forked from OSchip/llvm-project
1073 lines
42 KiB
C++
1073 lines
42 KiB
C++
//===-- SemaConcept.cpp - Semantic Analysis for Constraints and Concepts --===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements semantic analysis for C++ constraints and concepts.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "clang/Sema/SemaConcept.h"
|
||
#include "clang/Sema/Sema.h"
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/Sema/SemaDiagnostic.h"
|
||
#include "clang/Sema/TemplateDeduction.h"
|
||
#include "clang/Sema/Template.h"
|
||
#include "clang/Sema/Overload.h"
|
||
#include "clang/Sema/Initialization.h"
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/AST/ExprConcepts.h"
|
||
#include "clang/AST/RecursiveASTVisitor.h"
|
||
#include "clang/Basic/OperatorPrecedence.h"
|
||
#include "llvm/ADT/DenseMap.h"
|
||
#include "llvm/ADT/PointerUnion.h"
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
namespace {
|
||
class LogicalBinOp {
|
||
OverloadedOperatorKind Op = OO_None;
|
||
const Expr *LHS = nullptr;
|
||
const Expr *RHS = nullptr;
|
||
|
||
public:
|
||
LogicalBinOp(const Expr *E) {
|
||
if (auto *BO = dyn_cast<BinaryOperator>(E)) {
|
||
Op = BinaryOperator::getOverloadedOperator(BO->getOpcode());
|
||
LHS = BO->getLHS();
|
||
RHS = BO->getRHS();
|
||
} else if (auto *OO = dyn_cast<CXXOperatorCallExpr>(E)) {
|
||
Op = OO->getOperator();
|
||
LHS = OO->getArg(0);
|
||
RHS = OO->getArg(1);
|
||
}
|
||
}
|
||
|
||
bool isAnd() const { return Op == OO_AmpAmp; }
|
||
bool isOr() const { return Op == OO_PipePipe; }
|
||
explicit operator bool() const { return isAnd() || isOr(); }
|
||
|
||
const Expr *getLHS() const { return LHS; }
|
||
const Expr *getRHS() const { return RHS; }
|
||
};
|
||
}
|
||
|
||
bool Sema::CheckConstraintExpression(const Expr *ConstraintExpression,
|
||
Token NextToken, bool *PossibleNonPrimary,
|
||
bool IsTrailingRequiresClause) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ..E shall be a constant expression of type bool.
|
||
|
||
ConstraintExpression = ConstraintExpression->IgnoreParenImpCasts();
|
||
|
||
if (LogicalBinOp BO = ConstraintExpression) {
|
||
return CheckConstraintExpression(BO.getLHS(), NextToken,
|
||
PossibleNonPrimary) &&
|
||
CheckConstraintExpression(BO.getRHS(), NextToken,
|
||
PossibleNonPrimary);
|
||
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpression))
|
||
return CheckConstraintExpression(C->getSubExpr(), NextToken,
|
||
PossibleNonPrimary);
|
||
|
||
QualType Type = ConstraintExpression->getType();
|
||
|
||
auto CheckForNonPrimary = [&] {
|
||
if (PossibleNonPrimary)
|
||
*PossibleNonPrimary =
|
||
// We have the following case:
|
||
// template<typename> requires func(0) struct S { };
|
||
// The user probably isn't aware of the parentheses required around
|
||
// the function call, and we're only going to parse 'func' as the
|
||
// primary-expression, and complain that it is of non-bool type.
|
||
(NextToken.is(tok::l_paren) &&
|
||
(IsTrailingRequiresClause ||
|
||
(Type->isDependentType() &&
|
||
isa<UnresolvedLookupExpr>(ConstraintExpression)) ||
|
||
Type->isFunctionType() ||
|
||
Type->isSpecificBuiltinType(BuiltinType::Overload))) ||
|
||
// We have the following case:
|
||
// template<typename T> requires size_<T> == 0 struct S { };
|
||
// The user probably isn't aware of the parentheses required around
|
||
// the binary operator, and we're only going to parse 'func' as the
|
||
// first operand, and complain that it is of non-bool type.
|
||
getBinOpPrecedence(NextToken.getKind(),
|
||
/*GreaterThanIsOperator=*/true,
|
||
getLangOpts().CPlusPlus11) > prec::LogicalAnd;
|
||
};
|
||
|
||
// An atomic constraint!
|
||
if (ConstraintExpression->isTypeDependent()) {
|
||
CheckForNonPrimary();
|
||
return true;
|
||
}
|
||
|
||
if (!Context.hasSameUnqualifiedType(Type, Context.BoolTy)) {
|
||
Diag(ConstraintExpression->getExprLoc(),
|
||
diag::err_non_bool_atomic_constraint) << Type
|
||
<< ConstraintExpression->getSourceRange();
|
||
CheckForNonPrimary();
|
||
return false;
|
||
}
|
||
|
||
if (PossibleNonPrimary)
|
||
*PossibleNonPrimary = false;
|
||
return true;
|
||
}
|
||
|
||
template <typename AtomicEvaluator>
|
||
static bool
|
||
calculateConstraintSatisfaction(Sema &S, const Expr *ConstraintExpr,
|
||
ConstraintSatisfaction &Satisfaction,
|
||
AtomicEvaluator &&Evaluator) {
|
||
ConstraintExpr = ConstraintExpr->IgnoreParenImpCasts();
|
||
|
||
if (LogicalBinOp BO = ConstraintExpr) {
|
||
if (calculateConstraintSatisfaction(S, BO.getLHS(), Satisfaction,
|
||
Evaluator))
|
||
return true;
|
||
|
||
bool IsLHSSatisfied = Satisfaction.IsSatisfied;
|
||
|
||
if (BO.isOr() && IsLHSSatisfied)
|
||
// [temp.constr.op] p3
|
||
// A disjunction is a constraint taking two operands. To determine if
|
||
// a disjunction is satisfied, the satisfaction of the first operand
|
||
// is checked. If that is satisfied, the disjunction is satisfied.
|
||
// Otherwise, the disjunction is satisfied if and only if the second
|
||
// operand is satisfied.
|
||
return false;
|
||
|
||
if (BO.isAnd() && !IsLHSSatisfied)
|
||
// [temp.constr.op] p2
|
||
// A conjunction is a constraint taking two operands. To determine if
|
||
// a conjunction is satisfied, the satisfaction of the first operand
|
||
// is checked. If that is not satisfied, the conjunction is not
|
||
// satisfied. Otherwise, the conjunction is satisfied if and only if
|
||
// the second operand is satisfied.
|
||
return false;
|
||
|
||
return calculateConstraintSatisfaction(
|
||
S, BO.getRHS(), Satisfaction, std::forward<AtomicEvaluator>(Evaluator));
|
||
} else if (auto *C = dyn_cast<ExprWithCleanups>(ConstraintExpr)) {
|
||
return calculateConstraintSatisfaction(S, C->getSubExpr(), Satisfaction,
|
||
std::forward<AtomicEvaluator>(Evaluator));
|
||
}
|
||
|
||
// An atomic constraint expression
|
||
ExprResult SubstitutedAtomicExpr = Evaluator(ConstraintExpr);
|
||
|
||
if (SubstitutedAtomicExpr.isInvalid())
|
||
return true;
|
||
|
||
if (!SubstitutedAtomicExpr.isUsable())
|
||
// Evaluator has decided satisfaction without yielding an expression.
|
||
return false;
|
||
|
||
EnterExpressionEvaluationContext ConstantEvaluated(
|
||
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
||
SmallVector<PartialDiagnosticAt, 2> EvaluationDiags;
|
||
Expr::EvalResult EvalResult;
|
||
EvalResult.Diag = &EvaluationDiags;
|
||
if (!SubstitutedAtomicExpr.get()->EvaluateAsRValue(EvalResult, S.Context)) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ...E shall be a constant expression of type bool.
|
||
S.Diag(SubstitutedAtomicExpr.get()->getBeginLoc(),
|
||
diag::err_non_constant_constraint_expression)
|
||
<< SubstitutedAtomicExpr.get()->getSourceRange();
|
||
for (const PartialDiagnosticAt &PDiag : EvaluationDiags)
|
||
S.Diag(PDiag.first, PDiag.second);
|
||
return true;
|
||
}
|
||
|
||
Satisfaction.IsSatisfied = EvalResult.Val.getInt().getBoolValue();
|
||
if (!Satisfaction.IsSatisfied)
|
||
Satisfaction.Details.emplace_back(ConstraintExpr,
|
||
SubstitutedAtomicExpr.get());
|
||
|
||
return false;
|
||
}
|
||
|
||
static bool calculateConstraintSatisfaction(
|
||
Sema &S, const NamedDecl *Template, ArrayRef<TemplateArgument> TemplateArgs,
|
||
SourceLocation TemplateNameLoc, MultiLevelTemplateArgumentList &MLTAL,
|
||
const Expr *ConstraintExpr, ConstraintSatisfaction &Satisfaction) {
|
||
return calculateConstraintSatisfaction(
|
||
S, ConstraintExpr, Satisfaction, [&](const Expr *AtomicExpr) {
|
||
EnterExpressionEvaluationContext ConstantEvaluated(
|
||
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
||
|
||
// Atomic constraint - substitute arguments and check satisfaction.
|
||
ExprResult SubstitutedExpression;
|
||
{
|
||
TemplateDeductionInfo Info(TemplateNameLoc);
|
||
Sema::InstantiatingTemplate Inst(S, AtomicExpr->getBeginLoc(),
|
||
Sema::InstantiatingTemplate::ConstraintSubstitution{},
|
||
const_cast<NamedDecl *>(Template), Info,
|
||
AtomicExpr->getSourceRange());
|
||
if (Inst.isInvalid())
|
||
return ExprError();
|
||
// We do not want error diagnostics escaping here.
|
||
Sema::SFINAETrap Trap(S);
|
||
SubstitutedExpression = S.SubstExpr(const_cast<Expr *>(AtomicExpr),
|
||
MLTAL);
|
||
if (SubstitutedExpression.isInvalid() || Trap.hasErrorOccurred()) {
|
||
// C++2a [temp.constr.atomic]p1
|
||
// ...If substitution results in an invalid type or expression, the
|
||
// constraint is not satisfied.
|
||
if (!Trap.hasErrorOccurred())
|
||
// A non-SFINAE error has occured as a result of this
|
||
// substitution.
|
||
return ExprError();
|
||
|
||
PartialDiagnosticAt SubstDiag{SourceLocation(),
|
||
PartialDiagnostic::NullDiagnostic()};
|
||
Info.takeSFINAEDiagnostic(SubstDiag);
|
||
// FIXME: Concepts: This is an unfortunate consequence of there
|
||
// being no serialization code for PartialDiagnostics and the fact
|
||
// that serializing them would likely take a lot more storage than
|
||
// just storing them as strings. We would still like, in the
|
||
// future, to serialize the proper PartialDiagnostic as serializing
|
||
// it as a string defeats the purpose of the diagnostic mechanism.
|
||
SmallString<128> DiagString;
|
||
DiagString = ": ";
|
||
SubstDiag.second.EmitToString(S.getDiagnostics(), DiagString);
|
||
unsigned MessageSize = DiagString.size();
|
||
char *Mem = new (S.Context) char[MessageSize];
|
||
memcpy(Mem, DiagString.c_str(), MessageSize);
|
||
Satisfaction.Details.emplace_back(
|
||
AtomicExpr,
|
||
new (S.Context) ConstraintSatisfaction::SubstitutionDiagnostic{
|
||
SubstDiag.first, StringRef(Mem, MessageSize)});
|
||
Satisfaction.IsSatisfied = false;
|
||
return ExprEmpty();
|
||
}
|
||
}
|
||
|
||
if (!S.CheckConstraintExpression(SubstitutedExpression.get()))
|
||
return ExprError();
|
||
|
||
return SubstitutedExpression;
|
||
});
|
||
}
|
||
|
||
static bool CheckConstraintSatisfaction(Sema &S, const NamedDecl *Template,
|
||
ArrayRef<const Expr *> ConstraintExprs,
|
||
ArrayRef<TemplateArgument> TemplateArgs,
|
||
SourceRange TemplateIDRange,
|
||
ConstraintSatisfaction &Satisfaction) {
|
||
if (ConstraintExprs.empty()) {
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
for (auto& Arg : TemplateArgs)
|
||
if (Arg.isInstantiationDependent()) {
|
||
// No need to check satisfaction for dependent constraint expressions.
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
Sema::InstantiatingTemplate Inst(S, TemplateIDRange.getBegin(),
|
||
Sema::InstantiatingTemplate::ConstraintsCheck{},
|
||
const_cast<NamedDecl *>(Template), TemplateArgs, TemplateIDRange);
|
||
if (Inst.isInvalid())
|
||
return true;
|
||
|
||
MultiLevelTemplateArgumentList MLTAL;
|
||
MLTAL.addOuterTemplateArguments(TemplateArgs);
|
||
|
||
for (const Expr *ConstraintExpr : ConstraintExprs) {
|
||
if (calculateConstraintSatisfaction(S, Template, TemplateArgs,
|
||
TemplateIDRange.getBegin(), MLTAL,
|
||
ConstraintExpr, Satisfaction))
|
||
return true;
|
||
if (!Satisfaction.IsSatisfied)
|
||
// [temp.constr.op] p2
|
||
// [...] To determine if a conjunction is satisfied, the satisfaction
|
||
// of the first operand is checked. If that is not satisfied, the
|
||
// conjunction is not satisfied. [...]
|
||
return false;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckConstraintSatisfaction(
|
||
const NamedDecl *Template, ArrayRef<const Expr *> ConstraintExprs,
|
||
ArrayRef<TemplateArgument> TemplateArgs, SourceRange TemplateIDRange,
|
||
ConstraintSatisfaction &OutSatisfaction) {
|
||
if (ConstraintExprs.empty()) {
|
||
OutSatisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
|
||
llvm::FoldingSetNodeID ID;
|
||
void *InsertPos;
|
||
ConstraintSatisfaction *Satisfaction = nullptr;
|
||
bool ShouldCache = LangOpts.ConceptSatisfactionCaching && Template;
|
||
if (ShouldCache) {
|
||
ConstraintSatisfaction::Profile(ID, Context, Template, TemplateArgs);
|
||
Satisfaction = SatisfactionCache.FindNodeOrInsertPos(ID, InsertPos);
|
||
if (Satisfaction) {
|
||
OutSatisfaction = *Satisfaction;
|
||
return false;
|
||
}
|
||
Satisfaction = new ConstraintSatisfaction(Template, TemplateArgs);
|
||
} else {
|
||
Satisfaction = &OutSatisfaction;
|
||
}
|
||
if (::CheckConstraintSatisfaction(*this, Template, ConstraintExprs,
|
||
TemplateArgs, TemplateIDRange,
|
||
*Satisfaction)) {
|
||
if (ShouldCache)
|
||
delete Satisfaction;
|
||
return true;
|
||
}
|
||
|
||
if (ShouldCache) {
|
||
// We cannot use InsertNode here because CheckConstraintSatisfaction might
|
||
// have invalidated it.
|
||
SatisfactionCache.InsertNode(Satisfaction);
|
||
OutSatisfaction = *Satisfaction;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Sema::CheckConstraintSatisfaction(const Expr *ConstraintExpr,
|
||
ConstraintSatisfaction &Satisfaction) {
|
||
return calculateConstraintSatisfaction(
|
||
*this, ConstraintExpr, Satisfaction,
|
||
[](const Expr *AtomicExpr) -> ExprResult {
|
||
return ExprResult(const_cast<Expr *>(AtomicExpr));
|
||
});
|
||
}
|
||
|
||
bool Sema::CheckFunctionConstraints(const FunctionDecl *FD,
|
||
ConstraintSatisfaction &Satisfaction,
|
||
SourceLocation UsageLoc) {
|
||
const Expr *RC = FD->getTrailingRequiresClause();
|
||
if (RC->isInstantiationDependent()) {
|
||
Satisfaction.IsSatisfied = true;
|
||
return false;
|
||
}
|
||
Qualifiers ThisQuals;
|
||
CXXRecordDecl *Record = nullptr;
|
||
if (auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
|
||
ThisQuals = Method->getMethodQualifiers();
|
||
Record = const_cast<CXXRecordDecl *>(Method->getParent());
|
||
}
|
||
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
|
||
// We substitute with empty arguments in order to rebuild the atomic
|
||
// constraint in a constant-evaluated context.
|
||
// FIXME: Should this be a dedicated TreeTransform?
|
||
return CheckConstraintSatisfaction(
|
||
FD, {RC}, /*TemplateArgs=*/{},
|
||
SourceRange(UsageLoc.isValid() ? UsageLoc : FD->getLocation()),
|
||
Satisfaction);
|
||
}
|
||
|
||
bool Sema::EnsureTemplateArgumentListConstraints(
|
||
TemplateDecl *TD, ArrayRef<TemplateArgument> TemplateArgs,
|
||
SourceRange TemplateIDRange) {
|
||
ConstraintSatisfaction Satisfaction;
|
||
llvm::SmallVector<const Expr *, 3> AssociatedConstraints;
|
||
TD->getAssociatedConstraints(AssociatedConstraints);
|
||
if (CheckConstraintSatisfaction(TD, AssociatedConstraints, TemplateArgs,
|
||
TemplateIDRange, Satisfaction))
|
||
return true;
|
||
|
||
if (!Satisfaction.IsSatisfied) {
|
||
SmallString<128> TemplateArgString;
|
||
TemplateArgString = " ";
|
||
TemplateArgString += getTemplateArgumentBindingsText(
|
||
TD->getTemplateParameters(), TemplateArgs.data(), TemplateArgs.size());
|
||
|
||
Diag(TemplateIDRange.getBegin(),
|
||
diag::err_template_arg_list_constraints_not_satisfied)
|
||
<< (int)getTemplateNameKindForDiagnostics(TemplateName(TD)) << TD
|
||
<< TemplateArgString << TemplateIDRange;
|
||
DiagnoseUnsatisfiedConstraint(Satisfaction);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::ExprRequirement *Req,
|
||
bool First) {
|
||
assert(!Req->isSatisfied()
|
||
&& "Diagnose() can only be used on an unsatisfied requirement");
|
||
switch (Req->getSatisfactionStatus()) {
|
||
case concepts::ExprRequirement::SS_Dependent:
|
||
llvm_unreachable("Diagnosing a dependent requirement");
|
||
break;
|
||
case concepts::ExprRequirement::SS_ExprSubstitutionFailure: {
|
||
auto *SubstDiag = Req->getExprSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_expr_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_expr_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_NoexceptNotMet:
|
||
S.Diag(Req->getNoexceptLoc(),
|
||
diag::note_expr_requirement_noexcept_not_met)
|
||
<< (int)First << Req->getExpr();
|
||
break;
|
||
case concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure: {
|
||
auto *SubstDiag =
|
||
Req->getReturnTypeRequirement().getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_type_requirement_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_expr_requirement_type_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_ConstraintsNotSatisfied: {
|
||
ConceptSpecializationExpr *ConstraintExpr =
|
||
Req->getReturnTypeRequirementSubstitutedConstraintExpr();
|
||
if (ConstraintExpr->getTemplateArgsAsWritten()->NumTemplateArgs == 1)
|
||
// A simple case - expr type is the type being constrained and the concept
|
||
// was not provided arguments.
|
||
S.Diag(ConstraintExpr->getBeginLoc(),
|
||
diag::note_expr_requirement_constraints_not_satisfied_simple)
|
||
<< (int)First << S.BuildDecltypeType(Req->getExpr(),
|
||
Req->getExpr()->getBeginLoc())
|
||
<< ConstraintExpr->getNamedConcept();
|
||
else
|
||
S.Diag(ConstraintExpr->getBeginLoc(),
|
||
diag::note_expr_requirement_constraints_not_satisfied)
|
||
<< (int)First << ConstraintExpr;
|
||
S.DiagnoseUnsatisfiedConstraint(ConstraintExpr->getSatisfaction());
|
||
break;
|
||
}
|
||
case concepts::ExprRequirement::SS_Satisfied:
|
||
llvm_unreachable("We checked this above");
|
||
}
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::TypeRequirement *Req,
|
||
bool First) {
|
||
assert(!Req->isSatisfied()
|
||
&& "Diagnose() can only be used on an unsatisfied requirement");
|
||
switch (Req->getSatisfactionStatus()) {
|
||
case concepts::TypeRequirement::SS_Dependent:
|
||
llvm_unreachable("Diagnosing a dependent requirement");
|
||
return;
|
||
case concepts::TypeRequirement::SS_SubstitutionFailure: {
|
||
auto *SubstDiag = Req->getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_type_requirement_substitution_error) << (int)First
|
||
<< SubstDiag->SubstitutedEntity << SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_type_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
return;
|
||
}
|
||
default:
|
||
llvm_unreachable("Unknown satisfaction status");
|
||
return;
|
||
}
|
||
}
|
||
|
||
static void diagnoseUnsatisfiedRequirement(Sema &S,
|
||
concepts::NestedRequirement *Req,
|
||
bool First) {
|
||
if (Req->isSubstitutionFailure()) {
|
||
concepts::Requirement::SubstitutionDiagnostic *SubstDiag =
|
||
Req->getSubstitutionDiagnostic();
|
||
if (!SubstDiag->DiagMessage.empty())
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_nested_requirement_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity
|
||
<< SubstDiag->DiagMessage;
|
||
else
|
||
S.Diag(SubstDiag->DiagLoc,
|
||
diag::note_nested_requirement_unknown_substitution_error)
|
||
<< (int)First << SubstDiag->SubstitutedEntity;
|
||
return;
|
||
}
|
||
S.DiagnoseUnsatisfiedConstraint(Req->getConstraintSatisfaction(), First);
|
||
}
|
||
|
||
|
||
static void diagnoseWellFormedUnsatisfiedConstraintExpr(Sema &S,
|
||
Expr *SubstExpr,
|
||
bool First = true) {
|
||
SubstExpr = SubstExpr->IgnoreParenImpCasts();
|
||
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SubstExpr)) {
|
||
switch (BO->getOpcode()) {
|
||
// These two cases will in practice only be reached when using fold
|
||
// expressions with || and &&, since otherwise the || and && will have been
|
||
// broken down into atomic constraints during satisfaction checking.
|
||
case BO_LOr:
|
||
// Or evaluated to false - meaning both RHS and LHS evaluated to false.
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
|
||
/*First=*/false);
|
||
return;
|
||
case BO_LAnd:
|
||
bool LHSSatisfied;
|
||
BO->getLHS()->EvaluateAsBooleanCondition(LHSSatisfied, S.Context);
|
||
if (LHSSatisfied) {
|
||
// LHS is true, so RHS must be false.
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(), First);
|
||
return;
|
||
}
|
||
// LHS is false
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getLHS(), First);
|
||
|
||
// RHS might also be false
|
||
bool RHSSatisfied;
|
||
BO->getRHS()->EvaluateAsBooleanCondition(RHSSatisfied, S.Context);
|
||
if (!RHSSatisfied)
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S, BO->getRHS(),
|
||
/*First=*/false);
|
||
return;
|
||
case BO_GE:
|
||
case BO_LE:
|
||
case BO_GT:
|
||
case BO_LT:
|
||
case BO_EQ:
|
||
case BO_NE:
|
||
if (BO->getLHS()->getType()->isIntegerType() &&
|
||
BO->getRHS()->getType()->isIntegerType()) {
|
||
Expr::EvalResult SimplifiedLHS;
|
||
Expr::EvalResult SimplifiedRHS;
|
||
BO->getLHS()->EvaluateAsInt(SimplifiedLHS, S.Context);
|
||
BO->getRHS()->EvaluateAsInt(SimplifiedRHS, S.Context);
|
||
if (!SimplifiedLHS.Diag && ! SimplifiedRHS.Diag) {
|
||
S.Diag(SubstExpr->getBeginLoc(),
|
||
diag::note_atomic_constraint_evaluated_to_false_elaborated)
|
||
<< (int)First << SubstExpr
|
||
<< SimplifiedLHS.Val.getInt().toString(10)
|
||
<< BinaryOperator::getOpcodeStr(BO->getOpcode())
|
||
<< SimplifiedRHS.Val.getInt().toString(10);
|
||
return;
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
} else if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(SubstExpr)) {
|
||
if (CSE->getTemplateArgsAsWritten()->NumTemplateArgs == 1) {
|
||
S.Diag(
|
||
CSE->getSourceRange().getBegin(),
|
||
diag::
|
||
note_single_arg_concept_specialization_constraint_evaluated_to_false)
|
||
<< (int)First
|
||
<< CSE->getTemplateArgsAsWritten()->arguments()[0].getArgument()
|
||
<< CSE->getNamedConcept();
|
||
} else {
|
||
S.Diag(SubstExpr->getSourceRange().getBegin(),
|
||
diag::note_concept_specialization_constraint_evaluated_to_false)
|
||
<< (int)First << CSE;
|
||
}
|
||
S.DiagnoseUnsatisfiedConstraint(CSE->getSatisfaction());
|
||
return;
|
||
} else if (auto *RE = dyn_cast<RequiresExpr>(SubstExpr)) {
|
||
for (concepts::Requirement *Req : RE->getRequirements())
|
||
if (!Req->isDependent() && !Req->isSatisfied()) {
|
||
if (auto *E = dyn_cast<concepts::ExprRequirement>(Req))
|
||
diagnoseUnsatisfiedRequirement(S, E, First);
|
||
else if (auto *T = dyn_cast<concepts::TypeRequirement>(Req))
|
||
diagnoseUnsatisfiedRequirement(S, T, First);
|
||
else
|
||
diagnoseUnsatisfiedRequirement(
|
||
S, cast<concepts::NestedRequirement>(Req), First);
|
||
break;
|
||
}
|
||
return;
|
||
}
|
||
|
||
S.Diag(SubstExpr->getSourceRange().getBegin(),
|
||
diag::note_atomic_constraint_evaluated_to_false)
|
||
<< (int)First << SubstExpr;
|
||
}
|
||
|
||
template<typename SubstitutionDiagnostic>
|
||
static void diagnoseUnsatisfiedConstraintExpr(
|
||
Sema &S, const Expr *E,
|
||
const llvm::PointerUnion<Expr *, SubstitutionDiagnostic *> &Record,
|
||
bool First = true) {
|
||
if (auto *Diag = Record.template dyn_cast<SubstitutionDiagnostic *>()){
|
||
S.Diag(Diag->first, diag::note_substituted_constraint_expr_is_ill_formed)
|
||
<< Diag->second;
|
||
return;
|
||
}
|
||
|
||
diagnoseWellFormedUnsatisfiedConstraintExpr(S,
|
||
Record.template get<Expr *>(), First);
|
||
}
|
||
|
||
void
|
||
Sema::DiagnoseUnsatisfiedConstraint(const ConstraintSatisfaction& Satisfaction,
|
||
bool First) {
|
||
assert(!Satisfaction.IsSatisfied &&
|
||
"Attempted to diagnose a satisfied constraint");
|
||
for (auto &Pair : Satisfaction.Details) {
|
||
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
|
||
First = false;
|
||
}
|
||
}
|
||
|
||
void Sema::DiagnoseUnsatisfiedConstraint(
|
||
const ASTConstraintSatisfaction &Satisfaction,
|
||
bool First) {
|
||
assert(!Satisfaction.IsSatisfied &&
|
||
"Attempted to diagnose a satisfied constraint");
|
||
for (auto &Pair : Satisfaction) {
|
||
diagnoseUnsatisfiedConstraintExpr(*this, Pair.first, Pair.second, First);
|
||
First = false;
|
||
}
|
||
}
|
||
|
||
const NormalizedConstraint *
|
||
Sema::getNormalizedAssociatedConstraints(
|
||
NamedDecl *ConstrainedDecl, ArrayRef<const Expr *> AssociatedConstraints) {
|
||
auto CacheEntry = NormalizationCache.find(ConstrainedDecl);
|
||
if (CacheEntry == NormalizationCache.end()) {
|
||
auto Normalized =
|
||
NormalizedConstraint::fromConstraintExprs(*this, ConstrainedDecl,
|
||
AssociatedConstraints);
|
||
CacheEntry =
|
||
NormalizationCache
|
||
.try_emplace(ConstrainedDecl,
|
||
Normalized
|
||
? new (Context) NormalizedConstraint(
|
||
std::move(*Normalized))
|
||
: nullptr)
|
||
.first;
|
||
}
|
||
return CacheEntry->second;
|
||
}
|
||
|
||
static bool substituteParameterMappings(Sema &S, NormalizedConstraint &N,
|
||
ConceptDecl *Concept, ArrayRef<TemplateArgument> TemplateArgs,
|
||
const ASTTemplateArgumentListInfo *ArgsAsWritten) {
|
||
if (!N.isAtomic()) {
|
||
if (substituteParameterMappings(S, N.getLHS(), Concept, TemplateArgs,
|
||
ArgsAsWritten))
|
||
return true;
|
||
return substituteParameterMappings(S, N.getRHS(), Concept, TemplateArgs,
|
||
ArgsAsWritten);
|
||
}
|
||
TemplateParameterList *TemplateParams = Concept->getTemplateParameters();
|
||
|
||
AtomicConstraint &Atomic = *N.getAtomicConstraint();
|
||
TemplateArgumentListInfo SubstArgs;
|
||
MultiLevelTemplateArgumentList MLTAL;
|
||
MLTAL.addOuterTemplateArguments(TemplateArgs);
|
||
if (!Atomic.ParameterMapping) {
|
||
llvm::SmallBitVector OccurringIndices(TemplateParams->size());
|
||
S.MarkUsedTemplateParameters(Atomic.ConstraintExpr, /*OnlyDeduced=*/false,
|
||
/*Depth=*/0, OccurringIndices);
|
||
Atomic.ParameterMapping.emplace(
|
||
MutableArrayRef<TemplateArgumentLoc>(
|
||
new (S.Context) TemplateArgumentLoc[OccurringIndices.count()],
|
||
OccurringIndices.count()));
|
||
for (unsigned I = 0, J = 0, C = TemplateParams->size(); I != C; ++I)
|
||
if (OccurringIndices[I])
|
||
new (&(*Atomic.ParameterMapping)[J++]) TemplateArgumentLoc(
|
||
S.getIdentityTemplateArgumentLoc(TemplateParams->begin()[I],
|
||
// Here we assume we do not support things like
|
||
// template<typename A, typename B>
|
||
// concept C = ...;
|
||
//
|
||
// template<typename... Ts> requires C<Ts...>
|
||
// struct S { };
|
||
// The above currently yields a diagnostic.
|
||
// We still might have default arguments for concept parameters.
|
||
ArgsAsWritten->NumTemplateArgs > I ?
|
||
ArgsAsWritten->arguments()[I].getLocation() :
|
||
SourceLocation()));
|
||
}
|
||
Sema::InstantiatingTemplate Inst(
|
||
S, ArgsAsWritten->arguments().front().getSourceRange().getBegin(),
|
||
Sema::InstantiatingTemplate::ParameterMappingSubstitution{}, Concept,
|
||
SourceRange(ArgsAsWritten->arguments()[0].getSourceRange().getBegin(),
|
||
ArgsAsWritten->arguments().back().getSourceRange().getEnd()));
|
||
if (S.SubstTemplateArguments(*Atomic.ParameterMapping, MLTAL, SubstArgs))
|
||
return true;
|
||
Atomic.ParameterMapping.emplace(
|
||
MutableArrayRef<TemplateArgumentLoc>(
|
||
new (S.Context) TemplateArgumentLoc[SubstArgs.size()],
|
||
SubstArgs.size()));
|
||
std::copy(SubstArgs.arguments().begin(), SubstArgs.arguments().end(),
|
||
N.getAtomicConstraint()->ParameterMapping->begin());
|
||
return false;
|
||
}
|
||
|
||
Optional<NormalizedConstraint>
|
||
NormalizedConstraint::fromConstraintExprs(Sema &S, NamedDecl *D,
|
||
ArrayRef<const Expr *> E) {
|
||
assert(E.size() != 0);
|
||
auto First = fromConstraintExpr(S, D, E[0]);
|
||
if (E.size() == 1)
|
||
return First;
|
||
auto Second = fromConstraintExpr(S, D, E[1]);
|
||
if (!Second)
|
||
return None;
|
||
llvm::Optional<NormalizedConstraint> Conjunction;
|
||
Conjunction.emplace(S.Context, std::move(*First), std::move(*Second),
|
||
CCK_Conjunction);
|
||
for (unsigned I = 2; I < E.size(); ++I) {
|
||
auto Next = fromConstraintExpr(S, D, E[I]);
|
||
if (!Next)
|
||
return llvm::Optional<NormalizedConstraint>{};
|
||
NormalizedConstraint NewConjunction(S.Context, std::move(*Conjunction),
|
||
std::move(*Next), CCK_Conjunction);
|
||
*Conjunction = std::move(NewConjunction);
|
||
}
|
||
return Conjunction;
|
||
}
|
||
|
||
llvm::Optional<NormalizedConstraint>
|
||
NormalizedConstraint::fromConstraintExpr(Sema &S, NamedDecl *D, const Expr *E) {
|
||
assert(E != nullptr);
|
||
|
||
// C++ [temp.constr.normal]p1.1
|
||
// [...]
|
||
// - The normal form of an expression (E) is the normal form of E.
|
||
// [...]
|
||
E = E->IgnoreParenImpCasts();
|
||
if (LogicalBinOp BO = E) {
|
||
auto LHS = fromConstraintExpr(S, D, BO.getLHS());
|
||
if (!LHS)
|
||
return None;
|
||
auto RHS = fromConstraintExpr(S, D, BO.getRHS());
|
||
if (!RHS)
|
||
return None;
|
||
|
||
return NormalizedConstraint(S.Context, std::move(*LHS), std::move(*RHS),
|
||
BO.isAnd() ? CCK_Conjunction : CCK_Disjunction);
|
||
} else if (auto *CSE = dyn_cast<const ConceptSpecializationExpr>(E)) {
|
||
const NormalizedConstraint *SubNF;
|
||
{
|
||
Sema::InstantiatingTemplate Inst(
|
||
S, CSE->getExprLoc(),
|
||
Sema::InstantiatingTemplate::ConstraintNormalization{}, D,
|
||
CSE->getSourceRange());
|
||
// C++ [temp.constr.normal]p1.1
|
||
// [...]
|
||
// The normal form of an id-expression of the form C<A1, A2, ..., AN>,
|
||
// where C names a concept, is the normal form of the
|
||
// constraint-expression of C, after substituting A1, A2, ..., AN for C’s
|
||
// respective template parameters in the parameter mappings in each atomic
|
||
// constraint. If any such substitution results in an invalid type or
|
||
// expression, the program is ill-formed; no diagnostic is required.
|
||
// [...]
|
||
ConceptDecl *CD = CSE->getNamedConcept();
|
||
SubNF = S.getNormalizedAssociatedConstraints(CD,
|
||
{CD->getConstraintExpr()});
|
||
if (!SubNF)
|
||
return None;
|
||
}
|
||
|
||
Optional<NormalizedConstraint> New;
|
||
New.emplace(S.Context, *SubNF);
|
||
|
||
if (substituteParameterMappings(
|
||
S, *New, CSE->getNamedConcept(),
|
||
CSE->getTemplateArguments(), CSE->getTemplateArgsAsWritten()))
|
||
return None;
|
||
|
||
return New;
|
||
}
|
||
return NormalizedConstraint{new (S.Context) AtomicConstraint(S, E)};
|
||
}
|
||
|
||
using NormalForm =
|
||
llvm::SmallVector<llvm::SmallVector<AtomicConstraint *, 2>, 4>;
|
||
|
||
static NormalForm makeCNF(const NormalizedConstraint &Normalized) {
|
||
if (Normalized.isAtomic())
|
||
return {{Normalized.getAtomicConstraint()}};
|
||
|
||
NormalForm LCNF = makeCNF(Normalized.getLHS());
|
||
NormalForm RCNF = makeCNF(Normalized.getRHS());
|
||
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Conjunction) {
|
||
LCNF.reserve(LCNF.size() + RCNF.size());
|
||
while (!RCNF.empty())
|
||
LCNF.push_back(RCNF.pop_back_val());
|
||
return LCNF;
|
||
}
|
||
|
||
// Disjunction
|
||
NormalForm Res;
|
||
Res.reserve(LCNF.size() * RCNF.size());
|
||
for (auto &LDisjunction : LCNF)
|
||
for (auto &RDisjunction : RCNF) {
|
||
NormalForm::value_type Combined;
|
||
Combined.reserve(LDisjunction.size() + RDisjunction.size());
|
||
std::copy(LDisjunction.begin(), LDisjunction.end(),
|
||
std::back_inserter(Combined));
|
||
std::copy(RDisjunction.begin(), RDisjunction.end(),
|
||
std::back_inserter(Combined));
|
||
Res.emplace_back(Combined);
|
||
}
|
||
return Res;
|
||
}
|
||
|
||
static NormalForm makeDNF(const NormalizedConstraint &Normalized) {
|
||
if (Normalized.isAtomic())
|
||
return {{Normalized.getAtomicConstraint()}};
|
||
|
||
NormalForm LDNF = makeDNF(Normalized.getLHS());
|
||
NormalForm RDNF = makeDNF(Normalized.getRHS());
|
||
if (Normalized.getCompoundKind() == NormalizedConstraint::CCK_Disjunction) {
|
||
LDNF.reserve(LDNF.size() + RDNF.size());
|
||
while (!RDNF.empty())
|
||
LDNF.push_back(RDNF.pop_back_val());
|
||
return LDNF;
|
||
}
|
||
|
||
// Conjunction
|
||
NormalForm Res;
|
||
Res.reserve(LDNF.size() * RDNF.size());
|
||
for (auto &LConjunction : LDNF) {
|
||
for (auto &RConjunction : RDNF) {
|
||
NormalForm::value_type Combined;
|
||
Combined.reserve(LConjunction.size() + RConjunction.size());
|
||
std::copy(LConjunction.begin(), LConjunction.end(),
|
||
std::back_inserter(Combined));
|
||
std::copy(RConjunction.begin(), RConjunction.end(),
|
||
std::back_inserter(Combined));
|
||
Res.emplace_back(Combined);
|
||
}
|
||
}
|
||
return Res;
|
||
}
|
||
|
||
template<typename AtomicSubsumptionEvaluator>
|
||
static bool subsumes(NormalForm PDNF, NormalForm QCNF,
|
||
AtomicSubsumptionEvaluator E) {
|
||
// C++ [temp.constr.order] p2
|
||
// Then, P subsumes Q if and only if, for every disjunctive clause Pi in the
|
||
// disjunctive normal form of P, Pi subsumes every conjunctive clause Qj in
|
||
// the conjuctive normal form of Q, where [...]
|
||
for (const auto &Pi : PDNF) {
|
||
for (const auto &Qj : QCNF) {
|
||
// C++ [temp.constr.order] p2
|
||
// - [...] a disjunctive clause Pi subsumes a conjunctive clause Qj if
|
||
// and only if there exists an atomic constraint Pia in Pi for which
|
||
// there exists an atomic constraint, Qjb, in Qj such that Pia
|
||
// subsumes Qjb.
|
||
bool Found = false;
|
||
for (const AtomicConstraint *Pia : Pi) {
|
||
for (const AtomicConstraint *Qjb : Qj) {
|
||
if (E(*Pia, *Qjb)) {
|
||
Found = true;
|
||
break;
|
||
}
|
||
}
|
||
if (Found)
|
||
break;
|
||
}
|
||
if (!Found)
|
||
return false;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
|
||
template<typename AtomicSubsumptionEvaluator>
|
||
static bool subsumes(Sema &S, NamedDecl *DP, ArrayRef<const Expr *> P,
|
||
NamedDecl *DQ, ArrayRef<const Expr *> Q, bool &Subsumes,
|
||
AtomicSubsumptionEvaluator E) {
|
||
// C++ [temp.constr.order] p2
|
||
// In order to determine if a constraint P subsumes a constraint Q, P is
|
||
// transformed into disjunctive normal form, and Q is transformed into
|
||
// conjunctive normal form. [...]
|
||
auto *PNormalized = S.getNormalizedAssociatedConstraints(DP, P);
|
||
if (!PNormalized)
|
||
return true;
|
||
const NormalForm PDNF = makeDNF(*PNormalized);
|
||
|
||
auto *QNormalized = S.getNormalizedAssociatedConstraints(DQ, Q);
|
||
if (!QNormalized)
|
||
return true;
|
||
const NormalForm QCNF = makeCNF(*QNormalized);
|
||
|
||
Subsumes = subsumes(PDNF, QCNF, E);
|
||
return false;
|
||
}
|
||
|
||
bool Sema::IsAtLeastAsConstrained(NamedDecl *D1, ArrayRef<const Expr *> AC1,
|
||
NamedDecl *D2, ArrayRef<const Expr *> AC2,
|
||
bool &Result) {
|
||
if (AC1.empty()) {
|
||
Result = AC2.empty();
|
||
return false;
|
||
}
|
||
if (AC2.empty()) {
|
||
// TD1 has associated constraints and TD2 does not.
|
||
Result = true;
|
||
return false;
|
||
}
|
||
|
||
std::pair<NamedDecl *, NamedDecl *> Key{D1, D2};
|
||
auto CacheEntry = SubsumptionCache.find(Key);
|
||
if (CacheEntry != SubsumptionCache.end()) {
|
||
Result = CacheEntry->second;
|
||
return false;
|
||
}
|
||
|
||
if (subsumes(*this, D1, AC1, D2, AC2, Result,
|
||
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
return A.subsumes(Context, B);
|
||
}))
|
||
return true;
|
||
SubsumptionCache.try_emplace(Key, Result);
|
||
return false;
|
||
}
|
||
|
||
bool Sema::MaybeEmitAmbiguousAtomicConstraintsDiagnostic(NamedDecl *D1,
|
||
ArrayRef<const Expr *> AC1, NamedDecl *D2, ArrayRef<const Expr *> AC2) {
|
||
if (isSFINAEContext())
|
||
// No need to work here because our notes would be discarded.
|
||
return false;
|
||
|
||
if (AC1.empty() || AC2.empty())
|
||
return false;
|
||
|
||
auto NormalExprEvaluator =
|
||
[this] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
return A.subsumes(Context, B);
|
||
};
|
||
|
||
const Expr *AmbiguousAtomic1 = nullptr, *AmbiguousAtomic2 = nullptr;
|
||
auto IdenticalExprEvaluator =
|
||
[&] (const AtomicConstraint &A, const AtomicConstraint &B) {
|
||
if (!A.hasMatchingParameterMapping(Context, B))
|
||
return false;
|
||
const Expr *EA = A.ConstraintExpr, *EB = B.ConstraintExpr;
|
||
if (EA == EB)
|
||
return true;
|
||
|
||
// Not the same source level expression - are the expressions
|
||
// identical?
|
||
llvm::FoldingSetNodeID IDA, IDB;
|
||
EA->Profile(IDA, Context, /*Cannonical=*/true);
|
||
EB->Profile(IDB, Context, /*Cannonical=*/true);
|
||
if (IDA != IDB)
|
||
return false;
|
||
|
||
AmbiguousAtomic1 = EA;
|
||
AmbiguousAtomic2 = EB;
|
||
return true;
|
||
};
|
||
|
||
{
|
||
// The subsumption checks might cause diagnostics
|
||
SFINAETrap Trap(*this);
|
||
auto *Normalized1 = getNormalizedAssociatedConstraints(D1, AC1);
|
||
if (!Normalized1)
|
||
return false;
|
||
const NormalForm DNF1 = makeDNF(*Normalized1);
|
||
const NormalForm CNF1 = makeCNF(*Normalized1);
|
||
|
||
auto *Normalized2 = getNormalizedAssociatedConstraints(D2, AC2);
|
||
if (!Normalized2)
|
||
return false;
|
||
const NormalForm DNF2 = makeDNF(*Normalized2);
|
||
const NormalForm CNF2 = makeCNF(*Normalized2);
|
||
|
||
bool Is1AtLeastAs2Normally = subsumes(DNF1, CNF2, NormalExprEvaluator);
|
||
bool Is2AtLeastAs1Normally = subsumes(DNF2, CNF1, NormalExprEvaluator);
|
||
bool Is1AtLeastAs2 = subsumes(DNF1, CNF2, IdenticalExprEvaluator);
|
||
bool Is2AtLeastAs1 = subsumes(DNF2, CNF1, IdenticalExprEvaluator);
|
||
if (Is1AtLeastAs2 == Is1AtLeastAs2Normally &&
|
||
Is2AtLeastAs1 == Is2AtLeastAs1Normally)
|
||
// Same result - no ambiguity was caused by identical atomic expressions.
|
||
return false;
|
||
}
|
||
|
||
// A different result! Some ambiguous atomic constraint(s) caused a difference
|
||
assert(AmbiguousAtomic1 && AmbiguousAtomic2);
|
||
|
||
Diag(AmbiguousAtomic1->getBeginLoc(), diag::note_ambiguous_atomic_constraints)
|
||
<< AmbiguousAtomic1->getSourceRange();
|
||
Diag(AmbiguousAtomic2->getBeginLoc(),
|
||
diag::note_ambiguous_atomic_constraints_similar_expression)
|
||
<< AmbiguousAtomic2->getSourceRange();
|
||
return true;
|
||
}
|
||
|
||
concepts::ExprRequirement::ExprRequirement(
|
||
Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
|
||
ReturnTypeRequirement Req, SatisfactionStatus Status,
|
||
ConceptSpecializationExpr *SubstitutedConstraintExpr) :
|
||
Requirement(IsSimple ? RK_Simple : RK_Compound, Status == SS_Dependent,
|
||
Status == SS_Dependent &&
|
||
(E->containsUnexpandedParameterPack() ||
|
||
Req.containsUnexpandedParameterPack()),
|
||
Status == SS_Satisfied), Value(E), NoexceptLoc(NoexceptLoc),
|
||
TypeReq(Req), SubstitutedConstraintExpr(SubstitutedConstraintExpr),
|
||
Status(Status) {
|
||
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
|
||
"Simple requirement must not have a return type requirement or a "
|
||
"noexcept specification");
|
||
assert((Status > SS_TypeRequirementSubstitutionFailure && Req.isTypeConstraint()) ==
|
||
(SubstitutedConstraintExpr != nullptr));
|
||
}
|
||
|
||
concepts::ExprRequirement::ExprRequirement(
|
||
SubstitutionDiagnostic *ExprSubstDiag, bool IsSimple,
|
||
SourceLocation NoexceptLoc, ReturnTypeRequirement Req) :
|
||
Requirement(IsSimple ? RK_Simple : RK_Compound, Req.isDependent(),
|
||
Req.containsUnexpandedParameterPack(), /*IsSatisfied=*/false),
|
||
Value(ExprSubstDiag), NoexceptLoc(NoexceptLoc), TypeReq(Req),
|
||
Status(SS_ExprSubstitutionFailure) {
|
||
assert((!IsSimple || (Req.isEmpty() && NoexceptLoc.isInvalid())) &&
|
||
"Simple requirement must not have a return type requirement or a "
|
||
"noexcept specification");
|
||
}
|
||
|
||
concepts::ExprRequirement::ReturnTypeRequirement::
|
||
ReturnTypeRequirement(TemplateParameterList *TPL) :
|
||
TypeConstraintInfo(TPL, 0) {
|
||
assert(TPL->size() == 1);
|
||
const TypeConstraint *TC =
|
||
cast<TemplateTypeParmDecl>(TPL->getParam(0))->getTypeConstraint();
|
||
assert(TC &&
|
||
"TPL must have a template type parameter with a type constraint");
|
||
auto *Constraint =
|
||
cast_or_null<ConceptSpecializationExpr>(
|
||
TC->getImmediatelyDeclaredConstraint());
|
||
bool Dependent =
|
||
Constraint->getTemplateArgsAsWritten() &&
|
||
TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
|
||
Constraint->getTemplateArgsAsWritten()->arguments().drop_front(1));
|
||
TypeConstraintInfo.setInt(Dependent ? 1 : 0);
|
||
}
|
||
|
||
concepts::TypeRequirement::TypeRequirement(TypeSourceInfo *T) :
|
||
Requirement(RK_Type, T->getType()->isInstantiationDependentType(),
|
||
T->getType()->containsUnexpandedParameterPack(),
|
||
// We reach this ctor with either dependent types (in which
|
||
// IsSatisfied doesn't matter) or with non-dependent type in
|
||
// which the existence of the type indicates satisfaction.
|
||
/*IsSatisfied=*/true),
|
||
Value(T),
|
||
Status(T->getType()->isInstantiationDependentType() ? SS_Dependent
|
||
: SS_Satisfied) {}
|