType" for the entity we're printing is probably
|
|
// bad.
|
|
switch (FailedOverloadResult) {
|
|
case OR_Ambiguous:
|
|
FailedCandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(Kind.getLocation(),
|
|
S.PDiag(diag::err_ovl_ambiguous_init)
|
|
<< DestType << ArgsRange),
|
|
S, OCD_AmbiguousCandidates, Args);
|
|
break;
|
|
|
|
case OR_No_Viable_Function:
|
|
if (Kind.getKind() == InitializationKind::IK_Default &&
|
|
(Entity.getKind() == InitializedEntity::EK_Base ||
|
|
Entity.getKind() == InitializedEntity::EK_Member) &&
|
|
isa<CXXConstructorDecl>(S.CurContext)) {
|
|
// This is implicit default initialization of a member or
|
|
// base within a constructor. If no viable function was
|
|
// found, notify the user that they need to explicitly
|
|
// initialize this base/member.
|
|
CXXConstructorDecl *Constructor
|
|
= cast<CXXConstructorDecl>(S.CurContext);
|
|
const CXXRecordDecl *InheritedFrom = nullptr;
|
|
if (auto Inherited = Constructor->getInheritedConstructor())
|
|
InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
|
|
if (Entity.getKind() == InitializedEntity::EK_Base) {
|
|
S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
|
|
<< (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*base=*/0
|
|
<< Entity.getType()
|
|
<< InheritedFrom;
|
|
|
|
RecordDecl *BaseDecl
|
|
= Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
|
|
->getDecl();
|
|
S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
|
|
<< S.Context.getTagDeclType(BaseDecl);
|
|
} else {
|
|
S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
|
|
<< (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*member=*/1
|
|
<< Entity.getName()
|
|
<< InheritedFrom;
|
|
S.Diag(Entity.getDecl()->getLocation(),
|
|
diag::note_member_declared_at);
|
|
|
|
if (const RecordType *Record
|
|
= Entity.getType()->getAs<RecordType>())
|
|
S.Diag(Record->getDecl()->getLocation(),
|
|
diag::note_previous_decl)
|
|
<< S.Context.getTagDeclType(Record->getDecl());
|
|
}
|
|
break;
|
|
}
|
|
|
|
FailedCandidateSet.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Kind.getLocation(),
|
|
S.PDiag(diag::err_ovl_no_viable_function_in_init)
|
|
<< DestType << ArgsRange),
|
|
S, OCD_AllCandidates, Args);
|
|
break;
|
|
|
|
case OR_Deleted: {
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult Ovl
|
|
= FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
|
|
if (Ovl != OR_Deleted) {
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
|
|
<< DestType << ArgsRange;
|
|
llvm_unreachable("Inconsistent overload resolution?");
|
|
break;
|
|
}
|
|
|
|
// If this is a defaulted or implicitly-declared function, then
|
|
// it was implicitly deleted. Make it clear that the deletion was
|
|
// implicit.
|
|
if (S.isImplicitlyDeleted(Best->Function))
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
|
|
<< S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
|
|
<< DestType << ArgsRange;
|
|
else
|
|
S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
|
|
<< DestType << ArgsRange;
|
|
|
|
S.NoteDeletedFunction(Best->Function);
|
|
break;
|
|
}
|
|
|
|
case OR_Success:
|
|
llvm_unreachable("Conversion did not fail!");
|
|
}
|
|
}
|
|
break;
|
|
|
|
case FK_DefaultInitOfConst:
|
|
if (Entity.getKind() == InitializedEntity::EK_Member &&
|
|
isa<CXXConstructorDecl>(S.CurContext)) {
|
|
// This is implicit default-initialization of a const member in
|
|
// a constructor. Complain that it needs to be explicitly
|
|
// initialized.
|
|
CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
|
|
S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
|
|
<< (Constructor->getInheritedConstructor() ? 2 :
|
|
Constructor->isImplicit() ? 1 : 0)
|
|
<< S.Context.getTypeDeclType(Constructor->getParent())
|
|
<< /*const=*/1
|
|
<< Entity.getName();
|
|
S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
|
|
<< Entity.getName();
|
|
} else {
|
|
S.Diag(Kind.getLocation(), diag::err_default_init_const)
|
|
<< DestType << (bool)DestType->getAs<RecordType>();
|
|
}
|
|
break;
|
|
|
|
case FK_Incomplete:
|
|
S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
|
|
diag::err_init_incomplete_type);
|
|
break;
|
|
|
|
case FK_ListInitializationFailed: {
|
|
// Run the init list checker again to emit diagnostics.
|
|
InitListExpr *InitList = cast<InitListExpr>(Args[0]);
|
|
diagnoseListInit(S, Entity, InitList);
|
|
break;
|
|
}
|
|
|
|
case FK_PlaceholderType: {
|
|
// FIXME: Already diagnosed!
|
|
break;
|
|
}
|
|
|
|
case FK_ExplicitConstructor: {
|
|
S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
|
|
<< Args[0]->getSourceRange();
|
|
OverloadCandidateSet::iterator Best;
|
|
OverloadingResult Ovl
|
|
= FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
|
|
(void)Ovl;
|
|
assert(Ovl == OR_Success && "Inconsistent overload resolution");
|
|
CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
|
|
S.Diag(CtorDecl->getLocation(),
|
|
diag::note_explicit_ctor_deduction_guide_here) << false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
PrintInitLocationNote(S, Entity);
|
|
return true;
|
|
}
|
|
|
|
void InitializationSequence::dump(raw_ostream &OS) const {
|
|
switch (SequenceKind) {
|
|
case FailedSequence: {
|
|
OS << "Failed sequence: ";
|
|
switch (Failure) {
|
|
case FK_TooManyInitsForReference:
|
|
OS << "too many initializers for reference";
|
|
break;
|
|
|
|
case FK_ParenthesizedListInitForReference:
|
|
OS << "parenthesized list init for reference";
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitList:
|
|
OS << "array requires initializer list";
|
|
break;
|
|
|
|
case FK_AddressOfUnaddressableFunction:
|
|
OS << "address of unaddressable function was taken";
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitListOrStringLiteral:
|
|
OS << "array requires initializer list or string literal";
|
|
break;
|
|
|
|
case FK_ArrayNeedsInitListOrWideStringLiteral:
|
|
OS << "array requires initializer list or wide string literal";
|
|
break;
|
|
|
|
case FK_NarrowStringIntoWideCharArray:
|
|
OS << "narrow string into wide char array";
|
|
break;
|
|
|
|
case FK_WideStringIntoCharArray:
|
|
OS << "wide string into char array";
|
|
break;
|
|
|
|
case FK_IncompatWideStringIntoWideChar:
|
|
OS << "incompatible wide string into wide char array";
|
|
break;
|
|
|
|
case FK_PlainStringIntoUTF8Char:
|
|
OS << "plain string literal into char8_t array";
|
|
break;
|
|
|
|
case FK_UTF8StringIntoPlainChar:
|
|
OS << "u8 string literal into char array";
|
|
break;
|
|
|
|
case FK_ArrayTypeMismatch:
|
|
OS << "array type mismatch";
|
|
break;
|
|
|
|
case FK_NonConstantArrayInit:
|
|
OS << "non-constant array initializer";
|
|
break;
|
|
|
|
case FK_AddressOfOverloadFailed:
|
|
OS << "address of overloaded function failed";
|
|
break;
|
|
|
|
case FK_ReferenceInitOverloadFailed:
|
|
OS << "overload resolution for reference initialization failed";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToTemporary:
|
|
OS << "non-const lvalue reference bound to temporary";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToBitfield:
|
|
OS << "non-const lvalue reference bound to bit-field";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToVectorElement:
|
|
OS << "non-const lvalue reference bound to vector element";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToMatrixElement:
|
|
OS << "non-const lvalue reference bound to matrix element";
|
|
break;
|
|
|
|
case FK_NonConstLValueReferenceBindingToUnrelated:
|
|
OS << "non-const lvalue reference bound to unrelated type";
|
|
break;
|
|
|
|
case FK_RValueReferenceBindingToLValue:
|
|
OS << "rvalue reference bound to an lvalue";
|
|
break;
|
|
|
|
case FK_ReferenceInitDropsQualifiers:
|
|
OS << "reference initialization drops qualifiers";
|
|
break;
|
|
|
|
case FK_ReferenceAddrspaceMismatchTemporary:
|
|
OS << "reference with mismatching address space bound to temporary";
|
|
break;
|
|
|
|
case FK_ReferenceInitFailed:
|
|
OS << "reference initialization failed";
|
|
break;
|
|
|
|
case FK_ConversionFailed:
|
|
OS << "conversion failed";
|
|
break;
|
|
|
|
case FK_ConversionFromPropertyFailed:
|
|
OS << "conversion from property failed";
|
|
break;
|
|
|
|
case FK_TooManyInitsForScalar:
|
|
OS << "too many initializers for scalar";
|
|
break;
|
|
|
|
case FK_ParenthesizedListInitForScalar:
|
|
OS << "parenthesized list init for reference";
|
|
break;
|
|
|
|
case FK_ReferenceBindingToInitList:
|
|
OS << "referencing binding to initializer list";
|
|
break;
|
|
|
|
case FK_InitListBadDestinationType:
|
|
OS << "initializer list for non-aggregate, non-scalar type";
|
|
break;
|
|
|
|
case FK_UserConversionOverloadFailed:
|
|
OS << "overloading failed for user-defined conversion";
|
|
break;
|
|
|
|
case FK_ConstructorOverloadFailed:
|
|
OS << "constructor overloading failed";
|
|
break;
|
|
|
|
case FK_DefaultInitOfConst:
|
|
OS << "default initialization of a const variable";
|
|
break;
|
|
|
|
case FK_Incomplete:
|
|
OS << "initialization of incomplete type";
|
|
break;
|
|
|
|
case FK_ListInitializationFailed:
|
|
OS << "list initialization checker failure";
|
|
break;
|
|
|
|
case FK_VariableLengthArrayHasInitializer:
|
|
OS << "variable length array has an initializer";
|
|
break;
|
|
|
|
case FK_PlaceholderType:
|
|
OS << "initializer expression isn't contextually valid";
|
|
break;
|
|
|
|
case FK_ListConstructorOverloadFailed:
|
|
OS << "list constructor overloading failed";
|
|
break;
|
|
|
|
case FK_ExplicitConstructor:
|
|
OS << "list copy initialization chose explicit constructor";
|
|
break;
|
|
}
|
|
OS << '\n';
|
|
return;
|
|
}
|
|
|
|
case DependentSequence:
|
|
OS << "Dependent sequence\n";
|
|
return;
|
|
|
|
case NormalSequence:
|
|
OS << "Normal sequence: ";
|
|
break;
|
|
}
|
|
|
|
for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
|
|
if (S != step_begin()) {
|
|
OS << " -> ";
|
|
}
|
|
|
|
switch (S->Kind) {
|
|
case SK_ResolveAddressOfOverloadedFunction:
|
|
OS << "resolve address of overloaded function";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseRValue:
|
|
OS << "derived-to-base (rvalue)";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseXValue:
|
|
OS << "derived-to-base (xvalue)";
|
|
break;
|
|
|
|
case SK_CastDerivedToBaseLValue:
|
|
OS << "derived-to-base (lvalue)";
|
|
break;
|
|
|
|
case SK_BindReference:
|
|
OS << "bind reference to lvalue";
|
|
break;
|
|
|
|
case SK_BindReferenceToTemporary:
|
|
OS << "bind reference to a temporary";
|
|
break;
|
|
|
|
case SK_FinalCopy:
|
|
OS << "final copy in class direct-initialization";
|
|
break;
|
|
|
|
case SK_ExtraneousCopyToTemporary:
|
|
OS << "extraneous C++03 copy to temporary";
|
|
break;
|
|
|
|
case SK_UserConversion:
|
|
OS << "user-defined conversion via " << *S->Function.Function;
|
|
break;
|
|
|
|
case SK_QualificationConversionRValue:
|
|
OS << "qualification conversion (rvalue)";
|
|
break;
|
|
|
|
case SK_QualificationConversionXValue:
|
|
OS << "qualification conversion (xvalue)";
|
|
break;
|
|
|
|
case SK_QualificationConversionLValue:
|
|
OS << "qualification conversion (lvalue)";
|
|
break;
|
|
|
|
case SK_FunctionReferenceConversion:
|
|
OS << "function reference conversion";
|
|
break;
|
|
|
|
case SK_AtomicConversion:
|
|
OS << "non-atomic-to-atomic conversion";
|
|
break;
|
|
|
|
case SK_ConversionSequence:
|
|
OS << "implicit conversion sequence (";
|
|
S->ICS->dump(); // FIXME: use OS
|
|
OS << ")";
|
|
break;
|
|
|
|
case SK_ConversionSequenceNoNarrowing:
|
|
OS << "implicit conversion sequence with narrowing prohibited (";
|
|
S->ICS->dump(); // FIXME: use OS
|
|
OS << ")";
|
|
break;
|
|
|
|
case SK_ListInitialization:
|
|
OS << "list aggregate initialization";
|
|
break;
|
|
|
|
case SK_UnwrapInitList:
|
|
OS << "unwrap reference initializer list";
|
|
break;
|
|
|
|
case SK_RewrapInitList:
|
|
OS << "rewrap reference initializer list";
|
|
break;
|
|
|
|
case SK_ConstructorInitialization:
|
|
OS << "constructor initialization";
|
|
break;
|
|
|
|
case SK_ConstructorInitializationFromList:
|
|
OS << "list initialization via constructor";
|
|
break;
|
|
|
|
case SK_ZeroInitialization:
|
|
OS << "zero initialization";
|
|
break;
|
|
|
|
case SK_CAssignment:
|
|
OS << "C assignment";
|
|
break;
|
|
|
|
case SK_StringInit:
|
|
OS << "string initialization";
|
|
break;
|
|
|
|
case SK_ObjCObjectConversion:
|
|
OS << "Objective-C object conversion";
|
|
break;
|
|
|
|
case SK_ArrayLoopIndex:
|
|
OS << "indexing for array initialization loop";
|
|
break;
|
|
|
|
case SK_ArrayLoopInit:
|
|
OS << "array initialization loop";
|
|
break;
|
|
|
|
case SK_ArrayInit:
|
|
OS << "array initialization";
|
|
break;
|
|
|
|
case SK_GNUArrayInit:
|
|
OS << "array initialization (GNU extension)";
|
|
break;
|
|
|
|
case SK_ParenthesizedArrayInit:
|
|
OS << "parenthesized array initialization";
|
|
break;
|
|
|
|
case SK_PassByIndirectCopyRestore:
|
|
OS << "pass by indirect copy and restore";
|
|
break;
|
|
|
|
case SK_PassByIndirectRestore:
|
|
OS << "pass by indirect restore";
|
|
break;
|
|
|
|
case SK_ProduceObjCObject:
|
|
OS << "Objective-C object retension";
|
|
break;
|
|
|
|
case SK_StdInitializerList:
|
|
OS << "std::initializer_list from initializer list";
|
|
break;
|
|
|
|
case SK_StdInitializerListConstructorCall:
|
|
OS << "list initialization from std::initializer_list";
|
|
break;
|
|
|
|
case SK_OCLSamplerInit:
|
|
OS << "OpenCL sampler_t from integer constant";
|
|
break;
|
|
|
|
case SK_OCLZeroOpaqueType:
|
|
OS << "OpenCL opaque type from zero";
|
|
break;
|
|
}
|
|
|
|
OS << " [" << S->Type.getAsString() << ']';
|
|
}
|
|
|
|
OS << '\n';
|
|
}
|
|
|
|
void InitializationSequence::dump() const {
|
|
dump(llvm::errs());
|
|
}
|
|
|
|
static bool NarrowingErrs(const LangOptions &L) {
|
|
return L.CPlusPlus11 &&
|
|
(!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
|
|
}
|
|
|
|
static void DiagnoseNarrowingInInitList(Sema &S,
|
|
const ImplicitConversionSequence &ICS,
|
|
QualType PreNarrowingType,
|
|
QualType EntityType,
|
|
const Expr *PostInit) {
|
|
const StandardConversionSequence *SCS = nullptr;
|
|
switch (ICS.getKind()) {
|
|
case ImplicitConversionSequence::StandardConversion:
|
|
SCS = &ICS.Standard;
|
|
break;
|
|
case ImplicitConversionSequence::UserDefinedConversion:
|
|
SCS = &ICS.UserDefined.After;
|
|
break;
|
|
case ImplicitConversionSequence::AmbiguousConversion:
|
|
case ImplicitConversionSequence::EllipsisConversion:
|
|
case ImplicitConversionSequence::BadConversion:
|
|
return;
|
|
}
|
|
|
|
// C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
|
|
APValue ConstantValue;
|
|
QualType ConstantType;
|
|
switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
|
|
ConstantType)) {
|
|
case NK_Not_Narrowing:
|
|
case NK_Dependent_Narrowing:
|
|
// No narrowing occurred.
|
|
return;
|
|
|
|
case NK_Type_Narrowing:
|
|
// This was a floating-to-integer conversion, which is always considered a
|
|
// narrowing conversion even if the value is a constant and can be
|
|
// represented exactly as an integer.
|
|
S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
|
|
? diag::ext_init_list_type_narrowing
|
|
: diag::warn_init_list_type_narrowing)
|
|
<< PostInit->getSourceRange()
|
|
<< PreNarrowingType.getLocalUnqualifiedType()
|
|
<< EntityType.getLocalUnqualifiedType();
|
|
break;
|
|
|
|
case NK_Constant_Narrowing:
|
|
// A constant value was narrowed.
|
|
S.Diag(PostInit->getBeginLoc(),
|
|
NarrowingErrs(S.getLangOpts())
|
|
? diag::ext_init_list_constant_narrowing
|
|
: diag::warn_init_list_constant_narrowing)
|
|
<< PostInit->getSourceRange()
|
|
<< ConstantValue.getAsString(S.getASTContext(), ConstantType)
|
|
<< EntityType.getLocalUnqualifiedType();
|
|
break;
|
|
|
|
case NK_Variable_Narrowing:
|
|
// A variable's value may have been narrowed.
|
|
S.Diag(PostInit->getBeginLoc(),
|
|
NarrowingErrs(S.getLangOpts())
|
|
? diag::ext_init_list_variable_narrowing
|
|
: diag::warn_init_list_variable_narrowing)
|
|
<< PostInit->getSourceRange()
|
|
<< PreNarrowingType.getLocalUnqualifiedType()
|
|
<< EntityType.getLocalUnqualifiedType();
|
|
break;
|
|
}
|
|
|
|
SmallString<128> StaticCast;
|
|
llvm::raw_svector_ostream OS(StaticCast);
|
|
OS << "static_cast<";
|
|
if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
|
|
// It's important to use the typedef's name if there is one so that the
|
|
// fixit doesn't break code using types like int64_t.
|
|
//
|
|
// FIXME: This will break if the typedef requires qualification. But
|
|
// getQualifiedNameAsString() includes non-machine-parsable components.
|
|
OS << *TT->getDecl();
|
|
} else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
|
|
OS << BT->getName(S.getLangOpts());
|
|
else {
|
|
// Oops, we didn't find the actual type of the variable. Don't emit a fixit
|
|
// with a broken cast.
|
|
return;
|
|
}
|
|
OS << ">(";
|
|
S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
|
|
<< PostInit->getSourceRange()
|
|
<< FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
|
|
<< FixItHint::CreateInsertion(
|
|
S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Initialization helper functions
|
|
//===----------------------------------------------------------------------===//
|
|
bool
|
|
Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
|
|
ExprResult Init) {
|
|
if (Init.isInvalid())
|
|
return false;
|
|
|
|
Expr *InitE = Init.get();
|
|
assert(InitE && "No initialization expression");
|
|
|
|
InitializationKind Kind =
|
|
InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
|
|
InitializationSequence Seq(*this, Entity, Kind, InitE);
|
|
return !Seq.Failed();
|
|
}
|
|
|
|
ExprResult
|
|
Sema::PerformCopyInitialization(const InitializedEntity &Entity,
|
|
SourceLocation EqualLoc,
|
|
ExprResult Init,
|
|
bool TopLevelOfInitList,
|
|
bool AllowExplicit) {
|
|
if (Init.isInvalid())
|
|
return ExprError();
|
|
|
|
Expr *InitE = Init.get();
|
|
assert(InitE && "No initialization expression?");
|
|
|
|
if (EqualLoc.isInvalid())
|
|
EqualLoc = InitE->getBeginLoc();
|
|
|
|
InitializationKind Kind = InitializationKind::CreateCopy(
|
|
InitE->getBeginLoc(), EqualLoc, AllowExplicit);
|
|
InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
|
|
|
|
// Prevent infinite recursion when performing parameter copy-initialization.
|
|
const bool ShouldTrackCopy =
|
|
Entity.isParameterKind() && Seq.isConstructorInitialization();
|
|
if (ShouldTrackCopy) {
|
|
if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
|
|
CurrentParameterCopyTypes.end()) {
|
|
Seq.SetOverloadFailure(
|
|
InitializationSequence::FK_ConstructorOverloadFailed,
|
|
OR_No_Viable_Function);
|
|
|
|
// Try to give a meaningful diagnostic note for the problematic
|
|
// constructor.
|
|
const auto LastStep = Seq.step_end() - 1;
|
|
assert(LastStep->Kind ==
|
|
InitializationSequence::SK_ConstructorInitialization);
|
|
const FunctionDecl *Function = LastStep->Function.Function;
|
|
auto Candidate =
|
|
llvm::find_if(Seq.getFailedCandidateSet(),
|
|
[Function](const OverloadCandidate &Candidate) -> bool {
|
|
return Candidate.Viable &&
|
|
Candidate.Function == Function &&
|
|
Candidate.Conversions.size() > 0;
|
|
});
|
|
if (Candidate != Seq.getFailedCandidateSet().end() &&
|
|
Function->getNumParams() > 0) {
|
|
Candidate->Viable = false;
|
|
Candidate->FailureKind = ovl_fail_bad_conversion;
|
|
Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
|
|
InitE,
|
|
Function->getParamDecl(0)->getType());
|
|
}
|
|
}
|
|
CurrentParameterCopyTypes.push_back(Entity.getType());
|
|
}
|
|
|
|
ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
|
|
|
|
if (ShouldTrackCopy)
|
|
CurrentParameterCopyTypes.pop_back();
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// Determine whether RD is, or is derived from, a specialization of CTD.
|
|
static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
|
|
ClassTemplateDecl *CTD) {
|
|
auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
|
|
auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
|
|
return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
|
|
};
|
|
return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
|
|
}
|
|
|
|
QualType Sema::DeduceTemplateSpecializationFromInitializer(
|
|
TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
|
|
const InitializationKind &Kind, MultiExprArg Inits) {
|
|
auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
|
|
TSInfo->getType()->getContainedDeducedType());
|
|
assert(DeducedTST && "not a deduced template specialization type");
|
|
|
|
auto TemplateName = DeducedTST->getTemplateName();
|
|
if (TemplateName.isDependent())
|
|
return SubstAutoType(TSInfo->getType(), Context.DependentTy);
|
|
|
|
// We can only perform deduction for class templates.
|
|
auto *Template =
|
|
dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
|
|
if (!Template) {
|
|
Diag(Kind.getLocation(),
|
|
diag::err_deduced_non_class_template_specialization_type)
|
|
<< (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
|
|
if (auto *TD = TemplateName.getAsTemplateDecl())
|
|
Diag(TD->getLocation(), diag::note_template_decl_here);
|
|
return QualType();
|
|
}
|
|
|
|
// Can't deduce from dependent arguments.
|
|
if (Expr::hasAnyTypeDependentArguments(Inits)) {
|
|
Diag(TSInfo->getTypeLoc().getBeginLoc(),
|
|
diag::warn_cxx14_compat_class_template_argument_deduction)
|
|
<< TSInfo->getTypeLoc().getSourceRange() << 0;
|
|
return SubstAutoType(TSInfo->getType(), Context.DependentTy);
|
|
}
|
|
|
|
// FIXME: Perform "exact type" matching first, per CWG discussion?
|
|
// Or implement this via an implied 'T(T) -> T' deduction guide?
|
|
|
|
// FIXME: Do we need/want a std::initializer_list<T> special case?
|
|
|
|
// Look up deduction guides, including those synthesized from constructors.
|
|
//
|
|
// C++1z [over.match.class.deduct]p1:
|
|
// A set of functions and function templates is formed comprising:
|
|
// - For each constructor of the class template designated by the
|
|
// template-name, a function template [...]
|
|
// - For each deduction-guide, a function or function template [...]
|
|
DeclarationNameInfo NameInfo(
|
|
Context.DeclarationNames.getCXXDeductionGuideName(Template),
|
|
TSInfo->getTypeLoc().getEndLoc());
|
|
LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
|
|
LookupQualifiedName(Guides, Template->getDeclContext());
|
|
|
|
// FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
|
|
// clear on this, but they're not found by name so access does not apply.
|
|
Guides.suppressDiagnostics();
|
|
|
|
// Figure out if this is list-initialization.
|
|
InitListExpr *ListInit =
|
|
(Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
|
|
? dyn_cast<InitListExpr>(Inits[0])
|
|
: nullptr;
|
|
|
|
// C++1z [over.match.class.deduct]p1:
|
|
// Initialization and overload resolution are performed as described in
|
|
// [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
|
|
// (as appropriate for the type of initialization performed) for an object
|
|
// of a hypothetical class type, where the selected functions and function
|
|
// templates are considered to be the constructors of that class type
|
|
//
|
|
// Since we know we're initializing a class type of a type unrelated to that
|
|
// of the initializer, this reduces to something fairly reasonable.
|
|
OverloadCandidateSet Candidates(Kind.getLocation(),
|
|
OverloadCandidateSet::CSK_Normal);
|
|
OverloadCandidateSet::iterator Best;
|
|
|
|
bool HasAnyDeductionGuide = false;
|
|
bool AllowExplicit = !Kind.isCopyInit() || ListInit;
|
|
|
|
auto tryToResolveOverload =
|
|
[&](bool OnlyListConstructors) -> OverloadingResult {
|
|
Candidates.clear(OverloadCandidateSet::CSK_Normal);
|
|
HasAnyDeductionGuide = false;
|
|
|
|
for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
|
|
NamedDecl *D = (*I)->getUnderlyingDecl();
|
|
if (D->isInvalidDecl())
|
|
continue;
|
|
|
|
auto *TD = dyn_cast<FunctionTemplateDecl>(D);
|
|
auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
|
|
TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
|
|
if (!GD)
|
|
continue;
|
|
|
|
if (!GD->isImplicit())
|
|
HasAnyDeductionGuide = true;
|
|
|
|
// C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
|
|
// For copy-initialization, the candidate functions are all the
|
|
// converting constructors (12.3.1) of that class.
|
|
// C++ [over.match.copy]p1: (non-list copy-initialization from class)
|
|
// The converting constructors of T are candidate functions.
|
|
if (!AllowExplicit) {
|
|
// Overload resolution checks whether the deduction guide is declared
|
|
// explicit for us.
|
|
|
|
// When looking for a converting constructor, deduction guides that
|
|
// could never be called with one argument are not interesting to
|
|
// check or note.
|
|
if (GD->getMinRequiredArguments() > 1 ||
|
|
(GD->getNumParams() == 0 && !GD->isVariadic()))
|
|
continue;
|
|
}
|
|
|
|
// C++ [over.match.list]p1.1: (first phase list initialization)
|
|
// Initially, the candidate functions are the initializer-list
|
|
// constructors of the class T
|
|
if (OnlyListConstructors && !isInitListConstructor(GD))
|
|
continue;
|
|
|
|
// C++ [over.match.list]p1.2: (second phase list initialization)
|
|
// the candidate functions are all the constructors of the class T
|
|
// C++ [over.match.ctor]p1: (all other cases)
|
|
// the candidate functions are all the constructors of the class of
|
|
// the object being initialized
|
|
|
|
// C++ [over.best.ics]p4:
|
|
// When [...] the constructor [...] is a candidate by
|
|
// - [over.match.copy] (in all cases)
|
|
// FIXME: The "second phase of [over.match.list] case can also
|
|
// theoretically happen here, but it's not clear whether we can
|
|
// ever have a parameter of the right type.
|
|
bool SuppressUserConversions = Kind.isCopyInit();
|
|
|
|
if (TD)
|
|
AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
|
|
Inits, Candidates, SuppressUserConversions,
|
|
/*PartialOverloading*/ false,
|
|
AllowExplicit);
|
|
else
|
|
AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
|
|
SuppressUserConversions,
|
|
/*PartialOverloading*/ false, AllowExplicit);
|
|
}
|
|
return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
|
|
};
|
|
|
|
OverloadingResult Result = OR_No_Viable_Function;
|
|
|
|
// C++11 [over.match.list]p1, per DR1467: for list-initialization, first
|
|
// try initializer-list constructors.
|
|
if (ListInit) {
|
|
bool TryListConstructors = true;
|
|
|
|
// Try list constructors unless the list is empty and the class has one or
|
|
// more default constructors, in which case those constructors win.
|
|
if (!ListInit->getNumInits()) {
|
|
for (NamedDecl *D : Guides) {
|
|
auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
|
|
if (FD && FD->getMinRequiredArguments() == 0) {
|
|
TryListConstructors = false;
|
|
break;
|
|
}
|
|
}
|
|
} else if (ListInit->getNumInits() == 1) {
|
|
// C++ [over.match.class.deduct]:
|
|
// As an exception, the first phase in [over.match.list] (considering
|
|
// initializer-list constructors) is omitted if the initializer list
|
|
// consists of a single expression of type cv U, where U is a
|
|
// specialization of C or a class derived from a specialization of C.
|
|
Expr *E = ListInit->getInit(0);
|
|
auto *RD = E->getType()->getAsCXXRecordDecl();
|
|
if (!isa<InitListExpr>(E) && RD &&
|
|
isCompleteType(Kind.getLocation(), E->getType()) &&
|
|
isOrIsDerivedFromSpecializationOf(RD, Template))
|
|
TryListConstructors = false;
|
|
}
|
|
|
|
if (TryListConstructors)
|
|
Result = tryToResolveOverload(/*OnlyListConstructor*/true);
|
|
// Then unwrap the initializer list and try again considering all
|
|
// constructors.
|
|
Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
|
|
}
|
|
|
|
// If list-initialization fails, or if we're doing any other kind of
|
|
// initialization, we (eventually) consider constructors.
|
|
if (Result == OR_No_Viable_Function)
|
|
Result = tryToResolveOverload(/*OnlyListConstructor*/false);
|
|
|
|
switch (Result) {
|
|
case OR_Ambiguous:
|
|
// FIXME: For list-initialization candidates, it'd usually be better to
|
|
// list why they were not viable when given the initializer list itself as
|
|
// an argument.
|
|
Candidates.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Kind.getLocation(),
|
|
PDiag(diag::err_deduced_class_template_ctor_ambiguous)
|
|
<< TemplateName),
|
|
*this, OCD_AmbiguousCandidates, Inits);
|
|
return QualType();
|
|
|
|
case OR_No_Viable_Function: {
|
|
CXXRecordDecl *Primary =
|
|
cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
|
|
bool Complete =
|
|
isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
|
|
Candidates.NoteCandidates(
|
|
PartialDiagnosticAt(
|
|
Kind.getLocation(),
|
|
PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
|
|
: diag::err_deduced_class_template_incomplete)
|
|
<< TemplateName << !Guides.empty()),
|
|
*this, OCD_AllCandidates, Inits);
|
|
return QualType();
|
|
}
|
|
|
|
case OR_Deleted: {
|
|
Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
|
|
<< TemplateName;
|
|
NoteDeletedFunction(Best->Function);
|
|
return QualType();
|
|
}
|
|
|
|
case OR_Success:
|
|
// C++ [over.match.list]p1:
|
|
// In copy-list-initialization, if an explicit constructor is chosen, the
|
|
// initialization is ill-formed.
|
|
if (Kind.isCopyInit() && ListInit &&
|
|
cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
|
|
bool IsDeductionGuide = !Best->Function->isImplicit();
|
|
Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
|
|
<< TemplateName << IsDeductionGuide;
|
|
Diag(Best->Function->getLocation(),
|
|
diag::note_explicit_ctor_deduction_guide_here)
|
|
<< IsDeductionGuide;
|
|
return QualType();
|
|
}
|
|
|
|
// Make sure we didn't select an unusable deduction guide, and mark it
|
|
// as referenced.
|
|
DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
|
|
MarkFunctionReferenced(Kind.getLocation(), Best->Function);
|
|
break;
|
|
}
|
|
|
|
// C++ [dcl.type.class.deduct]p1:
|
|
// The placeholder is replaced by the return type of the function selected
|
|
// by overload resolution for class template deduction.
|
|
QualType DeducedType =
|
|
SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
|
|
Diag(TSInfo->getTypeLoc().getBeginLoc(),
|
|
diag::warn_cxx14_compat_class_template_argument_deduction)
|
|
<< TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
|
|
|
|
// Warn if CTAD was used on a type that does not have any user-defined
|
|
// deduction guides.
|
|
if (!HasAnyDeductionGuide) {
|
|
Diag(TSInfo->getTypeLoc().getBeginLoc(),
|
|
diag::warn_ctad_maybe_unsupported)
|
|
<< TemplateName;
|
|
Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
|
|
}
|
|
|
|
return DeducedType;
|
|
}
|