forked from OSchip/llvm-project
847 lines
27 KiB
C++
847 lines
27 KiB
C++
//===--- TargetInfo.cpp - Information about Target machine ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the TargetInfo and TargetInfoImpl interfaces.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/CharInfo.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/TargetParser.h"
|
|
#include <cstdlib>
|
|
using namespace clang;
|
|
|
|
static const LangASMap DefaultAddrSpaceMap = {0};
|
|
|
|
// TargetInfo Constructor.
|
|
TargetInfo::TargetInfo(const llvm::Triple &T) : TargetOpts(), Triple(T) {
|
|
// Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or
|
|
// SPARC. These should be overridden by concrete targets as needed.
|
|
BigEndian = !T.isLittleEndian();
|
|
TLSSupported = true;
|
|
VLASupported = true;
|
|
NoAsmVariants = false;
|
|
HasLegalHalfType = false;
|
|
HasFloat128 = false;
|
|
HasFloat16 = false;
|
|
HasBFloat16 = false;
|
|
HasStrictFP = false;
|
|
PointerWidth = PointerAlign = 32;
|
|
BoolWidth = BoolAlign = 8;
|
|
IntWidth = IntAlign = 32;
|
|
LongWidth = LongAlign = 32;
|
|
LongLongWidth = LongLongAlign = 64;
|
|
|
|
// Fixed point default bit widths
|
|
ShortAccumWidth = ShortAccumAlign = 16;
|
|
AccumWidth = AccumAlign = 32;
|
|
LongAccumWidth = LongAccumAlign = 64;
|
|
ShortFractWidth = ShortFractAlign = 8;
|
|
FractWidth = FractAlign = 16;
|
|
LongFractWidth = LongFractAlign = 32;
|
|
|
|
// Fixed point default integral and fractional bit sizes
|
|
// We give the _Accum 1 fewer fractional bits than their corresponding _Fract
|
|
// types by default to have the same number of fractional bits between _Accum
|
|
// and _Fract types.
|
|
PaddingOnUnsignedFixedPoint = false;
|
|
ShortAccumScale = 7;
|
|
AccumScale = 15;
|
|
LongAccumScale = 31;
|
|
|
|
SuitableAlign = 64;
|
|
DefaultAlignForAttributeAligned = 128;
|
|
MinGlobalAlign = 0;
|
|
// From the glibc documentation, on GNU systems, malloc guarantees 16-byte
|
|
// alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See
|
|
// https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html.
|
|
// This alignment guarantee also applies to Windows and Android.
|
|
if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid())
|
|
NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0;
|
|
else
|
|
NewAlign = 0; // Infer from basic type alignment.
|
|
HalfWidth = 16;
|
|
HalfAlign = 16;
|
|
FloatWidth = 32;
|
|
FloatAlign = 32;
|
|
DoubleWidth = 64;
|
|
DoubleAlign = 64;
|
|
LongDoubleWidth = 64;
|
|
LongDoubleAlign = 64;
|
|
Float128Align = 128;
|
|
LargeArrayMinWidth = 0;
|
|
LargeArrayAlign = 0;
|
|
MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0;
|
|
MaxVectorAlign = 0;
|
|
MaxTLSAlign = 0;
|
|
SimdDefaultAlign = 0;
|
|
SizeType = UnsignedLong;
|
|
PtrDiffType = SignedLong;
|
|
IntMaxType = SignedLongLong;
|
|
IntPtrType = SignedLong;
|
|
WCharType = SignedInt;
|
|
WIntType = SignedInt;
|
|
Char16Type = UnsignedShort;
|
|
Char32Type = UnsignedInt;
|
|
Int64Type = SignedLongLong;
|
|
SigAtomicType = SignedInt;
|
|
ProcessIDType = SignedInt;
|
|
UseSignedCharForObjCBool = true;
|
|
UseBitFieldTypeAlignment = true;
|
|
UseZeroLengthBitfieldAlignment = false;
|
|
UseExplicitBitFieldAlignment = true;
|
|
ZeroLengthBitfieldBoundary = 0;
|
|
HalfFormat = &llvm::APFloat::IEEEhalf();
|
|
FloatFormat = &llvm::APFloat::IEEEsingle();
|
|
DoubleFormat = &llvm::APFloat::IEEEdouble();
|
|
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
|
|
Float128Format = &llvm::APFloat::IEEEquad();
|
|
MCountName = "mcount";
|
|
RegParmMax = 0;
|
|
SSERegParmMax = 0;
|
|
HasAlignMac68kSupport = false;
|
|
HasBuiltinMSVaList = false;
|
|
IsRenderScriptTarget = false;
|
|
HasAArch64SVETypes = false;
|
|
AllowAMDGPUUnsafeFPAtomics = false;
|
|
ARMCDECoprocMask = 0;
|
|
|
|
// Default to no types using fpret.
|
|
RealTypeUsesObjCFPRet = 0;
|
|
|
|
// Default to not using fp2ret for __Complex long double
|
|
ComplexLongDoubleUsesFP2Ret = false;
|
|
|
|
// Set the C++ ABI based on the triple.
|
|
TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment()
|
|
? TargetCXXABI::Microsoft
|
|
: TargetCXXABI::GenericItanium);
|
|
|
|
// Default to an empty address space map.
|
|
AddrSpaceMap = &DefaultAddrSpaceMap;
|
|
UseAddrSpaceMapMangling = false;
|
|
|
|
// Default to an unknown platform name.
|
|
PlatformName = "unknown";
|
|
PlatformMinVersion = VersionTuple();
|
|
|
|
MaxOpenCLWorkGroupSize = 1024;
|
|
}
|
|
|
|
// Out of line virtual dtor for TargetInfo.
|
|
TargetInfo::~TargetInfo() {}
|
|
|
|
void TargetInfo::resetDataLayout(StringRef DL) {
|
|
DataLayout.reset(new llvm::DataLayout(DL));
|
|
}
|
|
|
|
bool
|
|
TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const {
|
|
Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch";
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const {
|
|
Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return";
|
|
return false;
|
|
}
|
|
|
|
/// getTypeName - Return the user string for the specified integer type enum.
|
|
/// For example, SignedShort -> "short".
|
|
const char *TargetInfo::getTypeName(IntType T) {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar: return "signed char";
|
|
case UnsignedChar: return "unsigned char";
|
|
case SignedShort: return "short";
|
|
case UnsignedShort: return "unsigned short";
|
|
case SignedInt: return "int";
|
|
case UnsignedInt: return "unsigned int";
|
|
case SignedLong: return "long int";
|
|
case UnsignedLong: return "long unsigned int";
|
|
case SignedLongLong: return "long long int";
|
|
case UnsignedLongLong: return "long long unsigned int";
|
|
}
|
|
}
|
|
|
|
/// getTypeConstantSuffix - Return the constant suffix for the specified
|
|
/// integer type enum. For example, SignedLong -> "L".
|
|
const char *TargetInfo::getTypeConstantSuffix(IntType T) const {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar:
|
|
case SignedShort:
|
|
case SignedInt: return "";
|
|
case SignedLong: return "L";
|
|
case SignedLongLong: return "LL";
|
|
case UnsignedChar:
|
|
if (getCharWidth() < getIntWidth())
|
|
return "";
|
|
LLVM_FALLTHROUGH;
|
|
case UnsignedShort:
|
|
if (getShortWidth() < getIntWidth())
|
|
return "";
|
|
LLVM_FALLTHROUGH;
|
|
case UnsignedInt: return "U";
|
|
case UnsignedLong: return "UL";
|
|
case UnsignedLongLong: return "ULL";
|
|
}
|
|
}
|
|
|
|
/// getTypeFormatModifier - Return the printf format modifier for the
|
|
/// specified integer type enum. For example, SignedLong -> "l".
|
|
|
|
const char *TargetInfo::getTypeFormatModifier(IntType T) {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar:
|
|
case UnsignedChar: return "hh";
|
|
case SignedShort:
|
|
case UnsignedShort: return "h";
|
|
case SignedInt:
|
|
case UnsignedInt: return "";
|
|
case SignedLong:
|
|
case UnsignedLong: return "l";
|
|
case SignedLongLong:
|
|
case UnsignedLongLong: return "ll";
|
|
}
|
|
}
|
|
|
|
/// getTypeWidth - Return the width (in bits) of the specified integer type
|
|
/// enum. For example, SignedInt -> getIntWidth().
|
|
unsigned TargetInfo::getTypeWidth(IntType T) const {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar:
|
|
case UnsignedChar: return getCharWidth();
|
|
case SignedShort:
|
|
case UnsignedShort: return getShortWidth();
|
|
case SignedInt:
|
|
case UnsignedInt: return getIntWidth();
|
|
case SignedLong:
|
|
case UnsignedLong: return getLongWidth();
|
|
case SignedLongLong:
|
|
case UnsignedLongLong: return getLongLongWidth();
|
|
};
|
|
}
|
|
|
|
TargetInfo::IntType TargetInfo::getIntTypeByWidth(
|
|
unsigned BitWidth, bool IsSigned) const {
|
|
if (getCharWidth() == BitWidth)
|
|
return IsSigned ? SignedChar : UnsignedChar;
|
|
if (getShortWidth() == BitWidth)
|
|
return IsSigned ? SignedShort : UnsignedShort;
|
|
if (getIntWidth() == BitWidth)
|
|
return IsSigned ? SignedInt : UnsignedInt;
|
|
if (getLongWidth() == BitWidth)
|
|
return IsSigned ? SignedLong : UnsignedLong;
|
|
if (getLongLongWidth() == BitWidth)
|
|
return IsSigned ? SignedLongLong : UnsignedLongLong;
|
|
return NoInt;
|
|
}
|
|
|
|
TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth,
|
|
bool IsSigned) const {
|
|
if (getCharWidth() >= BitWidth)
|
|
return IsSigned ? SignedChar : UnsignedChar;
|
|
if (getShortWidth() >= BitWidth)
|
|
return IsSigned ? SignedShort : UnsignedShort;
|
|
if (getIntWidth() >= BitWidth)
|
|
return IsSigned ? SignedInt : UnsignedInt;
|
|
if (getLongWidth() >= BitWidth)
|
|
return IsSigned ? SignedLong : UnsignedLong;
|
|
if (getLongLongWidth() >= BitWidth)
|
|
return IsSigned ? SignedLongLong : UnsignedLongLong;
|
|
return NoInt;
|
|
}
|
|
|
|
TargetInfo::RealType TargetInfo::getRealTypeByWidth(unsigned BitWidth,
|
|
bool ExplicitIEEE) const {
|
|
if (getFloatWidth() == BitWidth)
|
|
return Float;
|
|
if (getDoubleWidth() == BitWidth)
|
|
return Double;
|
|
|
|
switch (BitWidth) {
|
|
case 96:
|
|
if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended())
|
|
return LongDouble;
|
|
break;
|
|
case 128:
|
|
// The caller explicitly asked for an IEEE compliant type but we still
|
|
// have to check if the target supports it.
|
|
if (ExplicitIEEE)
|
|
return hasFloat128Type() ? Float128 : NoFloat;
|
|
if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() ||
|
|
&getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
|
|
return LongDouble;
|
|
if (hasFloat128Type())
|
|
return Float128;
|
|
break;
|
|
}
|
|
|
|
return NoFloat;
|
|
}
|
|
|
|
/// getTypeAlign - Return the alignment (in bits) of the specified integer type
|
|
/// enum. For example, SignedInt -> getIntAlign().
|
|
unsigned TargetInfo::getTypeAlign(IntType T) const {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar:
|
|
case UnsignedChar: return getCharAlign();
|
|
case SignedShort:
|
|
case UnsignedShort: return getShortAlign();
|
|
case SignedInt:
|
|
case UnsignedInt: return getIntAlign();
|
|
case SignedLong:
|
|
case UnsignedLong: return getLongAlign();
|
|
case SignedLongLong:
|
|
case UnsignedLongLong: return getLongLongAlign();
|
|
};
|
|
}
|
|
|
|
/// isTypeSigned - Return whether an integer types is signed. Returns true if
|
|
/// the type is signed; false otherwise.
|
|
bool TargetInfo::isTypeSigned(IntType T) {
|
|
switch (T) {
|
|
default: llvm_unreachable("not an integer!");
|
|
case SignedChar:
|
|
case SignedShort:
|
|
case SignedInt:
|
|
case SignedLong:
|
|
case SignedLongLong:
|
|
return true;
|
|
case UnsignedChar:
|
|
case UnsignedShort:
|
|
case UnsignedInt:
|
|
case UnsignedLong:
|
|
case UnsignedLongLong:
|
|
return false;
|
|
};
|
|
}
|
|
|
|
/// adjust - Set forced language options.
|
|
/// Apply changes to the target information with respect to certain
|
|
/// language options which change the target configuration and adjust
|
|
/// the language based on the target options where applicable.
|
|
void TargetInfo::adjust(LangOptions &Opts) {
|
|
if (Opts.NoBitFieldTypeAlign)
|
|
UseBitFieldTypeAlignment = false;
|
|
|
|
switch (Opts.WCharSize) {
|
|
default: llvm_unreachable("invalid wchar_t width");
|
|
case 0: break;
|
|
case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break;
|
|
case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break;
|
|
case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break;
|
|
}
|
|
|
|
if (Opts.AlignDouble) {
|
|
DoubleAlign = LongLongAlign = 64;
|
|
LongDoubleAlign = 64;
|
|
}
|
|
|
|
if (Opts.OpenCL) {
|
|
// OpenCL C requires specific widths for types, irrespective of
|
|
// what these normally are for the target.
|
|
// We also define long long and long double here, although the
|
|
// OpenCL standard only mentions these as "reserved".
|
|
IntWidth = IntAlign = 32;
|
|
LongWidth = LongAlign = 64;
|
|
LongLongWidth = LongLongAlign = 128;
|
|
HalfWidth = HalfAlign = 16;
|
|
FloatWidth = FloatAlign = 32;
|
|
|
|
// Embedded 32-bit targets (OpenCL EP) might have double C type
|
|
// defined as float. Let's not override this as it might lead
|
|
// to generating illegal code that uses 64bit doubles.
|
|
if (DoubleWidth != FloatWidth) {
|
|
DoubleWidth = DoubleAlign = 64;
|
|
DoubleFormat = &llvm::APFloat::IEEEdouble();
|
|
}
|
|
LongDoubleWidth = LongDoubleAlign = 128;
|
|
|
|
unsigned MaxPointerWidth = getMaxPointerWidth();
|
|
assert(MaxPointerWidth == 32 || MaxPointerWidth == 64);
|
|
bool Is32BitArch = MaxPointerWidth == 32;
|
|
SizeType = Is32BitArch ? UnsignedInt : UnsignedLong;
|
|
PtrDiffType = Is32BitArch ? SignedInt : SignedLong;
|
|
IntPtrType = Is32BitArch ? SignedInt : SignedLong;
|
|
|
|
IntMaxType = SignedLongLong;
|
|
Int64Type = SignedLong;
|
|
|
|
HalfFormat = &llvm::APFloat::IEEEhalf();
|
|
FloatFormat = &llvm::APFloat::IEEEsingle();
|
|
LongDoubleFormat = &llvm::APFloat::IEEEquad();
|
|
}
|
|
|
|
if (Opts.DoubleSize) {
|
|
if (Opts.DoubleSize == 32) {
|
|
DoubleWidth = 32;
|
|
LongDoubleWidth = 32;
|
|
DoubleFormat = &llvm::APFloat::IEEEsingle();
|
|
LongDoubleFormat = &llvm::APFloat::IEEEsingle();
|
|
} else if (Opts.DoubleSize == 64) {
|
|
DoubleWidth = 64;
|
|
LongDoubleWidth = 64;
|
|
DoubleFormat = &llvm::APFloat::IEEEdouble();
|
|
LongDoubleFormat = &llvm::APFloat::IEEEdouble();
|
|
}
|
|
}
|
|
|
|
if (Opts.LongDoubleSize) {
|
|
if (Opts.LongDoubleSize == DoubleWidth) {
|
|
LongDoubleWidth = DoubleWidth;
|
|
LongDoubleAlign = DoubleAlign;
|
|
LongDoubleFormat = DoubleFormat;
|
|
} else if (Opts.LongDoubleSize == 128) {
|
|
LongDoubleWidth = LongDoubleAlign = 128;
|
|
LongDoubleFormat = &llvm::APFloat::IEEEquad();
|
|
}
|
|
}
|
|
|
|
if (Opts.NewAlignOverride)
|
|
NewAlign = Opts.NewAlignOverride * getCharWidth();
|
|
|
|
// Each unsigned fixed point type has the same number of fractional bits as
|
|
// its corresponding signed type.
|
|
PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint;
|
|
CheckFixedPointBits();
|
|
}
|
|
|
|
bool TargetInfo::initFeatureMap(
|
|
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
|
|
const std::vector<std::string> &FeatureVec) const {
|
|
for (const auto &F : FeatureVec) {
|
|
StringRef Name = F;
|
|
// Apply the feature via the target.
|
|
bool Enabled = Name[0] == '+';
|
|
setFeatureEnabled(Features, Name.substr(1), Enabled);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TargetInfo::CallingConvKind
|
|
TargetInfo::getCallingConvKind(bool ClangABICompat4) const {
|
|
if (getCXXABI() != TargetCXXABI::Microsoft &&
|
|
(ClangABICompat4 || getTriple().getOS() == llvm::Triple::PS4))
|
|
return CCK_ClangABI4OrPS4;
|
|
return CCK_Default;
|
|
}
|
|
|
|
LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const {
|
|
switch (TK) {
|
|
case OCLTK_Image:
|
|
case OCLTK_Pipe:
|
|
return LangAS::opencl_global;
|
|
|
|
case OCLTK_Sampler:
|
|
return LangAS::opencl_constant;
|
|
|
|
default:
|
|
return LangAS::Default;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
static StringRef removeGCCRegisterPrefix(StringRef Name) {
|
|
if (Name[0] == '%' || Name[0] == '#')
|
|
Name = Name.substr(1);
|
|
|
|
return Name;
|
|
}
|
|
|
|
/// isValidClobber - Returns whether the passed in string is
|
|
/// a valid clobber in an inline asm statement. This is used by
|
|
/// Sema.
|
|
bool TargetInfo::isValidClobber(StringRef Name) const {
|
|
return (isValidGCCRegisterName(Name) ||
|
|
Name == "memory" || Name == "cc");
|
|
}
|
|
|
|
/// isValidGCCRegisterName - Returns whether the passed in string
|
|
/// is a valid register name according to GCC. This is used by Sema for
|
|
/// inline asm statements.
|
|
bool TargetInfo::isValidGCCRegisterName(StringRef Name) const {
|
|
if (Name.empty())
|
|
return false;
|
|
|
|
// Get rid of any register prefix.
|
|
Name = removeGCCRegisterPrefix(Name);
|
|
if (Name.empty())
|
|
return false;
|
|
|
|
ArrayRef<const char *> Names = getGCCRegNames();
|
|
|
|
// If we have a number it maps to an entry in the register name array.
|
|
if (isDigit(Name[0])) {
|
|
unsigned n;
|
|
if (!Name.getAsInteger(0, n))
|
|
return n < Names.size();
|
|
}
|
|
|
|
// Check register names.
|
|
if (llvm::is_contained(Names, Name))
|
|
return true;
|
|
|
|
// Check any additional names that we have.
|
|
for (const AddlRegName &ARN : getGCCAddlRegNames())
|
|
for (const char *AN : ARN.Names) {
|
|
if (!AN)
|
|
break;
|
|
// Make sure the register that the additional name is for is within
|
|
// the bounds of the register names from above.
|
|
if (AN == Name && ARN.RegNum < Names.size())
|
|
return true;
|
|
}
|
|
|
|
// Now check aliases.
|
|
for (const GCCRegAlias &GRA : getGCCRegAliases())
|
|
for (const char *A : GRA.Aliases) {
|
|
if (!A)
|
|
break;
|
|
if (A == Name)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name,
|
|
bool ReturnCanonical) const {
|
|
assert(isValidGCCRegisterName(Name) && "Invalid register passed in");
|
|
|
|
// Get rid of any register prefix.
|
|
Name = removeGCCRegisterPrefix(Name);
|
|
|
|
ArrayRef<const char *> Names = getGCCRegNames();
|
|
|
|
// First, check if we have a number.
|
|
if (isDigit(Name[0])) {
|
|
unsigned n;
|
|
if (!Name.getAsInteger(0, n)) {
|
|
assert(n < Names.size() && "Out of bounds register number!");
|
|
return Names[n];
|
|
}
|
|
}
|
|
|
|
// Check any additional names that we have.
|
|
for (const AddlRegName &ARN : getGCCAddlRegNames())
|
|
for (const char *AN : ARN.Names) {
|
|
if (!AN)
|
|
break;
|
|
// Make sure the register that the additional name is for is within
|
|
// the bounds of the register names from above.
|
|
if (AN == Name && ARN.RegNum < Names.size())
|
|
return ReturnCanonical ? Names[ARN.RegNum] : Name;
|
|
}
|
|
|
|
// Now check aliases.
|
|
for (const GCCRegAlias &RA : getGCCRegAliases())
|
|
for (const char *A : RA.Aliases) {
|
|
if (!A)
|
|
break;
|
|
if (A == Name)
|
|
return RA.Register;
|
|
}
|
|
|
|
return Name;
|
|
}
|
|
|
|
bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const {
|
|
const char *Name = Info.getConstraintStr().c_str();
|
|
// An output constraint must start with '=' or '+'
|
|
if (*Name != '=' && *Name != '+')
|
|
return false;
|
|
|
|
if (*Name == '+')
|
|
Info.setIsReadWrite();
|
|
|
|
Name++;
|
|
while (*Name) {
|
|
switch (*Name) {
|
|
default:
|
|
if (!validateAsmConstraint(Name, Info)) {
|
|
// FIXME: We temporarily return false
|
|
// so we can add more constraints as we hit it.
|
|
// Eventually, an unknown constraint should just be treated as 'g'.
|
|
return false;
|
|
}
|
|
break;
|
|
case '&': // early clobber.
|
|
Info.setEarlyClobber();
|
|
break;
|
|
case '%': // commutative.
|
|
// FIXME: Check that there is a another register after this one.
|
|
break;
|
|
case 'r': // general register.
|
|
Info.setAllowsRegister();
|
|
break;
|
|
case 'm': // memory operand.
|
|
case 'o': // offsetable memory operand.
|
|
case 'V': // non-offsetable memory operand.
|
|
case '<': // autodecrement memory operand.
|
|
case '>': // autoincrement memory operand.
|
|
Info.setAllowsMemory();
|
|
break;
|
|
case 'g': // general register, memory operand or immediate integer.
|
|
case 'X': // any operand.
|
|
Info.setAllowsRegister();
|
|
Info.setAllowsMemory();
|
|
break;
|
|
case ',': // multiple alternative constraint. Pass it.
|
|
// Handle additional optional '=' or '+' modifiers.
|
|
if (Name[1] == '=' || Name[1] == '+')
|
|
Name++;
|
|
break;
|
|
case '#': // Ignore as constraint.
|
|
while (Name[1] && Name[1] != ',')
|
|
Name++;
|
|
break;
|
|
case '?': // Disparage slightly code.
|
|
case '!': // Disparage severely.
|
|
case '*': // Ignore for choosing register preferences.
|
|
case 'i': // Ignore i,n,E,F as output constraints (match from the other
|
|
// chars)
|
|
case 'n':
|
|
case 'E':
|
|
case 'F':
|
|
break; // Pass them.
|
|
}
|
|
|
|
Name++;
|
|
}
|
|
|
|
// Early clobber with a read-write constraint which doesn't permit registers
|
|
// is invalid.
|
|
if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister())
|
|
return false;
|
|
|
|
// If a constraint allows neither memory nor register operands it contains
|
|
// only modifiers. Reject it.
|
|
return Info.allowsMemory() || Info.allowsRegister();
|
|
}
|
|
|
|
bool TargetInfo::resolveSymbolicName(const char *&Name,
|
|
ArrayRef<ConstraintInfo> OutputConstraints,
|
|
unsigned &Index) const {
|
|
assert(*Name == '[' && "Symbolic name did not start with '['");
|
|
Name++;
|
|
const char *Start = Name;
|
|
while (*Name && *Name != ']')
|
|
Name++;
|
|
|
|
if (!*Name) {
|
|
// Missing ']'
|
|
return false;
|
|
}
|
|
|
|
std::string SymbolicName(Start, Name - Start);
|
|
|
|
for (Index = 0; Index != OutputConstraints.size(); ++Index)
|
|
if (SymbolicName == OutputConstraints[Index].getName())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool TargetInfo::validateInputConstraint(
|
|
MutableArrayRef<ConstraintInfo> OutputConstraints,
|
|
ConstraintInfo &Info) const {
|
|
const char *Name = Info.ConstraintStr.c_str();
|
|
|
|
if (!*Name)
|
|
return false;
|
|
|
|
while (*Name) {
|
|
switch (*Name) {
|
|
default:
|
|
// Check if we have a matching constraint
|
|
if (*Name >= '0' && *Name <= '9') {
|
|
const char *DigitStart = Name;
|
|
while (Name[1] >= '0' && Name[1] <= '9')
|
|
Name++;
|
|
const char *DigitEnd = Name;
|
|
unsigned i;
|
|
if (StringRef(DigitStart, DigitEnd - DigitStart + 1)
|
|
.getAsInteger(10, i))
|
|
return false;
|
|
|
|
// Check if matching constraint is out of bounds.
|
|
if (i >= OutputConstraints.size()) return false;
|
|
|
|
// A number must refer to an output only operand.
|
|
if (OutputConstraints[i].isReadWrite())
|
|
return false;
|
|
|
|
// If the constraint is already tied, it must be tied to the
|
|
// same operand referenced to by the number.
|
|
if (Info.hasTiedOperand() && Info.getTiedOperand() != i)
|
|
return false;
|
|
|
|
// The constraint should have the same info as the respective
|
|
// output constraint.
|
|
Info.setTiedOperand(i, OutputConstraints[i]);
|
|
} else if (!validateAsmConstraint(Name, Info)) {
|
|
// FIXME: This error return is in place temporarily so we can
|
|
// add more constraints as we hit it. Eventually, an unknown
|
|
// constraint should just be treated as 'g'.
|
|
return false;
|
|
}
|
|
break;
|
|
case '[': {
|
|
unsigned Index = 0;
|
|
if (!resolveSymbolicName(Name, OutputConstraints, Index))
|
|
return false;
|
|
|
|
// If the constraint is already tied, it must be tied to the
|
|
// same operand referenced to by the number.
|
|
if (Info.hasTiedOperand() && Info.getTiedOperand() != Index)
|
|
return false;
|
|
|
|
// A number must refer to an output only operand.
|
|
if (OutputConstraints[Index].isReadWrite())
|
|
return false;
|
|
|
|
Info.setTiedOperand(Index, OutputConstraints[Index]);
|
|
break;
|
|
}
|
|
case '%': // commutative
|
|
// FIXME: Fail if % is used with the last operand.
|
|
break;
|
|
case 'i': // immediate integer.
|
|
break;
|
|
case 'n': // immediate integer with a known value.
|
|
Info.setRequiresImmediate();
|
|
break;
|
|
case 'I': // Various constant constraints with target-specific meanings.
|
|
case 'J':
|
|
case 'K':
|
|
case 'L':
|
|
case 'M':
|
|
case 'N':
|
|
case 'O':
|
|
case 'P':
|
|
if (!validateAsmConstraint(Name, Info))
|
|
return false;
|
|
break;
|
|
case 'r': // general register.
|
|
Info.setAllowsRegister();
|
|
break;
|
|
case 'm': // memory operand.
|
|
case 'o': // offsettable memory operand.
|
|
case 'V': // non-offsettable memory operand.
|
|
case '<': // autodecrement memory operand.
|
|
case '>': // autoincrement memory operand.
|
|
Info.setAllowsMemory();
|
|
break;
|
|
case 'g': // general register, memory operand or immediate integer.
|
|
case 'X': // any operand.
|
|
Info.setAllowsRegister();
|
|
Info.setAllowsMemory();
|
|
break;
|
|
case 'E': // immediate floating point.
|
|
case 'F': // immediate floating point.
|
|
case 'p': // address operand.
|
|
break;
|
|
case ',': // multiple alternative constraint. Ignore comma.
|
|
break;
|
|
case '#': // Ignore as constraint.
|
|
while (Name[1] && Name[1] != ',')
|
|
Name++;
|
|
break;
|
|
case '?': // Disparage slightly code.
|
|
case '!': // Disparage severely.
|
|
case '*': // Ignore for choosing register preferences.
|
|
break; // Pass them.
|
|
}
|
|
|
|
Name++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void TargetInfo::CheckFixedPointBits() const {
|
|
// Check that the number of fractional and integral bits (and maybe sign) can
|
|
// fit into the bits given for a fixed point type.
|
|
assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth);
|
|
assert(AccumScale + getAccumIBits() + 1 <= AccumWidth);
|
|
assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth);
|
|
assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <=
|
|
ShortAccumWidth);
|
|
assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth);
|
|
assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <=
|
|
LongAccumWidth);
|
|
|
|
assert(getShortFractScale() + 1 <= ShortFractWidth);
|
|
assert(getFractScale() + 1 <= FractWidth);
|
|
assert(getLongFractScale() + 1 <= LongFractWidth);
|
|
assert(getUnsignedShortFractScale() <= ShortFractWidth);
|
|
assert(getUnsignedFractScale() <= FractWidth);
|
|
assert(getUnsignedLongFractScale() <= LongFractWidth);
|
|
|
|
// Each unsigned fract type has either the same number of fractional bits
|
|
// as, or one more fractional bit than, its corresponding signed fract type.
|
|
assert(getShortFractScale() == getUnsignedShortFractScale() ||
|
|
getShortFractScale() == getUnsignedShortFractScale() - 1);
|
|
assert(getFractScale() == getUnsignedFractScale() ||
|
|
getFractScale() == getUnsignedFractScale() - 1);
|
|
assert(getLongFractScale() == getUnsignedLongFractScale() ||
|
|
getLongFractScale() == getUnsignedLongFractScale() - 1);
|
|
|
|
// When arranged in order of increasing rank (see 6.3.1.3a), the number of
|
|
// fractional bits is nondecreasing for each of the following sets of
|
|
// fixed-point types:
|
|
// - signed fract types
|
|
// - unsigned fract types
|
|
// - signed accum types
|
|
// - unsigned accum types.
|
|
assert(getLongFractScale() >= getFractScale() &&
|
|
getFractScale() >= getShortFractScale());
|
|
assert(getUnsignedLongFractScale() >= getUnsignedFractScale() &&
|
|
getUnsignedFractScale() >= getUnsignedShortFractScale());
|
|
assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale);
|
|
assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() &&
|
|
getUnsignedAccumScale() >= getUnsignedShortAccumScale());
|
|
|
|
// When arranged in order of increasing rank (see 6.3.1.3a), the number of
|
|
// integral bits is nondecreasing for each of the following sets of
|
|
// fixed-point types:
|
|
// - signed accum types
|
|
// - unsigned accum types
|
|
assert(getLongAccumIBits() >= getAccumIBits() &&
|
|
getAccumIBits() >= getShortAccumIBits());
|
|
assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() &&
|
|
getUnsignedAccumIBits() >= getUnsignedShortAccumIBits());
|
|
|
|
// Each signed accum type has at least as many integral bits as its
|
|
// corresponding unsigned accum type.
|
|
assert(getShortAccumIBits() >= getUnsignedShortAccumIBits());
|
|
assert(getAccumIBits() >= getUnsignedAccumIBits());
|
|
assert(getLongAccumIBits() >= getUnsignedLongAccumIBits());
|
|
}
|
|
|
|
void TargetInfo::copyAuxTarget(const TargetInfo *Aux) {
|
|
auto *Target = static_cast<TransferrableTargetInfo*>(this);
|
|
auto *Src = static_cast<const TransferrableTargetInfo*>(Aux);
|
|
*Target = *Src;
|
|
}
|