llvm-project/clang/lib/AST/ASTContext.cpp

11451 lines
415 KiB
C++

//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the ASTContext interface.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTContext.h"
#include "CXXABI.h"
#include "Interp/Context.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTConcept.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Comment.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclContextInternals.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/DependenceFlags.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExternalASTSource.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/MangleNumberingContext.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/RawCommentList.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/TemplateName.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/Linkage.h"
#include "clang/Basic/Module.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/SanitizerBlacklist.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TargetCXXABI.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/XRayLists.h"
#include "llvm/ADT/APFixedPoint.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Support/Capacity.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <map>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
using namespace clang;
enum FloatingRank {
BFloat16Rank, Float16Rank, HalfRank, FloatRank, DoubleRank, LongDoubleRank, Float128Rank
};
/// \returns location that is relevant when searching for Doc comments related
/// to \p D.
static SourceLocation getDeclLocForCommentSearch(const Decl *D,
SourceManager &SourceMgr) {
assert(D);
// User can not attach documentation to implicit declarations.
if (D->isImplicit())
return {};
// User can not attach documentation to implicit instantiations.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->isStaticDataMember() &&
VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
if (TSK == TSK_ImplicitInstantiation ||
TSK == TSK_Undeclared)
return {};
}
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
return {};
}
if (const auto *TD = dyn_cast<TagDecl>(D)) {
// When tag declaration (but not definition!) is part of the
// decl-specifier-seq of some other declaration, it doesn't get comment
if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
return {};
}
// TODO: handle comments for function parameters properly.
if (isa<ParmVarDecl>(D))
return {};
// TODO: we could look up template parameter documentation in the template
// documentation.
if (isa<TemplateTypeParmDecl>(D) ||
isa<NonTypeTemplateParmDecl>(D) ||
isa<TemplateTemplateParmDecl>(D))
return {};
// Find declaration location.
// For Objective-C declarations we generally don't expect to have multiple
// declarators, thus use declaration starting location as the "declaration
// location".
// For all other declarations multiple declarators are used quite frequently,
// so we use the location of the identifier as the "declaration location".
if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
isa<ObjCPropertyDecl>(D) ||
isa<RedeclarableTemplateDecl>(D) ||
isa<ClassTemplateSpecializationDecl>(D) ||
// Allow association with Y across {} in `typedef struct X {} Y`.
isa<TypedefDecl>(D))
return D->getBeginLoc();
else {
const SourceLocation DeclLoc = D->getLocation();
if (DeclLoc.isMacroID()) {
if (isa<TypedefDecl>(D)) {
// If location of the typedef name is in a macro, it is because being
// declared via a macro. Try using declaration's starting location as
// the "declaration location".
return D->getBeginLoc();
} else if (const auto *TD = dyn_cast<TagDecl>(D)) {
// If location of the tag decl is inside a macro, but the spelling of
// the tag name comes from a macro argument, it looks like a special
// macro like NS_ENUM is being used to define the tag decl. In that
// case, adjust the source location to the expansion loc so that we can
// attach the comment to the tag decl.
if (SourceMgr.isMacroArgExpansion(DeclLoc) &&
TD->isCompleteDefinition())
return SourceMgr.getExpansionLoc(DeclLoc);
}
}
return DeclLoc;
}
return {};
}
RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
const Decl *D, const SourceLocation RepresentativeLocForDecl,
const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
// If the declaration doesn't map directly to a location in a file, we
// can't find the comment.
if (RepresentativeLocForDecl.isInvalid() ||
!RepresentativeLocForDecl.isFileID())
return nullptr;
// If there are no comments anywhere, we won't find anything.
if (CommentsInTheFile.empty())
return nullptr;
// Decompose the location for the declaration and find the beginning of the
// file buffer.
const std::pair<FileID, unsigned> DeclLocDecomp =
SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
// Slow path.
auto OffsetCommentBehindDecl =
CommentsInTheFile.lower_bound(DeclLocDecomp.second);
// First check whether we have a trailing comment.
if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
if ((CommentBehindDecl->isDocumentation() ||
LangOpts.CommentOpts.ParseAllComments) &&
CommentBehindDecl->isTrailingComment() &&
(isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
// Check that Doxygen trailing comment comes after the declaration, starts
// on the same line and in the same file as the declaration.
if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
OffsetCommentBehindDecl->first)) {
return CommentBehindDecl;
}
}
}
// The comment just after the declaration was not a trailing comment.
// Let's look at the previous comment.
if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
return nullptr;
auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
// Check that we actually have a non-member Doxygen comment.
if (!(CommentBeforeDecl->isDocumentation() ||
LangOpts.CommentOpts.ParseAllComments) ||
CommentBeforeDecl->isTrailingComment())
return nullptr;
// Decompose the end of the comment.
const unsigned CommentEndOffset =
Comments.getCommentEndOffset(CommentBeforeDecl);
// Get the corresponding buffer.
bool Invalid = false;
const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
&Invalid).data();
if (Invalid)
return nullptr;
// Extract text between the comment and declaration.
StringRef Text(Buffer + CommentEndOffset,
DeclLocDecomp.second - CommentEndOffset);
// There should be no other declarations or preprocessor directives between
// comment and declaration.
if (Text.find_first_of(";{}#@") != StringRef::npos)
return nullptr;
return CommentBeforeDecl;
}
RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
// If the declaration doesn't map directly to a location in a file, we
// can't find the comment.
if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
return nullptr;
if (ExternalSource && !CommentsLoaded) {
ExternalSource->ReadComments();
CommentsLoaded = true;
}
if (Comments.empty())
return nullptr;
const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
const auto CommentsInThisFile = Comments.getCommentsInFile(File);
if (!CommentsInThisFile || CommentsInThisFile->empty())
return nullptr;
return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
}
void ASTContext::addComment(const RawComment &RC) {
assert(LangOpts.RetainCommentsFromSystemHeaders ||
!SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()));
Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
}
/// If we have a 'templated' declaration for a template, adjust 'D' to
/// refer to the actual template.
/// If we have an implicit instantiation, adjust 'D' to refer to template.
static const Decl &adjustDeclToTemplate(const Decl &D) {
if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
// Is this function declaration part of a function template?
if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
return *FTD;
// Nothing to do if function is not an implicit instantiation.
if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
return D;
// Function is an implicit instantiation of a function template?
if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
return *FTD;
// Function is instantiated from a member definition of a class template?
if (const FunctionDecl *MemberDecl =
FD->getInstantiatedFromMemberFunction())
return *MemberDecl;
return D;
}
if (const auto *VD = dyn_cast<VarDecl>(&D)) {
// Static data member is instantiated from a member definition of a class
// template?
if (VD->isStaticDataMember())
if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
return *MemberDecl;
return D;
}
if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
// Is this class declaration part of a class template?
if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
return *CTD;
// Class is an implicit instantiation of a class template or partial
// specialization?
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
return D;
llvm::PointerUnion<ClassTemplateDecl *,
ClassTemplatePartialSpecializationDecl *>
PU = CTSD->getSpecializedTemplateOrPartial();
return PU.is<ClassTemplateDecl *>()
? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
: *static_cast<const Decl *>(
PU.get<ClassTemplatePartialSpecializationDecl *>());
}
// Class is instantiated from a member definition of a class template?
if (const MemberSpecializationInfo *Info =
CRD->getMemberSpecializationInfo())
return *Info->getInstantiatedFrom();
return D;
}
if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
// Enum is instantiated from a member definition of a class template?
if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
return *MemberDecl;
return D;
}
// FIXME: Adjust alias templates?
return D;
}
const RawComment *ASTContext::getRawCommentForAnyRedecl(
const Decl *D,
const Decl **OriginalDecl) const {
if (!D) {
if (OriginalDecl)
OriginalDecl = nullptr;
return nullptr;
}
D = &adjustDeclToTemplate(*D);
// Any comment directly attached to D?
{
auto DeclComment = DeclRawComments.find(D);
if (DeclComment != DeclRawComments.end()) {
if (OriginalDecl)
*OriginalDecl = D;
return DeclComment->second;
}
}
// Any comment attached to any redeclaration of D?
const Decl *CanonicalD = D->getCanonicalDecl();
if (!CanonicalD)
return nullptr;
{
auto RedeclComment = RedeclChainComments.find(CanonicalD);
if (RedeclComment != RedeclChainComments.end()) {
if (OriginalDecl)
*OriginalDecl = RedeclComment->second;
auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
assert(CommentAtRedecl != DeclRawComments.end() &&
"This decl is supposed to have comment attached.");
return CommentAtRedecl->second;
}
}
// Any redeclarations of D that we haven't checked for comments yet?
// We can't use DenseMap::iterator directly since it'd get invalid.
auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
if (LookupRes != CommentlessRedeclChains.end())
return LookupRes->second;
return nullptr;
}();
for (const auto Redecl : D->redecls()) {
assert(Redecl);
// Skip all redeclarations that have been checked previously.
if (LastCheckedRedecl) {
if (LastCheckedRedecl == Redecl) {
LastCheckedRedecl = nullptr;
}
continue;
}
const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
if (RedeclComment) {
cacheRawCommentForDecl(*Redecl, *RedeclComment);
if (OriginalDecl)
*OriginalDecl = Redecl;
return RedeclComment;
}
CommentlessRedeclChains[CanonicalD] = Redecl;
}
if (OriginalDecl)
*OriginalDecl = nullptr;
return nullptr;
}
void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
const RawComment &Comment) const {
assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments);
DeclRawComments.try_emplace(&OriginalD, &Comment);
const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
CommentlessRedeclChains.erase(CanonicalDecl);
}
static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
SmallVectorImpl<const NamedDecl *> &Redeclared) {
const DeclContext *DC = ObjCMethod->getDeclContext();
if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
const ObjCInterfaceDecl *ID = IMD->getClassInterface();
if (!ID)
return;
// Add redeclared method here.
for (const auto *Ext : ID->known_extensions()) {
if (ObjCMethodDecl *RedeclaredMethod =
Ext->getMethod(ObjCMethod->getSelector(),
ObjCMethod->isInstanceMethod()))
Redeclared.push_back(RedeclaredMethod);
}
}
}
void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
const Preprocessor *PP) {
if (Comments.empty() || Decls.empty())
return;
FileID File;
for (Decl *D : Decls) {
SourceLocation Loc = D->getLocation();
if (Loc.isValid()) {
// See if there are any new comments that are not attached to a decl.
// The location doesn't have to be precise - we care only about the file.
File = SourceMgr.getDecomposedLoc(Loc).first;
break;
}
}
if (File.isInvalid())
return;
auto CommentsInThisFile = Comments.getCommentsInFile(File);
if (!CommentsInThisFile || CommentsInThisFile->empty() ||
CommentsInThisFile->rbegin()->second->isAttached())
return;
// There is at least one comment not attached to a decl.
// Maybe it should be attached to one of Decls?
//
// Note that this way we pick up not only comments that precede the
// declaration, but also comments that *follow* the declaration -- thanks to
// the lookahead in the lexer: we've consumed the semicolon and looked
// ahead through comments.
for (const Decl *D : Decls) {
assert(D);
if (D->isInvalidDecl())
continue;
D = &adjustDeclToTemplate(*D);
const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
continue;
if (DeclRawComments.count(D) > 0)
continue;
if (RawComment *const DocComment =
getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
cacheRawCommentForDecl(*D, *DocComment);
comments::FullComment *FC = DocComment->parse(*this, PP, D);
ParsedComments[D->getCanonicalDecl()] = FC;
}
}
}
comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
const Decl *D) const {
auto *ThisDeclInfo = new (*this) comments::DeclInfo;
ThisDeclInfo->CommentDecl = D;
ThisDeclInfo->IsFilled = false;
ThisDeclInfo->fill();
ThisDeclInfo->CommentDecl = FC->getDecl();
if (!ThisDeclInfo->TemplateParameters)
ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
comments::FullComment *CFC =
new (*this) comments::FullComment(FC->getBlocks(),
ThisDeclInfo);
return CFC;
}
comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
const RawComment *RC = getRawCommentForDeclNoCache(D);
return RC ? RC->parse(*this, nullptr, D) : nullptr;
}
comments::FullComment *ASTContext::getCommentForDecl(
const Decl *D,
const Preprocessor *PP) const {
if (!D || D->isInvalidDecl())
return nullptr;
D = &adjustDeclToTemplate(*D);
const Decl *Canonical = D->getCanonicalDecl();
llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
ParsedComments.find(Canonical);
if (Pos != ParsedComments.end()) {
if (Canonical != D) {
comments::FullComment *FC = Pos->second;
comments::FullComment *CFC = cloneFullComment(FC, D);
return CFC;
}
return Pos->second;
}
const Decl *OriginalDecl = nullptr;
const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
if (!RC) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
SmallVector<const NamedDecl*, 8> Overridden;
const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
if (OMD && OMD->isPropertyAccessor())
if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
return cloneFullComment(FC, D);
if (OMD)
addRedeclaredMethods(OMD, Overridden);
getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
for (unsigned i = 0, e = Overridden.size(); i < e; i++)
if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
return cloneFullComment(FC, D);
}
else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
// Attach any tag type's documentation to its typedef if latter
// does not have one of its own.
QualType QT = TD->getUnderlyingType();
if (const auto *TT = QT->getAs<TagType>())
if (const Decl *TD = TT->getDecl())
if (comments::FullComment *FC = getCommentForDecl(TD, PP))
return cloneFullComment(FC, D);
}
else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
while (IC->getSuperClass()) {
IC = IC->getSuperClass();
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
return cloneFullComment(FC, D);
}
}
else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
if (comments::FullComment *FC = getCommentForDecl(IC, PP))
return cloneFullComment(FC, D);
}
else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
if (!(RD = RD->getDefinition()))
return nullptr;
// Check non-virtual bases.
for (const auto &I : RD->bases()) {
if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
continue;
QualType Ty = I.getType();
if (Ty.isNull())
continue;
if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
continue;
if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
return cloneFullComment(FC, D);
}
}
// Check virtual bases.
for (const auto &I : RD->vbases()) {
if (I.getAccessSpecifier() != AS_public)
continue;
QualType Ty = I.getType();
if (Ty.isNull())
continue;
if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
if (!(VirtualBase= VirtualBase->getDefinition()))
continue;
if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
return cloneFullComment(FC, D);
}
}
}
return nullptr;
}
// If the RawComment was attached to other redeclaration of this Decl, we
// should parse the comment in context of that other Decl. This is important
// because comments can contain references to parameter names which can be
// different across redeclarations.
if (D != OriginalDecl && OriginalDecl)
return getCommentForDecl(OriginalDecl, PP);
comments::FullComment *FC = RC->parse(*this, PP, D);
ParsedComments[Canonical] = FC;
return FC;
}
void
ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
const ASTContext &C,
TemplateTemplateParmDecl *Parm) {
ID.AddInteger(Parm->getDepth());
ID.AddInteger(Parm->getPosition());
ID.AddBoolean(Parm->isParameterPack());
TemplateParameterList *Params = Parm->getTemplateParameters();
ID.AddInteger(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
ID.AddInteger(0);
ID.AddBoolean(TTP->isParameterPack());
const TypeConstraint *TC = TTP->getTypeConstraint();
ID.AddBoolean(TC != nullptr);
if (TC)
TC->getImmediatelyDeclaredConstraint()->Profile(ID, C,
/*Canonical=*/true);
if (TTP->isExpandedParameterPack()) {
ID.AddBoolean(true);
ID.AddInteger(TTP->getNumExpansionParameters());
} else
ID.AddBoolean(false);
continue;
}
if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
ID.AddInteger(1);
ID.AddBoolean(NTTP->isParameterPack());
ID.AddPointer(NTTP->getType().getCanonicalType().getAsOpaquePtr());
if (NTTP->isExpandedParameterPack()) {
ID.AddBoolean(true);
ID.AddInteger(NTTP->getNumExpansionTypes());
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
QualType T = NTTP->getExpansionType(I);
ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
}
} else
ID.AddBoolean(false);
continue;
}
auto *TTP = cast<TemplateTemplateParmDecl>(*P);
ID.AddInteger(2);
Profile(ID, C, TTP);
}
Expr *RequiresClause = Parm->getTemplateParameters()->getRequiresClause();
ID.AddBoolean(RequiresClause != nullptr);
if (RequiresClause)
RequiresClause->Profile(ID, C, /*Canonical=*/true);
}
static Expr *
canonicalizeImmediatelyDeclaredConstraint(const ASTContext &C, Expr *IDC,
QualType ConstrainedType) {
// This is a bit ugly - we need to form a new immediately-declared
// constraint that references the new parameter; this would ideally
// require semantic analysis (e.g. template<C T> struct S {}; - the
// converted arguments of C<T> could be an argument pack if C is
// declared as template<typename... T> concept C = ...).
// We don't have semantic analysis here so we dig deep into the
// ready-made constraint expr and change the thing manually.
ConceptSpecializationExpr *CSE;
if (const auto *Fold = dyn_cast<CXXFoldExpr>(IDC))
CSE = cast<ConceptSpecializationExpr>(Fold->getLHS());
else
CSE = cast<ConceptSpecializationExpr>(IDC);
ArrayRef<TemplateArgument> OldConverted = CSE->getTemplateArguments();
SmallVector<TemplateArgument, 3> NewConverted;
NewConverted.reserve(OldConverted.size());
if (OldConverted.front().getKind() == TemplateArgument::Pack) {
// The case:
// template<typename... T> concept C = true;
// template<C<int> T> struct S; -> constraint is C<{T, int}>
NewConverted.push_back(ConstrainedType);
for (auto &Arg : OldConverted.front().pack_elements().drop_front(1))
NewConverted.push_back(Arg);
TemplateArgument NewPack(NewConverted);
NewConverted.clear();
NewConverted.push_back(NewPack);
assert(OldConverted.size() == 1 &&
"Template parameter pack should be the last parameter");
} else {
assert(OldConverted.front().getKind() == TemplateArgument::Type &&
"Unexpected first argument kind for immediately-declared "
"constraint");
NewConverted.push_back(ConstrainedType);
for (auto &Arg : OldConverted.drop_front(1))
NewConverted.push_back(Arg);
}
Expr *NewIDC = ConceptSpecializationExpr::Create(
C, CSE->getNamedConcept(), NewConverted, nullptr,
CSE->isInstantiationDependent(), CSE->containsUnexpandedParameterPack());
if (auto *OrigFold = dyn_cast<CXXFoldExpr>(IDC))
NewIDC = new (C) CXXFoldExpr(
OrigFold->getType(), /*Callee*/nullptr, SourceLocation(), NewIDC,
BinaryOperatorKind::BO_LAnd, SourceLocation(), /*RHS=*/nullptr,
SourceLocation(), /*NumExpansions=*/None);
return NewIDC;
}
TemplateTemplateParmDecl *
ASTContext::getCanonicalTemplateTemplateParmDecl(
TemplateTemplateParmDecl *TTP) const {
// Check if we already have a canonical template template parameter.
llvm::FoldingSetNodeID ID;
CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
void *InsertPos = nullptr;
CanonicalTemplateTemplateParm *Canonical
= CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
if (Canonical)
return Canonical->getParam();
// Build a canonical template parameter list.
TemplateParameterList *Params = TTP->getTemplateParameters();
SmallVector<NamedDecl *, 4> CanonParams;
CanonParams.reserve(Params->size());
for (TemplateParameterList::const_iterator P = Params->begin(),
PEnd = Params->end();
P != PEnd; ++P) {
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(*this,
getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
TTP->getDepth(), TTP->getIndex(), nullptr, false,
TTP->isParameterPack(), TTP->hasTypeConstraint(),
TTP->isExpandedParameterPack() ?
llvm::Optional<unsigned>(TTP->getNumExpansionParameters()) : None);
if (const auto *TC = TTP->getTypeConstraint()) {
QualType ParamAsArgument(NewTTP->getTypeForDecl(), 0);
Expr *NewIDC = canonicalizeImmediatelyDeclaredConstraint(
*this, TC->getImmediatelyDeclaredConstraint(),
ParamAsArgument);
TemplateArgumentListInfo CanonArgsAsWritten;
if (auto *Args = TC->getTemplateArgsAsWritten())
for (const auto &ArgLoc : Args->arguments())
CanonArgsAsWritten.addArgument(
TemplateArgumentLoc(ArgLoc.getArgument(),
TemplateArgumentLocInfo()));
NewTTP->setTypeConstraint(
NestedNameSpecifierLoc(),
DeclarationNameInfo(TC->getNamedConcept()->getDeclName(),
SourceLocation()), /*FoundDecl=*/nullptr,
// Actually canonicalizing a TemplateArgumentLoc is difficult so we
// simply omit the ArgsAsWritten
TC->getNamedConcept(), /*ArgsAsWritten=*/nullptr, NewIDC);
}
CanonParams.push_back(NewTTP);
} else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
QualType T = getCanonicalType(NTTP->getType());
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
NonTypeTemplateParmDecl *Param;
if (NTTP->isExpandedParameterPack()) {
SmallVector<QualType, 2> ExpandedTypes;
SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
ExpandedTInfos.push_back(
getTrivialTypeSourceInfo(ExpandedTypes.back()));
}
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
NTTP->getDepth(),
NTTP->getPosition(), nullptr,
T,
TInfo,
ExpandedTypes,
ExpandedTInfos);
} else {
Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
NTTP->getDepth(),
NTTP->getPosition(), nullptr,
T,
NTTP->isParameterPack(),
TInfo);
}
if (AutoType *AT = T->getContainedAutoType()) {
if (AT->isConstrained()) {
Param->setPlaceholderTypeConstraint(
canonicalizeImmediatelyDeclaredConstraint(
*this, NTTP->getPlaceholderTypeConstraint(), T));
}
}
CanonParams.push_back(Param);
} else
CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
cast<TemplateTemplateParmDecl>(*P)));
}
Expr *CanonRequiresClause = nullptr;
if (Expr *RequiresClause = TTP->getTemplateParameters()->getRequiresClause())
CanonRequiresClause = RequiresClause;
TemplateTemplateParmDecl *CanonTTP
= TemplateTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(), TTP->getDepth(),
TTP->getPosition(),
TTP->isParameterPack(),
nullptr,
TemplateParameterList::Create(*this, SourceLocation(),
SourceLocation(),
CanonParams,
SourceLocation(),
CanonRequiresClause));
// Get the new insert position for the node we care about.
Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
assert(!Canonical && "Shouldn't be in the map!");
(void)Canonical;
// Create the canonical template template parameter entry.
Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
return CanonTTP;
}
CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
if (!LangOpts.CPlusPlus) return nullptr;
switch (T.getCXXABI().getKind()) {
case TargetCXXABI::AppleARM64:
case TargetCXXABI::Fuchsia:
case TargetCXXABI::GenericARM: // Same as Itanium at this level
case TargetCXXABI::iOS:
case TargetCXXABI::WatchOS:
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::WebAssembly:
case TargetCXXABI::XL:
return CreateItaniumCXXABI(*this);
case TargetCXXABI::Microsoft:
return CreateMicrosoftCXXABI(*this);
}
llvm_unreachable("Invalid CXXABI type!");
}
interp::Context &ASTContext::getInterpContext() {
if (!InterpContext) {
InterpContext.reset(new interp::Context(*this));
}
return *InterpContext.get();
}
ParentMapContext &ASTContext::getParentMapContext() {
if (!ParentMapCtx)
ParentMapCtx.reset(new ParentMapContext(*this));
return *ParentMapCtx.get();
}
static const LangASMap *getAddressSpaceMap(const TargetInfo &T,
const LangOptions &LOpts) {
if (LOpts.FakeAddressSpaceMap) {
// The fake address space map must have a distinct entry for each
// language-specific address space.
static const unsigned FakeAddrSpaceMap[] = {
0, // Default
1, // opencl_global
3, // opencl_local
2, // opencl_constant
0, // opencl_private
4, // opencl_generic
5, // opencl_global_device
6, // opencl_global_host
7, // cuda_device
8, // cuda_constant
9, // cuda_shared
10, // ptr32_sptr
11, // ptr32_uptr
12 // ptr64
};
return &FakeAddrSpaceMap;
} else {
return &T.getAddressSpaceMap();
}
}
static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
const LangOptions &LangOpts) {
switch (LangOpts.getAddressSpaceMapMangling()) {
case LangOptions::ASMM_Target:
return TI.useAddressSpaceMapMangling();
case LangOptions::ASMM_On:
return true;
case LangOptions::ASMM_Off:
return false;
}
llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.");
}
ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
IdentifierTable &idents, SelectorTable &sels,
Builtin::Context &builtins)
: ConstantArrayTypes(this_()), FunctionProtoTypes(this_()),
TemplateSpecializationTypes(this_()),
DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
SubstTemplateTemplateParmPacks(this_()),
CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
SanitizerBL(new SanitizerBlacklist(LangOpts.SanitizerBlacklistFiles, SM)),
XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
LangOpts.XRayNeverInstrumentFiles,
LangOpts.XRayAttrListFiles, SM)),
PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
BuiltinInfo(builtins), DeclarationNames(*this), Comments(SM),
CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
CompCategories(this_()), LastSDM(nullptr, 0) {
TUDecl = TranslationUnitDecl::Create(*this);
TraversalScope = {TUDecl};
}
ASTContext::~ASTContext() {
// Release the DenseMaps associated with DeclContext objects.
// FIXME: Is this the ideal solution?
ReleaseDeclContextMaps();
// Call all of the deallocation functions on all of their targets.
for (auto &Pair : Deallocations)
(Pair.first)(Pair.second);
// ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
// because they can contain DenseMaps.
for (llvm::DenseMap<const ObjCContainerDecl*,
const ASTRecordLayout*>::iterator
I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
// Increment in loop to prevent using deallocated memory.
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
R->Destroy(*this);
for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
// Increment in loop to prevent using deallocated memory.
if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
R->Destroy(*this);
}
for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
AEnd = DeclAttrs.end();
A != AEnd; ++A)
A->second->~AttrVec();
for (const auto &Value : ModuleInitializers)
Value.second->~PerModuleInitializers();
}
void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
TraversalScope = TopLevelDecls;
getParentMapContext().clear();
}
void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
Deallocations.push_back({Callback, Data});
}
void
ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
ExternalSource = std::move(Source);
}
void ASTContext::PrintStats() const {
llvm::errs() << "\n*** AST Context Stats:\n";
llvm::errs() << " " << Types.size() << " types total.\n";
unsigned counts[] = {
#define TYPE(Name, Parent) 0,
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"
0 // Extra
};
for (unsigned i = 0, e = Types.size(); i != e; ++i) {
Type *T = Types[i];
counts[(unsigned)T->getTypeClass()]++;
}
unsigned Idx = 0;
unsigned TotalBytes = 0;
#define TYPE(Name, Parent) \
if (counts[Idx]) \
llvm::errs() << " " << counts[Idx] << " " << #Name \
<< " types, " << sizeof(Name##Type) << " each " \
<< "(" << counts[Idx] * sizeof(Name##Type) \
<< " bytes)\n"; \
TotalBytes += counts[Idx] * sizeof(Name##Type); \
++Idx;
#define ABSTRACT_TYPE(Name, Parent)
#include "clang/AST/TypeNodes.inc"
llvm::errs() << "Total bytes = " << TotalBytes << "\n";
// Implicit special member functions.
llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
<< NumImplicitDefaultConstructors
<< " implicit default constructors created\n";
llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
<< NumImplicitCopyConstructors
<< " implicit copy constructors created\n";
if (getLangOpts().CPlusPlus)
llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
<< NumImplicitMoveConstructors
<< " implicit move constructors created\n";
llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
<< NumImplicitCopyAssignmentOperators
<< " implicit copy assignment operators created\n";
if (getLangOpts().CPlusPlus)
llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
<< NumImplicitMoveAssignmentOperators
<< " implicit move assignment operators created\n";
llvm::errs() << NumImplicitDestructorsDeclared << "/"
<< NumImplicitDestructors
<< " implicit destructors created\n";
if (ExternalSource) {
llvm::errs() << "\n";
ExternalSource->PrintStats();
}
BumpAlloc.PrintStats();
}
void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
bool NotifyListeners) {
if (NotifyListeners)
if (auto *Listener = getASTMutationListener())
Listener->RedefinedHiddenDefinition(ND, M);
MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
}
void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
if (It == MergedDefModules.end())
return;
auto &Merged = It->second;
llvm::DenseSet<Module*> Found;
for (Module *&M : Merged)
if (!Found.insert(M).second)
M = nullptr;
Merged.erase(std::remove(Merged.begin(), Merged.end(), nullptr), Merged.end());
}
ArrayRef<Module *>
ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
auto MergedIt =
MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
if (MergedIt == MergedDefModules.end())
return None;
return MergedIt->second;
}
void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
if (LazyInitializers.empty())
return;
auto *Source = Ctx.getExternalSource();
assert(Source && "lazy initializers but no external source");
auto LazyInits = std::move(LazyInitializers);
LazyInitializers.clear();
for (auto ID : LazyInits)
Initializers.push_back(Source->GetExternalDecl(ID));
assert(LazyInitializers.empty() &&
"GetExternalDecl for lazy module initializer added more inits");
}
void ASTContext::addModuleInitializer(Module *M, Decl *D) {
// One special case: if we add a module initializer that imports another
// module, and that module's only initializer is an ImportDecl, simplify.
if (const auto *ID = dyn_cast<ImportDecl>(D)) {
auto It = ModuleInitializers.find(ID->getImportedModule());
// Maybe the ImportDecl does nothing at all. (Common case.)
if (It == ModuleInitializers.end())
return;
// Maybe the ImportDecl only imports another ImportDecl.
auto &Imported = *It->second;
if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
Imported.resolve(*this);
auto *OnlyDecl = Imported.Initializers.front();
if (isa<ImportDecl>(OnlyDecl))
D = OnlyDecl;
}
}
auto *&Inits = ModuleInitializers[M];
if (!Inits)
Inits = new (*this) PerModuleInitializers;
Inits->Initializers.push_back(D);
}
void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
auto *&Inits = ModuleInitializers[M];
if (!Inits)
Inits = new (*this) PerModuleInitializers;
Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
IDs.begin(), IDs.end());
}
ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
auto It = ModuleInitializers.find(M);
if (It == ModuleInitializers.end())
return None;
auto *Inits = It->second;
Inits->resolve(*this);
return Inits->Initializers;
}
ExternCContextDecl *ASTContext::getExternCContextDecl() const {
if (!ExternCContext)
ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
return ExternCContext;
}
BuiltinTemplateDecl *
ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
const IdentifierInfo *II) const {
auto *BuiltinTemplate = BuiltinTemplateDecl::Create(*this, TUDecl, II, BTK);
BuiltinTemplate->setImplicit();
TUDecl->addDecl(BuiltinTemplate);
return BuiltinTemplate;
}
BuiltinTemplateDecl *
ASTContext::getMakeIntegerSeqDecl() const {
if (!MakeIntegerSeqDecl)
MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
getMakeIntegerSeqName());
return MakeIntegerSeqDecl;
}
BuiltinTemplateDecl *
ASTContext::getTypePackElementDecl() const {
if (!TypePackElementDecl)
TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
getTypePackElementName());
return TypePackElementDecl;
}
RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
RecordDecl::TagKind TK) const {
SourceLocation Loc;
RecordDecl *NewDecl;
if (getLangOpts().CPlusPlus)
NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
Loc, &Idents.get(Name));
else
NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
&Idents.get(Name));
NewDecl->setImplicit();
NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
return NewDecl;
}
TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
StringRef Name) const {
TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
TypedefDecl *NewDecl = TypedefDecl::Create(
const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
NewDecl->setImplicit();
return NewDecl;
}
TypedefDecl *ASTContext::getInt128Decl() const {
if (!Int128Decl)
Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
return Int128Decl;
}
TypedefDecl *ASTContext::getUInt128Decl() const {
if (!UInt128Decl)
UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
return UInt128Decl;
}
void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
R = CanQualType::CreateUnsafe(QualType(Ty, 0));
Types.push_back(Ty);
}
void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
const TargetInfo *AuxTarget) {
assert((!this->Target || this->Target == &Target) &&
"Incorrect target reinitialization");
assert(VoidTy.isNull() && "Context reinitialized?");
this->Target = &Target;
this->AuxTarget = AuxTarget;
ABI.reset(createCXXABI(Target));
AddrSpaceMap = getAddressSpaceMap(Target, LangOpts);
AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
// C99 6.2.5p19.
InitBuiltinType(VoidTy, BuiltinType::Void);
// C99 6.2.5p2.
InitBuiltinType(BoolTy, BuiltinType::Bool);
// C99 6.2.5p3.
if (LangOpts.CharIsSigned)
InitBuiltinType(CharTy, BuiltinType::Char_S);
else
InitBuiltinType(CharTy, BuiltinType::Char_U);
// C99 6.2.5p4.
InitBuiltinType(SignedCharTy, BuiltinType::SChar);
InitBuiltinType(ShortTy, BuiltinType::Short);
InitBuiltinType(IntTy, BuiltinType::Int);
InitBuiltinType(LongTy, BuiltinType::Long);
InitBuiltinType(LongLongTy, BuiltinType::LongLong);
// C99 6.2.5p6.
InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
// C99 6.2.5p10.
InitBuiltinType(FloatTy, BuiltinType::Float);
InitBuiltinType(DoubleTy, BuiltinType::Double);
InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
// GNU extension, __float128 for IEEE quadruple precision
InitBuiltinType(Float128Ty, BuiltinType::Float128);
// C11 extension ISO/IEC TS 18661-3
InitBuiltinType(Float16Ty, BuiltinType::Float16);
// ISO/IEC JTC1 SC22 WG14 N1169 Extension
InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
InitBuiltinType(AccumTy, BuiltinType::Accum);
InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
InitBuiltinType(FractTy, BuiltinType::Fract);
InitBuiltinType(LongFractTy, BuiltinType::LongFract);
InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
InitBuiltinType(SatFractTy, BuiltinType::SatFract);
InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
// GNU extension, 128-bit integers.
InitBuiltinType(Int128Ty, BuiltinType::Int128);
InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
// C++ 3.9.1p5
if (TargetInfo::isTypeSigned(Target.getWCharType()))
InitBuiltinType(WCharTy, BuiltinType::WChar_S);
else // -fshort-wchar makes wchar_t be unsigned.
InitBuiltinType(WCharTy, BuiltinType::WChar_U);
if (LangOpts.CPlusPlus && LangOpts.WChar)
WideCharTy = WCharTy;
else {
// C99 (or C++ using -fno-wchar).
WideCharTy = getFromTargetType(Target.getWCharType());
}
WIntTy = getFromTargetType(Target.getWIntType());
// C++20 (proposed)
InitBuiltinType(Char8Ty, BuiltinType::Char8);
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char16Ty, BuiltinType::Char16);
else // C99
Char16Ty = getFromTargetType(Target.getChar16Type());
if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
InitBuiltinType(Char32Ty, BuiltinType::Char32);
else // C99
Char32Ty = getFromTargetType(Target.getChar32Type());
// Placeholder type for type-dependent expressions whose type is
// completely unknown. No code should ever check a type against
// DependentTy and users should never see it; however, it is here to
// help diagnose failures to properly check for type-dependent
// expressions.
InitBuiltinType(DependentTy, BuiltinType::Dependent);
// Placeholder type for functions.
InitBuiltinType(OverloadTy, BuiltinType::Overload);
// Placeholder type for bound members.
InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
// Placeholder type for pseudo-objects.
InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
// "any" type; useful for debugger-like clients.
InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
// Placeholder type for unbridged ARC casts.
InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
// Placeholder type for builtin functions.
InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
// Placeholder type for OMP array sections.
if (LangOpts.OpenMP) {
InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
}
if (LangOpts.MatrixTypes)
InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
// C99 6.2.5p11.
FloatComplexTy = getComplexType(FloatTy);
DoubleComplexTy = getComplexType(DoubleTy);
LongDoubleComplexTy = getComplexType(LongDoubleTy);
Float128ComplexTy = getComplexType(Float128Ty);
// Builtin types for 'id', 'Class', and 'SEL'.
InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
if (LangOpts.OpenCL) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/OpenCLImageTypes.def"
InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/OpenCLExtensionTypes.def"
}
if (Target.hasAArch64SVETypes()) {
#define SVE_TYPE(Name, Id, SingletonId) \
InitBuiltinType(SingletonId, BuiltinType::Id);
#include "clang/Basic/AArch64SVEACLETypes.def"
}
if (Target.getTriple().isPPC64() &&
Target.hasFeature("paired-vector-memops")) {
if (Target.hasFeature("mma")) {
#define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/PPCTypes.def"
}
#define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
InitBuiltinType(Id##Ty, BuiltinType::Id);
#include "clang/Basic/PPCTypes.def"
}
// Builtin type for __objc_yes and __objc_no
ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
SignedCharTy : BoolTy);
ObjCConstantStringType = QualType();
ObjCSuperType = QualType();
// void * type
if (LangOpts.OpenCLVersion >= 200) {
auto Q = VoidTy.getQualifiers();
Q.setAddressSpace(LangAS::opencl_generic);
VoidPtrTy = getPointerType(getCanonicalType(
getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
} else {
VoidPtrTy = getPointerType(VoidTy);
}
// nullptr type (C++0x 2.14.7)
InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
// half type (OpenCL 6.1.1.1) / ARM NEON __fp16
InitBuiltinType(HalfTy, BuiltinType::Half);
InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
// Builtin type used to help define __builtin_va_list.
VaListTagDecl = nullptr;
// MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
if (LangOpts.MicrosoftExt || LangOpts.Borland) {
MSGuidTagDecl = buildImplicitRecord("_GUID");
TUDecl->addDecl(MSGuidTagDecl);
}
}
DiagnosticsEngine &ASTContext::getDiagnostics() const {
return SourceMgr.getDiagnostics();
}
AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
AttrVec *&Result = DeclAttrs[D];
if (!Result) {
void *Mem = Allocate(sizeof(AttrVec));
Result = new (Mem) AttrVec;
}
return *Result;
}
/// Erase the attributes corresponding to the given declaration.
void ASTContext::eraseDeclAttrs(const Decl *D) {
llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
if (Pos != DeclAttrs.end()) {
Pos->second->~AttrVec();
DeclAttrs.erase(Pos);
}
}
// FIXME: Remove ?
MemberSpecializationInfo *
ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
assert(Var->isStaticDataMember() && "Not a static data member");
return getTemplateOrSpecializationInfo(Var)
.dyn_cast<MemberSpecializationInfo *>();
}
ASTContext::TemplateOrSpecializationInfo
ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
TemplateOrInstantiation.find(Var);
if (Pos == TemplateOrInstantiation.end())
return {};
return Pos->second;
}
void
ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
TemplateSpecializationKind TSK,
SourceLocation PointOfInstantiation) {
assert(Inst->isStaticDataMember() && "Not a static data member");
assert(Tmpl->isStaticDataMember() && "Not a static data member");
setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
Tmpl, TSK, PointOfInstantiation));
}
void
ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
TemplateOrSpecializationInfo TSI) {
assert(!TemplateOrInstantiation[Inst] &&
"Already noted what the variable was instantiated from");
TemplateOrInstantiation[Inst] = TSI;
}
NamedDecl *
ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
auto Pos = InstantiatedFromUsingDecl.find(UUD);
if (Pos == InstantiatedFromUsingDecl.end())
return nullptr;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
assert((isa<UsingDecl>(Pattern) ||
isa<UnresolvedUsingValueDecl>(Pattern) ||
isa<UnresolvedUsingTypenameDecl>(Pattern)) &&
"pattern decl is not a using decl");
assert((isa<UsingDecl>(Inst) ||
isa<UnresolvedUsingValueDecl>(Inst) ||
isa<UnresolvedUsingTypenameDecl>(Inst)) &&
"instantiation did not produce a using decl");
assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
InstantiatedFromUsingDecl[Inst] = Pattern;
}
UsingShadowDecl *
ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
= InstantiatedFromUsingShadowDecl.find(Inst);
if (Pos == InstantiatedFromUsingShadowDecl.end())
return nullptr;
return Pos->second;
}
void
ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
UsingShadowDecl *Pattern) {
assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
InstantiatedFromUsingShadowDecl[Inst] = Pattern;
}
FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
= InstantiatedFromUnnamedFieldDecl.find(Field);
if (Pos == InstantiatedFromUnnamedFieldDecl.end())
return nullptr;
return Pos->second;
}
void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
FieldDecl *Tmpl) {
assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
"Already noted what unnamed field was instantiated from");
InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
return overridden_methods(Method).begin();
}
ASTContext::overridden_cxx_method_iterator
ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
return overridden_methods(Method).end();
}
unsigned
ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
auto Range = overridden_methods(Method);
return Range.end() - Range.begin();
}
ASTContext::overridden_method_range
ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
OverriddenMethods.find(Method->getCanonicalDecl());
if (Pos == OverriddenMethods.end())
return overridden_method_range(nullptr, nullptr);
return overridden_method_range(Pos->second.begin(), Pos->second.end());
}
void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
const CXXMethodDecl *Overridden) {
assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl());
OverriddenMethods[Method].push_back(Overridden);
}
void ASTContext::getOverriddenMethods(
const NamedDecl *D,
SmallVectorImpl<const NamedDecl *> &Overridden) const {
assert(D);
if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
Overridden.append(overridden_methods_begin(CXXMethod),
overridden_methods_end(CXXMethod));
return;
}
const auto *Method = dyn_cast<ObjCMethodDecl>(D);
if (!Method)
return;
SmallVector<const ObjCMethodDecl *, 8> OverDecls;
Method->getOverriddenMethods(OverDecls);
Overridden.append(OverDecls.begin(), OverDecls.end());
}
void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
assert(!Import->getNextLocalImport() &&
"Import declaration already in the chain");
assert(!Import->isFromASTFile() && "Non-local import declaration");
if (!FirstLocalImport) {
FirstLocalImport = Import;
LastLocalImport = Import;
return;
}
LastLocalImport->setNextLocalImport(Import);
LastLocalImport = Import;
}
//===----------------------------------------------------------------------===//
// Type Sizing and Analysis
//===----------------------------------------------------------------------===//
/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
/// scalar floating point type.
const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
switch (T->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("Not a floating point type!");
case BuiltinType::BFloat16:
return Target->getBFloat16Format();
case BuiltinType::Float16:
case BuiltinType::Half:
return Target->getHalfFormat();
case BuiltinType::Float: return Target->getFloatFormat();
case BuiltinType::Double: return Target->getDoubleFormat();
case BuiltinType::LongDouble:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
return AuxTarget->getLongDoubleFormat();
return Target->getLongDoubleFormat();
case BuiltinType::Float128:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
return AuxTarget->getFloat128Format();
return Target->getFloat128Format();
}
}
CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
unsigned Align = Target->getCharWidth();
bool UseAlignAttrOnly = false;
if (unsigned AlignFromAttr = D->getMaxAlignment()) {
Align = AlignFromAttr;
// __attribute__((aligned)) can increase or decrease alignment
// *except* on a struct or struct member, where it only increases
// alignment unless 'packed' is also specified.
//
// It is an error for alignas to decrease alignment, so we can
// ignore that possibility; Sema should diagnose it.
if (isa<FieldDecl>(D)) {
UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
} else {
UseAlignAttrOnly = true;
}
}
else if (isa<FieldDecl>(D))
UseAlignAttrOnly =
D->hasAttr<PackedAttr>() ||
cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
// If we're using the align attribute only, just ignore everything
// else about the declaration and its type.
if (UseAlignAttrOnly) {
// do nothing
} else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
QualType T = VD->getType();
if (const auto *RT = T->getAs<ReferenceType>()) {
if (ForAlignof)
T = RT->getPointeeType();
else
T = getPointerType(RT->getPointeeType());
}
QualType BaseT = getBaseElementType(T);
if (T->isFunctionType())
Align = getTypeInfoImpl(T.getTypePtr()).Align;
else if (!BaseT->isIncompleteType()) {
// Adjust alignments of declarations with array type by the
// large-array alignment on the target.
if (const ArrayType *arrayType = getAsArrayType(T)) {
unsigned MinWidth = Target->getLargeArrayMinWidth();
if (!ForAlignof && MinWidth) {
if (isa<VariableArrayType>(arrayType))
Align = std::max(Align, Target->getLargeArrayAlign());
else if (isa<ConstantArrayType>(arrayType) &&
MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
Align = std::max(Align, Target->getLargeArrayAlign());
}
}
Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
if (BaseT.getQualifiers().hasUnaligned())
Align = Target->getCharWidth();
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasGlobalStorage() && !ForAlignof) {
uint64_t TypeSize = getTypeSize(T.getTypePtr());
Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
}
}
}
// Fields can be subject to extra alignment constraints, like if
// the field is packed, the struct is packed, or the struct has a
// a max-field-alignment constraint (#pragma pack). So calculate
// the actual alignment of the field within the struct, and then
// (as we're expected to) constrain that by the alignment of the type.
if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
const RecordDecl *Parent = Field->getParent();
// We can only produce a sensible answer if the record is valid.
if (!Parent->isInvalidDecl()) {
const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
// Start with the record's overall alignment.
unsigned FieldAlign = toBits(Layout.getAlignment());
// Use the GCD of that and the offset within the record.
uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
if (Offset > 0) {
// Alignment is always a power of 2, so the GCD will be a power of 2,
// which means we get to do this crazy thing instead of Euclid's.
uint64_t LowBitOfOffset = Offset & (~Offset + 1);
if (LowBitOfOffset < FieldAlign)
FieldAlign = static_cast<unsigned>(LowBitOfOffset);
}
Align = std::min(Align, FieldAlign);
}
}
}
return toCharUnitsFromBits(Align);
}
CharUnits ASTContext::getExnObjectAlignment() const {
return toCharUnitsFromBits(Target->getExnObjectAlignment());
}
// getTypeInfoDataSizeInChars - Return the size of a type, in
// chars. If the type is a record, its data size is returned. This is
// the size of the memcpy that's performed when assigning this type
// using a trivial copy/move assignment operator.
TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
TypeInfoChars Info = getTypeInfoInChars(T);
// In C++, objects can sometimes be allocated into the tail padding
// of a base-class subobject. We decide whether that's possible
// during class layout, so here we can just trust the layout results.
if (getLangOpts().CPlusPlus) {
if (const auto *RT = T->getAs<RecordType>()) {
const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
Info.Width = layout.getDataSize();
}
}
return Info;
}
/// getConstantArrayInfoInChars - Performing the computation in CharUnits
/// instead of in bits prevents overflowing the uint64_t for some large arrays.
TypeInfoChars
static getConstantArrayInfoInChars(const ASTContext &Context,
const ConstantArrayType *CAT) {
TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
uint64_t Size = CAT->getSize().getZExtValue();
assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=
(uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation");
uint64_t Width = EltInfo.Width.getQuantity() * Size;
unsigned Align = EltInfo.Align.getQuantity();
if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
Context.getTargetInfo().getPointerWidth(0) == 64)
Width = llvm::alignTo(Width, Align);
return TypeInfoChars(CharUnits::fromQuantity(Width),
CharUnits::fromQuantity(Align),
EltInfo.AlignIsRequired);
}
TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
return getConstantArrayInfoInChars(*this, CAT);
TypeInfo Info = getTypeInfo(T);
return TypeInfoChars(toCharUnitsFromBits(Info.Width),
toCharUnitsFromBits(Info.Align),
Info.AlignIsRequired);
}
TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
return getTypeInfoInChars(T.getTypePtr());
}
bool ASTContext::isAlignmentRequired(const Type *T) const {
return getTypeInfo(T).AlignIsRequired;
}
bool ASTContext::isAlignmentRequired(QualType T) const {
return isAlignmentRequired(T.getTypePtr());
}
unsigned ASTContext::getTypeAlignIfKnown(QualType T,
bool NeedsPreferredAlignment) const {
// An alignment on a typedef overrides anything else.
if (const auto *TT = T->getAs<TypedefType>())
if (unsigned Align = TT->getDecl()->getMaxAlignment())
return Align;
// If we have an (array of) complete type, we're done.
T = getBaseElementType(T);
if (!T->isIncompleteType())
return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
// If we had an array type, its element type might be a typedef
// type with an alignment attribute.
if (const auto *TT = T->getAs<TypedefType>())
if (unsigned Align = TT->getDecl()->getMaxAlignment())
return Align;
// Otherwise, see if the declaration of the type had an attribute.
if (const auto *TT = T->getAs<TagType>())
return TT->getDecl()->getMaxAlignment();
return 0;
}
TypeInfo ASTContext::getTypeInfo(const Type *T) const {
TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
if (I != MemoizedTypeInfo.end())
return I->second;
// This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
TypeInfo TI = getTypeInfoImpl(T);
MemoizedTypeInfo[T] = TI;
return TI;
}
/// getTypeInfoImpl - Return the size of the specified type, in bits. This
/// method does not work on incomplete types.
///
/// FIXME: Pointers into different addr spaces could have different sizes and
/// alignment requirements: getPointerInfo should take an AddrSpace, this
/// should take a QualType, &c.
TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
uint64_t Width = 0;
unsigned Align = 8;
bool AlignIsRequired = false;
unsigned AS = 0;
switch (T->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base)
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
case Type::Class: \
assert(!T->isDependentType() && "should not see dependent types here"); \
return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Should not see dependent types");
case Type::FunctionNoProto:
case Type::FunctionProto:
// GCC extension: alignof(function) = 32 bits
Width = 0;
Align = 32;
break;
case Type::IncompleteArray:
case Type::VariableArray:
case Type::ConstantArray: {
// Model non-constant sized arrays as size zero, but track the alignment.
uint64_t Size = 0;
if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
Size = CAT->getSize().getZExtValue();
TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&
"Overflow in array type bit size evaluation");
Width = EltInfo.Width * Size;
Align = EltInfo.Align;
AlignIsRequired = EltInfo.AlignIsRequired;
if (!getTargetInfo().getCXXABI().isMicrosoft() ||
getTargetInfo().getPointerWidth(0) == 64)
Width = llvm::alignTo(Width, Align);
break;
}
case Type::ExtVector:
case Type::Vector: {
const auto *VT = cast<VectorType>(T);
TypeInfo EltInfo = getTypeInfo(VT->getElementType());
Width = EltInfo.Width * VT->getNumElements();
Align = Width;
// If the alignment is not a power of 2, round up to the next power of 2.
// This happens for non-power-of-2 length vectors.
if (Align & (Align-1)) {
Align = llvm::NextPowerOf2(Align);
Width = llvm::alignTo(Width, Align);
}
// Adjust the alignment based on the target max.
uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
if (TargetVectorAlign && TargetVectorAlign < Align)
Align = TargetVectorAlign;
if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
// Adjust the alignment for fixed-length SVE vectors. This is important
// for non-power-of-2 vector lengths.
Align = 128;
else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
// Adjust the alignment for fixed-length SVE predicates.
Align = 16;
break;
}
case Type::ConstantMatrix: {
const auto *MT = cast<ConstantMatrixType>(T);
TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
// The internal layout of a matrix value is implementation defined.
// Initially be ABI compatible with arrays with respect to alignment and
// size.
Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
Align = ElementInfo.Align;
break;
}
case Type::Builtin:
switch (cast<BuiltinType>(T)->getKind()) {
default: llvm_unreachable("Unknown builtin type!");
case BuiltinType::Void:
// GCC extension: alignof(void) = 8 bits.
Width = 0;
Align = 8;
break;
case BuiltinType::Bool:
Width = Target->getBoolWidth();
Align = Target->getBoolAlign();
break;
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::SChar:
case BuiltinType::Char8:
Width = Target->getCharWidth();
Align = Target->getCharAlign();
break;
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
Width = Target->getWCharWidth();
Align = Target->getWCharAlign();
break;
case BuiltinType::Char16:
Width = Target->getChar16Width();
Align = Target->getChar16Align();
break;
case BuiltinType::Char32:
Width = Target->getChar32Width();
Align = Target->getChar32Align();
break;
case BuiltinType::UShort:
case BuiltinType::Short:
Width = Target->getShortWidth();
Align = Target->getShortAlign();
break;
case BuiltinType::UInt:
case BuiltinType::Int:
Width = Target->getIntWidth();
Align = Target->getIntAlign();
break;
case BuiltinType::ULong:
case BuiltinType::Long:
Width = Target->getLongWidth();
Align = Target->getLongAlign();
break;
case BuiltinType::ULongLong:
case BuiltinType::LongLong:
Width = Target->getLongLongWidth();
Align = Target->getLongLongAlign();
break;
case BuiltinType::Int128:
case BuiltinType::UInt128:
Width = 128;
Align = 128; // int128_t is 128-bit aligned on all targets.
break;
case BuiltinType::ShortAccum:
case BuiltinType::UShortAccum:
case BuiltinType::SatShortAccum:
case BuiltinType::SatUShortAccum:
Width = Target->getShortAccumWidth();
Align = Target->getShortAccumAlign();
break;
case BuiltinType::Accum:
case BuiltinType::UAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatUAccum:
Width = Target->getAccumWidth();
Align = Target->getAccumAlign();
break;
case BuiltinType::LongAccum:
case BuiltinType::ULongAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatULongAccum:
Width = Target->getLongAccumWidth();
Align = Target->getLongAccumAlign();
break;
case BuiltinType::ShortFract:
case BuiltinType::UShortFract:
case BuiltinType::SatShortFract:
case BuiltinType::SatUShortFract:
Width = Target->getShortFractWidth();
Align = Target->getShortFractAlign();
break;
case BuiltinType::Fract:
case BuiltinType::UFract:
case BuiltinType::SatFract:
case BuiltinType::SatUFract:
Width = Target->getFractWidth();
Align = Target->getFractAlign();
break;
case BuiltinType::LongFract:
case BuiltinType::ULongFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatULongFract:
Width = Target->getLongFractWidth();
Align = Target->getLongFractAlign();
break;
case BuiltinType::BFloat16:
Width = Target->getBFloat16Width();
Align = Target->getBFloat16Align();
break;
case BuiltinType::Float16:
case BuiltinType::Half:
if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
!getLangOpts().OpenMPIsDevice) {
Width = Target->getHalfWidth();
Align = Target->getHalfAlign();
} else {
assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
"Expected OpenMP device compilation.");
Width = AuxTarget->getHalfWidth();
Align = AuxTarget->getHalfAlign();
}
break;
case BuiltinType::Float:
Width = Target->getFloatWidth();
Align = Target->getFloatAlign();
break;
case BuiltinType::Double:
Width = Target->getDoubleWidth();
Align = Target->getDoubleAlign();
break;
case BuiltinType::LongDouble:
if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
(Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
Width = AuxTarget->getLongDoubleWidth();
Align = AuxTarget->getLongDoubleAlign();
} else {
Width = Target->getLongDoubleWidth();
Align = Target->getLongDoubleAlign();
}
break;
case BuiltinType::Float128:
if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
!getLangOpts().OpenMPIsDevice) {
Width = Target->getFloat128Width();
Align = Target->getFloat128Align();
} else {
assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
"Expected OpenMP device compilation.");
Width = AuxTarget->getFloat128Width();
Align = AuxTarget->getFloat128Align();
}
break;
case BuiltinType::NullPtr:
Width = Target->getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
Align = Target->getPointerAlign(0); // == sizeof(void*)
break;
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
Width = Target->getPointerWidth(0);
Align = Target->getPointerAlign(0);
break;
case BuiltinType::OCLSampler:
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
AS = getTargetAddressSpace(
Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T)));
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
// The SVE types are effectively target-specific. The length of an
// SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
// of 128 bits. There is one predicate bit for each vector byte, so the
// length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
//
// Because the length is only known at runtime, we use a dummy value
// of 0 for the static length. The alignment values are those defined
// by the Procedure Call Standard for the Arm Architecture.
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
IsSigned, IsFP, IsBF) \
case BuiltinType::Id: \
Width = 0; \
Align = 128; \
break;
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
case BuiltinType::Id: \
Width = 0; \
Align = 16; \
break;
#include "clang/Basic/AArch64SVEACLETypes.def"
#define PPC_VECTOR_TYPE(Name, Id, Size) \
case BuiltinType::Id: \
Width = Size; \
Align = Size; \
break;
#include "clang/Basic/PPCTypes.def"
}
break;
case Type::ObjCObjectPointer:
Width = Target->getPointerWidth(0);
Align = Target->getPointerAlign(0);
break;
case Type::BlockPointer:
AS = getTargetAddressSpace(cast<BlockPointerType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::LValueReference:
case Type::RValueReference:
// alignof and sizeof should never enter this code path here, so we go
// the pointer route.
AS = getTargetAddressSpace(cast<ReferenceType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::Pointer:
AS = getTargetAddressSpace(cast<PointerType>(T)->getPointeeType());
Width = Target->getPointerWidth(AS);
Align = Target->getPointerAlign(AS);
break;
case Type::MemberPointer: {
const auto *MPT = cast<MemberPointerType>(T);
CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
Width = MPI.Width;
Align = MPI.Align;
break;
}
case Type::Complex: {
// Complex types have the same alignment as their elements, but twice the
// size.
TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
Width = EltInfo.Width * 2;
Align = EltInfo.Align;
break;
}
case Type::ObjCObject:
return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
case Type::Adjusted:
case Type::Decayed:
return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
case Type::ObjCInterface: {
const auto *ObjCI = cast<ObjCInterfaceType>(T);
if (ObjCI->getDecl()->isInvalidDecl()) {
Width = 8;
Align = 8;
break;
}
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
Width = toBits(Layout.getSize());
Align = toBits(Layout.getAlignment());
break;
}
case Type::ExtInt: {
const auto *EIT = cast<ExtIntType>(T);
Align =
std::min(static_cast<unsigned>(std::max(
getCharWidth(), llvm::PowerOf2Ceil(EIT->getNumBits()))),
Target->getLongLongAlign());
Width = llvm::alignTo(EIT->getNumBits(), Align);
break;
}
case Type::Record:
case Type::Enum: {
const auto *TT = cast<TagType>(T);
if (TT->getDecl()->isInvalidDecl()) {
Width = 8;
Align = 8;
break;
}
if (const auto *ET = dyn_cast<EnumType>(TT)) {
const EnumDecl *ED = ET->getDecl();
TypeInfo Info =
getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
if (unsigned AttrAlign = ED->getMaxAlignment()) {
Info.Align = AttrAlign;
Info.AlignIsRequired = true;
}
return Info;
}
const auto *RT = cast<RecordType>(TT);
const RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
Width = toBits(Layout.getSize());
Align = toBits(Layout.getAlignment());
AlignIsRequired = RD->hasAttr<AlignedAttr>();
break;
}
case Type::SubstTemplateTypeParm:
return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
getReplacementType().getTypePtr());
case Type::Auto:
case Type::DeducedTemplateSpecialization: {
const auto *A = cast<DeducedType>(T);
assert(!A->getDeducedType().isNull() &&
"cannot request the size of an undeduced or dependent auto type");
return getTypeInfo(A->getDeducedType().getTypePtr());
}
case Type::Paren:
return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
case Type::MacroQualified:
return getTypeInfo(
cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
case Type::ObjCTypeParam:
return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
case Type::Typedef: {
const TypedefNameDecl *Typedef = cast<TypedefType>(T)->getDecl();
TypeInfo Info = getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
// If the typedef has an aligned attribute on it, it overrides any computed
// alignment we have. This violates the GCC documentation (which says that
// attribute(aligned) can only round up) but matches its implementation.
if (unsigned AttrAlign = Typedef->getMaxAlignment()) {
Align = AttrAlign;
AlignIsRequired = true;
} else {
Align = Info.Align;
AlignIsRequired = Info.AlignIsRequired;
}
Width = Info.Width;
break;
}
case Type::Elaborated:
return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
case Type::Attributed:
return getTypeInfo(
cast<AttributedType>(T)->getEquivalentType().getTypePtr());
case Type::Atomic: {
// Start with the base type information.
TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
Width = Info.Width;
Align = Info.Align;
if (!Width) {
// An otherwise zero-sized type should still generate an
// atomic operation.
Width = Target->getCharWidth();
assert(Align);
} else if (Width <= Target->getMaxAtomicPromoteWidth()) {
// If the size of the type doesn't exceed the platform's max
// atomic promotion width, make the size and alignment more
// favorable to atomic operations:
// Round the size up to a power of 2.
if (!llvm::isPowerOf2_64(Width))
Width = llvm::NextPowerOf2(Width);
// Set the alignment equal to the size.
Align = static_cast<unsigned>(Width);
}
}
break;
case Type::Pipe:
Width = Target->getPointerWidth(getTargetAddressSpace(LangAS::opencl_global));
Align = Target->getPointerAlign(getTargetAddressSpace(LangAS::opencl_global));
break;
}
assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2");
return TypeInfo(Width, Align, AlignIsRequired);
}
unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
if (I != MemoizedUnadjustedAlign.end())
return I->second;
unsigned UnadjustedAlign;
if (const auto *RT = T->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
const ASTRecordLayout &Layout = getASTRecordLayout(RD);
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
} else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
} else {
UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
}
MemoizedUnadjustedAlign[T] = UnadjustedAlign;
return UnadjustedAlign;
}
unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
unsigned SimdAlign = getTargetInfo().getSimdDefaultAlign();
return SimdAlign;
}
/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
return CharUnits::fromQuantity(BitSize / getCharWidth());
}
/// toBits - Convert a size in characters to a size in characters.
int64_t ASTContext::toBits(CharUnits CharSize) const {
return CharSize.getQuantity() * getCharWidth();
}
/// getTypeSizeInChars - Return the size of the specified type, in characters.
/// This method does not work on incomplete types.
CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
return getTypeInfoInChars(T).Width;
}
CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
return getTypeInfoInChars(T).Width;
}
/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
/// characters. This method does not work on incomplete types.
CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
return toCharUnitsFromBits(getTypeAlign(T));
}
CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
return toCharUnitsFromBits(getTypeAlign(T));
}
/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
/// type, in characters, before alignment adustments. This method does
/// not work on incomplete types.
CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}
CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
}
/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
/// type for the current target in bits. This can be different than the ABI
/// alignment in cases where it is beneficial for performance or backwards
/// compatibility preserving to overalign a data type. (Note: despite the name,
/// the preferred alignment is ABI-impacting, and not an optimization.)
unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
TypeInfo TI = getTypeInfo(T);
unsigned ABIAlign = TI.Align;
T = T->getBaseElementTypeUnsafe();
// The preferred alignment of member pointers is that of a pointer.
if (T->isMemberPointerType())
return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
if (!Target->allowsLargerPreferedTypeAlignment())
return ABIAlign;
if (const auto *RT = T->getAs<RecordType>()) {
if (TI.AlignIsRequired || RT->getDecl()->isInvalidDecl())
return ABIAlign;
unsigned PreferredAlign = static_cast<unsigned>(
toBits(getASTRecordLayout(RT->getDecl()).PreferredAlignment));
assert(PreferredAlign >= ABIAlign &&
"PreferredAlign should be at least as large as ABIAlign.");
return PreferredAlign;
}
// Double (and, for targets supporting AIX `power` alignment, long double) and
// long long should be naturally aligned (despite requiring less alignment) if
// possible.
if (const auto *CT = T->getAs<ComplexType>())
T = CT->getElementType().getTypePtr();
if (const auto *ET = T->getAs<EnumType>())
T = ET->getDecl()->getIntegerType().getTypePtr();
if (T->isSpecificBuiltinType(BuiltinType::Double) ||
T->isSpecificBuiltinType(BuiltinType::LongLong) ||
T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
(T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
Target->defaultsToAIXPowerAlignment()))
// Don't increase the alignment if an alignment attribute was specified on a
// typedef declaration.
if (!TI.AlignIsRequired)
return std::max(ABIAlign, (unsigned)getTypeSize(T));
return ABIAlign;
}
/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
/// for __attribute__((aligned)) on this target, to be used if no alignment
/// value is specified.
unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
return getTargetInfo().getDefaultAlignForAttributeAligned();
}
/// getAlignOfGlobalVar - Return the alignment in bits that should be given
/// to a global variable of the specified type.
unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
uint64_t TypeSize = getTypeSize(T.getTypePtr());
return std::max(getPreferredTypeAlign(T),
getTargetInfo().getMinGlobalAlign(TypeSize));
}
/// getAlignOfGlobalVarInChars - Return the alignment in characters that
/// should be given to a global variable of the specified type.
CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
return toCharUnitsFromBits(getAlignOfGlobalVar(T));
}
CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
CharUnits Offset = CharUnits::Zero();
const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
Offset += Layout->getBaseClassOffset(Base);
Layout = &getASTRecordLayout(Base);
}
return Offset;
}
CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
const ValueDecl *MPD = MP.getMemberPointerDecl();
CharUnits ThisAdjustment = CharUnits::Zero();
ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
bool DerivedMember = MP.isMemberPointerToDerivedMember();
const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
for (unsigned I = 0, N = Path.size(); I != N; ++I) {
const CXXRecordDecl *Base = RD;
const CXXRecordDecl *Derived = Path[I];
if (DerivedMember)
std::swap(Base, Derived);
ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
RD = Path[I];
}
if (DerivedMember)
ThisAdjustment = -ThisAdjustment;
return ThisAdjustment;
}
/// DeepCollectObjCIvars -
/// This routine first collects all declared, but not synthesized, ivars in
/// super class and then collects all ivars, including those synthesized for
/// current class. This routine is used for implementation of current class
/// when all ivars, declared and synthesized are known.
void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
bool leafClass,
SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
DeepCollectObjCIvars(SuperClass, false, Ivars);
if (!leafClass) {
for (const auto *I : OI->ivars())
Ivars.push_back(I);
} else {
auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
Iv= Iv->getNextIvar())
Ivars.push_back(Iv);
}
}
/// CollectInheritedProtocols - Collect all protocols in current class and
/// those inherited by it.
void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
// We can use protocol_iterator here instead of
// all_referenced_protocol_iterator since we are walking all categories.
for (auto *Proto : OI->all_referenced_protocols()) {
CollectInheritedProtocols(Proto, Protocols);
}
// Categories of this Interface.
for (const auto *Cat : OI->visible_categories())
CollectInheritedProtocols(Cat, Protocols);
if (ObjCInterfaceDecl *SD = OI->getSuperClass())
while (SD) {
CollectInheritedProtocols(SD, Protocols);
SD = SD->getSuperClass();
}
} else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
for (auto *Proto : OC->protocols()) {
CollectInheritedProtocols(Proto, Protocols);
}
} else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
// Insert the protocol.
if (!Protocols.insert(
const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
return;
for (auto *Proto : OP->protocols())
CollectInheritedProtocols(Proto, Protocols);
}
}
static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
const RecordDecl *RD) {
assert(RD->isUnion() && "Must be union type");
CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
for (const auto *Field : RD->fields()) {
if (!Context.hasUniqueObjectRepresentations(Field->getType()))
return false;
CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
if (FieldSize != UnionSize)
return false;
}
return !RD->field_empty();
}
static bool isStructEmpty(QualType Ty) {
const RecordDecl *RD = Ty->castAs<RecordType>()->getDecl();
if (!RD->field_empty())
return false;
if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD))
return ClassDecl->isEmpty();
return true;
}
static llvm::Optional<int64_t>
structHasUniqueObjectRepresentations(const ASTContext &Context,
const RecordDecl *RD) {
assert(!RD->isUnion() && "Must be struct/class type");
const auto &Layout = Context.getASTRecordLayout(RD);
int64_t CurOffsetInBits = 0;
if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
if (ClassDecl->isDynamicClass())
return llvm::None;
SmallVector<std::pair<QualType, int64_t>, 4> Bases;
for (const auto &Base : ClassDecl->bases()) {
// Empty types can be inherited from, and non-empty types can potentially
// have tail padding, so just make sure there isn't an error.
if (!isStructEmpty(Base.getType())) {
llvm::Optional<int64_t> Size = structHasUniqueObjectRepresentations(
Context, Base.getType()->castAs<RecordType>()->getDecl());
if (!Size)
return llvm::None;
Bases.emplace_back(Base.getType(), Size.getValue());
}
}
llvm::sort(Bases, [&](const std::pair<QualType, int64_t> &L,
const std::pair<QualType, int64_t> &R) {
return Layout.getBaseClassOffset(L.first->getAsCXXRecordDecl()) <
Layout.getBaseClassOffset(R.first->getAsCXXRecordDecl());
});
for (const auto &Base : Bases) {
int64_t BaseOffset = Context.toBits(
Layout.getBaseClassOffset(Base.first->getAsCXXRecordDecl()));
int64_t BaseSize = Base.second;
if (BaseOffset != CurOffsetInBits)
return llvm::None;
CurOffsetInBits = BaseOffset + BaseSize;
}
}
for (const auto *Field : RD->fields()) {
if (!Field->getType()->isReferenceType() &&
!Context.hasUniqueObjectRepresentations(Field->getType()))
return llvm::None;
int64_t FieldSizeInBits =
Context.toBits(Context.getTypeSizeInChars(Field->getType()));
if (Field->isBitField()) {
int64_t BitfieldSize = Field->getBitWidthValue(Context);
if (BitfieldSize > FieldSizeInBits)
return llvm::None;
FieldSizeInBits = BitfieldSize;
}
int64_t FieldOffsetInBits = Context.getFieldOffset(Field);
if (FieldOffsetInBits != CurOffsetInBits)
return llvm::None;
CurOffsetInBits = FieldSizeInBits + FieldOffsetInBits;
}
return CurOffsetInBits;
}
bool ASTContext::hasUniqueObjectRepresentations(QualType Ty) const {
// C++17 [meta.unary.prop]:
// The predicate condition for a template specialization
// has_unique_object_representations<T> shall be
// satisfied if and only if:
// (9.1) - T is trivially copyable, and
// (9.2) - any two objects of type T with the same value have the same
// object representation, where two objects
// of array or non-union class type are considered to have the same value
// if their respective sequences of
// direct subobjects have the same values, and two objects of union type
// are considered to have the same
// value if they have the same active member and the corresponding members
// have the same value.
// The set of scalar types for which this condition holds is
// implementation-defined. [ Note: If a type has padding
// bits, the condition does not hold; otherwise, the condition holds true
// for unsigned integral types. -- end note ]
assert(!Ty.isNull() && "Null QualType sent to unique object rep check");
// Arrays are unique only if their element type is unique.
if (Ty->isArrayType())
return hasUniqueObjectRepresentations(getBaseElementType(Ty));
// (9.1) - T is trivially copyable...
if (!Ty.isTriviallyCopyableType(*this))
return false;
// All integrals and enums are unique.
if (Ty->isIntegralOrEnumerationType())
return true;
// All other pointers are unique.
if (Ty->isPointerType())
return true;
if (Ty->isMemberPointerType()) {
const auto *MPT = Ty->getAs<MemberPointerType>();
return !ABI->getMemberPointerInfo(MPT).HasPadding;
}
if (Ty->isRecordType()) {
const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
if (Record->isInvalidDecl())
return false;
if (Record->isUnion())
return unionHasUniqueObjectRepresentations(*this, Record);
Optional<int64_t> StructSize =
structHasUniqueObjectRepresentations(*this, Record);
return StructSize &&
StructSize.getValue() == static_cast<int64_t>(getTypeSize(Ty));
}
// FIXME: More cases to handle here (list by rsmith):
// vectors (careful about, eg, vector of 3 foo)
// _Complex int and friends
// _Atomic T
// Obj-C block pointers
// Obj-C object pointers
// and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
// clk_event_t, queue_t, reserve_id_t)
// There're also Obj-C class types and the Obj-C selector type, but I think it
// makes sense for those to return false here.
return false;
}
unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
unsigned count = 0;
// Count ivars declared in class extension.
for (const auto *Ext : OI->known_extensions())
count += Ext->ivar_size();
// Count ivar defined in this class's implementation. This
// includes synthesized ivars.
if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
count += ImplDecl->ivar_size();
return count;
}
bool ASTContext::isSentinelNullExpr(const Expr *E) {
if (!E)
return false;
// nullptr_t is always treated as null.
if (E->getType()->isNullPtrType()) return true;
if (E->getType()->isAnyPointerType() &&
E->IgnoreParenCasts()->isNullPointerConstant(*this,
Expr::NPC_ValueDependentIsNull))
return true;
// Unfortunately, __null has type 'int'.
if (isa<GNUNullExpr>(E)) return true;
return false;
}
/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
/// exists.
ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
I = ObjCImpls.find(D);
if (I != ObjCImpls.end())
return cast<ObjCImplementationDecl>(I->second);
return nullptr;
}
/// Get the implementation of ObjCCategoryDecl, or nullptr if none
/// exists.
ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
I = ObjCImpls.find(D);
if (I != ObjCImpls.end())
return cast<ObjCCategoryImplDecl>(I->second);
return nullptr;
}
/// Set the implementation of ObjCInterfaceDecl.
void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
ObjCImplementationDecl *ImplD) {
assert(IFaceD && ImplD && "Passed null params");
ObjCImpls[IFaceD] = ImplD;
}
/// Set the implementation of ObjCCategoryDecl.
void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
ObjCCategoryImplDecl *ImplD) {
assert(CatD && ImplD && "Passed null params");
ObjCImpls[CatD] = ImplD;
}
const ObjCMethodDecl *
ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
return ObjCMethodRedecls.lookup(MD);
}
void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
const ObjCMethodDecl *Redecl) {
assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration");
ObjCMethodRedecls[MD] = Redecl;
}
const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
const NamedDecl *ND) const {
if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
return ID;
if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
return CD->getClassInterface();
if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
return IMD->getClassInterface();
return nullptr;
}
/// Get the copy initialization expression of VarDecl, or nullptr if
/// none exists.
BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
assert(VD && "Passed null params");
assert(VD->hasAttr<BlocksAttr>() &&
"getBlockVarCopyInits - not __block var");
auto I = BlockVarCopyInits.find(VD);
if (I != BlockVarCopyInits.end())
return I->second;
return {nullptr, false};
}
/// Set the copy initialization expression of a block var decl.
void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
bool CanThrow) {
assert(VD && CopyExpr && "Passed null params");
assert(VD->hasAttr<BlocksAttr>() &&
"setBlockVarCopyInits - not __block var");
BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
}
TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
unsigned DataSize) const {
if (!DataSize)
DataSize = TypeLoc::getFullDataSizeForType(T);
else
assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
"incorrect data size provided to CreateTypeSourceInfo!");
auto *TInfo =
(TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
new (TInfo) TypeSourceInfo(T);
return TInfo;
}
TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
SourceLocation L) const {
TypeSourceInfo *DI = CreateTypeSourceInfo(T);
DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
return DI;
}
const ASTRecordLayout &
ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
return getObjCLayout(D, nullptr);
}
const ASTRecordLayout &
ASTContext::getASTObjCImplementationLayout(
const ObjCImplementationDecl *D) const {
return getObjCLayout(D->getClassInterface(), D);
}
//===----------------------------------------------------------------------===//
// Type creation/memoization methods
//===----------------------------------------------------------------------===//
QualType
ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
unsigned fastQuals = quals.getFastQualifiers();
quals.removeFastQualifiers();
// Check if we've already instantiated this type.
llvm::FoldingSetNodeID ID;
ExtQuals::Profile(ID, baseType, quals);
void *insertPos = nullptr;
if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
assert(eq->getQualifiers() == quals);
return QualType(eq, fastQuals);
}
// If the base type is not canonical, make the appropriate canonical type.
QualType canon;
if (!baseType->isCanonicalUnqualified()) {
SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
canonSplit.Quals.addConsistentQualifiers(quals);
canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
// Re-find the insert position.
(void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
}
auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
ExtQualNodes.InsertNode(eq, insertPos);
return QualType(eq, fastQuals);
}
QualType ASTContext::getAddrSpaceQualType(QualType T,
LangAS AddressSpace) const {
QualType CanT = getCanonicalType(T);
if (CanT.getAddressSpace() == AddressSpace)
return T;
// If we are composing extended qualifiers together, merge together
// into one ExtQuals node.
QualifierCollector Quals;
const Type *TypeNode = Quals.strip(T);
// If this type already has an address space specified, it cannot get
// another one.
assert(!Quals.hasAddressSpace() &&
"Type cannot be in multiple addr spaces!");
Quals.addAddressSpace(AddressSpace);
return getExtQualType(TypeNode, Quals);
}
QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
// If the type is not qualified with an address space, just return it
// immediately.
if (!T.hasAddressSpace())
return T;
// If we are composing extended qualifiers together, merge together
// into one ExtQuals node.
QualifierCollector Quals;
const Type *TypeNode;
while (T.hasAddressSpace()) {
TypeNode = Quals.strip(T);
// If the type no longer has an address space after stripping qualifiers,
// jump out.
if (!QualType(TypeNode, 0).hasAddressSpace())
break;
// There might be sugar in the way. Strip it and try again.
T = T.getSingleStepDesugaredType(*this);
}
Quals.removeAddressSpace();
// Removal of the address space can mean there are no longer any
// non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
// or required.
if (Quals.hasNonFastQualifiers())
return getExtQualType(TypeNode, Quals);
else
return QualType(TypeNode, Quals.getFastQualifiers());
}
QualType ASTContext::getObjCGCQualType(QualType T,
Qualifiers::GC GCAttr) const {
QualType CanT = getCanonicalType(T);
if (CanT.getObjCGCAttr() == GCAttr)
return T;
if (const auto *ptr = T->getAs<PointerType>()) {
QualType Pointee = ptr->getPointeeType();
if (Pointee->isAnyPointerType()) {
QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
return getPointerType(ResultType);
}
}
// If we are composing extended qualifiers together, merge together
// into one ExtQuals node.
QualifierCollector Quals;
const Type *TypeNode = Quals.strip(T);
// If this type already has an ObjCGC specified, it cannot get
// another one.
assert(!Quals.hasObjCGCAttr() &&
"Type cannot have multiple ObjCGCs!");
Quals.addObjCGCAttr(GCAttr);
return getExtQualType(TypeNode, Quals);
}
QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
if (const PointerType *Ptr = T->getAs<PointerType>()) {
QualType Pointee = Ptr->getPointeeType();
if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
return getPointerType(removeAddrSpaceQualType(Pointee));
}
}
return T;
}
const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
FunctionType::ExtInfo Info) {
if (T->getExtInfo() == Info)
return T;
QualType Result;
if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
} else {
const auto *FPT = cast<FunctionProtoType>(T);
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
EPI.ExtInfo = Info;
Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
}
return cast<FunctionType>(Result.getTypePtr());
}
void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
QualType ResultType) {
FD = FD->getMostRecentDecl();
while (true) {
const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
if (FunctionDecl *Next = FD->getPreviousDecl())
FD = Next;
else
break;
}
if (ASTMutationListener *L = getASTMutationListener())
L->DeducedReturnType(FD, ResultType);
}
/// Get a function type and produce the equivalent function type with the
/// specified exception specification. Type sugar that can be present on a
/// declaration of a function with an exception specification is permitted
/// and preserved. Other type sugar (for instance, typedefs) is not.
QualType ASTContext::getFunctionTypeWithExceptionSpec(
QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) {
// Might have some parens.
if (const auto *PT = dyn_cast<ParenType>(Orig))
return getParenType(
getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
// Might be wrapped in a macro qualified type.
if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
return getMacroQualifiedType(
getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
MQT->getMacroIdentifier());
// Might have a calling-convention attribute.
if (const auto *AT = dyn_cast<AttributedType>(Orig))
return getAttributedType(
AT->getAttrKind(),
getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
// Anything else must be a function type. Rebuild it with the new exception
// specification.
const auto *Proto = Orig->castAs<FunctionProtoType>();
return getFunctionType(
Proto->getReturnType(), Proto->getParamTypes(),
Proto->getExtProtoInfo().withExceptionSpec(ESI));
}
bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
QualType U) {
return hasSameType(T, U) ||
(getLangOpts().CPlusPlus17 &&
hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
getFunctionTypeWithExceptionSpec(U, EST_None)));
}
QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
if (const auto *Proto = T->getAs<FunctionProtoType>()) {
QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
SmallVector<QualType, 16> Args(Proto->param_types());
for (unsigned i = 0, n = Args.size(); i != n; ++i)
Args[i] = removePtrSizeAddrSpace(Args[i]);
return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
}
if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
}
return T;
}
bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
return hasSameType(T, U) ||
hasSameType(getFunctionTypeWithoutPtrSizes(T),
getFunctionTypeWithoutPtrSizes(U));
}
void ASTContext::adjustExceptionSpec(
FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
bool AsWritten) {
// Update the type.
QualType Updated =
getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
FD->setType(Updated);
if (!AsWritten)
return;
// Update the type in the type source information too.
if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
// If the type and the type-as-written differ, we may need to update
// the type-as-written too.
if (TSInfo->getType() != FD->getType())
Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
// FIXME: When we get proper type location information for exceptions,
// we'll also have to rebuild the TypeSourceInfo. For now, we just patch
// up the TypeSourceInfo;
assert(TypeLoc::getFullDataSizeForType(Updated) ==
TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
"TypeLoc size mismatch from updating exception specification");
TSInfo->overrideType(Updated);
}
}
/// getComplexType - Return the uniqued reference to the type for a complex
/// number with the specified element type.
QualType ASTContext::getComplexType(QualType T) const {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ComplexType::Profile(ID, T);
void *InsertPos = nullptr;
if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(CT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getComplexType(getCanonicalType(T));
// Get the new insert position for the node we care about.
ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
Types.push_back(New);
ComplexTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getPointerType - Return the uniqued reference to the type for a pointer to
/// the specified type.
QualType ASTContext::getPointerType(QualType T) const {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
PointerType::Profile(ID, T);
void *InsertPos = nullptr;
if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
Types.push_back(New);
PointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
llvm::FoldingSetNodeID ID;
AdjustedType::Profile(ID, Orig, New);
void *InsertPos = nullptr;
AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
if (AT)
return QualType(AT, 0);
QualType Canonical = getCanonicalType(New);
// Get the new insert position for the node we care about.
AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!AT && "Shouldn't be in the map!");
AT = new (*this, TypeAlignment)
AdjustedType(Type::Adjusted, Orig, New, Canonical);
Types.push_back(AT);
AdjustedTypes.InsertNode(AT, InsertPos);
return QualType(AT, 0);
}
QualType ASTContext::getDecayedType(QualType T) const {
assert((T->isArrayType() || T->isFunctionType()) && "T does not decay");
QualType Decayed;
// C99 6.7.5.3p7:
// A declaration of a parameter as "array of type" shall be
// adjusted to "qualified pointer to type", where the type
// qualifiers (if any) are those specified within the [ and ] of
// the array type derivation.
if (T->isArrayType())
Decayed = getArrayDecayedType(T);
// C99 6.7.5.3p8:
// A declaration of a parameter as "function returning type"
// shall be adjusted to "pointer to function returning type", as
// in 6.3.2.1.
if (T->isFunctionType())
Decayed = getPointerType(T);
llvm::FoldingSetNodeID ID;
AdjustedType::Profile(ID, T, Decayed);
void *InsertPos = nullptr;
AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
if (AT)
return QualType(AT, 0);
QualType Canonical = getCanonicalType(Decayed);
// Get the new insert position for the node we care about.
AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!AT && "Shouldn't be in the map!");
AT = new (*this, TypeAlignment) DecayedType(T, Decayed, Canonical);
Types.push_back(AT);
AdjustedTypes.InsertNode(AT, InsertPos);
return QualType(AT, 0);
}
/// getBlockPointerType - Return the uniqued reference to the type for
/// a pointer to the specified block.
QualType ASTContext::getBlockPointerType(QualType T) const {
assert(T->isFunctionType() && "block of function types only");
// Unique pointers, to guarantee there is only one block of a particular
// structure.
llvm::FoldingSetNodeID ID;
BlockPointerType::Profile(ID, T);
void *InsertPos = nullptr;
if (BlockPointerType *PT =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the block pointee type isn't canonical, this won't be a canonical
// type either so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getBlockPointerType(getCanonicalType(T));
// Get the new insert position for the node we care about.
BlockPointerType *NewIP =
BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
Types.push_back(New);
BlockPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getLValueReferenceType - Return the uniqued reference to the type for an
/// lvalue reference to the specified type.
QualType
ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
assert(getCanonicalType(T) != OverloadTy &&
"Unresolved overloaded function type");
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T, SpelledAsLValue);
void *InsertPos = nullptr;
if (LValueReferenceType *RT =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
const auto *InnerRef = T->getAs<ReferenceType>();
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
// Get the new insert position for the node we care about.
LValueReferenceType *NewIP =
LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
SpelledAsLValue);
Types.push_back(New);
LValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getRValueReferenceType - Return the uniqued reference to the type for an
/// rvalue reference to the specified type.
QualType ASTContext::getRValueReferenceType(QualType T) const {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
ReferenceType::Profile(ID, T, false);
void *InsertPos = nullptr;
if (RValueReferenceType *RT =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(RT, 0);
const auto *InnerRef = T->getAs<ReferenceType>();
// If the referencee type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (InnerRef || !T.isCanonical()) {
QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
// Get the new insert position for the node we care about.
RValueReferenceType *NewIP =
RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
Types.push_back(New);
RValueReferenceTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getMemberPointerType - Return the uniqued reference to the type for a
/// member pointer to the specified type, in the specified class.
QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
MemberPointerType::Profile(ID, T, Cls);
void *InsertPos = nullptr;
if (MemberPointerType *PT =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pointee or class type isn't canonical, this won't be a canonical
// type either, so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
// Get the new insert position for the node we care about.
MemberPointerType *NewIP =
MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
Types.push_back(New);
MemberPointerTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getConstantArrayType - Return the unique reference to the type for an
/// array of the specified element type.
QualType ASTContext::getConstantArrayType(QualType EltTy,
const llvm::APInt &ArySizeIn,
const Expr *SizeExpr,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals) const {
assert((EltTy->isDependentType() ||
EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
"Constant array of VLAs is illegal!");
// We only need the size as part of the type if it's instantiation-dependent.
if (SizeExpr && !SizeExpr->isInstantiationDependent())
SizeExpr = nullptr;
// Convert the array size into a canonical width matching the pointer size for
// the target.
llvm::APInt ArySize(ArySizeIn);
ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
llvm::FoldingSetNodeID ID;
ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
IndexTypeQuals);
void *InsertPos = nullptr;
if (ConstantArrayType *ATP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(ATP, 0);
// If the element type isn't canonical or has qualifiers, or the array bound
// is instantiation-dependent, this won't be a canonical type either, so fill
// in the canonical type field.
QualType Canon;
if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
SplitQualType canonSplit = getCanonicalType(EltTy).split();
Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
ASM, IndexTypeQuals);
Canon = getQualifiedType(Canon, canonSplit.Quals);
// Get the new insert position for the node we care about.
ConstantArrayType *NewIP =
ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
void *Mem = Allocate(
ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
TypeAlignment);
auto *New = new (Mem)
ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
ConstantArrayTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
/// getVariableArrayDecayedType - Turns the given type, which may be
/// variably-modified, into the corresponding type with all the known
/// sizes replaced with [*].
QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
// Vastly most common case.
if (!type->isVariablyModifiedType()) return type;
QualType result;
SplitQualType split = type.getSplitDesugaredType();
const Type *ty = split.Ty;
switch (ty->getTypeClass()) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("didn't desugar past all non-canonical types?");
// These types should never be variably-modified.
case Type::Builtin:
case Type::Complex:
case Type::Vector:
case Type::DependentVector:
case Type::ExtVector:
case Type::DependentSizedExtVector:
case Type::ConstantMatrix:
case Type::DependentSizedMatrix:
case Type::DependentAddressSpace:
case Type::ObjCObject:
case Type::ObjCInterface:
case Type::ObjCObjectPointer:
case Type::Record:
case Type::Enum:
case Type::UnresolvedUsing:
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Decltype:
case Type::UnaryTransform:
case Type::DependentName:
case Type::InjectedClassName:
case Type::TemplateSpecialization:
case Type::DependentTemplateSpecialization:
case Type::TemplateTypeParm:
case Type::SubstTemplateTypeParmPack:
case Type::Auto:
case Type::DeducedTemplateSpecialization:
case Type::PackExpansion:
case Type::ExtInt:
case Type::DependentExtInt:
llvm_unreachable("type should never be variably-modified");
// These types can be variably-modified but should never need to
// further decay.
case Type::FunctionNoProto:
case Type::FunctionProto:
case Type::BlockPointer:
case Type::MemberPointer:
case Type::Pipe:
return type;
// These types can be variably-modified. All these modifications
// preserve structure except as noted by comments.
// TODO: if we ever care about optimizing VLAs, there are no-op
// optimizations available here.
case Type::Pointer:
result = getPointerType(getVariableArrayDecayedType(
cast<PointerType>(ty)->getPointeeType()));
break;
case Type::LValueReference: {
const auto *lv = cast<LValueReferenceType>(ty);
result = getLValueReferenceType(
getVariableArrayDecayedType(lv->getPointeeType()),
lv->isSpelledAsLValue());
break;
}
case Type::RValueReference: {
const auto *lv = cast<RValueReferenceType>(ty);
result = getRValueReferenceType(
getVariableArrayDecayedType(lv->getPointeeType()));
break;
}
case Type::Atomic: {
const auto *at = cast<AtomicType>(ty);
result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
break;
}
case Type::ConstantArray: {
const auto *cat = cast<ConstantArrayType>(ty);
result = getConstantArrayType(
getVariableArrayDecayedType(cat->getElementType()),
cat->getSize(),
cat->getSizeExpr(),
cat->getSizeModifier(),
cat->getIndexTypeCVRQualifiers());
break;
}
case Type::DependentSizedArray: {
const auto *dat = cast<DependentSizedArrayType>(ty);
result = getDependentSizedArrayType(
getVariableArrayDecayedType(dat->getElementType()),
dat->getSizeExpr(),
dat->getSizeModifier(),
dat->getIndexTypeCVRQualifiers(),
dat->getBracketsRange());
break;
}
// Turn incomplete types into [*] types.
case Type::IncompleteArray: {
const auto *iat = cast<IncompleteArrayType>(ty);
result = getVariableArrayType(
getVariableArrayDecayedType(iat->getElementType()),
/*size*/ nullptr,
ArrayType::Normal,
iat->getIndexTypeCVRQualifiers(),
SourceRange());
break;
}
// Turn VLA types into [*] types.
case Type::VariableArray: {
const auto *vat = cast<VariableArrayType>(ty);
result = getVariableArrayType(
getVariableArrayDecayedType(vat->getElementType()),
/*size*/ nullptr,
ArrayType::Star,
vat->getIndexTypeCVRQualifiers(),
vat->getBracketsRange());
break;
}
}
// Apply the top-level qualifiers from the original.
return getQualifiedType(result, split.Quals);
}
/// getVariableArrayType - Returns a non-unique reference to the type for a
/// variable array of the specified element type.
QualType ASTContext::getVariableArrayType(QualType EltTy,
Expr *NumElts,
ArrayType::ArraySizeModifier ASM,
unsigned IndexTypeQuals,
SourceRange Brackets) const {
// Since we don't unique expressions, it isn't possible to unique VLA's
// that have an expression provided for their size.
QualType Canon;
// Be sure to pull qualifiers off the element type.
if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
SplitQualType canonSplit = getCanonicalType(EltTy).split();
Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
IndexTypeQuals, Brackets);
Canon = getQualifiedType(Canon, canonSplit.Quals);
}
auto *New = new (*this, TypeAlignment)
VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
VariableArrayTypes.push_back(New);
Types.push_back(New);
return QualType(New, 0);
}
/// getDependentSizedArrayType - Returns a non-unique reference to
/// the type for a dependently-sized array of the specified element
/// type.
QualType ASTContext::getDependentSizedArrayType(QualType elementType,
Expr *numElements,
ArrayType::ArraySizeModifier ASM,
unsigned elementTypeQuals,
SourceRange brackets) const {
assert((!numElements || numElements->isTypeDependent() ||
numElements->isValueDependent()) &&
"Size must be type- or value-dependent!");
// Dependently-sized array types that do not have a specified number
// of elements will have their sizes deduced from a dependent
// initializer. We do no canonicalization here at all, which is okay
// because they can't be used in most locations.
if (!numElements) {
auto *newType
= new (*this, TypeAlignment)
DependentSizedArrayType(*this, elementType, QualType(),
numElements, ASM, elementTypeQuals,
brackets);
Types.push_back(newType);
return QualType(newType, 0);
}
// Otherwise, we actually build a new type every time, but we
// also build a canonical type.
SplitQualType canonElementType = getCanonicalType(elementType).split();
void *insertPos = nullptr;
llvm::FoldingSetNodeID ID;
DependentSizedArrayType::Profile(ID, *this,
QualType(canonElementType.Ty, 0),
ASM, elementTypeQuals, numElements);
// Look for an existing type with these properties.
DependentSizedArrayType *canonTy =
DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
// If we don't have one, build one.
if (!canonTy) {
canonTy = new (*this, TypeAlignment)
DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
QualType(), numElements, ASM, elementTypeQuals,
brackets);
DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
Types.push_back(canonTy);
}
// Apply qualifiers from the element type to the array.
QualType canon = getQualifiedType(QualType(canonTy,0),
canonElementType.Quals);
// If we didn't need extra canonicalization for the element type or the size
// expression, then just use that as our result.
if (QualType(canonElementType.Ty, 0) == elementType &&
canonTy->getSizeExpr() == numElements)
return canon;
// Otherwise, we need to build a type which follows the spelling
// of the element type.
auto *sugaredType
= new (*this, TypeAlignment)
DependentSizedArrayType(*this, elementType, canon, numElements,
ASM, elementTypeQuals, brackets);
Types.push_back(sugaredType);
return QualType(sugaredType, 0);
}
QualType ASTContext::getIncompleteArrayType(QualType elementType,
ArrayType::ArraySizeModifier ASM,
unsigned elementTypeQuals) const {
llvm::FoldingSetNodeID ID;
IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
void *insertPos = nullptr;
if (IncompleteArrayType *iat =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
return QualType(iat, 0);
// If the element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field. We also have to pull
// qualifiers off the element type.
QualType canon;
if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
SplitQualType canonSplit = getCanonicalType(elementType).split();
canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
ASM, elementTypeQuals);
canon = getQualifiedType(canon, canonSplit.Quals);
// Get the new insert position for the node we care about.
IncompleteArrayType *existing =
IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
assert(!existing && "Shouldn't be in the map!"); (void) existing;
}
auto *newType = new (*this, TypeAlignment)
IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
IncompleteArrayTypes.InsertNode(newType, insertPos);
Types.push_back(newType);
return QualType(newType, 0);
}
ASTContext::BuiltinVectorTypeInfo
ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
#define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS) \
{getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
NUMVECTORS};
#define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS) \
{ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
switch (Ty->getKind()) {
default:
llvm_unreachable("Unsupported builtin vector type");
case BuiltinType::SveInt8:
return SVE_INT_ELTTY(8, 16, true, 1);
case BuiltinType::SveUint8:
return SVE_INT_ELTTY(8, 16, false, 1);
case BuiltinType::SveInt8x2:
return SVE_INT_ELTTY(8, 16, true, 2);
case BuiltinType::SveUint8x2:
return SVE_INT_ELTTY(8, 16, false, 2);
case BuiltinType::SveInt8x3:
return SVE_INT_ELTTY(8, 16, true, 3);
case BuiltinType::SveUint8x3:
return SVE_INT_ELTTY(8, 16, false, 3);
case BuiltinType::SveInt8x4:
return SVE_INT_ELTTY(8, 16, true, 4);
case BuiltinType::SveUint8x4:
return SVE_INT_ELTTY(8, 16, false, 4);
case BuiltinType::SveInt16:
return SVE_INT_ELTTY(16, 8, true, 1);
case BuiltinType::SveUint16:
return SVE_INT_ELTTY(16, 8, false, 1);
case BuiltinType::SveInt16x2:
return SVE_INT_ELTTY(16, 8, true, 2);
case BuiltinType::SveUint16x2:
return SVE_INT_ELTTY(16, 8, false, 2);
case BuiltinType::SveInt16x3:
return SVE_INT_ELTTY(16, 8, true, 3);
case BuiltinType::SveUint16x3:
return SVE_INT_ELTTY(16, 8, false, 3);
case BuiltinType::SveInt16x4:
return SVE_INT_ELTTY(16, 8, true, 4);
case BuiltinType::SveUint16x4:
return SVE_INT_ELTTY(16, 8, false, 4);
case BuiltinType::SveInt32:
return SVE_INT_ELTTY(32, 4, true, 1);
case BuiltinType::SveUint32:
return SVE_INT_ELTTY(32, 4, false, 1);
case BuiltinType::SveInt32x2:
return SVE_INT_ELTTY(32, 4, true, 2);
case BuiltinType::SveUint32x2:
return SVE_INT_ELTTY(32, 4, false, 2);
case BuiltinType::SveInt32x3:
return SVE_INT_ELTTY(32, 4, true, 3);
case BuiltinType::SveUint32x3:
return SVE_INT_ELTTY(32, 4, false, 3);
case BuiltinType::SveInt32x4:
return SVE_INT_ELTTY(32, 4, true, 4);
case BuiltinType::SveUint32x4:
return SVE_INT_ELTTY(32, 4, false, 4);
case BuiltinType::SveInt64:
return SVE_INT_ELTTY(64, 2, true, 1);
case BuiltinType::SveUint64:
return SVE_INT_ELTTY(64, 2, false, 1);
case BuiltinType::SveInt64x2:
return SVE_INT_ELTTY(64, 2, true, 2);
case BuiltinType::SveUint64x2:
return SVE_INT_ELTTY(64, 2, false, 2);
case BuiltinType::SveInt64x3:
return SVE_INT_ELTTY(64, 2, true, 3);
case BuiltinType::SveUint64x3:
return SVE_INT_ELTTY(64, 2, false, 3);
case BuiltinType::SveInt64x4:
return SVE_INT_ELTTY(64, 2, true, 4);
case BuiltinType::SveUint64x4:
return SVE_INT_ELTTY(64, 2, false, 4);
case BuiltinType::SveBool:
return SVE_ELTTY(BoolTy, 16, 1);
case BuiltinType::SveFloat16:
return SVE_ELTTY(HalfTy, 8, 1);
case BuiltinType::SveFloat16x2:
return SVE_ELTTY(HalfTy, 8, 2);
case BuiltinType::SveFloat16x3:
return SVE_ELTTY(HalfTy, 8, 3);
case BuiltinType::SveFloat16x4:
return SVE_ELTTY(HalfTy, 8, 4);
case BuiltinType::SveFloat32:
return SVE_ELTTY(FloatTy, 4, 1);
case BuiltinType::SveFloat32x2:
return SVE_ELTTY(FloatTy, 4, 2);
case BuiltinType::SveFloat32x3:
return SVE_ELTTY(FloatTy, 4, 3);
case BuiltinType::SveFloat32x4:
return SVE_ELTTY(FloatTy, 4, 4);
case BuiltinType::SveFloat64:
return SVE_ELTTY(DoubleTy, 2, 1);
case BuiltinType::SveFloat64x2:
return SVE_ELTTY(DoubleTy, 2, 2);
case BuiltinType::SveFloat64x3:
return SVE_ELTTY(DoubleTy, 2, 3);
case BuiltinType::SveFloat64x4:
return SVE_ELTTY(DoubleTy, 2, 4);
case BuiltinType::SveBFloat16:
return SVE_ELTTY(BFloat16Ty, 8, 1);
case BuiltinType::SveBFloat16x2:
return SVE_ELTTY(BFloat16Ty, 8, 2);
case BuiltinType::SveBFloat16x3:
return SVE_ELTTY(BFloat16Ty, 8, 3);
case BuiltinType::SveBFloat16x4:
return SVE_ELTTY(BFloat16Ty, 8, 4);
}
}
/// getScalableVectorType - Return the unique reference to a scalable vector
/// type of the specified element type and size. VectorType must be a built-in
/// type.
QualType ASTContext::getScalableVectorType(QualType EltTy,
unsigned NumElts) const {
if (Target->hasAArch64SVETypes()) {
uint64_t EltTySize = getTypeSize(EltTy);
#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
IsSigned, IsFP, IsBF) \
if (!EltTy->isBooleanType() && \
((EltTy->hasIntegerRepresentation() && \
EltTy->hasSignedIntegerRepresentation() == IsSigned) || \
(EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \
IsFP && !IsBF) || \
(EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \
IsBF && !IsFP)) && \
EltTySize == ElBits && NumElts == NumEls) { \
return SingletonId; \
}
#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
if (EltTy->isBooleanType() && NumElts == NumEls) \
return SingletonId;
#include "clang/Basic/AArch64SVEACLETypes.def"
}
return QualType();
}
/// getVectorType - Return the unique reference to a vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
VectorType::VectorKind VecKind) const {
assert(vecType->isBuiltinType());
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
void *InsertPos = nullptr;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType.isCanonical()) {
Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment)
VectorType(vecType, NumElts, Canonical, VecKind);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
QualType
ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
SourceLocation AttrLoc,
VectorType::VectorKind VecKind) const {
llvm::FoldingSetNodeID ID;
DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
VecKind);
void *InsertPos = nullptr;
DependentVectorType *Canon =
DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
DependentVectorType *New;
if (Canon) {
New = new (*this, TypeAlignment) DependentVectorType(
*this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
} else {
QualType CanonVecTy = getCanonicalType(VecType);
if (CanonVecTy == VecType) {
New = new (*this, TypeAlignment) DependentVectorType(
*this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
DependentVectorType *CanonCheck =
DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CanonCheck &&
"Dependent-sized vector_size canonical type broken");
(void)CanonCheck;
DependentVectorTypes.InsertNode(New, InsertPos);
} else {
QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
SourceLocation(), VecKind);
New = new (*this, TypeAlignment) DependentVectorType(
*this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
}
}
Types.push_back(New);
return QualType(New, 0);
}
/// getExtVectorType - Return the unique reference to an extended vector type of
/// the specified element type and size. VectorType must be a built-in type.
QualType
ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) const {
assert(vecType->isBuiltinType() || vecType->isDependentType());
// Check if we've already instantiated a vector of this type.
llvm::FoldingSetNodeID ID;
VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
VectorType::GenericVector);
void *InsertPos = nullptr;
if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(VTP, 0);
// If the element type isn't canonical, this won't be a canonical type either,
// so fill in the canonical type field.
QualType Canonical;
if (!vecType.isCanonical()) {
Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
// Get the new insert position for the node we care about.
VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment)
ExtVectorType(vecType, NumElts, Canonical);
VectorTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
QualType
ASTContext::getDependentSizedExtVectorType(QualType vecType,
Expr *SizeExpr,
SourceLocation AttrLoc) const {
llvm::FoldingSetNodeID ID;
DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
SizeExpr);
void *InsertPos = nullptr;
DependentSizedExtVectorType *Canon
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
DependentSizedExtVectorType *New;
if (Canon) {
// We already have a canonical version of this array type; use it as
// the canonical type for a newly-built type.
New = new (*this, TypeAlignment)
DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
SizeExpr, AttrLoc);
} else {
QualType CanonVecTy = getCanonicalType(vecType);
if (CanonVecTy == vecType) {
New = new (*this, TypeAlignment)
DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
AttrLoc);
DependentSizedExtVectorType *CanonCheck
= DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
(void)CanonCheck;
DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
} else {
QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
SourceLocation());
New = new (*this, TypeAlignment) DependentSizedExtVectorType(
*this, vecType, CanonExtTy, SizeExpr, AttrLoc);
}
}
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
unsigned NumColumns) const {
llvm::FoldingSetNodeID ID;
ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
Type::ConstantMatrix);
assert(MatrixType::isValidElementType(ElementTy) &&
"need a valid element type");
assert(ConstantMatrixType::isDimensionValid(NumRows) &&
ConstantMatrixType::isDimensionValid(NumColumns) &&
"need valid matrix dimensions");
void *InsertPos = nullptr;
if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(MTP, 0);
QualType Canonical;
if (!ElementTy.isCanonical()) {
Canonical =
getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Matrix type shouldn't already exist in the map");
(void)NewIP;
}
auto *New = new (*this, TypeAlignment)
ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
MatrixTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
Expr *RowExpr,
Expr *ColumnExpr,
SourceLocation AttrLoc) const {
QualType CanonElementTy = getCanonicalType(ElementTy);
llvm::FoldingSetNodeID ID;
DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
ColumnExpr);
void *InsertPos = nullptr;
DependentSizedMatrixType *Canon =
DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!Canon) {
Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
*this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
#ifndef NDEBUG
DependentSizedMatrixType *CanonCheck =
DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CanonCheck && "Dependent-sized matrix canonical type broken");
#endif
DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
Types.push_back(Canon);
}
// Already have a canonical version of the matrix type
//
// If it exactly matches the requested type, use it directly.
if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
Canon->getRowExpr() == ColumnExpr)
return QualType(Canon, 0);
// Use Canon as the canonical type for newly-built type.
DependentSizedMatrixType *New = new (*this, TypeAlignment)
DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
ColumnExpr, AttrLoc);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
Expr *AddrSpaceExpr,
SourceLocation AttrLoc) const {
assert(AddrSpaceExpr->isInstantiationDependent());
QualType canonPointeeType = getCanonicalType(PointeeType);
void *insertPos = nullptr;
llvm::FoldingSetNodeID ID;
DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
AddrSpaceExpr);
DependentAddressSpaceType *canonTy =
DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
if (!canonTy) {
canonTy = new (*this, TypeAlignment)
DependentAddressSpaceType(*this, canonPointeeType,
QualType(), AddrSpaceExpr, AttrLoc);
DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
Types.push_back(canonTy);
}
if (canonPointeeType == PointeeType &&
canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
return QualType(canonTy, 0);
auto *sugaredType
= new (*this, TypeAlignment)
DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
AddrSpaceExpr, AttrLoc);
Types.push_back(sugaredType);
return QualType(sugaredType, 0);
}
/// Determine whether \p T is canonical as the result type of a function.
static bool isCanonicalResultType(QualType T) {
return T.isCanonical() &&
(T.getObjCLifetime() == Qualifiers::OCL_None ||
T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
}
/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
QualType
ASTContext::getFunctionNoProtoType(QualType ResultTy,
const FunctionType::ExtInfo &Info) const {
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionNoProtoType::Profile(ID, ResultTy, Info);
void *InsertPos = nullptr;
if (FunctionNoProtoType *FT =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(FT, 0);
QualType Canonical;
if (!isCanonicalResultType(ResultTy)) {
Canonical =
getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
// Get the new insert position for the node we care about.
FunctionNoProtoType *NewIP =
FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment)
FunctionNoProtoType(ResultTy, Canonical, Info);
Types.push_back(New);
FunctionNoProtoTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
CanQualType
ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
CanQualType CanResultType = getCanonicalType(ResultType);
// Canonical result types do not have ARC lifetime qualifiers.
if (CanResultType.getQualifiers().hasObjCLifetime()) {
Qualifiers Qs = CanResultType.getQualifiers();
Qs.removeObjCLifetime();
return CanQualType::CreateUnsafe(
getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
}
return CanResultType;
}
static bool isCanonicalExceptionSpecification(
const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
if (ESI.Type == EST_None)
return true;
if (!NoexceptInType)
return false;
// C++17 onwards: exception specification is part of the type, as a simple
// boolean "can this function type throw".
if (ESI.Type == EST_BasicNoexcept)
return true;
// A noexcept(expr) specification is (possibly) canonical if expr is
// value-dependent.
if (ESI.Type == EST_DependentNoexcept)
return true;
// A dynamic exception specification is canonical if it only contains pack
// expansions (so we can't tell whether it's non-throwing) and all its
// contained types are canonical.
if (ESI.Type == EST_Dynamic) {
bool AnyPackExpansions = false;
for (QualType ET : ESI.Exceptions) {
if (!ET.isCanonical())
return false;
if (ET->getAs<PackExpansionType>())
AnyPackExpansions = true;
}
return AnyPackExpansions;
}
return false;
}
QualType ASTContext::getFunctionTypeInternal(
QualType ResultTy, ArrayRef<QualType> ArgArray,
const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
size_t NumArgs = ArgArray.size();
// Unique functions, to guarantee there is only one function of a particular
// structure.
llvm::FoldingSetNodeID ID;
FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
*this, true);
QualType Canonical;
bool Unique = false;
void *InsertPos = nullptr;
if (FunctionProtoType *FPT =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
QualType Existing = QualType(FPT, 0);
// If we find a pre-existing equivalent FunctionProtoType, we can just reuse
// it so long as our exception specification doesn't contain a dependent
// noexcept expression, or we're just looking for a canonical type.
// Otherwise, we're going to need to create a type
// sugar node to hold the concrete expression.
if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
return Existing;
// We need a new type sugar node for this one, to hold the new noexcept
// expression. We do no canonicalization here, but that's OK since we don't
// expect to see the same noexcept expression much more than once.
Canonical = getCanonicalType(Existing);
Unique = true;
}
bool NoexceptInType = getLangOpts().CPlusPlus17;
bool IsCanonicalExceptionSpec =
isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
// Determine whether the type being created is already canonical or not.
bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
if (!ArgArray[i].isCanonicalAsParam())
isCanonical = false;
if (OnlyWantCanonical)
assert(isCanonical &&
"given non-canonical parameters constructing canonical type");
// If this type isn't canonical, get the canonical version of it if we don't
// already have it. The exception spec is only partially part of the
// canonical type, and only in C++17 onwards.
if (!isCanonical && Canonical.isNull()) {
SmallVector<QualType, 16> CanonicalArgs;
CanonicalArgs.reserve(NumArgs);
for (unsigned i = 0; i != NumArgs; ++i)
CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
CanonicalEPI.HasTrailingReturn = false;
if (IsCanonicalExceptionSpec) {
// Exception spec is already OK.
} else if (NoexceptInType) {
switch (EPI.ExceptionSpec.Type) {
case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
// We don't know yet. It shouldn't matter what we pick here; no-one
// should ever look at this.
LLVM_FALLTHROUGH;
case EST_None: case EST_MSAny: case EST_NoexceptFalse:
CanonicalEPI.ExceptionSpec.Type = EST_None;
break;
// A dynamic exception specification is almost always "not noexcept",
// with the exception that a pack expansion might expand to no types.
case EST_Dynamic: {
bool AnyPacks = false;
for (QualType ET : EPI.ExceptionSpec.Exceptions) {
if (ET->getAs<PackExpansionType>())
AnyPacks = true;
ExceptionTypeStorage.push_back(getCanonicalType(ET));
}
if (!AnyPacks)
CanonicalEPI.ExceptionSpec.Type = EST_None;
else {
CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
}
break;
}
case EST_DynamicNone:
case EST_BasicNoexcept:
case EST_NoexceptTrue:
case EST_NoThrow:
CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
break;
case EST_DependentNoexcept:
llvm_unreachable("dependent noexcept is already canonical");
}
} else {
CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
}
// Adjust the canonical function result type.
CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
Canonical =
getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
// Get the new insert position for the node we care about.
FunctionProtoType *NewIP =
FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
// Compute the needed size to hold this FunctionProtoType and the
// various trailing objects.
auto ESH = FunctionProtoType::getExceptionSpecSize(
EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
size_t Size = FunctionProtoType::totalSizeToAlloc<
QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
FunctionType::ExceptionType, Expr *, FunctionDecl *,
FunctionProtoType::ExtParameterInfo, Qualifiers>(
NumArgs, EPI.Variadic,
FunctionProtoType::hasExtraBitfields(EPI.ExceptionSpec.Type),
ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
EPI.ExtParameterInfos ? NumArgs : 0,
EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
FunctionProtoType::ExtProtoInfo newEPI = EPI;
new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
Types.push_back(FTP);
if (!Unique)
FunctionProtoTypes.InsertNode(FTP, InsertPos);
return QualType(FTP, 0);
}
QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
llvm::FoldingSetNodeID ID;
PipeType::Profile(ID, T, ReadOnly);
void *InsertPos = nullptr;
if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(PT, 0);
// If the pipe element type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getPipeType(getCanonicalType(T), ReadOnly);
// Get the new insert position for the node we care about.
PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!");
(void)NewIP;
}
auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
Types.push_back(New);
PipeTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
// OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
: Ty;
}
QualType ASTContext::getReadPipeType(QualType T) const {
return getPipeType(T, true);
}
QualType ASTContext::getWritePipeType(QualType T) const {
return getPipeType(T, false);
}
QualType ASTContext::getExtIntType(bool IsUnsigned, unsigned NumBits) const {
llvm::FoldingSetNodeID ID;
ExtIntType::Profile(ID, IsUnsigned, NumBits);
void *InsertPos = nullptr;
if (ExtIntType *EIT = ExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(EIT, 0);
auto *New = new (*this, TypeAlignment) ExtIntType(IsUnsigned, NumBits);
ExtIntTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
QualType ASTContext::getDependentExtIntType(bool IsUnsigned,
Expr *NumBitsExpr) const {
assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent");
llvm::FoldingSetNodeID ID;
DependentExtIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
void *InsertPos = nullptr;
if (DependentExtIntType *Existing =
DependentExtIntTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(Existing, 0);
auto *New = new (*this, TypeAlignment)
DependentExtIntType(*this, IsUnsigned, NumBitsExpr);
DependentExtIntTypes.InsertNode(New, InsertPos);
Types.push_back(New);
return QualType(New, 0);
}
#ifndef NDEBUG
static bool NeedsInjectedClassNameType(const RecordDecl *D) {
if (!isa<CXXRecordDecl>(D)) return false;
const auto *RD = cast<CXXRecordDecl>(D);
if (isa<ClassTemplatePartialSpecializationDecl>(RD))
return true;
if (RD->getDescribedClassTemplate() &&
!isa<ClassTemplateSpecializationDecl>(RD))
return true;
return false;
}
#endif
/// getInjectedClassNameType - Return the unique reference to the
/// injected class name type for the specified templated declaration.
QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
QualType TST) const {
assert(NeedsInjectedClassNameType(Decl));
if (Decl->TypeForDecl) {
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
} else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
assert(PrevDecl->TypeForDecl && "previous declaration has no type");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
assert(isa<InjectedClassNameType>(Decl->TypeForDecl));
} else {
Type *newType =
new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
Decl->TypeForDecl = newType;
Types.push_back(newType);
}
return QualType(Decl->TypeForDecl, 0);
}
/// getTypeDeclType - Return the unique reference to the type for the
/// specified type declaration.
QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
assert(Decl && "Passed null for Decl param");
assert(!Decl->TypeForDecl && "TypeForDecl present in slow case");
if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
return getTypedefType(Typedef);
assert(!isa<TemplateTypeParmDecl>(Decl) &&
"Template type parameter types are always available.");
if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
assert(Record->isFirstDecl() && "struct/union has previous declaration");
assert(!NeedsInjectedClassNameType(Record));
return getRecordType(Record);
} else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
assert(Enum->isFirstDecl() && "enum has previous declaration");
return getEnumType(Enum);
} else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Using);
Decl->TypeForDecl = newType;
Types.push_back(newType);
} else
llvm_unreachable("TypeDecl without a type?");
return QualType(Decl->TypeForDecl, 0);
}
/// getTypedefType - Return the unique reference to the type for the
/// specified typedef name decl.
QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
QualType Underlying) const {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (Underlying.isNull())
Underlying = Decl->getUnderlyingType();
QualType Canonical = getCanonicalType(Underlying);
auto *newType = new (*this, TypeAlignment)
TypedefType(Type::Typedef, Decl, Underlying, Canonical);
Decl->TypeForDecl = newType;
Types.push_back(newType);
return QualType(newType, 0);
}
QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
if (PrevDecl->TypeForDecl)
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
auto *newType = new (*this, TypeAlignment) RecordType(Decl);
Decl->TypeForDecl = newType;
Types.push_back(newType);
return QualType(newType, 0);
}
QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
if (PrevDecl->TypeForDecl)
return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
auto *newType = new (*this, TypeAlignment) EnumType(Decl);
Decl->TypeForDecl = newType;
Types.push_back(newType);
return QualType(newType, 0);
}
QualType ASTContext::getAttributedType(attr::Kind attrKind,
QualType modifiedType,
QualType equivalentType) {
llvm::FoldingSetNodeID id;
AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
void *insertPos = nullptr;
AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
if (type) return QualType(type, 0);
QualType canon = getCanonicalType(equivalentType);
type = new (*this, TypeAlignment)
AttributedType(canon, attrKind, modifiedType, equivalentType);
Types.push_back(type);
AttributedTypes.InsertNode(type, insertPos);
return QualType(type, 0);
}
/// Retrieve a substitution-result type.
QualType
ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
QualType Replacement) const {
assert(Replacement.isCanonical()
&& "replacement types must always be canonical");
llvm::FoldingSetNodeID ID;
SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
void *InsertPos = nullptr;
SubstTemplateTypeParmType *SubstParm
= SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!SubstParm) {
SubstParm = new (*this, TypeAlignment)
SubstTemplateTypeParmType(Parm, Replacement);
Types.push_back(SubstParm);
SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
}
return QualType(SubstParm, 0);
}
/// Retrieve a
QualType ASTContext::getSubstTemplateTypeParmPackType(
const TemplateTypeParmType *Parm,
const TemplateArgument &ArgPack) {
#ifndef NDEBUG
for (const auto &P : ArgPack.pack_elements()) {
assert(P.getKind() == TemplateArgument::Type &&"Pack contains a non-type");
assert(P.getAsType().isCanonical() && "Pack contains non-canonical type");
}
#endif
llvm::FoldingSetNodeID ID;
SubstTemplateTypeParmPackType::Profile(ID, Parm, ArgPack);
void *InsertPos = nullptr;
if (SubstTemplateTypeParmPackType *SubstParm
= SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(SubstParm, 0);
QualType Canon;
if (!Parm->isCanonicalUnqualified()) {
Canon = getCanonicalType(QualType(Parm, 0));
Canon = getSubstTemplateTypeParmPackType(cast<TemplateTypeParmType>(Canon),
ArgPack);
SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
}
auto *SubstParm
= new (*this, TypeAlignment) SubstTemplateTypeParmPackType(Parm, Canon,
ArgPack);
Types.push_back(SubstParm);
SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
return QualType(SubstParm, 0);
}
/// Retrieve the template type parameter type for a template
/// parameter or parameter pack with the given depth, index, and (optionally)
/// name.
QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
bool ParameterPack,
TemplateTypeParmDecl *TTPDecl) const {
llvm::FoldingSetNodeID ID;
TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
void *InsertPos = nullptr;
TemplateTypeParmType *TypeParm
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
if (TypeParm)
return QualType(TypeParm, 0);
if (TTPDecl) {
QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
TemplateTypeParmType *TypeCheck
= TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!TypeCheck && "Template type parameter canonical type broken");
(void)TypeCheck;
} else
TypeParm = new (*this, TypeAlignment)
TemplateTypeParmType(Depth, Index, ParameterPack);
Types.push_back(TypeParm);
TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
return QualType(TypeParm, 0);
}
TypeSourceInfo *
ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
SourceLocation NameLoc,
const TemplateArgumentListInfo &Args,
QualType Underlying) const {
assert(!Name.getAsDependentTemplateName() &&
"No dependent template names here!");
QualType TST = getTemplateSpecializationType(Name, Args, Underlying);
TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
TemplateSpecializationTypeLoc TL =
DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
TL.setTemplateKeywordLoc(SourceLocation());
TL.setTemplateNameLoc(NameLoc);
TL.setLAngleLoc(Args.getLAngleLoc());
TL.setRAngleLoc(Args.getRAngleLoc());
for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
TL.setArgLocInfo(i, Args[i].getLocInfo());
return DI;
}
QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
const TemplateArgumentListInfo &Args,
QualType Underlying) const {
assert(!Template.getAsDependentTemplateName() &&
"No dependent template names here!");
SmallVector<TemplateArgument, 4> ArgVec;
ArgVec.reserve(Args.size());
for (const TemplateArgumentLoc &Arg : Args.arguments())
ArgVec.push_back(Arg.getArgument());
return getTemplateSpecializationType(Template, ArgVec, Underlying);
}
#ifndef NDEBUG
static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
for (const TemplateArgument &Arg : Args)
if (Arg.isPackExpansion())
return true;
return true;
}
#endif
QualType
ASTContext::getTemplateSpecializationType(TemplateName Template,
ArrayRef<TemplateArgument> Args,
QualType Underlying) const {
assert(!Template.getAsDependentTemplateName() &&
"No dependent template names here!");
// Look through qualified template names.
if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
Template = TemplateName(QTN->getTemplateDecl());
bool IsTypeAlias =
Template.getAsTemplateDecl() &&
isa<TypeAliasTemplateDecl>(Template.getAsTemplateDecl());
QualType CanonType;
if (!Underlying.isNull())
CanonType = getCanonicalType(Underlying);
else {
// We can get here with an alias template when the specialization contains
// a pack expansion that does not match up with a parameter pack.
assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&
"Caller must compute aliased type");
IsTypeAlias = false;
CanonType = getCanonicalTemplateSpecializationType(Template, Args);
}
// Allocate the (non-canonical) template specialization type, but don't
// try to unique it: these types typically have location information that
// we don't unique and don't want to lose.
void *Mem = Allocate(sizeof(TemplateSpecializationType) +
sizeof(TemplateArgument) * Args.size() +
(IsTypeAlias? sizeof(QualType) : 0),
TypeAlignment);
auto *Spec
= new (Mem) TemplateSpecializationType(Template, Args, CanonType,
IsTypeAlias ? Underlying : QualType());
Types.push_back(Spec);
return QualType(Spec, 0);
}
QualType ASTContext::getCanonicalTemplateSpecializationType(
TemplateName Template, ArrayRef<TemplateArgument> Args) const {
assert(!Template.getAsDependentTemplateName() &&
"No dependent template names here!");
// Look through qualified template names.
if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
Template = TemplateName(QTN->getTemplateDecl());
// Build the canonical template specialization type.
TemplateName CanonTemplate = getCanonicalTemplateName(Template);
SmallVector<TemplateArgument, 4> CanonArgs;
unsigned NumArgs = Args.size();
CanonArgs.reserve(NumArgs);
for (const TemplateArgument &Arg : Args)
CanonArgs.push_back(getCanonicalTemplateArgument(Arg));
// Determine whether this canonical template specialization type already
// exists.
llvm::FoldingSetNodeID ID;
TemplateSpecializationType::Profile(ID, CanonTemplate,
CanonArgs, *this);
void *InsertPos = nullptr;
TemplateSpecializationType *Spec
= TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!Spec) {
// Allocate a new canonical template specialization type.
void *Mem = Allocate((sizeof(TemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
TypeAlignment);
Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
CanonArgs,
QualType(), QualType());
Types.push_back(Spec);
TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
}
assert(Spec->isDependentType() &&
"Non-dependent template-id type must have a canonical type");
return QualType(Spec, 0);
}
QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
QualType NamedType,
TagDecl *OwnedTagDecl) const {
llvm::FoldingSetNodeID ID;
ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
void *InsertPos = nullptr;
ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
QualType Canon = NamedType;
if (!Canon.isCanonical()) {
Canon = getCanonicalType(NamedType);
ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckT && "Elaborated canonical type broken");
(void)CheckT;
}
void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
TypeAlignment);
T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
Types.push_back(T);
ElaboratedTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType
ASTContext::getParenType(QualType InnerType) const {
llvm::FoldingSetNodeID ID;
ParenType::Profile(ID, InnerType);
void *InsertPos = nullptr;
ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
QualType Canon = InnerType;
if (!Canon.isCanonical()) {
Canon = getCanonicalType(InnerType);
ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckT && "Paren canonical type broken");
(void)CheckT;
}
T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
Types.push_back(T);
ParenTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType
ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
const IdentifierInfo *MacroII) const {
QualType Canon = UnderlyingTy;
if (!Canon.isCanonical())
Canon = getCanonicalType(UnderlyingTy);
auto *newType = new (*this, TypeAlignment)
MacroQualifiedType(UnderlyingTy, Canon, MacroII);
Types.push_back(newType);
return QualType(newType, 0);
}
QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
QualType Canon) const {
if (Canon.isNull()) {
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS != NNS)
Canon = getDependentNameType(Keyword, CanonNNS, Name);
}
llvm::FoldingSetNodeID ID;
DependentNameType::Profile(ID, Keyword, NNS, Name);
void *InsertPos = nullptr;
DependentNameType *T
= DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
Types.push_back(T);
DependentNameTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
QualType
ASTContext::getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
const TemplateArgumentListInfo &Args) const {
// TODO: avoid this copy
SmallVector<TemplateArgument, 16> ArgCopy;
for (unsigned I = 0, E = Args.size(); I != E; ++I)
ArgCopy.push_back(Args[I].getArgument());
return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
}
QualType
ASTContext::getDependentTemplateSpecializationType(
ElaboratedTypeKeyword Keyword,
NestedNameSpecifier *NNS,
const IdentifierInfo *Name,
ArrayRef<TemplateArgument> Args) const {
assert((!NNS || NNS->isDependent()) &&
"nested-name-specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
Name, Args);
void *InsertPos = nullptr;
DependentTemplateSpecializationType *T
= DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
ElaboratedTypeKeyword CanonKeyword = Keyword;
if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
bool AnyNonCanonArgs = false;
unsigned NumArgs = Args.size();
SmallVector<TemplateArgument, 16> CanonArgs(NumArgs);
for (unsigned I = 0; I != NumArgs; ++I) {
CanonArgs[I] = getCanonicalTemplateArgument(Args[I]);
if (!CanonArgs[I].structurallyEquals(Args[I]))
AnyNonCanonArgs = true;
}
QualType Canon;
if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
Name,
CanonArgs);
// Find the insert position again.
DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
}
void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
sizeof(TemplateArgument) * NumArgs),
TypeAlignment);
T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
Name, Args, Canon);
Types.push_back(T);
DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
TemplateArgument Arg;
if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
QualType ArgType = getTypeDeclType(TTP);
if (TTP->isParameterPack())
ArgType = getPackExpansionType(ArgType, None);
Arg = TemplateArgument(ArgType);
} else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
QualType T =
NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
// For class NTTPs, ensure we include the 'const' so the type matches that
// of a real template argument.
// FIXME: It would be more faithful to model this as something like an
// lvalue-to-rvalue conversion applied to a const-qualified lvalue.
if (T->isRecordType())
T.addConst();
Expr *E = new (*this) DeclRefExpr(
*this, NTTP, /*enclosing*/ false, T,
Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
if (NTTP->isParameterPack())
E = new (*this) PackExpansionExpr(DependentTy, E, NTTP->getLocation(),
None);
Arg = TemplateArgument(E);
} else {
auto *TTP = cast<TemplateTemplateParmDecl>(Param);
if (TTP->isParameterPack())
Arg = TemplateArgument(TemplateName(TTP), Optional<unsigned>());
else
Arg = TemplateArgument(TemplateName(TTP));
}
if (Param->isTemplateParameterPack())
Arg = TemplateArgument::CreatePackCopy(*this, Arg);
return Arg;
}
void
ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
SmallVectorImpl<TemplateArgument> &Args) {
Args.reserve(Args.size() + Params->size());
for (NamedDecl *Param : *Params)
Args.push_back(getInjectedTemplateArg(Param));
}
QualType ASTContext::getPackExpansionType(QualType Pattern,
Optional<unsigned> NumExpansions,
bool ExpectPackInType) {
assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&
"Pack expansions must expand one or more parameter packs");
llvm::FoldingSetNodeID ID;
PackExpansionType::Profile(ID, Pattern, NumExpansions);
void *InsertPos = nullptr;
PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
if (T)
return QualType(T, 0);
QualType Canon;
if (!Pattern.isCanonical()) {
Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
/*ExpectPackInType=*/false);
// Find the insert position again, in case we inserted an element into
// PackExpansionTypes and invalidated our insert position.
PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
}
T = new (*this, TypeAlignment)
PackExpansionType(Pattern, Canon, NumExpansions);
Types.push_back(T);
PackExpansionTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
/// CmpProtocolNames - Comparison predicate for sorting protocols
/// alphabetically.
static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
ObjCProtocolDecl *const *RHS) {
return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
}
static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
if (Protocols.empty()) return true;
if (Protocols[0]->getCanonicalDecl() != Protocols[0])
return false;
for (unsigned i = 1; i != Protocols.size(); ++i)
if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
Protocols[i]->getCanonicalDecl() != Protocols[i])
return false;
return true;
}
static void
SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
// Sort protocols, keyed by name.
llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
// Canonicalize.
for (ObjCProtocolDecl *&P : Protocols)
P = P->getCanonicalDecl();
// Remove duplicates.
auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
Protocols.erase(ProtocolsEnd, Protocols.end());
}
QualType ASTContext::getObjCObjectType(QualType BaseType,
ObjCProtocolDecl * const *Protocols,
unsigned NumProtocols) const {
return getObjCObjectType(BaseType, {},
llvm::makeArrayRef(Protocols, NumProtocols),
/*isKindOf=*/false);
}
QualType ASTContext::getObjCObjectType(
QualType baseType,
ArrayRef<QualType> typeArgs,
ArrayRef<ObjCProtocolDecl *> protocols,
bool isKindOf) const {
// If the base type is an interface and there aren't any protocols or
// type arguments to add, then the interface type will do just fine.
if (typeArgs.empty() && protocols.empty() && !isKindOf &&
isa<ObjCInterfaceType>(baseType))
return baseType;
// Look in the folding set for an existing type.
llvm::FoldingSetNodeID ID;
ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
void *InsertPos = nullptr;
if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// Determine the type arguments to be used for canonicalization,
// which may be explicitly specified here or written on the base
// type.
ArrayRef<QualType> effectiveTypeArgs = typeArgs;
if (effectiveTypeArgs.empty()) {
if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
effectiveTypeArgs = baseObject->getTypeArgs();
}
// Build the canonical type, which has the canonical base type and a
// sorted-and-uniqued list of protocols and the type arguments
// canonicalized.
QualType canonical;
bool typeArgsAreCanonical = std::all_of(effectiveTypeArgs.begin(),
effectiveTypeArgs.end(),
[&](QualType type) {
return type.isCanonical();
});
bool protocolsSorted = areSortedAndUniqued(protocols);
if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
// Determine the canonical type arguments.
ArrayRef<QualType> canonTypeArgs;
SmallVector<QualType, 4> canonTypeArgsVec;
if (!typeArgsAreCanonical) {
canonTypeArgsVec.reserve(effectiveTypeArgs.size());
for (auto typeArg : effectiveTypeArgs)
canonTypeArgsVec.push_back(getCanonicalType(typeArg));
canonTypeArgs = canonTypeArgsVec;
} else {
canonTypeArgs = effectiveTypeArgs;
}
ArrayRef<ObjCProtocolDecl *> canonProtocols;
SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
if (!protocolsSorted) {
canonProtocolsVec.append(protocols.begin(), protocols.end());
SortAndUniqueProtocols(canonProtocolsVec);
canonProtocols = canonProtocolsVec;
} else {
canonProtocols = protocols;
}
canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
canonProtocols, isKindOf);
// Regenerate InsertPos.
ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
}
unsigned size = sizeof(ObjCObjectTypeImpl);
size += typeArgs.size() * sizeof(QualType);
size += protocols.size() * sizeof(ObjCProtocolDecl *);
void *mem = Allocate(size, TypeAlignment);
auto *T =
new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
isKindOf);
Types.push_back(T);
ObjCObjectTypes.InsertNode(T, InsertPos);
return QualType(T, 0);
}
/// Apply Objective-C protocol qualifiers to the given type.
/// If this is for the canonical type of a type parameter, we can apply
/// protocol qualifiers on the ObjCObjectPointerType.
QualType
ASTContext::applyObjCProtocolQualifiers(QualType type,
ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
bool allowOnPointerType) const {
hasError = false;
if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
return getObjCTypeParamType(objT->getDecl(), protocols);
}
// Apply protocol qualifiers to ObjCObjectPointerType.
if (allowOnPointerType) {
if (const auto *objPtr =
dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
const ObjCObjectType *objT = objPtr->getObjectType();
// Merge protocol lists and construct ObjCObjectType.
SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
protocolsVec.append(objT->qual_begin(),
objT->qual_end());
protocolsVec.append(protocols.begin(), protocols.end());
ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
type = getObjCObjectType(
objT->getBaseType(),
objT->getTypeArgsAsWritten(),
protocols,
objT->isKindOfTypeAsWritten());
return getObjCObjectPointerType(type);
}
}
// Apply protocol qualifiers to ObjCObjectType.
if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
// FIXME: Check for protocols to which the class type is already
// known to conform.
return getObjCObjectType(objT->getBaseType(),
objT->getTypeArgsAsWritten(),
protocols,
objT->isKindOfTypeAsWritten());
}
// If the canonical type is ObjCObjectType, ...
if (type->isObjCObjectType()) {
// Silently overwrite any existing protocol qualifiers.
// TODO: determine whether that's the right thing to do.
// FIXME: Check for protocols to which the class type is already
// known to conform.
return getObjCObjectType(type, {}, protocols, false);
}
// id<protocol-list>
if (type->isObjCIdType()) {
const auto *objPtr = type->castAs<ObjCObjectPointerType>();
type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
objPtr->isKindOfType());
return getObjCObjectPointerType(type);
}
// Class<protocol-list>
if (type->isObjCClassType()) {
const auto *objPtr = type->castAs<ObjCObjectPointerType>();
type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
objPtr->isKindOfType());
return getObjCObjectPointerType(type);
}
hasError = true;
return type;
}
QualType
ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
ArrayRef<ObjCProtocolDecl *> protocols) const {
// Look in the folding set for an existing type.
llvm::FoldingSetNodeID ID;
ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
void *InsertPos = nullptr;
if (ObjCTypeParamType *TypeParam =
ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(TypeParam, 0);
// We canonicalize to the underlying type.
QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
if (!protocols.empty()) {
// Apply the protocol qualifers.
bool hasError;
Canonical = getCanonicalType(applyObjCProtocolQualifiers(
Canonical, protocols, hasError, true /*allowOnPointerType*/));
assert(!hasError && "Error when apply protocol qualifier to bound type");
}
unsigned size = sizeof(ObjCTypeParamType);
size += protocols.size() * sizeof(ObjCProtocolDecl *);
void *mem = Allocate(size, TypeAlignment);
auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
Types.push_back(newType);
ObjCTypeParamTypes.InsertNode(newType, InsertPos);
return QualType(newType, 0);
}
void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
ObjCTypeParamDecl *New) const {
New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
// Update TypeForDecl after updating TypeSourceInfo.
auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
SmallVector<ObjCProtocolDecl *, 8> protocols;
protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
QualType UpdatedTy = getObjCTypeParamType(New, protocols);
New->setTypeForDecl(UpdatedTy.getTypePtr());
}
/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
/// protocol list adopt all protocols in QT's qualified-id protocol
/// list.
bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
ObjCInterfaceDecl *IC) {
if (!QT->isObjCQualifiedIdType())
return false;
if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
// If both the right and left sides have qualifiers.
for (auto *Proto : OPT->quals()) {
if (!IC->ClassImplementsProtocol(Proto, false))
return false;
}
return true;
}
return false;
}
/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
/// QT's qualified-id protocol list adopt all protocols in IDecl's list
/// of protocols.
bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
ObjCInterfaceDecl *IDecl) {
if (!QT->isObjCQualifiedIdType())
return false;
const auto *OPT = QT->getAs<ObjCObjectPointerType>();
if (!OPT)
return false;
if (!IDecl->hasDefinition())
return false;
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
CollectInheritedProtocols(IDecl, InheritedProtocols);
if (InheritedProtocols.empty())
return false;
// Check that if every protocol in list of id<plist> conforms to a protocol
// of IDecl's, then bridge casting is ok.
bool Conforms = false;
for (auto *Proto : OPT->quals()) {
Conforms = false;
for (auto *PI : InheritedProtocols) {
if (ProtocolCompatibleWithProtocol(Proto, PI)) {
Conforms = true;
break;
}
}
if (!Conforms)
break;
}
if (Conforms)
return true;
for (auto *PI : InheritedProtocols) {
// If both the right and left sides have qualifiers.
bool Adopts = false;
for (auto *Proto : OPT->quals()) {
// return 'true' if 'PI' is in the inheritance hierarchy of Proto
if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
break;
}
if (!Adopts)
return false;
}
return true;
}
/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
/// the given object type.
QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
llvm::FoldingSetNodeID ID;
ObjCObjectPointerType::Profile(ID, ObjectT);
void *InsertPos = nullptr;
if (ObjCObjectPointerType *QT =
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(QT, 0);
// Find the canonical object type.
QualType Canonical;
if (!ObjectT.isCanonical()) {
Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
// Regenerate InsertPos.
ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
}
// No match.
void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
auto *QType =
new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
Types.push_back(QType);
ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
return QualType(QType, 0);
}
/// getObjCInterfaceType - Return the unique reference to the type for the
/// specified ObjC interface decl. The list of protocols is optional.
QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
ObjCInterfaceDecl *PrevDecl) const {
if (Decl->TypeForDecl)
return QualType(Decl->TypeForDecl, 0);
if (PrevDecl) {
assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl");
Decl->TypeForDecl = PrevDecl->TypeForDecl;
return QualType(PrevDecl->TypeForDecl, 0);
}
// Prefer the definition, if there is one.
if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
Decl = Def;
void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
auto *T = new (Mem) ObjCInterfaceType(Decl);
Decl->TypeForDecl = T;
Types.push_back(T);
return QualType(T, 0);
}
/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
/// TypeOfExprType AST's (since expression's are never shared). For example,
/// multiple declarations that refer to "typeof(x)" all contain different
/// DeclRefExpr's. This doesn't effect the type checker, since it operates
/// on canonical type's (which are always unique).
QualType ASTContext::getTypeOfExprType(Expr *tofExpr) const {
TypeOfExprType *toe;
if (tofExpr->isTypeDependent()) {
llvm::FoldingSetNodeID ID;
DependentTypeOfExprType::Profile(ID, *this, tofExpr);
void *InsertPos = nullptr;
DependentTypeOfExprType *Canon
= DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
if (Canon) {
// We already have a "canonical" version of an identical, dependent
// typeof(expr) type. Use that as our canonical type.
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
QualType((TypeOfExprType*)Canon, 0));
} else {
// Build a new, canonical typeof(expr) type.
Canon
= new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
toe = Canon;
}
} else {
QualType Canonical = getCanonicalType(tofExpr->getType());
toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
}
Types.push_back(toe);
return QualType(toe, 0);
}
/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
/// TypeOfType nodes. The only motivation to unique these nodes would be
/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
/// an issue. This doesn't affect the type checker, since it operates
/// on canonical types (which are always unique).
QualType ASTContext::getTypeOfType(QualType tofType) const {
QualType Canonical = getCanonicalType(tofType);
auto *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
Types.push_back(tot);
return QualType(tot, 0);
}
/// Unlike many "get<Type>" functions, we don't unique DecltypeType
/// nodes. This would never be helpful, since each such type has its own
/// expression, and would not give a significant memory saving, since there
/// is an Expr tree under each such type.
QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
DecltypeType *dt;
// C++11 [temp.type]p2:
// If an expression e involves a template parameter, decltype(e) denotes a
// unique dependent type. Two such decltype-specifiers refer to the same
// type only if their expressions are equivalent (14.5.6.1).
if (e->isInstantiationDependent()) {
llvm::FoldingSetNodeID ID;
DependentDecltypeType::Profile(ID, *this, e);
void *InsertPos = nullptr;
DependentDecltypeType *Canon
= DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!Canon) {
// Build a new, canonical decltype(expr) type.
Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
DependentDecltypeTypes.InsertNode(Canon, InsertPos);
}
dt = new (*this, TypeAlignment)
DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
} else {
dt = new (*this, TypeAlignment)
DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
}
Types.push_back(dt);
return QualType(dt, 0);
}
/// getUnaryTransformationType - We don't unique these, since the memory
/// savings are minimal and these are rare.
QualType ASTContext::getUnaryTransformType(QualType BaseType,
QualType UnderlyingType,
UnaryTransformType::UTTKind Kind)
const {
UnaryTransformType *ut = nullptr;
if (BaseType->isDependentType()) {
// Look in the folding set for an existing type.
llvm::FoldingSetNodeID ID;
DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
void *InsertPos = nullptr;
DependentUnaryTransformType *Canon
= DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
if (!Canon) {
// Build a new, canonical __underlying_type(type) type.
Canon = new (*this, TypeAlignment)
DependentUnaryTransformType(*this, getCanonicalType(BaseType),
Kind);
DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
}
ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
QualType(), Kind,
QualType(Canon, 0));
} else {
QualType CanonType = getCanonicalType(UnderlyingType);
ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
UnderlyingType, Kind,
CanonType);
}
Types.push_back(ut);
return QualType(ut, 0);
}
/// getAutoType - Return the uniqued reference to the 'auto' type which has been
/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
/// canonical deduced-but-dependent 'auto' type.
QualType
ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
bool IsDependent, bool IsPack,
ConceptDecl *TypeConstraintConcept,
ArrayRef<TemplateArgument> TypeConstraintArgs) const {
assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack");
if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
!TypeConstraintConcept && !IsDependent)
return getAutoDeductType();
// Look in the folding set for an existing type.
void *InsertPos = nullptr;
llvm::FoldingSetNodeID ID;
AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
TypeConstraintConcept, TypeConstraintArgs);
if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(AT, 0);
void *Mem = Allocate(sizeof(AutoType) +
sizeof(TemplateArgument) * TypeConstraintArgs.size(),
TypeAlignment);
auto *AT = new (Mem) AutoType(
DeducedType, Keyword,
(IsDependent ? TypeDependence::DependentInstantiation
: TypeDependence::None) |
(IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
TypeConstraintConcept, TypeConstraintArgs);
Types.push_back(AT);
if (InsertPos)
AutoTypes.InsertNode(AT, InsertPos);
return QualType(AT, 0);
}
/// Return the uniqued reference to the deduced template specialization type
/// which has been deduced to the given type, or to the canonical undeduced
/// such type, or the canonical deduced-but-dependent such type.
QualType ASTContext::getDeducedTemplateSpecializationType(
TemplateName Template, QualType DeducedType, bool IsDependent) const {
// Look in the folding set for an existing type.
void *InsertPos = nullptr;
llvm::FoldingSetNodeID ID;
DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
IsDependent);
if (DeducedTemplateSpecializationType *DTST =
DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(DTST, 0);
auto *DTST = new (*this, TypeAlignment)
DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
Types.push_back(DTST);
if (InsertPos)
DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
return QualType(DTST, 0);
}
/// getAtomicType - Return the uniqued reference to the atomic type for
/// the given value type.
QualType ASTContext::getAtomicType(QualType T) const {
// Unique pointers, to guarantee there is only one pointer of a particular
// structure.
llvm::FoldingSetNodeID ID;
AtomicType::Profile(ID, T);
void *InsertPos = nullptr;
if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
return QualType(AT, 0);
// If the atomic value type isn't canonical, this won't be a canonical type
// either, so fill in the canonical type field.
QualType Canonical;
if (!T.isCanonical()) {
Canonical = getAtomicType(getCanonicalType(T));
// Get the new insert position for the node we care about.
AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
assert(!NewIP && "Shouldn't be in the map!"); (void)NewIP;
}
auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
Types.push_back(New);
AtomicTypes.InsertNode(New, InsertPos);
return QualType(New, 0);
}
/// getAutoDeductType - Get type pattern for deducing against 'auto'.
QualType ASTContext::getAutoDeductType() const {
if (AutoDeductTy.isNull())
AutoDeductTy = QualType(new (*this, TypeAlignment)
AutoType(QualType(), AutoTypeKeyword::Auto,
TypeDependence::None,
/*concept*/ nullptr, /*args*/ {}),
0);
return AutoDeductTy;
}
/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
QualType ASTContext::getAutoRRefDeductType() const {
if (AutoRRefDeductTy.isNull())
AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern");
return AutoRRefDeductTy;
}
/// getTagDeclType - Return the unique reference to the type for the
/// specified TagDecl (struct/union/class/enum) decl.
QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
assert(Decl);
// FIXME: What is the design on getTagDeclType when it requires casting
// away const? mutable?
return getTypeDeclType(const_cast<TagDecl*>(Decl));
}
/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
/// needs to agree with the definition in <stddef.h>.
CanQualType ASTContext::getSizeType() const {
return getFromTargetType(Target->getSizeType());
}
/// Return the unique signed counterpart of the integer type
/// corresponding to size_t.
CanQualType ASTContext::getSignedSizeType() const {
return getFromTargetType(Target->getSignedSizeType());
}
/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
CanQualType ASTContext::getIntMaxType() const {
return getFromTargetType(Target->getIntMaxType());
}
/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
CanQualType ASTContext::getUIntMaxType() const {
return getFromTargetType(Target->getUIntMaxType());
}
/// getSignedWCharType - Return the type of "signed wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getSignedWCharType() const {
// FIXME: derive from "Target" ?
return WCharTy;
}
/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
/// Used when in C++, as a GCC extension.
QualType ASTContext::getUnsignedWCharType() const {
// FIXME: derive from "Target" ?
return UnsignedIntTy;
}
QualType ASTContext::getIntPtrType() const {
return getFromTargetType(Target->getIntPtrType());
}
QualType ASTContext::getUIntPtrType() const {
return getCorrespondingUnsignedType(getIntPtrType());
}
/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
QualType ASTContext::getPointerDiffType() const {
return getFromTargetType(Target->getPtrDiffType(0));
}
/// Return the unique unsigned counterpart of "ptrdiff_t"
/// integer type. The standard (C11 7.21.6.1p7) refers to this type
/// in the definition of %tu format specifier.
QualType ASTContext::getUnsignedPointerDiffType() const {
return getFromTargetType(Target->getUnsignedPtrDiffType(0));
}
/// Return the unique type for "pid_t" defined in
/// <sys/types.h>. We need this to compute the correct type for vfork().
QualType ASTContext::getProcessIDType() const {
return getFromTargetType(Target->getProcessIDType());
}
//===----------------------------------------------------------------------===//
// Type Operators
//===----------------------------------------------------------------------===//
CanQualType ASTContext::getCanonicalParamType(QualType T) const {
// Push qualifiers into arrays, and then discard any remaining
// qualifiers.
T = getCanonicalType(T);
T = getVariableArrayDecayedType(T);
const Type *Ty = T.getTypePtr();
QualType Result;
if (isa<ArrayType>(Ty)) {
Result = getArrayDecayedType(QualType(Ty,0));
} else if (isa<FunctionType>(Ty)) {
Result = getPointerType(QualType(Ty, 0));
} else {
Result = QualType(Ty, 0);
}
return CanQualType::CreateUnsafe(Result);
}
QualType ASTContext::getUnqualifiedArrayType(QualType type,
Qualifiers &quals) {
SplitQualType splitType = type.getSplitUnqualifiedType();
// FIXME: getSplitUnqualifiedType() actually walks all the way to
// the unqualified desugared type and then drops it on the floor.
// We then have to strip that sugar back off with
// getUnqualifiedDesugaredType(), which is silly.
const auto *AT =
dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
// If we don't have an array, just use the results in splitType.
if (!AT) {
quals = splitType.Quals;
return QualType(splitType.Ty, 0);
}
// Otherwise, recurse on the array's element type.
QualType elementType = AT->getElementType();
QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
// If that didn't change the element type, AT has no qualifiers, so we
// can just use the results in splitType.
if (elementType == unqualElementType) {
assert(quals.empty()); // from the recursive call
quals = splitType.Quals;
return QualType(splitType.Ty, 0);
}
// Otherwise, add in the qualifiers from the outermost type, then
// build the type back up.
quals.addConsistentQualifiers(splitType.Quals);
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
return getConstantArrayType(unqualElementType, CAT->getSize(),
CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
}
if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
}
if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
return getVariableArrayType(unqualElementType,
VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeCVRQualifiers(),
VAT->getBracketsRange());
}
const auto *DSAT = cast<DependentSizedArrayType>(AT);
return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
DSAT->getSizeModifier(), 0,
SourceRange());
}
/// Attempt to unwrap two types that may both be array types with the same bound
/// (or both be array types of unknown bound) for the purpose of comparing the
/// cv-decomposition of two types per C++ [conv.qual].
bool ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2) {
bool UnwrappedAny = false;
while (true) {
auto *AT1 = getAsArrayType(T1);
if (!AT1) return UnwrappedAny;
auto *AT2 = getAsArrayType(T2);
if (!AT2) return UnwrappedAny;
// If we don't have two array types with the same constant bound nor two
// incomplete array types, we've unwrapped everything we can.
if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
if (!CAT2 || CAT1->getSize() != CAT2->getSize())
return UnwrappedAny;
} else if (!isa<IncompleteArrayType>(AT1) ||
!isa<IncompleteArrayType>(AT2)) {
return UnwrappedAny;
}
T1 = AT1->getElementType();
T2 = AT2->getElementType();
UnwrappedAny = true;
}
}
/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
///
/// If T1 and T2 are both pointer types of the same kind, or both array types
/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
///
/// This function will typically be called in a loop that successively
/// "unwraps" pointer and pointer-to-member types to compare them at each
/// level.
///
/// \return \c true if a pointer type was unwrapped, \c false if we reached a
/// pair of types that can't be unwrapped further.
bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2) {
UnwrapSimilarArrayTypes(T1, T2);
const auto *T1PtrType = T1->getAs<PointerType>();
const auto *T2PtrType = T2->getAs<PointerType>();
if (T1PtrType && T2PtrType) {
T1 = T1PtrType->getPointeeType();
T2 = T2PtrType->getPointeeType();
return true;
}
const auto *T1MPType = T1->getAs<MemberPointerType>();
const auto *T2MPType = T2->getAs<MemberPointerType>();
if (T1MPType && T2MPType &&
hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
QualType(T2MPType->getClass(), 0))) {
T1 = T1MPType->getPointeeType();
T2 = T2MPType->getPointeeType();
return true;
}
if (getLangOpts().ObjC) {
const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
if (T1OPType && T2OPType) {
T1 = T1OPType->getPointeeType();
T2 = T2OPType->getPointeeType();
return true;
}
}
// FIXME: Block pointers, too?
return false;
}
bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
while (true) {
Qualifiers Quals;
T1 = getUnqualifiedArrayType(T1, Quals);
T2 = getUnqualifiedArrayType(T2, Quals);
if (hasSameType(T1, T2))
return true;
if (!UnwrapSimilarTypes(T1, T2))
return false;
}
}
bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
while (true) {
Qualifiers Quals1, Quals2;
T1 = getUnqualifiedArrayType(T1, Quals1);
T2 = getUnqualifiedArrayType(T2, Quals2);
Quals1.removeCVRQualifiers();
Quals2.removeCVRQualifiers();
if (Quals1 != Quals2)
return false;
if (hasSameType(T1, T2))
return true;
if (!UnwrapSimilarTypes(T1, T2))
return false;
}
}
DeclarationNameInfo
ASTContext::getNameForTemplate(TemplateName Name,
SourceLocation NameLoc) const {
switch (Name.getKind()) {
case TemplateName::QualifiedTemplate:
case TemplateName::Template:
// DNInfo work in progress: CHECKME: what about DNLoc?
return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
NameLoc);
case TemplateName::OverloadedTemplate: {
OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
// DNInfo work in progress: CHECKME: what about DNLoc?
return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
}
case TemplateName::AssumedTemplate: {
AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
}
case TemplateName::DependentTemplate: {
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
DeclarationName DName;
if (DTN->isIdentifier()) {
DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
return DeclarationNameInfo(DName, NameLoc);
} else {
DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
// DNInfo work in progress: FIXME: source locations?
DeclarationNameLoc DNLoc;
DNLoc.CXXOperatorName.BeginOpNameLoc = SourceLocation().getRawEncoding();
DNLoc.CXXOperatorName.EndOpNameLoc = SourceLocation().getRawEncoding();
return DeclarationNameInfo(DName, NameLoc, DNLoc);
}
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= Name.getAsSubstTemplateTemplateParm();
return DeclarationNameInfo(subst->getParameter()->getDeclName(),
NameLoc);
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage *subst
= Name.getAsSubstTemplateTemplateParmPack();
return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
NameLoc);
}
}
llvm_unreachable("bad template name kind!");
}
TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) const {
switch (Name.getKind()) {
case TemplateName::QualifiedTemplate:
case TemplateName::Template: {
TemplateDecl *Template = Name.getAsTemplateDecl();
if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
Template = getCanonicalTemplateTemplateParmDecl(TTP);
// The canonical template name is the canonical template declaration.
return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
}
case TemplateName::OverloadedTemplate:
case TemplateName::AssumedTemplate:
llvm_unreachable("cannot canonicalize unresolved template");
case TemplateName::DependentTemplate: {
DependentTemplateName *DTN = Name.getAsDependentTemplateName();
assert(DTN && "Non-dependent template names must refer to template decls.");
return DTN->CanonicalTemplateName;
}
case TemplateName::SubstTemplateTemplateParm: {
SubstTemplateTemplateParmStorage *subst
= Name.getAsSubstTemplateTemplateParm();
return getCanonicalTemplateName(subst->getReplacement());
}
case TemplateName::SubstTemplateTemplateParmPack: {
SubstTemplateTemplateParmPackStorage *subst
= Name.getAsSubstTemplateTemplateParmPack();
TemplateTemplateParmDecl *canonParameter
= getCanonicalTemplateTemplateParmDecl(subst->getParameterPack());
TemplateArgument canonArgPack
= getCanonicalTemplateArgument(subst->getArgumentPack());
return getSubstTemplateTemplateParmPack(canonParameter, canonArgPack);
}
}
llvm_unreachable("bad template name!");
}
bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
X = getCanonicalTemplateName(X);
Y = getCanonicalTemplateName(Y);
return X.getAsVoidPointer() == Y.getAsVoidPointer();
}
TemplateArgument
ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
switch (Arg.getKind()) {
case TemplateArgument::Null:
return Arg;
case TemplateArgument::Expression:
return Arg;
case TemplateArgument::Declaration: {
auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
return TemplateArgument(D, Arg.getParamTypeForDecl());
}
case TemplateArgument::NullPtr:
return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
/*isNullPtr*/true);
case TemplateArgument::Template:
return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
case TemplateArgument::TemplateExpansion:
return TemplateArgument(getCanonicalTemplateName(
Arg.getAsTemplateOrTemplatePattern()),
Arg.getNumTemplateExpansions());
case TemplateArgument::Integral:
return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
case TemplateArgument::Type:
return TemplateArgument(getCanonicalType(Arg.getAsType()));
case TemplateArgument::Pack: {
if (Arg.pack_size() == 0)
return Arg;
auto *CanonArgs = new (*this) TemplateArgument[Arg.pack_size()];
unsigned Idx = 0;
for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
AEnd = Arg.pack_end();
A != AEnd; (void)++A, ++Idx)
CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
return TemplateArgument(llvm::makeArrayRef(CanonArgs, Arg.pack_size()));
}
}
// Silence GCC warning
llvm_unreachable("Unhandled template argument kind");
}
NestedNameSpecifier *
ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
if (!NNS)
return nullptr;
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
// Canonicalize the prefix but keep the identifier the same.
return NestedNameSpecifier::Create(*this,
getCanonicalNestedNameSpecifier(NNS->getPrefix()),
NNS->getAsIdentifier());
case NestedNameSpecifier::Namespace:
// A namespace is canonical; build a nested-name-specifier with
// this namespace and no prefix.
return NestedNameSpecifier::Create(*this, nullptr,
NNS->getAsNamespace()->getOriginalNamespace());
case NestedNameSpecifier::NamespaceAlias:
// A namespace is canonical; build a nested-name-specifier with
// this namespace and no prefix.
return NestedNameSpecifier::Create(*this, nullptr,
NNS->getAsNamespaceAlias()->getNamespace()
->getOriginalNamespace());
case NestedNameSpecifier::TypeSpec:
case NestedNameSpecifier::TypeSpecWithTemplate: {
QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
// If we have some kind of dependent-named type (e.g., "typename T::type"),
// break it apart into its prefix and identifier, then reconsititute those
// as the canonical nested-name-specifier. This is required to canonicalize
// a dependent nested-name-specifier involving typedefs of dependent-name
// types, e.g.,
// typedef typename T::type T1;
// typedef typename T1::type T2;
if (const auto *DNT = T->getAs<DependentNameType>())
return NestedNameSpecifier::Create(*this, DNT->getQualifier(),
const_cast<IdentifierInfo *>(DNT->getIdentifier()));
// Otherwise, just canonicalize the type, and force it to be a TypeSpec.
// FIXME: Why are TypeSpec and TypeSpecWithTemplate distinct in the
// first place?
return NestedNameSpecifier::Create(*this, nullptr, false,
const_cast<Type *>(T.getTypePtr()));
}
case NestedNameSpecifier::Global:
case NestedNameSpecifier::Super:
// The global specifier and __super specifer are canonical and unique.
return NNS;
}
llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
}
const ArrayType *ASTContext::getAsArrayType(QualType T) const {
// Handle the non-qualified case efficiently.
if (!T.hasLocalQualifiers()) {
// Handle the common positive case fast.
if (const auto *AT = dyn_cast<ArrayType>(T))
return AT;
}
// Handle the common negative case fast.
if (!isa<ArrayType>(T.getCanonicalType()))
return nullptr;
// Apply any qualifiers from the array type to the element type. This
// implements C99 6.7.3p8: "If the specification of an array type includes
// any type qualifiers, the element type is so qualified, not the array type."
// If we get here, we either have type qualifiers on the type, or we have
// sugar such as a typedef in the way. If we have type qualifiers on the type
// we must propagate them down into the element type.
SplitQualType split = T.getSplitDesugaredType();
Qualifiers qs = split.Quals;
// If we have a simple case, just return now.
const auto *ATy = dyn_cast<ArrayType>(split.Ty);
if (!ATy || qs.empty())
return ATy;
// Otherwise, we have an array and we have qualifiers on it. Push the
// qualifiers into the array element type and return a new array type.
QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
CAT->getSizeExpr(),
CAT->getSizeModifier(),
CAT->getIndexTypeCVRQualifiers()));
if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
IAT->getSizeModifier(),
IAT->getIndexTypeCVRQualifiers()));
if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
return cast<ArrayType>(
getDependentSizedArrayType(NewEltTy,
DSAT->getSizeExpr(),
DSAT->getSizeModifier(),
DSAT->getIndexTypeCVRQualifiers(),
DSAT->getBracketsRange()));
const auto *VAT = cast<VariableArrayType>(ATy);
return cast<ArrayType>(getVariableArrayType(NewEltTy,
VAT->getSizeExpr(),
VAT->getSizeModifier(),
VAT->getIndexTypeCVRQualifiers(),
VAT->getBracketsRange()));
}
QualType ASTContext::getAdjustedParameterType(QualType T) const {
if (T->isArrayType() || T->isFunctionType())
return getDecayedType(T);
return T;
}
QualType ASTContext::getSignatureParameterType(QualType T) const {
T = getVariableArrayDecayedType(T);
T = getAdjustedParameterType(T);
return T.getUnqualifiedType();
}
QualType ASTContext::getExceptionObjectType(QualType T) const {
// C++ [except.throw]p3:
// A throw-expression initializes a temporary object, called the exception
// object, the type of which is determined by removing any top-level
// cv-qualifiers from the static type of the operand of throw and adjusting
// the type from "array of T" or "function returning T" to "pointer to T"
// or "pointer to function returning T", [...]
T = getVariableArrayDecayedType(T);
if (T->isArrayType() || T->isFunctionType())
T = getDecayedType(T);
return T.getUnqualifiedType();
}
/// getArrayDecayedType - Return the properly qualified result of decaying the
/// specified array type to a pointer. This operation is non-trivial when
/// handling typedefs etc. The canonical type of "T" must be an array type,
/// this returns a pointer to a properly qualified element of the array.
///
/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
QualType ASTContext::getArrayDecayedType(QualType Ty) const {
// Get the element type with 'getAsArrayType' so that we don't lose any
// typedefs in the element type of the array. This also handles propagation
// of type qualifiers from the array type into the element type if present
// (C99 6.7.3p8).
const ArrayType *PrettyArrayType = getAsArrayType(Ty);
assert(PrettyArrayType && "Not an array type!");
QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
// int x[restrict 4] -> int *restrict
QualType Result = getQualifiedType(PtrTy,
PrettyArrayType->getIndexTypeQualifiers());
// int x[_Nullable] -> int * _Nullable
if (auto Nullability = Ty->getNullability(*this)) {
Result = const_cast<ASTContext *>(this)->getAttributedType(
AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
}
return Result;
}
QualType ASTContext::getBaseElementType(const ArrayType *array) const {
return getBaseElementType(array->getElementType());
}
QualType ASTContext::getBaseElementType(QualType type) const {
Qualifiers qs;
while (true) {
SplitQualType split = type.getSplitDesugaredType();
const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
if (!array) break;
type = array->getElementType();
qs.addConsistentQualifiers(split.Quals);
}
return getQualifiedType(type, qs);
}
/// getConstantArrayElementCount - Returns number of constant array elements.
uint64_t
ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
uint64_t ElementCount = 1;
do {
ElementCount *= CA->getSize().getZExtValue();
CA = dyn_cast_or_null<ConstantArrayType>(
CA->getElementType()->getAsArrayTypeUnsafe());
} while (CA);
return ElementCount;
}
/// getFloatingRank - Return a relative rank for floating point types.
/// This routine will assert if passed a built-in type that isn't a float.
static FloatingRank getFloatingRank(QualType T) {
if (const auto *CT = T->getAs<ComplexType>())
return getFloatingRank(CT->getElementType());
switch (T->castAs<BuiltinType>()->getKind()) {
default: llvm_unreachable("getFloatingRank(): not a floating type");
case BuiltinType::Float16: return Float16Rank;
case BuiltinType::Half: return HalfRank;
case BuiltinType::Float: return FloatRank;
case BuiltinType::Double: return DoubleRank;
case BuiltinType::LongDouble: return LongDoubleRank;
case BuiltinType::Float128: return Float128Rank;
case BuiltinType::BFloat16: return BFloat16Rank;
}
}
/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
/// point or a complex type (based on typeDomain/typeSize).
/// 'typeDomain' is a real floating point or complex type.
/// 'typeSize' is a real floating point or complex type.
QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
QualType Domain) const {
FloatingRank EltRank = getFloatingRank(Size);
if (Domain->isComplexType()) {
switch (EltRank) {
case BFloat16Rank: llvm_unreachable("Complex bfloat16 is not supported");
case Float16Rank:
case HalfRank: llvm_unreachable("Complex half is not supported");
case FloatRank: return FloatComplexTy;
case DoubleRank: return DoubleComplexTy;
case LongDoubleRank: return LongDoubleComplexTy;
case Float128Rank: return Float128ComplexTy;
}
}
assert(Domain->isRealFloatingType() && "Unknown domain!");
switch (EltRank) {
case Float16Rank: return HalfTy;
case BFloat16Rank: return BFloat16Ty;
case HalfRank: return HalfTy;
case FloatRank: return FloatTy;
case DoubleRank: return DoubleTy;
case LongDoubleRank: return LongDoubleTy;
case Float128Rank: return Float128Ty;
}
llvm_unreachable("getFloatingRank(): illegal value for rank");
}
/// getFloatingTypeOrder - Compare the rank of the two specified floating
/// point types, ignoring the domain of the type (i.e. 'double' ==
/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
FloatingRank LHSR = getFloatingRank(LHS);
FloatingRank RHSR = getFloatingRank(RHS);
if (LHSR == RHSR)
return 0;
if (LHSR > RHSR)
return 1;
return -1;
}
int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
return 0;
return getFloatingTypeOrder(LHS, RHS);
}
/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
/// routine will assert if passed a built-in type that isn't an integer or enum,
/// or if it is not canonicalized.
unsigned ASTContext::getIntegerRank(const Type *T) const {
assert(T->isCanonicalUnqualified() && "T should be canonicalized");
// Results in this 'losing' to any type of the same size, but winning if
// larger.
if (const auto *EIT = dyn_cast<ExtIntType>(T))
return 0 + (EIT->getNumBits() << 3);
switch (cast<BuiltinType>(T)->getKind()) {
default: llvm_unreachable("getIntegerRank(): not a built-in integer");
case BuiltinType::Bool:
return 1 + (getIntWidth(BoolTy) << 3);
case BuiltinType::Char_S:
case BuiltinType::Char_U:
case BuiltinType::SChar:
case BuiltinType::UChar:
return 2 + (getIntWidth(CharTy) << 3);
case BuiltinType::Short:
case BuiltinType::UShort:
return 3 + (getIntWidth(ShortTy) << 3);
case BuiltinType::Int:
case BuiltinType::UInt:
return 4 + (getIntWidth(IntTy) << 3);
case BuiltinType::Long:
case BuiltinType::ULong:
return 5 + (getIntWidth(LongTy) << 3);
case BuiltinType::LongLong:
case BuiltinType::ULongLong:
return 6 + (getIntWidth(LongLongTy) << 3);
case BuiltinType::Int128:
case BuiltinType::UInt128:
return 7 + (getIntWidth(Int128Ty) << 3);
}
}
/// Whether this is a promotable bitfield reference according
/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
///
/// \returns the type this bit-field will promote to, or NULL if no
/// promotion occurs.
QualType ASTContext::isPromotableBitField(Expr *E) const {
if (E->isTypeDependent() || E->isValueDependent())
return {};
// C++ [conv.prom]p5:
// If the bit-field has an enumerated type, it is treated as any other
// value of that type for promotion purposes.
if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
return {};
// FIXME: We should not do this unless E->refersToBitField() is true. This
// matters in C where getSourceBitField() will find bit-fields for various
// cases where the source expression is not a bit-field designator.
FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
if (!Field)
return {};
QualType FT = Field->getType();
uint64_t BitWidth = Field->getBitWidthValue(*this);
uint64_t IntSize = getTypeSize(IntTy);
// C++ [conv.prom]p5:
// A prvalue for an integral bit-field can be converted to a prvalue of type
// int if int can represent all the values of the bit-field; otherwise, it
// can be converted to unsigned int if unsigned int can represent all the
// values of the bit-field. If the bit-field is larger yet, no integral
// promotion applies to it.
// C11 6.3.1.1/2:
// [For a bit-field of type _Bool, int, signed int, or unsigned int:]
// If an int can represent all values of the original type (as restricted by
// the width, for a bit-field), the value is converted to an int; otherwise,
// it is converted to an unsigned int.
//
// FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
// We perform that promotion here to match GCC and C++.
// FIXME: C does not permit promotion of an enum bit-field whose rank is
// greater than that of 'int'. We perform that promotion to match GCC.
if (BitWidth < IntSize)
return IntTy;
if (BitWidth == IntSize)
return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
// Bit-fields wider than int are not subject to promotions, and therefore act
// like the base type. GCC has some weird bugs in this area that we
// deliberately do not follow (GCC follows a pre-standard resolution to
// C's DR315 which treats bit-width as being part of the type, and this leaks
// into their semantics in some cases).
return {};
}
/// getPromotedIntegerType - Returns the type that Promotable will
/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
/// integer type.
QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
assert(!Promotable.isNull());
assert(Promotable->isPromotableIntegerType());
if (const auto *ET = Promotable->getAs<EnumType>())
return ET->getDecl()->getPromotionType();
if (const auto *BT = Promotable->getAs<BuiltinType>()) {
// C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
// (3.9.1) can be converted to a prvalue of the first of the following
// types that can represent all the values of its underlying type:
// int, unsigned int, long int, unsigned long int, long long int, or
// unsigned long long int [...]
// FIXME: Is there some better way to compute this?
if (BT->getKind() == BuiltinType::WChar_S ||
BT->getKind() == BuiltinType::WChar_U ||
BT->getKind() == BuiltinType::Char8 ||
BT->getKind() == BuiltinType::Char16 ||
BT->getKind() == BuiltinType::Char32) {
bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
uint64_t FromSize = getTypeSize(BT);
QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
LongLongTy, UnsignedLongLongTy };
for (size_t Idx = 0; Idx < llvm::array_lengthof(PromoteTypes); ++Idx) {
uint64_t ToSize = getTypeSize(PromoteTypes[Idx]);
if (FromSize < ToSize ||
(FromSize == ToSize &&
FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType()))
return PromoteTypes[Idx];
}
llvm_unreachable("char type should fit into long long");
}
}
// At this point, we should have a signed or unsigned integer type.
if (Promotable->isSignedIntegerType())
return IntTy;
uint64_t PromotableSize = getIntWidth(Promotable);
uint64_t IntSize = getIntWidth(IntTy);
assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
}
/// Recurses in pointer/array types until it finds an objc retainable
/// type and returns its ownership.
Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
while (!T.isNull()) {
if (T.getObjCLifetime() != Qualifiers::OCL_None)
return T.getObjCLifetime();
if (T->isArrayType())
T = getBaseElementType(T);
else if (const auto *PT = T->getAs<PointerType>())
T = PT->getPointeeType();
else if (const auto *RT = T->getAs<ReferenceType>())
T = RT->getPointeeType();
else
break;
}
return Qualifiers::OCL_None;
}
static const Type *getIntegerTypeForEnum(const EnumType *ET) {
// Incomplete enum types are not treated as integer types.
// FIXME: In C++, enum types are never integer types.
if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
return ET->getDecl()->getIntegerType().getTypePtr();
return nullptr;
}
/// getIntegerTypeOrder - Returns the highest ranked integer type:
/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
/// LHS < RHS, return -1.
int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
const Type *LHSC = getCanonicalType(LHS).getTypePtr();
const Type *RHSC = getCanonicalType(RHS).getTypePtr();
// Unwrap enums to their underlying type.
if (const auto *ET = dyn_cast<EnumType>(LHSC))
LHSC = getIntegerTypeForEnum(ET);
if (const auto *ET = dyn_cast<EnumType>(RHSC))
RHSC = getIntegerTypeForEnum(ET);
if (LHSC == RHSC) return 0;
bool LHSUnsigned = LHSC->isUnsignedIntegerType();
bool RHSUnsigned = RHSC->isUnsignedIntegerType();
unsigned LHSRank = getIntegerRank(LHSC);
unsigned RHSRank = getIntegerRank(RHSC);
if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
if (LHSRank == RHSRank) return 0;
return LHSRank > RHSRank ? 1 : -1;
}
// Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
if (LHSUnsigned) {
// If the unsigned [LHS] type is larger, return it.
if (LHSRank >= RHSRank)
return 1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return -1;
}
// If the unsigned [RHS] type is larger, return it.
if (RHSRank >= LHSRank)
return -1;
// If the signed type can represent all values of the unsigned type, it
// wins. Because we are dealing with 2's complement and types that are
// powers of two larger than each other, this is always safe.
return 1;
}
TypedefDecl *ASTContext::getCFConstantStringDecl() const {
if (CFConstantStringTypeDecl)
return CFConstantStringTypeDecl;
assert(!CFConstantStringTagDecl &&
"tag and typedef should be initialized together");
CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
CFConstantStringTagDecl->startDefinition();
struct {
QualType Type;
const char *Name;
} Fields[5];
unsigned Count = 0;
/// Objective-C ABI
///
/// typedef struct __NSConstantString_tag {
/// const int *isa;
/// int flags;
/// const char *str;
/// long length;
/// } __NSConstantString;
///
/// Swift ABI (4.1, 4.2)
///
/// typedef struct __NSConstantString_tag {
/// uintptr_t _cfisa;
/// uintptr_t _swift_rc;
/// _Atomic(uint64_t) _cfinfoa;
/// const char *_ptr;
/// uint32_t _length;
/// } __NSConstantString;
///
/// Swift ABI (5.0)
///
/// typedef struct __NSConstantString_tag {
/// uintptr_t _cfisa;
/// uintptr_t _swift_rc;
/// _Atomic(uint64_t) _cfinfoa;
/// const char *_ptr;
/// uintptr_t _length;
/// } __NSConstantString;
const auto CFRuntime = getLangOpts().CFRuntime;
if (static_cast<unsigned>(CFRuntime) <
static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
Fields[Count++] = { IntTy, "flags" };
Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
Fields[Count++] = { LongTy, "length" };
} else {
Fields[Count++] = { getUIntPtrType(), "_cfisa" };
Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
Fields[Count++] = { IntTy, "_ptr" };
else
Fields[Count++] = { getUIntPtrType(), "_ptr" };
}
// Create fields
for (unsigned i = 0; i < Count; ++i) {
FieldDecl *Field =
FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
SourceLocation(), &Idents.get(Fields[i].Name),
Fields[i].Type, /*TInfo=*/nullptr,
/*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
Field->setAccess(AS_public);
CFConstantStringTagDecl->addDecl(Field);
}
CFConstantStringTagDecl->completeDefinition();
// This type is designed to be compatible with NSConstantString, but cannot
// use the same name, since NSConstantString is an interface.
auto tagType = getTagDeclType(CFConstantStringTagDecl);
CFConstantStringTypeDecl =
buildImplicitTypedef(tagType, "__NSConstantString");
return CFConstantStringTypeDecl;
}
RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
if (!CFConstantStringTagDecl)
getCFConstantStringDecl(); // Build the tag and the typedef.
return CFConstantStringTagDecl;
}
// getCFConstantStringType - Return the type used for constant CFStrings.
QualType ASTContext::getCFConstantStringType() const {
return getTypedefType(getCFConstantStringDecl());
}
QualType ASTContext::getObjCSuperType() const {
if (ObjCSuperType.isNull()) {
RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
TUDecl->addDecl(ObjCSuperTypeDecl);
ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
}
return ObjCSuperType;
}
void ASTContext::setCFConstantStringType(QualType T) {
const auto *TD = T->castAs<TypedefType>();
CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
const auto *TagType =
CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
CFConstantStringTagDecl = TagType->getDecl();
}
QualType ASTContext::getBlockDescriptorType() const {
if (BlockDescriptorType)
return getTagDeclType(BlockDescriptorType);
RecordDecl *RD;
// FIXME: Needs the FlagAppleBlock bit.
RD = buildImplicitRecord("__block_descriptor");
RD->startDefinition();
QualType FieldTypes[] = {
UnsignedLongTy,
UnsignedLongTy,
};
static const char *const FieldNames[] = {
"reserved",
"Size"
};
for (size_t i = 0; i < 2; ++i) {
FieldDecl *Field = FieldDecl::Create(
*this, RD, SourceLocation(), SourceLocation(),
&Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
Field->setAccess(AS_public);
RD->addDecl(Field);
}
RD->completeDefinition();
BlockDescriptorType = RD;
return getTagDeclType(BlockDescriptorType);
}
QualType ASTContext::getBlockDescriptorExtendedType() const {
if (BlockDescriptorExtendedType)
return getTagDeclType(BlockDescriptorExtendedType);
RecordDecl *RD;
// FIXME: Needs the FlagAppleBlock bit.
RD = buildImplicitRecord("__block_descriptor_withcopydispose");
RD->startDefinition();
QualType FieldTypes[] = {
UnsignedLongTy,
UnsignedLongTy,
getPointerType(VoidPtrTy),
getPointerType(VoidPtrTy)
};
static const char *const FieldNames[] = {
"reserved",
"Size",
"CopyFuncPtr",
"DestroyFuncPtr"
};
for (size_t i = 0; i < 4; ++i) {
FieldDecl *Field = FieldDecl::Create(
*this, RD, SourceLocation(), SourceLocation(),
&Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false, ICIS_NoInit);
Field->setAccess(AS_public);
RD->addDecl(Field);
}
RD->completeDefinition();
BlockDescriptorExtendedType = RD;
return getTagDeclType(BlockDescriptorExtendedType);
}
OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
const auto *BT = dyn_cast<BuiltinType>(T);
if (!BT) {
if (isa<PipeType>(T))
return OCLTK_Pipe;
return OCLTK_Default;
}
switch (BT->getKind()) {
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id: \
return OCLTK_Image;
#include "clang/Basic/OpenCLImageTypes.def"
case BuiltinType::OCLClkEvent:
return OCLTK_ClkEvent;
case BuiltinType::OCLEvent:
return OCLTK_Event;
case BuiltinType::OCLQueue:
return OCLTK_Queue;
case BuiltinType::OCLReserveID:
return OCLTK_ReserveID;
case BuiltinType::OCLSampler:
return OCLTK_Sampler;
default:
return OCLTK_Default;
}
}
LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
}
/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
/// requires copy/dispose. Note that this must match the logic
/// in buildByrefHelpers.
bool ASTContext::BlockRequiresCopying(QualType Ty,
const VarDecl *D) {
if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
if (!copyExpr && record->hasTrivialDestructor()) return false;
return true;
}
// The block needs copy/destroy helpers if Ty is non-trivial to destructively
// move or destroy.
if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
return true;
if (!Ty->isObjCRetainableType()) return false;
Qualifiers qs = Ty.getQualifiers();
// If we have lifetime, that dominates.
if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
switch (lifetime) {
case Qualifiers::OCL_None: llvm_unreachable("impossible");
// These are just bits as far as the runtime is concerned.
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
return false;
// These cases should have been taken care of when checking the type's
// non-triviality.
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Strong:
llvm_unreachable("impossible");
}
llvm_unreachable("fell out of lifetime switch!");
}
return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
Ty->isObjCObjectPointerType());
}
bool ASTContext::getByrefLifetime(QualType Ty,
Qualifiers::ObjCLifetime &LifeTime,
bool &HasByrefExtendedLayout) const {
if (!getLangOpts().ObjC ||
getLangOpts().getGC() != LangOptions::NonGC)
return false;
HasByrefExtendedLayout = false;
if (Ty->isRecordType()) {
HasByrefExtendedLayout = true;
LifeTime = Qualifiers::OCL_None;
} else if ((LifeTime = Ty.getObjCLifetime())) {
// Honor the ARC qualifiers.
} else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
// The MRR rule.
LifeTime = Qualifiers::OCL_ExplicitNone;
} else {
LifeTime = Qualifiers::OCL_None;
}
return true;
}
CanQualType ASTContext::getNSUIntegerType() const {
assert(Target && "Expected target to be initialized");
const llvm::Triple &T = Target->getTriple();
// Windows is LLP64 rather than LP64
if (T.isOSWindows() && T.isArch64Bit())
return UnsignedLongLongTy;
return UnsignedLongTy;
}
CanQualType ASTContext::getNSIntegerType() const {
assert(Target && "Expected target to be initialized");
const llvm::Triple &T = Target->getTriple();
// Windows is LLP64 rather than LP64
if (T.isOSWindows() && T.isArch64Bit())
return LongLongTy;
return LongTy;
}
TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
if (!ObjCInstanceTypeDecl)
ObjCInstanceTypeDecl =
buildImplicitTypedef(getObjCIdType(), "instancetype");
return ObjCInstanceTypeDecl;
}
// This returns true if a type has been typedefed to BOOL:
// typedef <type> BOOL;
static bool isTypeTypedefedAsBOOL(QualType T) {
if (const auto *TT = dyn_cast<TypedefType>(T))
if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
return II->isStr("BOOL");
return false;
}
/// getObjCEncodingTypeSize returns size of type for objective-c encoding
/// purpose.
CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
if (!type->isIncompleteArrayType() && type->isIncompleteType())
return CharUnits::Zero();
CharUnits sz = getTypeSizeInChars(type);
// Make all integer and enum types at least as large as an int
if (sz.isPositive() && type->isIntegralOrEnumerationType())
sz = std::max(sz, getTypeSizeInChars(IntTy));
// Treat arrays as pointers, since that's how they're passed in.
else if (type->isArrayType())
sz = getTypeSizeInChars(VoidPtrTy);
return sz;
}
bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
return getTargetInfo().getCXXABI().isMicrosoft() &&
VD->isStaticDataMember() &&
VD->getType()->isIntegralOrEnumerationType() &&
!VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
}
ASTContext::InlineVariableDefinitionKind
ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
if (!VD->isInline())
return InlineVariableDefinitionKind::None;
// In almost all cases, it's a weak definition.
auto *First = VD->getFirstDecl();
if (First->isInlineSpecified() || !First->isStaticDataMember())
return InlineVariableDefinitionKind::Weak;
// If there's a file-context declaration in this translation unit, it's a
// non-discardable definition.
for (auto *D : VD->redecls())
if (D->getLexicalDeclContext()->isFileContext() &&
!D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
return InlineVariableDefinitionKind::Strong;
// If we've not seen one yet, we don't know.
return InlineVariableDefinitionKind::WeakUnknown;
}
static std::string charUnitsToString(const CharUnits &CU) {
return llvm::itostr(CU.getQuantity());
}
/// getObjCEncodingForBlock - Return the encoded type for this block
/// declaration.
std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
std::string S;
const BlockDecl *Decl = Expr->getBlockDecl();
QualType BlockTy =
Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
// Encode result type.
if (getLangOpts().EncodeExtendedBlockSig)
getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
true /*Extended*/);
else
getObjCEncodingForType(BlockReturnTy, S);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
CharUnits ParmOffset = PtrSize;
for (auto PI : Decl->parameters()) {
QualType PType = PI->getType();
CharUnits sz = getObjCEncodingTypeSize(PType);
if (sz.isZero())
continue;
assert(sz.isPositive() && "BlockExpr - Incomplete param type");
ParmOffset += sz;
}
// Size of the argument frame
S += charUnitsToString(ParmOffset);
// Block pointer and offset.
S += "@?0";
// Argument types.
ParmOffset = PtrSize;
for (auto PVDecl : Decl->parameters()) {
QualType PType = PVDecl->getOriginalType();
if (const auto *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
// Use array's original type only if it has known number of
// elements.
if (!isa<ConstantArrayType>(AT))
PType = PVDecl->getType();
} else if (PType->isFunctionType())
PType = PVDecl->getType();
if (getLangOpts().EncodeExtendedBlockSig)
getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
S, true /*Extended*/);
else
getObjCEncodingForType(PType, S);
S += charUnitsToString(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
return S;
}
std::string
ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
std::string S;
// Encode result type.
getObjCEncodingForType(Decl->getReturnType(), S);
CharUnits ParmOffset;
// Compute size of all parameters.
for (auto PI : Decl->parameters()) {
QualType PType = PI->getType();
CharUnits sz = getObjCEncodingTypeSize(PType);
if (sz.isZero())
continue;
assert(sz.isPositive() &&
"getObjCEncodingForFunctionDecl - Incomplete param type");
ParmOffset += sz;
}
S += charUnitsToString(ParmOffset);
ParmOffset = CharUnits::Zero();
// Argument types.
for (auto PVDecl : Decl->parameters()) {
QualType PType = PVDecl->getOriginalType();
if (const auto *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
// Use array's original type only if it has known number of
// elements.
if (!isa<ConstantArrayType>(AT))
PType = PVDecl->getType();
} else if (PType->isFunctionType())
PType = PVDecl->getType();
getObjCEncodingForType(PType, S);
S += charUnitsToString(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
return S;
}
/// getObjCEncodingForMethodParameter - Return the encoded type for a single
/// method parameter or return type. If Extended, include class names and
/// block object types.
void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
QualType T, std::string& S,
bool Extended) const {
// Encode type qualifer, 'in', 'inout', etc. for the parameter.
getObjCEncodingForTypeQualifier(QT, S);
// Encode parameter type.
ObjCEncOptions Options = ObjCEncOptions()
.setExpandPointedToStructures()
.setExpandStructures()
.setIsOutermostType();
if (Extended)
Options.setEncodeBlockParameters().setEncodeClassNames();
getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
}
/// getObjCEncodingForMethodDecl - Return the encoded type for this method
/// declaration.
std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
bool Extended) const {
// FIXME: This is not very efficient.
// Encode return type.
std::string S;
getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
Decl->getReturnType(), S, Extended);
// Compute size of all parameters.
// Start with computing size of a pointer in number of bytes.
// FIXME: There might(should) be a better way of doing this computation!
CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
// The first two arguments (self and _cmd) are pointers; account for
// their size.
CharUnits ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
E = Decl->sel_param_end(); PI != E; ++PI) {
QualType PType = (*PI)->getType();
CharUnits sz = getObjCEncodingTypeSize(PType);
if (sz.isZero())
continue;
assert(sz.isPositive() &&
"getObjCEncodingForMethodDecl - Incomplete param type");
ParmOffset += sz;
}
S += charUnitsToString(ParmOffset);
S += "@0:";
S += charUnitsToString(PtrSize);
// Argument types.
ParmOffset = 2 * PtrSize;
for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
E = Decl->sel_param_end(); PI != E; ++PI) {
const ParmVarDecl *PVDecl = *PI;
QualType PType = PVDecl->getOriginalType();
if (const auto *AT =
dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
// Use array's original type only if it has known number of
// elements.
if (!isa<ConstantArrayType>(AT))
PType = PVDecl->getType();
} else if (PType->isFunctionType())
PType = PVDecl->getType();
getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
PType, S, Extended);
S += charUnitsToString(ParmOffset);
ParmOffset += getObjCEncodingTypeSize(PType);
}
return S;
}
ObjCPropertyImplDecl *
ASTContext::getObjCPropertyImplDeclForPropertyDecl(
const ObjCPropertyDecl *PD,
const Decl *Container) const {
if (!Container)
return nullptr;
if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
for (auto *PID : CID->property_impls())
if (PID->getPropertyDecl() == PD)
return PID;
} else {
const auto *OID = cast<ObjCImplementationDecl>(Container);
for (auto *PID : OID->property_impls())
if (PID->getPropertyDecl() == PD)
return PID;
}
return nullptr;
}
/// getObjCEncodingForPropertyDecl - Return the encoded type for this
/// property declaration. If non-NULL, Container must be either an
/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
/// NULL when getting encodings for protocol properties.
/// Property attributes are stored as a comma-delimited C string. The simple
/// attributes readonly and bycopy are encoded as single characters. The
/// parametrized attributes, getter=name, setter=name, and ivar=name, are
/// encoded as single characters, followed by an identifier. Property types
/// are also encoded as a parametrized attribute. The characters used to encode
/// these attributes are defined by the following enumeration:
/// @code
/// enum PropertyAttributes {
/// kPropertyReadOnly = 'R', // property is read-only.
/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
/// kPropertyByref = '&', // property is a reference to the value last assigned
/// kPropertyDynamic = 'D', // property is dynamic
/// kPropertyGetter = 'G', // followed by getter selector name
/// kPropertySetter = 'S', // followed by setter selector name
/// kPropertyInstanceVariable = 'V' // followed by instance variable name
/// kPropertyType = 'T' // followed by old-style type encoding.
/// kPropertyWeak = 'W' // 'weak' property
/// kPropertyStrong = 'P' // property GC'able
/// kPropertyNonAtomic = 'N' // property non-atomic
/// };
/// @endcode
std::string
ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
const Decl *Container) const {
// Collect information from the property implementation decl(s).
bool Dynamic = false;
ObjCPropertyImplDecl *SynthesizePID = nullptr;
if (ObjCPropertyImplDecl *PropertyImpDecl =
getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
Dynamic = true;
else
SynthesizePID = PropertyImpDecl;
}
// FIXME: This is not very efficient.
std::string S = "T";
// Encode result type.
// GCC has some special rules regarding encoding of properties which
// closely resembles encoding of ivars.
getObjCEncodingForPropertyType(PD->getType(), S);
if (PD->isReadOnly()) {
S += ",R";
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
S += ",C";
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
S += ",&";
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
S += ",W";
} else {
switch (PD->getSetterKind()) {
case ObjCPropertyDecl::Assign: break;
case ObjCPropertyDecl::Copy: S += ",C"; break;
case ObjCPropertyDecl::Retain: S += ",&"; break;
case ObjCPropertyDecl::Weak: S += ",W"; break;
}
}
// It really isn't clear at all what this means, since properties
// are "dynamic by default".
if (Dynamic)
S += ",D";
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
S += ",N";
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
S += ",G";
S += PD->getGetterName().getAsString();
}
if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
S += ",S";
S += PD->getSetterName().getAsString();
}
if (SynthesizePID) {
const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
S += ",V";
S += OID->getNameAsString();
}
// FIXME: OBJCGC: weak & strong
return S;
}
/// getLegacyIntegralTypeEncoding -
/// Another legacy compatibility encoding: 32-bit longs are encoded as
/// 'l' or 'L' , but not always. For typedefs, we need to use
/// 'i' or 'I' instead if encoding a struct field, or a pointer!
void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
if (isa<TypedefType>(PointeeTy.getTypePtr())) {
if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
PointeeTy = UnsignedIntTy;
else
if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
PointeeTy = IntTy;
}
}
}
void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
const FieldDecl *Field,
QualType *NotEncodedT) const {
// We follow the behavior of gcc, expanding structures which are
// directly pointed to, and expanding embedded structures. Note that
// these rules are sufficient to prevent recursive encoding of the
// same type.
getObjCEncodingForTypeImpl(T, S,
ObjCEncOptions()
.setExpandPointedToStructures()
.setExpandStructures()
.setIsOutermostType(),
Field, NotEncodedT);
}
void ASTContext::getObjCEncodingForPropertyType(QualType T,
std::string& S) const {
// Encode result type.
// GCC has some special rules regarding encoding of properties which
// closely resembles encoding of ivars.
getObjCEncodingForTypeImpl(T, S,
ObjCEncOptions()
.setExpandPointedToStructures()
.setExpandStructures()
.setIsOutermostType()
.setEncodingProperty(),
/*Field=*/nullptr);
}
static char getObjCEncodingForPrimitiveType(const ASTContext *C,
const BuiltinType *BT) {
BuiltinType::Kind kind = BT->getKind();
switch (kind) {
case BuiltinType::Void: return 'v';
case BuiltinType::Bool: return 'B';
case BuiltinType::Char8:
case BuiltinType::Char_U:
case BuiltinType::UChar: return 'C';
case BuiltinType::Char16:
case BuiltinType::UShort: return 'S';
case BuiltinType::Char32:
case BuiltinType::UInt: return 'I';
case BuiltinType::ULong:
return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
case BuiltinType::UInt128: return 'T';
case BuiltinType::ULongLong: return 'Q';
case BuiltinType::Char_S:
case BuiltinType::SChar: return 'c';
case BuiltinType::Short: return 's';
case BuiltinType::WChar_S:
case BuiltinType::WChar_U:
case BuiltinType::Int: return 'i';
case BuiltinType::Long:
return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
case BuiltinType::LongLong: return 'q';
case BuiltinType::Int128: return 't';
case BuiltinType::Float: return 'f';
case BuiltinType::Double: return 'd';
case BuiltinType::LongDouble: return 'D';
case BuiltinType::NullPtr: return '*'; // like char*
case BuiltinType::BFloat16:
case BuiltinType::Float16:
case BuiltinType::Float128:
case BuiltinType::Half:
case BuiltinType::ShortAccum:
case BuiltinType::Accum:
case BuiltinType::LongAccum:
case BuiltinType::UShortAccum:
case BuiltinType::UAccum:
case BuiltinType::ULongAccum:
case BuiltinType::ShortFract:
case BuiltinType::Fract:
case BuiltinType::LongFract:
case BuiltinType::UShortFract:
case BuiltinType::UFract:
case BuiltinType::ULongFract:
case BuiltinType::SatShortAccum:
case BuiltinType::SatAccum:
case BuiltinType::SatLongAccum:
case BuiltinType::SatUShortAccum:
case BuiltinType::SatUAccum:
case BuiltinType::SatULongAccum:
case BuiltinType::SatShortFract:
case BuiltinType::SatFract:
case BuiltinType::SatLongFract:
case BuiltinType::SatUShortFract:
case BuiltinType::SatUFract:
case BuiltinType::SatULongFract:
// FIXME: potentially need @encodes for these!
return ' ';
#define SVE_TYPE(Name, Id, SingletonId) \
case BuiltinType::Id:
#include "clang/Basic/AArch64SVEACLETypes.def"
{
DiagnosticsEngine &Diags = C->getDiagnostics();
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "cannot yet @encode type %0");
Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
return ' ';
}
case BuiltinType::ObjCId:
case BuiltinType::ObjCClass:
case BuiltinType::ObjCSel:
llvm_unreachable("@encoding ObjC primitive type");
// OpenCL and placeholder types don't need @encodings.
#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLImageTypes.def"
#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
case BuiltinType::Id:
#include "clang/Basic/OpenCLExtensionTypes.def"
case BuiltinType::OCLEvent:
case BuiltinType::OCLClkEvent:
case BuiltinType::OCLQueue:
case BuiltinType::OCLReserveID:
case BuiltinType::OCLSampler:
case BuiltinType::Dependent:
#define PPC_VECTOR_TYPE(Name, Id, Size) \
case BuiltinType::Id:
#include "clang/Basic/PPCTypes.def"
#define BUILTIN_TYPE(KIND, ID)
#define PLACEHOLDER_TYPE(KIND, ID) \
case BuiltinType::KIND:
#include "clang/AST/BuiltinTypes.def"
llvm_unreachable("invalid builtin type for @encode");
}
llvm_unreachable("invalid BuiltinType::Kind value");
}
static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
EnumDecl *Enum = ET->getDecl();
// The encoding of an non-fixed enum type is always 'i', regardless of size.
if (!Enum->isFixed())
return 'i';
// The encoding of a fixed enum type matches its fixed underlying type.
const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
return getObjCEncodingForPrimitiveType(C, BT);
}
static void EncodeBitField(const ASTContext *Ctx, std::string& S,
QualType T, const FieldDecl *FD) {
assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl");
S += 'b';
// The NeXT runtime encodes bit fields as b followed by the number of bits.
// The GNU runtime requires more information; bitfields are encoded as b,
// then the offset (in bits) of the first element, then the type of the
// bitfield, then the size in bits. For example, in this structure:
//
// struct
// {
// int integer;
// int flags:2;
// };
// On a 32-bit system, the encoding for flags would be b2 for the NeXT
// runtime, but b32i2 for the GNU runtime. The reason for this extra
// information is not especially sensible, but we're stuck with it for
// compatibility with GCC, although providing it breaks anything that
// actually uses runtime introspection and wants to work on both runtimes...
if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
uint64_t Offset;
if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
IVD);
} else {
const RecordDecl *RD = FD->getParent();
const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
Offset = RL.getFieldOffset(FD->getFieldIndex());
}
S += llvm::utostr(Offset);
if (const auto *ET = T->getAs<EnumType>())
S += ObjCEncodingForEnumType(Ctx, ET);
else {
const auto *BT = T->castAs<BuiltinType>();
S += getObjCEncodingForPrimitiveType(Ctx, BT);
}
}
S += llvm::utostr(FD->getBitWidthValue(*Ctx));
}
// FIXME: Use SmallString for accumulating string.
void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
const ObjCEncOptions Options,
const FieldDecl *FD,
QualType *NotEncodedT) const {
CanQualType CT = getCanonicalType(T);
switch (CT->getTypeClass()) {
case Type::Builtin:
case Type::Enum:
if (FD && FD->isBitField())
return EncodeBitField(this, S, T, FD);
if (const auto *BT = dyn_cast<BuiltinType>(CT))
S += getObjCEncodingForPrimitiveType(this, BT);
else
S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
return;
case Type::Complex:
S += 'j';
getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
ObjCEncOptions(),
/*Field=*/nullptr);
return;
case Type::Atomic:
S += 'A';
getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
ObjCEncOptions(),
/*Field=*/nullptr);
return;
// encoding for pointer or reference types.
case Type::Pointer:
case Type::LValueReference:
case Type::RValueReference: {
QualType PointeeTy;
if (isa<PointerType>(CT)) {
const auto *PT = T->castAs<PointerType>();
if (PT->isObjCSelType()) {
S += ':';
return;
}
PointeeTy = PT->getPointeeType();
} else {
PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
}
bool isReadOnly = false;
// For historical/compatibility reasons, the read-only qualifier of the
// pointee gets emitted _before_ the '^'. The read-only qualifier of
// the pointer itself gets ignored, _unless_ we are looking at a typedef!
// Also, do not emit the 'r' for anything but the outermost type!
if (isa<TypedefType>(T.getTypePtr())) {
if (Options.IsOutermostType() && T.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
} else if (Options.IsOutermostType()) {
QualType P = PointeeTy;
while (auto PT = P->getAs<PointerType>())
P = PT->getPointeeType();
if (P.isConstQualified()) {
isReadOnly = true;
S += 'r';
}
}
if (isReadOnly) {
// Another legacy compatibility encoding. Some ObjC qualifier and type
// combinations need to be rearranged.
// Rewrite "in const" from "nr" to "rn"
if (StringRef(S).endswith("nr"))
S.replace(S.end()-2, S.end(), "rn");
}
if (PointeeTy->isCharType()) {
// char pointer types should be encoded as '*' unless it is a
// type that has been typedef'd to 'BOOL'.
if (!isTypeTypedefedAsBOOL(PointeeTy)) {
S += '*';
return;
}
} else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
// GCC binary compat: Need to convert "struct objc_class *" to "#".
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
S += '#';
return;
}
// GCC binary compat: Need to convert "struct objc_object *" to "@".
if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
S += '@';
return;
}
// fall through...
}
S += '^';
getLegacyIntegralTypeEncoding(PointeeTy);
ObjCEncOptions NewOptions;
if (Options.ExpandPointedToStructures())
NewOptions.setExpandStructures();
getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
/*Field=*/nullptr, NotEncodedT);
return;
}
case Type::ConstantArray:
case Type::IncompleteArray:
case Type::VariableArray: {
const auto *AT = cast<ArrayType>(CT);
if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
// Incomplete arrays are encoded as a pointer to the array element.
S += '^';
getObjCEncodingForTypeImpl(
AT->getElementType(), S,
Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
} else {
S += '[';
if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
S += llvm::utostr(CAT->getSize().getZExtValue());
else {
//Variable length arrays are encoded as a regular array with 0 elements.
assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&
"Unknown array type!");
S += '0';
}
getObjCEncodingForTypeImpl(
AT->getElementType(), S,
Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
NotEncodedT);
S += ']';
}
return;
}
case Type::FunctionNoProto:
case Type::FunctionProto:
S += '?';
return;
case Type::Record: {
RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
S += RDecl->isUnion() ? '(' : '{';
// Anonymous structures print as '?'
if (const IdentifierInfo *II = RDecl->getIdentifier()) {
S += II->getName();
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
llvm::raw_string_ostream OS(S);
printTemplateArgumentList(OS, TemplateArgs.asArray(),
getPrintingPolicy());
}
} else {
S += '?';
}
if (Options.ExpandStructures()) {
S += '=';
if (!RDecl->isUnion()) {
getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
} else {
for (const auto *Field : RDecl->fields()) {
if (FD) {
S += '"';
S += Field->getNameAsString();
S += '"';
}
// Special case bit-fields.
if (Field->isBitField()) {
getObjCEncodingForTypeImpl(Field->getType(), S,
ObjCEncOptions().setExpandStructures(),
Field);
} else {
QualType qt = Field->getType();
getLegacyIntegralTypeEncoding(qt);
getObjCEncodingForTypeImpl(
qt, S,
ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
NotEncodedT);
}
}
}
}
S += RDecl->isUnion() ? ')' : '}';
return;
}
case Type::BlockPointer: {
const auto *BT = T->castAs<BlockPointerType>();
S += "@?"; // Unlike a pointer-to-function, which is "^?".
if (Options.EncodeBlockParameters()) {
const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
S += '<';
// Block return type
getObjCEncodingForTypeImpl(FT->getReturnType(), S,
Options.forComponentType(), FD, NotEncodedT);
// Block self
S += "@?";
// Block parameters
if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
for (const auto &I : FPT->param_types())
getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
NotEncodedT);
}
S += '>';
}
return;
}
case Type::ObjCObject: {
// hack to match legacy encoding of *id and *Class
QualType Ty = getObjCObjectPointerType(CT);
if (Ty->isObjCIdType()) {
S += "{objc_object=}";
return;
}
else if (Ty->isObjCClassType()) {
S += "{objc_class=}";
return;
}
// TODO: Double check to make sure this intentionally falls through.
LLVM_FALLTHROUGH;
}
case Type::ObjCInterface: {
// Ignore protocol qualifiers when mangling at this level.
// @encode(class_name)
ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
S += '{';
S += OI->getObjCRuntimeNameAsString();
if (Options.ExpandStructures()) {
S += '=';
SmallVector<const ObjCIvarDecl*, 32> Ivars;
DeepCollectObjCIvars(OI, true, Ivars);
for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
const FieldDecl *Field = Ivars[i];
if (Field->isBitField())
getObjCEncodingForTypeImpl(Field->getType(), S,
ObjCEncOptions().setExpandStructures(),
Field);
else
getObjCEncodingForTypeImpl(Field->getType(), S,
ObjCEncOptions().setExpandStructures(), FD,
NotEncodedT);
}
}
S += '}';
return;
}
case Type::ObjCObjectPointer: {
const auto *OPT = T->castAs<ObjCObjectPointerType>();
if (OPT->isObjCIdType()) {
S += '@';
return;
}
if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
// FIXME: Consider if we need to output qualifiers for 'Class<p>'.
// Since this is a binary compatibility issue, need to consult with
// runtime folks. Fortunately, this is a *very* obscure construct.
S += '#';
return;
}
if (OPT->isObjCQualifiedIdType()) {
getObjCEncodingForTypeImpl(
getObjCIdType(), S,
Options.keepingOnly(ObjCEncOptions()
.setExpandPointedToStructures()
.setExpandStructures()),
FD);
if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
// Note that we do extended encoding of protocol qualifer list
// Only when doing ivar or property encoding.
S += '"';
for (const auto *I : OPT->quals()) {
S += '<';
S += I->getObjCRuntimeNameAsString();
S += '>';
}
S += '"';
}
return;
}
S += '@';
if (OPT->getInterfaceDecl() &&
(FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
S += '"';
S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
for (const auto *I : OPT->quals()) {
S += '<';
S += I->getObjCRuntimeNameAsString();
S += '>';
}
S += '"';
}
return;
}
// gcc just blithely ignores member pointers.
// FIXME: we should do better than that. 'M' is available.
case Type::MemberPointer:
// This matches gcc's encoding, even though technically it is insufficient.
//FIXME. We should do a better job than gcc.
case Type::Vector:
case Type::ExtVector:
// Until we have a coherent encoding of these three types, issue warning.
if (NotEncodedT)
*NotEncodedT = T;
return;
case Type::ConstantMatrix:
if (NotEncodedT)
*NotEncodedT = T;
return;
// We could see an undeduced auto type here during error recovery.
// Just ignore it.
case Type::Auto:
case Type::DeducedTemplateSpecialization:
return;
case Type::Pipe:
case Type::ExtInt:
#define ABSTRACT_TYPE(KIND, BASE)
#define TYPE(KIND, BASE)
#define DEPENDENT_TYPE(KIND, BASE) \
case Type::KIND:
#define NON_CANONICAL_TYPE(KIND, BASE) \
case Type::KIND:
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
case Type::KIND:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("@encode for dependent type!");
}
llvm_unreachable("bad type kind!");
}
void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
std::string &S,
const FieldDecl *FD,
bool includeVBases,
QualType *NotEncodedT) const {
assert(RDecl && "Expected non-null RecordDecl");
assert(!RDecl->isUnion() && "Should not be called for unions");
if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
return;
const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
if (CXXRec) {
for (const auto &BI : CXXRec->bases()) {
if (!BI.isVirtual()) {
CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
if (base->isEmpty())
continue;
uint64_t offs = toBits(layout.getBaseClassOffset(base));
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
std::make_pair(offs, base));
}
}
}
unsigned i = 0;
for (FieldDecl *Field : RDecl->fields()) {
if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
continue;
uint64_t offs = layout.getFieldOffset(i);
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
std::make_pair(offs, Field));
++i;
}
if (CXXRec && includeVBases) {
for (const auto &BI : CXXRec->vbases()) {
CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
if (base->isEmpty())
continue;
uint64_t offs = toBits(layout.getVBaseClassOffset(base));
if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
std::make_pair(offs, base));
}
}
CharUnits size;
if (CXXRec) {
size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
} else {
size = layout.getSize();
}
#ifndef NDEBUG
uint64_t CurOffs = 0;
#endif
std::multimap<uint64_t, NamedDecl *>::iterator
CurLayObj = FieldOrBaseOffsets.begin();
if (CXXRec && CXXRec->isDynamicClass() &&
(CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
if (FD) {
S += "\"_vptr$";
std::string recname = CXXRec->getNameAsString();
if (recname.empty()) recname = "?";
S += recname;
S += '"';
}
S += "^^?";
#ifndef NDEBUG
CurOffs += getTypeSize(VoidPtrTy);
#endif
}
if (!RDecl->hasFlexibleArrayMember()) {
// Mark the end of the structure.
uint64_t offs = toBits(size);
FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
std::make_pair(offs, nullptr));
}
for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
#ifndef NDEBUG
assert(CurOffs <= CurLayObj->first);
if (CurOffs < CurLayObj->first) {
uint64_t padding = CurLayObj->first - CurOffs;
// FIXME: There doesn't seem to be a way to indicate in the encoding that
// packing/alignment of members is different that normal, in which case
// the encoding will be out-of-sync with the real layout.
// If the runtime switches to just consider the size of types without
// taking into account alignment, we could make padding explicit in the
// encoding (e.g. using arrays of chars). The encoding strings would be
// longer then though.
CurOffs += padding;
}
#endif
NamedDecl *dcl = CurLayObj->second;
if (!dcl)
break; // reached end of structure.
if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
// We expand the bases without their virtual bases since those are going
// in the initial structure. Note that this differs from gcc which
// expands virtual bases each time one is encountered in the hierarchy,
// making the encoding type bigger than it really is.
getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
NotEncodedT);
assert(!base->isEmpty());
#ifndef NDEBUG
CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
#endif
} else {
const auto *field = cast<FieldDecl>(dcl);
if (FD) {
S += '"';
S += field->getNameAsString();
S += '"';
}
if (field->isBitField()) {
EncodeBitField(this, S, field->getType(), field);
#ifndef NDEBUG
CurOffs += field->getBitWidthValue(*this);
#endif
} else {
QualType qt = field->getType();
getLegacyIntegralTypeEncoding(qt);
getObjCEncodingForTypeImpl(
qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
FD, NotEncodedT);
#ifndef NDEBUG
CurOffs += getTypeSize(field->getType());
#endif
}
}
}
}
void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
std::string& S) const {
if (QT & Decl::OBJC_TQ_In)
S += 'n';
if (QT & Decl::OBJC_TQ_Inout)
S += 'N';
if (QT & Decl::OBJC_TQ_Out)
S += 'o';
if (QT & Decl::OBJC_TQ_Bycopy)
S += 'O';
if (QT & Decl::OBJC_TQ_Byref)
S += 'R';
if (QT & Decl::OBJC_TQ_Oneway)
S += 'V';
}
TypedefDecl *ASTContext::getObjCIdDecl() const {
if (!ObjCIdDecl) {
QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
T = getObjCObjectPointerType(T);
ObjCIdDecl = buildImplicitTypedef(T, "id");
}
return ObjCIdDecl;
}
TypedefDecl *ASTContext::getObjCSelDecl() const {
if (!ObjCSelDecl) {
QualType T = getPointerType(ObjCBuiltinSelTy);
ObjCSelDecl = buildImplicitTypedef(T, "SEL");
}
return ObjCSelDecl;
}
TypedefDecl *ASTContext::getObjCClassDecl() const {
if (!ObjCClassDecl) {
QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
T = getObjCObjectPointerType(T);
ObjCClassDecl = buildImplicitTypedef(T, "Class");
}
return ObjCClassDecl;
}
ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
if (!ObjCProtocolClassDecl) {
ObjCProtocolClassDecl
= ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
SourceLocation(),
&Idents.get("Protocol"),
/*typeParamList=*/nullptr,
/*PrevDecl=*/nullptr,
SourceLocation(), true);
}
return ObjCProtocolClassDecl;
}
//===----------------------------------------------------------------------===//
// __builtin_va_list Construction Functions
//===----------------------------------------------------------------------===//
static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
StringRef Name) {
// typedef char* __builtin[_ms]_va_list;
QualType T = Context->getPointerType(Context->CharTy);
return Context->buildImplicitTypedef(T, Name);
}
static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
}
static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
}
static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
// typedef void* __builtin_va_list;
QualType T = Context->getPointerType(Context->VoidTy);
return Context->buildImplicitTypedef(T, "__builtin_va_list");
}
static TypedefDecl *
CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
// struct __va_list
RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
if (Context->getLangOpts().CPlusPlus) {
// namespace std { struct __va_list {
NamespaceDecl *NS;
NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
Context->getTranslationUnitDecl(),
/*Inline*/ false, SourceLocation(),
SourceLocation(), &Context->Idents.get("std"),
/*PrevDecl*/ nullptr);
NS->setImplicit();
VaListTagDecl->setDeclContext(NS);
}
VaListTagDecl->startDefinition();
const size_t NumFields = 5;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// void *__stack;
FieldTypes[0] = Context->getPointerType(Context->VoidTy);
FieldNames[0] = "__stack";
// void *__gr_top;
FieldTypes[1] = Context->getPointerType(Context->VoidTy);
FieldNames[1] = "__gr_top";
// void *__vr_top;
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
FieldNames[2] = "__vr_top";
// int __gr_offs;
FieldTypes[3] = Context->IntTy;
FieldNames[3] = "__gr_offs";
// int __vr_offs;
FieldTypes[4] = Context->IntTy;
FieldNames[4] = "__vr_offs";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
VaListTagDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
Context->VaListTagDecl = VaListTagDecl;
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
// } __builtin_va_list;
return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
}
static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
// typedef struct __va_list_tag {
RecordDecl *VaListTagDecl;
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
VaListTagDecl->startDefinition();
const size_t NumFields = 5;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// unsigned char gpr;
FieldTypes[0] = Context->UnsignedCharTy;
FieldNames[0] = "gpr";
// unsigned char fpr;
FieldTypes[1] = Context->UnsignedCharTy;
FieldNames[1] = "fpr";
// unsigned short reserved;
FieldTypes[2] = Context->UnsignedShortTy;
FieldNames[2] = "reserved";
// void* overflow_arg_area;
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
FieldNames[3] = "overflow_arg_area";
// void* reg_save_area;
FieldTypes[4] = Context->getPointerType(Context->VoidTy);
FieldNames[4] = "reg_save_area";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
Context->VaListTagDecl = VaListTagDecl;
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
// } __va_list_tag;
TypedefDecl *VaListTagTypedefDecl =
Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
QualType VaListTagTypedefType =
Context->getTypedefType(VaListTagTypedefDecl);
// typedef __va_list_tag __builtin_va_list[1];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
QualType VaListTagArrayType
= Context->getConstantArrayType(VaListTagTypedefType,
Size, nullptr, ArrayType::Normal, 0);
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}
static TypedefDecl *
CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
// struct __va_list_tag {
RecordDecl *VaListTagDecl;
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
VaListTagDecl->startDefinition();
const size_t NumFields = 4;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// unsigned gp_offset;
FieldTypes[0] = Context->UnsignedIntTy;
FieldNames[0] = "gp_offset";
// unsigned fp_offset;
FieldTypes[1] = Context->UnsignedIntTy;
FieldNames[1] = "fp_offset";
// void* overflow_arg_area;
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
FieldNames[2] = "overflow_arg_area";
// void* reg_save_area;
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
FieldNames[3] = "reg_save_area";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
VaListTagDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
Context->VaListTagDecl = VaListTagDecl;
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
// };
// typedef struct __va_list_tag __builtin_va_list[1];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
QualType VaListTagArrayType = Context->getConstantArrayType(
VaListTagType, Size, nullptr, ArrayType::Normal, 0);
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}
static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
// typedef int __builtin_va_list[4];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
QualType IntArrayType = Context->getConstantArrayType(
Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
}
static TypedefDecl *
CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
// struct __va_list
RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
if (Context->getLangOpts().CPlusPlus) {
// namespace std { struct __va_list {
NamespaceDecl *NS;
NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
Context->getTranslationUnitDecl(),
/*Inline*/false, SourceLocation(),
SourceLocation(), &Context->Idents.get("std"),
/*PrevDecl*/ nullptr);
NS->setImplicit();
VaListDecl->setDeclContext(NS);
}
VaListDecl->startDefinition();
// void * __ap;
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
VaListDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get("__ap"),
Context->getPointerType(Context->VoidTy),
/*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListDecl->addDecl(Field);
// };
VaListDecl->completeDefinition();
Context->VaListTagDecl = VaListDecl;
// typedef struct __va_list __builtin_va_list;
QualType T = Context->getRecordType(VaListDecl);
return Context->buildImplicitTypedef(T, "__builtin_va_list");
}
static TypedefDecl *
CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
// struct __va_list_tag {
RecordDecl *VaListTagDecl;
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
VaListTagDecl->startDefinition();
const size_t NumFields = 4;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// long __gpr;
FieldTypes[0] = Context->LongTy;
FieldNames[0] = "__gpr";
// long __fpr;
FieldTypes[1] = Context->LongTy;
FieldNames[1] = "__fpr";
// void *__overflow_arg_area;
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
FieldNames[2] = "__overflow_arg_area";
// void *__reg_save_area;
FieldTypes[3] = Context->getPointerType(Context->VoidTy);
FieldNames[3] = "__reg_save_area";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
VaListTagDecl,
SourceLocation(),
SourceLocation(),
&Context->Idents.get(FieldNames[i]),
FieldTypes[i], /*TInfo=*/nullptr,
/*BitWidth=*/nullptr,
/*Mutable=*/false,
ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
Context->VaListTagDecl = VaListTagDecl;
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
// };
// typedef __va_list_tag __builtin_va_list[1];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
QualType VaListTagArrayType = Context->getConstantArrayType(
VaListTagType, Size, nullptr, ArrayType::Normal, 0);
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}
static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
// typedef struct __va_list_tag {
RecordDecl *VaListTagDecl;
VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
VaListTagDecl->startDefinition();
const size_t NumFields = 3;
QualType FieldTypes[NumFields];
const char *FieldNames[NumFields];
// void *CurrentSavedRegisterArea;
FieldTypes[0] = Context->getPointerType(Context->VoidTy);
FieldNames[0] = "__current_saved_reg_area_pointer";
// void *SavedRegAreaEnd;
FieldTypes[1] = Context->getPointerType(Context->VoidTy);
FieldNames[1] = "__saved_reg_area_end_pointer";
// void *OverflowArea;
FieldTypes[2] = Context->getPointerType(Context->VoidTy);
FieldNames[2] = "__overflow_area_pointer";
// Create fields
for (unsigned i = 0; i < NumFields; ++i) {
FieldDecl *Field = FieldDecl::Create(
const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
/*TInfo=*/0,
/*BitWidth=*/0,
/*Mutable=*/false, ICIS_NoInit);
Field->setAccess(AS_public);
VaListTagDecl->addDecl(Field);
}
VaListTagDecl->completeDefinition();
Context->VaListTagDecl = VaListTagDecl;
QualType VaListTagType = Context->getRecordType(VaListTagDecl);
// } __va_list_tag;
TypedefDecl *VaListTagTypedefDecl =
Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
// typedef __va_list_tag __builtin_va_list[1];
llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
QualType VaListTagArrayType = Context->getConstantArrayType(
VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
}
static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
TargetInfo::BuiltinVaListKind Kind) {
switch (Kind) {
case TargetInfo::CharPtrBuiltinVaList:
return CreateCharPtrBuiltinVaListDecl(Context);
case TargetInfo::VoidPtrBuiltinVaList:
return CreateVoidPtrBuiltinVaListDecl(Context);
case TargetInfo::AArch64ABIBuiltinVaList:
return CreateAArch64ABIBuiltinVaListDecl(Context);
case TargetInfo::PowerABIBuiltinVaList:
return CreatePowerABIBuiltinVaListDecl(Context);
case TargetInfo::X86_64ABIBuiltinVaList:
return CreateX86_64ABIBuiltinVaListDecl(Context);
case TargetInfo::PNaClABIBuiltinVaList:
return CreatePNaClABIBuiltinVaListDecl(Context);
case TargetInfo::AAPCSABIBuiltinVaList:
return CreateAAPCSABIBuiltinVaListDecl(Context);
case TargetInfo::SystemZBuiltinVaList:
return CreateSystemZBuiltinVaListDecl(Context);
case TargetInfo::HexagonBuiltinVaList:
return CreateHexagonBuiltinVaListDecl(Context);
}
llvm_unreachable("Unhandled __builtin_va_list type kind");
}
TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
if (!BuiltinVaListDecl) {
BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
assert(BuiltinVaListDecl->isImplicit());
}
return BuiltinVaListDecl;
}
Decl *ASTContext::getVaListTagDecl() const {
// Force the creation of VaListTagDecl by building the __builtin_va_list
// declaration.
if (!VaListTagDecl)
(void)getBuiltinVaListDecl();
return VaListTagDecl;
}
TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
if (!BuiltinMSVaListDecl)
BuiltinMSVaListDecl = CreateMSVaListDecl(this);
return BuiltinMSVaListDecl;
}
bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
}
void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
assert(ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!");
ObjCConstantStringType = getObjCInterfaceType(Decl);
}
/// Retrieve the template name that corresponds to a non-empty
/// lookup.
TemplateName
ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
UnresolvedSetIterator End) const {
unsigned size = End - Begin;
assert(size > 1 && "set is not overloaded!");
void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
size * sizeof(FunctionTemplateDecl*));
auto *OT = new (memory) OverloadedTemplateStorage(size);
NamedDecl **Storage = OT->getStorage();
for (UnresolvedSetIterator I = Begin; I != End; ++I) {
NamedDecl *D = *I;
assert(isa<FunctionTemplateDecl>(D) ||
isa<UnresolvedUsingValueDecl>(D) ||
(isa<UsingShadowDecl>(D) &&
isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
*Storage++ = D;
}
return TemplateName(OT);
}
/// Retrieve a template name representing an unqualified-id that has been
/// assumed to name a template for ADL purposes.
TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
auto *OT = new (*this) AssumedTemplateStorage(Name);
return TemplateName(OT);
}
/// Retrieve the template name that represents a qualified
/// template name such as \c std::vector.
TemplateName
ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
bool TemplateKeyword,
TemplateDecl *Template) const {
assert(NNS && "Missing nested-name-specifier in qualified template name");
// FIXME: Canonicalization?
llvm::FoldingSetNodeID ID;
QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
void *InsertPos = nullptr;
QualifiedTemplateName *QTN =
QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (!QTN) {
QTN = new (*this, alignof(QualifiedTemplateName))
QualifiedTemplateName(NNS, TemplateKeyword, Template);
QualifiedTemplateNames.InsertNode(QTN, InsertPos);
}
return TemplateName(QTN);
}
/// Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template apply.
TemplateName
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
const IdentifierInfo *Name) const {
assert((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateName::Profile(ID, NNS, Name);
void *InsertPos = nullptr;
DependentTemplateName *QTN =
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (QTN)
return TemplateName(QTN);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS == NNS) {
QTN = new (*this, alignof(DependentTemplateName))
DependentTemplateName(NNS, Name);
} else {
TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
QTN = new (*this, alignof(DependentTemplateName))
DependentTemplateName(NNS, Name, Canon);
DependentTemplateName *CheckQTN =
DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckQTN && "Dependent type name canonicalization broken");
(void)CheckQTN;
}
DependentTemplateNames.InsertNode(QTN, InsertPos);
return TemplateName(QTN);
}
/// Retrieve the template name that represents a dependent
/// template name such as \c MetaFun::template operator+.
TemplateName
ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
OverloadedOperatorKind Operator) const {
assert((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent");
llvm::FoldingSetNodeID ID;
DependentTemplateName::Profile(ID, NNS, Operator);
void *InsertPos = nullptr;
DependentTemplateName *QTN
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
if (QTN)
return TemplateName(QTN);
NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
if (CanonNNS == NNS) {
QTN = new (*this, alignof(DependentTemplateName))
DependentTemplateName(NNS, Operator);
} else {
TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
QTN = new (*this, alignof(DependentTemplateName))
DependentTemplateName(NNS, Operator, Canon);
DependentTemplateName *CheckQTN
= DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
assert(!CheckQTN && "Dependent template name canonicalization broken");
(void)CheckQTN;
}
DependentTemplateNames.InsertNode(QTN, InsertPos);
return TemplateName(QTN);
}
TemplateName
ASTContext::getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
TemplateName replacement) const {
llvm::FoldingSetNodeID ID;
SubstTemplateTemplateParmStorage::Profile(ID, param, replacement);
void *insertPos = nullptr;
SubstTemplateTemplateParmStorage *subst
= SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
if (!subst) {
subst = new (*this) SubstTemplateTemplateParmStorage(param, replacement);
SubstTemplateTemplateParms.InsertNode(subst, insertPos);
}
return TemplateName(subst);
}
TemplateName
ASTContext::getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
const TemplateArgument &ArgPack) const {
auto &Self = const_cast<ASTContext &>(*this);
llvm::FoldingSetNodeID ID;
SubstTemplateTemplateParmPackStorage::Profile(ID, Self, Param, ArgPack);
void *InsertPos = nullptr;
SubstTemplateTemplateParmPackStorage *Subst
= SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
if (!Subst) {
Subst = new (*this) SubstTemplateTemplateParmPackStorage(Param,
ArgPack.pack_size(),
ArgPack.pack_begin());
SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
}
return TemplateName(Subst);
}
/// getFromTargetType - Given one of the integer types provided by
/// TargetInfo, produce the corresponding type. The unsigned @p Type
/// is actually a value of type @c TargetInfo::IntType.
CanQualType ASTContext::getFromTargetType(unsigned Type) const {
switch (Type) {
case TargetInfo::NoInt: return {};
case TargetInfo::SignedChar: return SignedCharTy;
case TargetInfo::UnsignedChar: return UnsignedCharTy;
case TargetInfo::SignedShort: return ShortTy;
case TargetInfo::UnsignedShort: return UnsignedShortTy;
case TargetInfo::SignedInt: return IntTy;
case TargetInfo::UnsignedInt: return UnsignedIntTy;
case TargetInfo::SignedLong: return LongTy;
case TargetInfo::UnsignedLong: return UnsignedLongTy;
case TargetInfo::SignedLongLong: return LongLongTy;
case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
}
llvm_unreachable("Unhandled TargetInfo::IntType value");
}
//===----------------------------------------------------------------------===//
// Type Predicates.
//===----------------------------------------------------------------------===//
/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
/// garbage collection attribute.
///
Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
if (getLangOpts().getGC() == LangOptions::NonGC)
return Qualifiers::GCNone;
assert(getLangOpts().ObjC);
Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
// Default behaviour under objective-C's gc is for ObjC pointers
// (or pointers to them) be treated as though they were declared
// as __strong.
if (GCAttrs == Qualifiers::GCNone) {
if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
return Qualifiers::Strong;
else if (Ty->isPointerType())
return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
} else {
// It's not valid to set GC attributes on anything that isn't a
// pointer.
#ifndef NDEBUG
QualType CT = Ty->getCanonicalTypeInternal();
while (const auto *AT = dyn_cast<ArrayType>(CT))
CT = AT->getElementType();
assert(CT->isAnyPointerType() || CT->isBlockPointerType());
#endif
}
return GCAttrs;
}
//===----------------------------------------------------------------------===//
// Type Compatibility Testing
//===----------------------------------------------------------------------===//
/// areCompatVectorTypes - Return true if the two specified vector types are
/// compatible.
static bool areCompatVectorTypes(const VectorType *LHS,
const VectorType *RHS) {
assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
return LHS->getElementType() == RHS->getElementType() &&
LHS->getNumElements() == RHS->getNumElements();
}
/// areCompatMatrixTypes - Return true if the two specified matrix types are
/// compatible.
static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
const ConstantMatrixType *RHS) {
assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
return LHS->getElementType() == RHS->getElementType() &&
LHS->getNumRows() == RHS->getNumRows() &&
LHS->getNumColumns() == RHS->getNumColumns();
}
bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
QualType SecondVec) {
assert(FirstVec->isVectorType() && "FirstVec should be a vector type");
assert(SecondVec->isVectorType() && "SecondVec should be a vector type");
if (hasSameUnqualifiedType(FirstVec, SecondVec))
return true;
// Treat Neon vector types and most AltiVec vector types as if they are the
// equivalent GCC vector types.
const auto *First = FirstVec->castAs<VectorType>();
const auto *Second = SecondVec->castAs<VectorType>();
if (First->getNumElements() == Second->getNumElements() &&
hasSameType(First->getElementType(), Second->getElementType()) &&
First->getVectorKind() != VectorType::AltiVecPixel &&
First->getVectorKind() != VectorType::AltiVecBool &&
Second->getVectorKind() != VectorType::AltiVecPixel &&
Second->getVectorKind() != VectorType::AltiVecBool &&
First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector)
return true;
return false;
}
bool ASTContext::areCompatibleSveTypes(QualType FirstType,
QualType SecondType) {
assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
(FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
"Expected SVE builtin type and vector type!");
auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
if (const auto *BT = FirstType->getAs<BuiltinType>()) {
if (const auto *VT = SecondType->getAs<VectorType>()) {
// Predicates have the same representation as uint8 so we also have to
// check the kind to make these types incompatible.
if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
return BT->getKind() == BuiltinType::SveBool;
else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
return VT->getElementType().getCanonicalType() ==
FirstType->getSveEltType(*this);
else if (VT->getVectorKind() == VectorType::GenericVector)
return getTypeSize(SecondType) == getLangOpts().ArmSveVectorBits &&
hasSameType(VT->getElementType(),
getBuiltinVectorTypeInfo(BT).ElementType);
}
}
return false;
};
return IsValidCast(FirstType, SecondType) ||
IsValidCast(SecondType, FirstType);
}
bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
QualType SecondType) {
assert(((FirstType->isSizelessBuiltinType() && SecondType->isVectorType()) ||
(FirstType->isVectorType() && SecondType->isSizelessBuiltinType())) &&
"Expected SVE builtin type and vector type!");
auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
if (!FirstType->getAs<BuiltinType>())
return false;
const auto *VecTy = SecondType->getAs<VectorType>();
if (VecTy &&
(VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
VecTy->getVectorKind() == VectorType::GenericVector)) {
const LangOptions::LaxVectorConversionKind LVCKind =
getLangOpts().getLaxVectorConversions();
// If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
// "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
// converts to VLAT and VLAT implicitly converts to GNUT."
// ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
// predicates.
if (VecTy->getVectorKind() == VectorType::GenericVector &&
getTypeSize(SecondType) != getLangOpts().ArmSveVectorBits)
return false;
// If -flax-vector-conversions=all is specified, the types are
// certainly compatible.
if (LVCKind == LangOptions::LaxVectorConversionKind::All)
return true;
// If -flax-vector-conversions=integer is specified, the types are
// compatible if the elements are integer types.
if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
FirstType->getSveEltType(*this)->isIntegerType();
}
return false;
};
return IsLaxCompatible(FirstType, SecondType) ||
IsLaxCompatible(SecondType, FirstType);
}
bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
while (true) {
// __strong id
if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
if (Attr->getAttrKind() == attr::ObjCOwnership)
return true;
Ty = Attr->getModifiedType();
// X *__strong (...)
} else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
Ty = Paren->getInnerType();
// We do not want to look through typedefs, typeof(expr),
// typeof(type), or any other way that the type is somehow
// abstracted.
} else {
return false;
}
}
}
//===----------------------------------------------------------------------===//
// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
//===----------------------------------------------------------------------===//
/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
/// inheritance hierarchy of 'rProto'.
bool
ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
ObjCProtocolDecl *rProto) const {
if (declaresSameEntity(lProto, rProto))
return true;
for (auto *PI : rProto->protocols())
if (ProtocolCompatibleWithProtocol(lProto, PI))
return true;
return false;
}
/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
/// Class<pr1, ...>.
bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
for (auto *lhsProto : lhs->quals()) {
bool match = false;
for (auto *rhsProto : rhs->quals()) {
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
match = true;
break;
}
}
if (!match)
return false;
}
return true;
}
/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
/// ObjCQualifiedIDType.
bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
bool compare) {
// Allow id<P..> and an 'id' in all cases.
if (lhs->isObjCIdType() || rhs->isObjCIdType())
return true;
// Don't allow id<P..> to convert to Class or Class<P..> in either direction.
if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
return false;
if (lhs->isObjCQualifiedIdType()) {
if (rhs->qual_empty()) {
// If the RHS is a unqualified interface pointer "NSString*",
// make sure we check the class hierarchy.
if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
for (auto *I : lhs->quals()) {
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (!rhsID->ClassImplementsProtocol(I, true))
return false;
}
}
// If there are no qualifiers and no interface, we have an 'id'.
return true;
}
// Both the right and left sides have qualifiers.
for (auto *lhsProto : lhs->quals()) {
bool match = false;
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
for (auto *rhsProto : rhs->quals()) {
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
match = true;
break;
}
}
// If the RHS is a qualified interface pointer "NSString<P>*",
// make sure we check the class hierarchy.
if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
for (auto *I : lhs->quals()) {
// when comparing an id<P> on lhs with a static type on rhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
if (rhsID->ClassImplementsProtocol(I, true)) {
match = true;
break;
}
}
}
if (!match)
return false;
}
return true;
}
assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>");
if (lhs->getInterfaceType()) {
// If both the right and left sides have qualifiers.
for (auto *lhsProto : lhs->quals()) {
bool match = false;
// when comparing an id<P> on rhs with a static type on lhs,
// see if static class implements all of id's protocols, directly or
// through its super class and categories.
// First, lhs protocols in the qualifier list must be found, direct
// or indirect in rhs's qualifier list or it is a mismatch.
for (auto *rhsProto : rhs->quals()) {
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
match = true;
break;
}
}
if (!match)
return false;
}
// Static class's protocols, or its super class or category protocols
// must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
// This is rather dubious but matches gcc's behavior. If lhs has
// no type qualifier and its class has no static protocol(s)
// assume that it is mismatch.
if (LHSInheritedProtocols.empty() && lhs->qual_empty())
return false;
for (auto *lhsProto : LHSInheritedProtocols) {
bool match = false;
for (auto *rhsProto : rhs->quals()) {
if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
(compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
match = true;
break;
}
}
if (!match)
return false;
}
}
return true;
}
return false;
}
/// canAssignObjCInterfaces - Return true if the two interface types are
/// compatible for assignment from RHS to LHS. This handles validation of any
/// protocol qualifiers on the LHS or RHS.
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT) {
const ObjCObjectType* LHS = LHSOPT->getObjectType();
const ObjCObjectType* RHS = RHSOPT->getObjectType();
// If either type represents the built-in 'id' type, return true.
if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
return true;
// Function object that propagates a successful result or handles
// __kindof types.
auto finish = [&](bool succeeded) -> bool {
if (succeeded)
return true;
if (!RHS->isKindOfType())
return false;
// Strip off __kindof and protocol qualifiers, then check whether
// we can assign the other way.
return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
LHSOPT->stripObjCKindOfTypeAndQuals(*this));
};
// Casts from or to id<P> are allowed when the other side has compatible
// protocols.
if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
}
// Verify protocol compatibility for casts from Class<P1> to Class<P2>.
if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
}
// Casts from Class to Class<Foo>, or vice-versa, are allowed.
if (LHS->isObjCClass() && RHS->isObjCClass()) {
return true;
}
// If we have 2 user-defined types, fall into that path.
if (LHS->getInterface() && RHS->getInterface()) {
return finish(canAssignObjCInterfaces(LHS, RHS));
}
return false;
}
/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
/// for providing type-safety for objective-c pointers used to pass/return
/// arguments in block literals. When passed as arguments, passing 'A*' where
/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
/// not OK. For the return type, the opposite is not OK.
bool ASTContext::canAssignObjCInterfacesInBlockPointer(
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT,
bool BlockReturnType) {
// Function object that propagates a successful result or handles
// __kindof types.
auto finish = [&](bool succeeded) -> bool {
if (succeeded)
return true;
const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
if (!Expected->isKindOfType())
return false;
// Strip off __kindof and protocol qualifiers, then check whether
// we can assign the other way.
return canAssignObjCInterfacesInBlockPointer(
RHSOPT->stripObjCKindOfTypeAndQuals(*this),
LHSOPT->stripObjCKindOfTypeAndQuals(*this),
BlockReturnType);
};
if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
return true;
if (LHSOPT->isObjCBuiltinType()) {
return finish(RHSOPT->isObjCBuiltinType() ||
RHSOPT->isObjCQualifiedIdType());
}
if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
// Use for block parameters previous type checking for compatibility.
return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
// Or corrected type checking as in non-compat mode.
(!BlockReturnType &&
ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
else
return finish(ObjCQualifiedIdTypesAreCompatible(
(BlockReturnType ? LHSOPT : RHSOPT),
(BlockReturnType ? RHSOPT : LHSOPT), false));
}
const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
if (LHS && RHS) { // We have 2 user-defined types.
if (LHS != RHS) {
if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
return finish(BlockReturnType);
if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
return finish(!BlockReturnType);
}
else
return true;
}
return false;
}
/// Comparison routine for Objective-C protocols to be used with
/// llvm::array_pod_sort.
static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
ObjCProtocolDecl * const *rhs) {
return (*lhs)->getName().compare((*rhs)->getName());
}
/// getIntersectionOfProtocols - This routine finds the intersection of set
/// of protocols inherited from two distinct objective-c pointer objects with
/// the given common base.
/// It is used to build composite qualifier list of the composite type of
/// the conditional expression involving two objective-c pointer objects.
static
void getIntersectionOfProtocols(ASTContext &Context,
const ObjCInterfaceDecl *CommonBase,
const ObjCObjectPointerType *LHSOPT,
const ObjCObjectPointerType *RHSOPT,
SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
const ObjCObjectType* LHS = LHSOPT->getObjectType();
const ObjCObjectType* RHS = RHSOPT->getObjectType();
assert(LHS->getInterface() && "LHS must have an interface base");
assert(RHS->getInterface() && "RHS must have an interface base");
// Add all of the protocols for the LHS.
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
// Start with the protocol qualifiers.
for (auto proto : LHS->quals()) {
Context.CollectInheritedProtocols(proto, LHSProtocolSet);
}
// Also add the protocols associated with the LHS interface.
Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
// Add all of the protocols for the RHS.
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
// Start with the protocol qualifiers.
for (auto proto : RHS->quals()) {
Context.CollectInheritedProtocols(proto, RHSProtocolSet);
}
// Also add the protocols associated with the RHS interface.
Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
// Compute the intersection of the collected protocol sets.
for (auto proto : LHSProtocolSet) {
if (RHSProtocolSet.count(proto))
IntersectionSet.push_back(proto);
}
// Compute the set of protocols that is implied by either the common type or
// the protocols within the intersection.
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
// Remove any implied protocols from the list of inherited protocols.
if (!ImpliedProtocols.empty()) {
IntersectionSet.erase(
std::remove_if(IntersectionSet.begin(),
IntersectionSet.end(),
[&](ObjCProtocolDecl *proto) -> bool {
return ImpliedProtocols.count(proto) > 0;
}),
IntersectionSet.end());
}
// Sort the remaining protocols by name.
llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
compareObjCProtocolsByName);
}
/// Determine whether the first type is a subtype of the second.
static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
QualType rhs) {
// Common case: two object pointers.
const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
if (lhsOPT && rhsOPT)
return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
// Two block pointers.
const auto *lhsBlock = lhs->getAs<BlockPointerType>();
const auto *rhsBlock = rhs->getAs<BlockPointerType>();
if (lhsBlock && rhsBlock)
return ctx.typesAreBlockPointerCompatible(lhs, rhs);
// If either is an unqualified 'id' and the other is a block, it's
// acceptable.
if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
(rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
return true;
return false;
}
// Check that the given Objective-C type argument lists are equivalent.
static bool sameObjCTypeArgs(ASTContext &ctx,
const ObjCInterfaceDecl *iface,
ArrayRef<QualType> lhsArgs,
ArrayRef<QualType> rhsArgs,
bool stripKindOf) {
if (lhsArgs.size() != rhsArgs.size())
return false;
ObjCTypeParamList *typeParams = iface->getTypeParamList();
for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
continue;
switch (typeParams->begin()[i]->getVariance()) {
case ObjCTypeParamVariance::Invariant:
if (!stripKindOf ||
!ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
rhsArgs[i].stripObjCKindOfType(ctx))) {
return false;
}
break;
case ObjCTypeParamVariance::Covariant:
if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
return false;
break;
case ObjCTypeParamVariance::Contravariant:
if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
return false;
break;
}
}
return true;
}
QualType ASTContext::areCommonBaseCompatible(
const ObjCObjectPointerType *Lptr,
const ObjCObjectPointerType *Rptr) {
const ObjCObjectType *LHS = Lptr->getObjectType();
const ObjCObjectType *RHS = Rptr->getObjectType();
const ObjCInterfaceDecl* LDecl = LHS->getInterface();
const ObjCInterfaceDecl* RDecl = RHS->getInterface();
if (!LDecl || !RDecl)
return {};
// When either LHS or RHS is a kindof type, we should return a kindof type.
// For example, for common base of kindof(ASub1) and kindof(ASub2), we return
// kindof(A).
bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
// Follow the left-hand side up the class hierarchy until we either hit a
// root or find the RHS. Record the ancestors in case we don't find it.
llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
LHSAncestors;
while (true) {
// Record this ancestor. We'll need this if the common type isn't in the
// path from the LHS to the root.
LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
if (declaresSameEntity(LHS->getInterface(), RDecl)) {
// Get the type arguments.
ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
bool anyChanges = false;
if (LHS->isSpecialized() && RHS->isSpecialized()) {
// Both have type arguments, compare them.
if (!sameObjCTypeArgs(*this, LHS->getInterface(),
LHS->getTypeArgs(), RHS->getTypeArgs(),
/*stripKindOf=*/true))
return {};
} else if (LHS->isSpecialized() != RHS->isSpecialized()) {
// If only one has type arguments, the result will not have type
// arguments.
LHSTypeArgs = {};
anyChanges = true;
}
// Compute the intersection of protocols.
SmallVector<ObjCProtocolDecl *, 8> Protocols;
getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
Protocols);
if (!Protocols.empty())
anyChanges = true;
// If anything in the LHS will have changed, build a new result type.
// If we need to return a kindof type but LHS is not a kindof type, we
// build a new result type.
if (anyChanges || LHS->isKindOfType() != anyKindOf) {
QualType Result = getObjCInterfaceType(LHS->getInterface());
Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
anyKindOf || LHS->isKindOfType());
return getObjCObjectPointerType(Result);
}
return getObjCObjectPointerType(QualType(LHS, 0));
}
// Find the superclass.
QualType LHSSuperType = LHS->getSuperClassType();
if (LHSSuperType.isNull())
break;
LHS = LHSSuperType->castAs<ObjCObjectType>();
}
// We didn't find anything by following the LHS to its root; now check
// the RHS against the cached set of ancestors.
while (true) {
auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
if (KnownLHS != LHSAncestors.end()) {
LHS = KnownLHS->second;
// Get the type arguments.
ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
bool anyChanges = false;
if (LHS->isSpecialized() && RHS->isSpecialized()) {
// Both have type arguments, compare them.
if (!sameObjCTypeArgs(*this, LHS->getInterface(),
LHS->getTypeArgs(), RHS->getTypeArgs(),
/*stripKindOf=*/true))
return {};
} else if (LHS->isSpecialized() != RHS->isSpecialized()) {
// If only one has type arguments, the result will not have type
// arguments.
RHSTypeArgs = {};
anyChanges = true;
}
// Compute the intersection of protocols.
SmallVector<ObjCProtocolDecl *, 8> Protocols;
getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
Protocols);
if (!Protocols.empty())
anyChanges = true;
// If we need to return a kindof type but RHS is not a kindof type, we
// build a new result type.
if (anyChanges || RHS->isKindOfType() != anyKindOf) {
QualType Result = getObjCInterfaceType(RHS->getInterface());
Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
anyKindOf || RHS->isKindOfType());
return getObjCObjectPointerType(Result);
}
return getObjCObjectPointerType(QualType(RHS, 0));
}
// Find the superclass of the RHS.
QualType RHSSuperType = RHS->getSuperClassType();
if (RHSSuperType.isNull())
break;
RHS = RHSSuperType->castAs<ObjCObjectType>();
}
return {};
}
bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
const ObjCObjectType *RHS) {
assert(LHS->getInterface() && "LHS is not an interface type");
assert(RHS->getInterface() && "RHS is not an interface type");
// Verify that the base decls are compatible: the RHS must be a subclass of
// the LHS.
ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
if (!IsSuperClass)
return false;
// If the LHS has protocol qualifiers, determine whether all of them are
// satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
// LHS).
if (LHS->getNumProtocols() > 0) {
// OK if conversion of LHS to SuperClass results in narrowing of types
// ; i.e., SuperClass may implement at least one of the protocols
// in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
// But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
// Also, if RHS has explicit quelifiers, include them for comparing with LHS's
// qualifiers.
for (auto *RHSPI : RHS->quals())
CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
// If there is no protocols associated with RHS, it is not a match.
if (SuperClassInheritedProtocols.empty())
return false;
for (const auto *LHSProto : LHS->quals()) {
bool SuperImplementsProtocol = false;
for (auto *SuperClassProto : SuperClassInheritedProtocols)
if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
SuperImplementsProtocol = true;
break;
}
if (!SuperImplementsProtocol)
return false;
}
}
// If the LHS is specialized, we may need to check type arguments.
if (LHS->isSpecialized()) {
// Follow the superclass chain until we've matched the LHS class in the
// hierarchy. This substitutes type arguments through.
const ObjCObjectType *RHSSuper = RHS;
while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
// If the RHS is specializd, compare type arguments.
if (RHSSuper->isSpecialized() &&
!sameObjCTypeArgs(*this, LHS->getInterface(),
LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
/*stripKindOf=*/true)) {
return false;
}
}
return true;
}
bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
// get the "pointed to" types
const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
if (!LHSOPT || !RHSOPT)
return false;
return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
canAssignObjCInterfaces(RHSOPT, LHSOPT);
}
bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
return canAssignObjCInterfaces(
getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
}
/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
/// both shall have the identically qualified version of a compatible type.
/// C99 6.2.7p1: Two types have compatible types if their types are the
/// same. See 6.7.[2,3,5] for additional rules.
bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
bool CompareUnqualified) {
if (getLangOpts().CPlusPlus)
return hasSameType(LHS, RHS);
return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
}
bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
return typesAreCompatible(LHS, RHS);
}
bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
return !mergeTypes(LHS, RHS, true).isNull();
}
/// mergeTransparentUnionType - if T is a transparent union type and a member
/// of T is compatible with SubType, return the merged type, else return
/// QualType()
QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
bool OfBlockPointer,
bool Unqualified) {
if (const RecordType *UT = T->getAsUnionType()) {
RecordDecl *UD = UT->getDecl();
if (UD->hasAttr<TransparentUnionAttr>()) {
for (const auto *I : UD->fields()) {
QualType ET = I->getType().getUnqualifiedType();
QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
if (!MT.isNull())
return MT;
}
}
}
return {};
}
/// mergeFunctionParameterTypes - merge two types which appear as function
/// parameter types
QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
bool OfBlockPointer,
bool Unqualified) {
// GNU extension: two types are compatible if they appear as a function
// argument, one of the types is a transparent union type and the other
// type is compatible with a union member
QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
Unqualified);
if (!lmerge.isNull())
return lmerge;
QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
Unqualified);
if (!rmerge.isNull())
return rmerge;
return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
}
QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
bool OfBlockPointer, bool Unqualified,
bool AllowCXX) {
const auto *lbase = lhs->castAs<FunctionType>();
const auto *rbase = rhs->castAs<FunctionType>();
const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
bool allLTypes = true;
bool allRTypes = true;
// Check return type
QualType retType;
if (OfBlockPointer) {
QualType RHS = rbase->getReturnType();
QualType LHS = lbase->getReturnType();
bool UnqualifiedResult = Unqualified;
if (!UnqualifiedResult)
UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
}
else
retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
Unqualified);
if (retType.isNull())
return {};
if (Unqualified)
retType = retType.getUnqualifiedType();
CanQualType LRetType = getCanonicalType(lbase->getReturnType());
CanQualType RRetType = getCanonicalType(rbase->getReturnType());
if (Unqualified) {
LRetType = LRetType.getUnqualifiedType();
RRetType = RRetType.getUnqualifiedType();
}
if (getCanonicalType(retType) != LRetType)
allLTypes = false;
if (getCanonicalType(retType) != RRetType)
allRTypes = false;
// FIXME: double check this
// FIXME: should we error if lbase->getRegParmAttr() != 0 &&
// rbase->getRegParmAttr() != 0 &&
// lbase->getRegParmAttr() != rbase->getRegParmAttr()?
FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
// Compatible functions must have compatible calling conventions
if (lbaseInfo.getCC() != rbaseInfo.getCC())
return {};
// Regparm is part of the calling convention.
if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
return {};
if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
return {};
if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
return {};
if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
return {};
if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
return {};
// FIXME: some uses, e.g. conditional exprs, really want this to be 'both'.
bool NoReturn = lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
if (lbaseInfo.getNoReturn() != NoReturn)
allLTypes = false;
if (rbaseInfo.getNoReturn() != NoReturn)
allRTypes = false;
FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
if (lproto && rproto) { // two C99 style function prototypes
assert((AllowCXX ||
(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&
"C++ shouldn't be here");
// Compatible functions must have the same number of parameters
if (lproto->getNumParams() != rproto->getNumParams())
return {};
// Variadic and non-variadic functions aren't compatible
if (lproto->isVariadic() != rproto->isVariadic())
return {};
if (lproto->getMethodQuals() != rproto->getMethodQuals())
return {};
SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
bool canUseLeft, canUseRight;
if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
newParamInfos))
return {};
if (!canUseLeft)
allLTypes = false;
if (!canUseRight)
allRTypes = false;
// Check parameter type compatibility
SmallVector<QualType, 10> types;
for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
QualType paramType = mergeFunctionParameterTypes(
lParamType, rParamType, OfBlockPointer, Unqualified);
if (paramType.isNull())
return {};
if (Unqualified)
paramType = paramType.getUnqualifiedType();
types.push_back(paramType);
if (Unqualified) {
lParamType = lParamType.getUnqualifiedType();
rParamType = rParamType.getUnqualifiedType();
}
if (getCanonicalType(paramType) != getCanonicalType(lParamType))
allLTypes = false;
if (getCanonicalType(paramType) != getCanonicalType(rParamType))
allRTypes = false;
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
EPI.ExtInfo = einfo;
EPI.ExtParameterInfos =
newParamInfos.empty() ? nullptr : newParamInfos.data();
return getFunctionType(retType, types, EPI);
}
if (lproto) allRTypes = false;
if (rproto) allLTypes = false;
const FunctionProtoType *proto = lproto ? lproto : rproto;
if (proto) {
assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here");
if (proto->isVariadic())
return {};
// Check that the types are compatible with the types that
// would result from default argument promotions (C99 6.7.5.3p15).
// The only types actually affected are promotable integer
// types and floats, which would be passed as a different
// type depending on whether the prototype is visible.
for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
QualType paramTy = proto->getParamType(i);
// Look at the converted type of enum types, since that is the type used
// to pass enum values.
if (const auto *Enum = paramTy->getAs<EnumType>()) {
paramTy = Enum->getDecl()->getIntegerType();
if (paramTy.isNull())
return {};
}
if (paramTy->isPromotableIntegerType() ||
getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
return {};
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
EPI.ExtInfo = einfo;
return getFunctionType(retType, proto->getParamTypes(), EPI);
}
if (allLTypes) return lhs;
if (allRTypes) return rhs;
return getFunctionNoProtoType(retType, einfo);
}
/// Given that we have an enum type and a non-enum type, try to merge them.
static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
QualType other, bool isBlockReturnType) {
// C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
// a signed integer type, or an unsigned integer type.
// Compatibility is based on the underlying type, not the promotion
// type.
QualType underlyingType = ET->getDecl()->getIntegerType();
if (underlyingType.isNull())
return {};
if (Context.hasSameType(underlyingType, other))
return other;
// In block return types, we're more permissive and accept any
// integral type of the same size.
if (isBlockReturnType && other->isIntegerType() &&
Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
return other;
return {};
}
QualType ASTContext::mergeTypes(QualType LHS, QualType RHS,
bool OfBlockPointer,
bool Unqualified, bool BlockReturnType) {
// C++ [expr]: If an expression initially has the type "reference to T", the
// type is adjusted to "T" prior to any further analysis, the expression
// designates the object or function denoted by the reference, and the
// expression is an lvalue unless the reference is an rvalue reference and
// the expression is a function call (possibly inside parentheses).
if (LHS->getAs<ReferenceType>() || RHS->getAs<ReferenceType>())
return {};
if (Unqualified) {
LHS = LHS.getUnqualifiedType();
RHS = RHS.getUnqualifiedType();
}
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
// If the qualifiers are different, the types aren't compatible... mostly.
Qualifiers LQuals = LHSCan.getLocalQualifiers();
Qualifiers RQuals = RHSCan.getLocalQualifiers();
if (LQuals != RQuals) {
// If any of these qualifiers are different, we have a type
// mismatch.
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
LQuals.hasUnaligned() != RQuals.hasUnaligned())
return {};
// Exactly one GC qualifier difference is allowed: __strong is
// okay if the other type has no GC qualifier but is an Objective
// C object pointer (i.e. implicitly strong by default). We fix
// this by pretending that the unqualified type was actually
// qualified __strong.
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
return {};
if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
}
if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
}
return {};
}
// Okay, qualifiers are equal.
Type::TypeClass LHSClass = LHSCan->getTypeClass();
Type::TypeClass RHSClass = RHSCan->getTypeClass();
// We want to consider the two function types to be the same for these
// comparisons, just force one to the other.
if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
// Same as above for arrays
if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
LHSClass = Type::ConstantArray;
if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
RHSClass = Type::ConstantArray;
// ObjCInterfaces are just specialized ObjCObjects.
if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
// Canonicalize ExtVector -> Vector.
if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
// If the canonical type classes don't match.
if (LHSClass != RHSClass) {
// Note that we only have special rules for turning block enum
// returns into block int returns, not vice-versa.
if (const auto *ETy = LHS->getAs<EnumType>()) {
return mergeEnumWithInteger(*this, ETy, RHS, false);
}
if (const EnumType* ETy = RHS->getAs<EnumType>()) {
return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
}
// allow block pointer type to match an 'id' type.
if (OfBlockPointer && !BlockReturnType) {
if (LHS->isObjCIdType() && RHS->isBlockPointerType())
return LHS;
if (RHS->isObjCIdType() && LHS->isBlockPointerType())
return RHS;
}
return {};
}
// The canonical type classes match.
switch (LHSClass) {
#define TYPE(Class, Base)
#define ABSTRACT_TYPE(Class, Base)
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
#include "clang/AST/TypeNodes.inc"
llvm_unreachable("Non-canonical and dependent types shouldn't get here");
case Type::Auto:
case Type::DeducedTemplateSpecialization:
case Type::LValueReference:
case Type::RValueReference:
case Type::MemberPointer:
llvm_unreachable("C++ should never be in mergeTypes");
case Type::ObjCInterface:
case Type::IncompleteArray:
case Type::VariableArray:
case Type::FunctionProto:
case Type::ExtVector:
llvm_unreachable("Types are eliminated above");
case Type::Pointer:
{
// Merge two pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
if (Unqualified) {
LHSPointee = LHSPointee.getUnqualifiedType();
RHSPointee = RHSPointee.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
Unqualified);
if (ResultType.isNull())
return {};
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getPointerType(ResultType);
}
case Type::BlockPointer:
{
// Merge two block pointer types, while trying to preserve typedef info
QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
if (Unqualified) {
LHSPointee = LHSPointee.getUnqualifiedType();
RHSPointee = RHSPointee.getUnqualifiedType();
}
if (getLangOpts().OpenCL) {
Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
// Blocks can't be an expression in a ternary operator (OpenCL v2.0
// 6.12.5) thus the following check is asymmetric.
if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
return {};
LHSPteeQual.removeAddressSpace();
RHSPteeQual.removeAddressSpace();
LHSPointee =
QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
RHSPointee =
QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
}
QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
Unqualified);
if (ResultType.isNull())
return {};
if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
return RHS;
return getBlockPointerType(ResultType);
}
case Type::Atomic:
{
// Merge two pointer types, while trying to preserve typedef info
QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
if (Unqualified) {
LHSValue = LHSValue.getUnqualifiedType();
RHSValue = RHSValue.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
Unqualified);
if (ResultType.isNull())
return {};
if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
return LHS;
if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
return RHS;
return getAtomicType(ResultType);
}
case Type::ConstantArray:
{
const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
return {};
QualType LHSElem = getAsArrayType(LHS)->getElementType();
QualType RHSElem = getAsArrayType(RHS)->getElementType();
if (Unqualified) {
LHSElem = LHSElem.getUnqualifiedType();
RHSElem = RHSElem.getUnqualifiedType();
}
QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
if (ResultType.isNull())
return {};
const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
// If either side is a variable array, and both are complete, check whether
// the current dimension is definite.
if (LVAT || RVAT) {
auto SizeFetch = [this](const VariableArrayType* VAT,
const ConstantArrayType* CAT)
-> std::pair<bool,llvm::APInt> {
if (VAT) {
Optional<llvm::APSInt> TheInt;
Expr *E = VAT->getSizeExpr();
if (E && (TheInt = E->getIntegerConstantExpr(*this)))
return std::make_pair(true, *TheInt);
return std::make_pair(false, llvm::APSInt());
}
if (CAT)
return std::make_pair(true, CAT->getSize());
return std::make_pair(false, llvm::APInt());
};
bool HaveLSize, HaveRSize;
llvm::APInt LSize, RSize;
std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
return {}; // Definite, but unequal, array dimension
}
if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LCAT)
return getConstantArrayType(ResultType, LCAT->getSize(),
LCAT->getSizeExpr(),
ArrayType::ArraySizeModifier(), 0);
if (RCAT)
return getConstantArrayType(ResultType, RCAT->getSize(),
RCAT->getSizeExpr(),
ArrayType::ArraySizeModifier(), 0);
if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
return LHS;
if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
return RHS;
if (LVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of LHS, but the type
// has to be different.
return LHS;
}
if (RVAT) {
// FIXME: This isn't correct! But tricky to implement because
// the array's size has to be the size of RHS, but the type
// has to be different.
return RHS;
}
if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
return getIncompleteArrayType(ResultType,
ArrayType::ArraySizeModifier(), 0);
}
case Type::FunctionNoProto:
return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified);
case Type::Record:
case Type::Enum:
return {};
case Type::Builtin:
// Only exactly equal builtin types are compatible, which is tested above.
return {};
case Type::Complex:
// Distinct complex types are incompatible.
return {};
case Type::Vector:
// FIXME: The merged type should be an ExtVector!
if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
RHSCan->castAs<VectorType>()))
return LHS;
return {};
case Type::ConstantMatrix:
if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
RHSCan->castAs<ConstantMatrixType>()))
return LHS;
return {};
case Type::ObjCObject: {
// Check if the types are assignment compatible.
// FIXME: This should be type compatibility, e.g. whether
// "LHS x; RHS x;" at global scope is legal.
if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
RHS->castAs<ObjCObjectType>()))
return LHS;
return {};
}
case Type::ObjCObjectPointer:
if (OfBlockPointer) {
if (canAssignObjCInterfacesInBlockPointer(
LHS->castAs<ObjCObjectPointerType>(),
RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
return LHS;
return {};
}
if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
RHS->castAs<ObjCObjectPointerType>()))
return LHS;
return {};
case Type::Pipe:
assert(LHS != RHS &&
"Equivalent pipe types should have already been handled!");
return {};
case Type::ExtInt: {
// Merge two ext-int types, while trying to preserve typedef info.
bool LHSUnsigned = LHS->castAs<ExtIntType>()->isUnsigned();
bool RHSUnsigned = RHS->castAs<ExtIntType>()->isUnsigned();
unsigned LHSBits = LHS->castAs<ExtIntType>()->getNumBits();
unsigned RHSBits = RHS->castAs<ExtIntType>()->getNumBits();
// Like unsigned/int, shouldn't have a type if they dont match.
if (LHSUnsigned != RHSUnsigned)
return {};
if (LHSBits != RHSBits)
return {};
return LHS;
}
}
llvm_unreachable("Invalid Type::Class!");
}
bool ASTContext::mergeExtParameterInfo(
const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
bool &CanUseFirst, bool &CanUseSecond,
SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
assert(NewParamInfos.empty() && "param info list not empty");
CanUseFirst = CanUseSecond = true;
bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
// Fast path: if the first type doesn't have ext parameter infos,
// we match if and only if the second type also doesn't have them.
if (!FirstHasInfo && !SecondHasInfo)
return true;
bool NeedParamInfo = false;
size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
: SecondFnType->getExtParameterInfos().size();
for (size_t I = 0; I < E; ++I) {
FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
if (FirstHasInfo)
FirstParam = FirstFnType->getExtParameterInfo(I);
if (SecondHasInfo)
SecondParam = SecondFnType->getExtParameterInfo(I);
// Cannot merge unless everything except the noescape flag matches.
if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
return false;
bool FirstNoEscape = FirstParam.isNoEscape();
bool SecondNoEscape = SecondParam.isNoEscape();
bool IsNoEscape = FirstNoEscape && SecondNoEscape;
NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
if (NewParamInfos.back().getOpaqueValue())
NeedParamInfo = true;
if (FirstNoEscape != IsNoEscape)
CanUseFirst = false;
if (SecondNoEscape != IsNoEscape)
CanUseSecond = false;
}
if (!NeedParamInfo)
NewParamInfos.clear();
return true;
}
void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
ObjCLayouts[CD] = nullptr;
}
/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
/// 'RHS' attributes and returns the merged version; including for function
/// return types.
QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
QualType LHSCan = getCanonicalType(LHS),
RHSCan = getCanonicalType(RHS);
// If two types are identical, they are compatible.
if (LHSCan == RHSCan)
return LHS;
if (RHSCan->isFunctionType()) {
if (!LHSCan->isFunctionType())
return {};
QualType OldReturnType =
cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
QualType NewReturnType =
cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
QualType ResReturnType =
mergeObjCGCQualifiers(NewReturnType, OldReturnType);
if (ResReturnType.isNull())
return {};
if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
// id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
// In either case, use OldReturnType to build the new function type.
const auto *F = LHS->castAs<FunctionType>();
if (const auto *FPT = cast<FunctionProtoType>(F)) {
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
EPI.ExtInfo = getFunctionExtInfo(LHS);
QualType ResultType =
getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
return ResultType;
}
}
return {};
}
// If the qualifiers are different, the types can still be merged.
Qualifiers LQuals = LHSCan.getLocalQualifiers();
Qualifiers RQuals = RHSCan.getLocalQualifiers();
if (LQuals != RQuals) {
// If any of these qualifiers are different, we have a type mismatch.
if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
LQuals.getAddressSpace() != RQuals.getAddressSpace())
return {};
// Exactly one GC qualifier difference is allowed: __strong is
// okay if the other type has no GC qualifier but is an Objective
// C object pointer (i.e. implicitly strong by default). We fix
// this by pretending that the unqualified type was actually
// qualified __strong.
Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
return {};
if (GC_L == Qualifiers::Strong)
return LHS;
if (GC_R == Qualifiers::Strong)
return RHS;
return {};
}
if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
if (ResQT == LHSBaseQT)
return LHS;
if (ResQT == RHSBaseQT)
return RHS;
}
return {};
}
//===----------------------------------------------------------------------===//
// Integer Predicates
//===----------------------------------------------------------------------===//
unsigned ASTContext::getIntWidth(QualType T) const {
if (const auto *ET = T->getAs<EnumType>())
T = ET->getDecl()->getIntegerType();
if (T->isBooleanType())
return 1;
if(const auto *EIT = T->getAs<ExtIntType>())
return EIT->getNumBits();
// For builtin types, just use the standard type sizing method
return (unsigned)getTypeSize(T);
}
QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
assert((T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&
"Unexpected type");
// Turn <4 x signed int> -> <4 x unsigned int>
if (const auto *VTy = T->getAs<VectorType>())
return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
VTy->getNumElements(), VTy->getVectorKind());
// For enums, we return the unsigned version of the base type.
if (const auto *ETy = T->getAs<EnumType>())
T = ETy->getDecl()->getIntegerType();
switch (T->castAs<BuiltinType>()->getKind()) {
case BuiltinType::Char_S:
case BuiltinType::SChar:
return UnsignedCharTy;
case BuiltinType::Short:
return UnsignedShortTy;
case BuiltinType::Int:
return UnsignedIntTy;
case BuiltinType::Long:
return UnsignedLongTy;
case BuiltinType::LongLong:
return UnsignedLongLongTy;
case BuiltinType::Int128:
return UnsignedInt128Ty;
// wchar_t is special. It is either signed or not, but when it's signed,
// there's no matching "unsigned wchar_t". Therefore we return the unsigned
// version of it's underlying type instead.
case BuiltinType::WChar_S:
return getUnsignedWCharType();
case BuiltinType::ShortAccum:
return UnsignedShortAccumTy;
case BuiltinType::Accum:
return UnsignedAccumTy;
case BuiltinType::LongAccum:
return UnsignedLongAccumTy;
case BuiltinType::SatShortAccum:
return SatUnsignedShortAccumTy;
case BuiltinType::SatAccum:
return SatUnsignedAccumTy;
case BuiltinType::SatLongAccum:
return SatUnsignedLongAccumTy;
case BuiltinType::ShortFract:
return UnsignedShortFractTy;
case BuiltinType::Fract:
return UnsignedFractTy;
case BuiltinType::LongFract:
return UnsignedLongFractTy;
case BuiltinType::SatShortFract:
return SatUnsignedShortFractTy;
case BuiltinType::SatFract:
return SatUnsignedFractTy;
case BuiltinType::SatLongFract:
return SatUnsignedLongFractTy;
default:
llvm_unreachable("Unexpected signed integer or fixed point type");
}
}
ASTMutationListener::~ASTMutationListener() = default;
void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
QualType ReturnType) {}
//===----------------------------------------------------------------------===//
// Builtin Type Computation
//===----------------------------------------------------------------------===//
/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
/// pointer over the consumed characters. This returns the resultant type. If
/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
/// a vector of "i*".
///
/// RequiresICE is filled in on return to indicate whether the value is required
/// to be an Integer Constant Expression.
static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
ASTContext::GetBuiltinTypeError &Error,
bool &RequiresICE,
bool AllowTypeModifiers) {
// Modifiers.
int HowLong = 0;
bool Signed = false, Unsigned = false;
RequiresICE = false;
// Read the prefixed modifiers first.
bool Done = false;
#ifndef NDEBUG
bool IsSpecial = false;
#endif
while (!Done) {
switch (*Str++) {
default: Done = true; --Str; break;
case 'I':
RequiresICE = true;
break;
case 'S':
assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
assert(!Signed && "Can't use 'S' modifier multiple times!");
Signed = true;
break;
case 'U':
assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
assert(!Unsigned && "Can't use 'U' modifier multiple times!");
Unsigned = true;
break;
case 'L':
assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers");
assert(HowLong <= 2 && "Can't have LLLL modifier");
++HowLong;
break;
case 'N':
// 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!");
#ifndef NDEBUG
IsSpecial = true;
#endif
if (Context.getTargetInfo().getLongWidth() == 32)
++HowLong;
break;
case 'W':
// This modifier represents int64 type.
assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!");
#ifndef NDEBUG
IsSpecial = true;
#endif
switch (Context.getTargetInfo().getInt64Type()) {
default:
llvm_unreachable("Unexpected integer type");
case TargetInfo::SignedLong:
HowLong = 1;
break;
case TargetInfo::SignedLongLong:
HowLong = 2;
break;
}
break;
case 'Z':
// This modifier represents int32 type.
assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!");
#ifndef NDEBUG
IsSpecial = true;
#endif
switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
default:
llvm_unreachable("Unexpected integer type");
case TargetInfo::SignedInt:
HowLong = 0;
break;
case TargetInfo::SignedLong:
HowLong = 1;
break;
case TargetInfo::SignedLongLong:
HowLong = 2;
break;
}
break;
case 'O':
assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!");
assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!");
#ifndef NDEBUG
IsSpecial = true;
#endif
if (Context.getLangOpts().OpenCL)
HowLong = 1;
else
HowLong = 2;
break;
}
}
QualType Type;
// Read the base type.
switch (*Str++) {
default: llvm_unreachable("Unknown builtin type letter!");
case 'y':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'y'!");
Type = Context.BFloat16Ty;
break;
case 'v':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'v'!");
Type = Context.VoidTy;
break;
case 'h':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'h'!");
Type = Context.HalfTy;
break;
case 'f':
assert(HowLong == 0 && !Signed && !Unsigned &&
"Bad modifiers used with 'f'!");
Type = Context.FloatTy;
break;
case 'd':
assert(HowLong < 3 && !Signed && !Unsigned &&
"Bad modifiers used with 'd'!");
if (HowLong == 1)
Type = Context.LongDoubleTy;
else if (HowLong == 2)
Type = Context.Float128Ty;
else
Type = Context.DoubleTy;
break;
case 's':
assert(HowLong == 0 && "Bad modifiers used with 's'!");
if (Unsigned)
Type = Context.UnsignedShortTy;
else
Type = Context.ShortTy;
break;
case 'i':
if (HowLong == 3)
Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
else if (HowLong == 2)
Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
else if (HowLong == 1)
Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
else
Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
break;
case 'c':
assert(HowLong == 0 && "Bad modifiers used with 'c'!");
if (Signed)
Type = Context.SignedCharTy;
else if (Unsigned)
Type = Context.UnsignedCharTy;
else
Type = Context.CharTy;
break;
case 'b': // boolean
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
Type = Context.BoolTy;
break;
case 'z': // size_t.
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
Type = Context.getSizeType();
break;
case 'w': // wchar_t.
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!");
Type = Context.getWideCharType();
break;
case 'F':
Type = Context.getCFConstantStringType();
break;
case 'G':
Type = Context.getObjCIdType();
break;
case 'H':
Type = Context.getObjCSelType();
break;
case 'M':
Type = Context.getObjCSuperType();
break;
case 'a':
Type = Context.getBuiltinVaListType();
assert(!Type.isNull() && "builtin va list type not initialized!");
break;
case 'A':
// This is a "reference" to a va_list; however, what exactly
// this means depends on how va_list is defined. There are two
// different kinds of va_list: ones passed by value, and ones
// passed by reference. An example of a by-value va_list is
// x86, where va_list is a char*. An example of by-ref va_list
// is x86-64, where va_list is a __va_list_tag[1]. For x86,
// we want this argument to be a char*&; for x86-64, we want
// it to be a __va_list_tag*.
Type = Context.getBuiltinVaListType();
assert(!Type.isNull() && "builtin va list type not initialized!");
if (Type->isArrayType())
Type = Context.getArrayDecayedType(Type);
else
Type = Context.getLValueReferenceType(Type);
break;
case 'q': {
char *End;
unsigned NumElements = strtoul(Str, &End, 10);
assert(End != Str && "Missing vector size");
Str = End;
QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
RequiresICE, false);
assert(!RequiresICE && "Can't require vector ICE");
Type = Context.getScalableVectorType(ElementType, NumElements);
break;
}
case 'V': {
char *End;
unsigned NumElements = strtoul(Str, &End, 10);
assert(End != Str && "Missing vector size");
Str = End;
QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
RequiresICE, false);
assert(!RequiresICE && "Can't require vector ICE");
// TODO: No way to make AltiVec vectors in builtins yet.
Type = Context.getVectorType(ElementType, NumElements,
VectorType::GenericVector);
break;
}
case 'E': {
char *End;
unsigned NumElements = strtoul(Str, &End, 10);
assert(End != Str && "Missing vector size");
Str = End;
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
false);
Type = Context.getExtVectorType(ElementType, NumElements);
break;
}
case 'X': {
QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
false);
assert(!RequiresICE && "Can't require complex ICE");
Type = Context.getComplexType(ElementType);
break;
}
case 'Y':
Type = Context.getPointerDiffType();
break;
case 'P':
Type = Context.getFILEType();
if (Type.isNull()) {
Error = ASTContext::GE_Missing_stdio;
return {};
}
break;
case 'J':
if (Signed)
Type = Context.getsigjmp_bufType();
else
Type = Context.getjmp_bufType();
if (Type.isNull()) {
Error = ASTContext::GE_Missing_setjmp;
return {};
}
break;
case 'K':
assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!");
Type = Context.getucontext_tType();
if (Type.isNull()) {
Error = ASTContext::GE_Missing_ucontext;
return {};
}
break;
case 'p':
Type = Context.getProcessIDType();
break;
}
// If there are modifiers and if we're allowed to parse them, go for it.
Done = !AllowTypeModifiers;
while (!Done) {
switch (char c = *Str++) {
default: Done = true; --Str; break;
case '*':
case '&': {
// Both pointers and references can have their pointee types
// qualified with an address space.
char *End;
unsigned AddrSpace = strtoul(Str, &End, 10);
if (End != Str) {
// Note AddrSpace == 0 is not the same as an unspecified address space.
Type = Context.getAddrSpaceQualType(
Type,
Context.getLangASForBuiltinAddressSpace(AddrSpace));
Str = End;
}
if (c == '*')
Type = Context.getPointerType(Type);
else
Type = Context.getLValueReferenceType(Type);
break;
}
// FIXME: There's no way to have a built-in with an rvalue ref arg.
case 'C':
Type = Type.withConst();
break;
case 'D':
Type = Context.getVolatileType(Type);
break;
case 'R':
Type = Type.withRestrict();
break;
}
}
assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&
"Integer constant 'I' type must be an integer");
return Type;
}
// On some targets such as PowerPC, some of the builtins are defined with custom
// type decriptors for target-dependent types. These descriptors are decoded in
// other functions, but it may be useful to be able to fall back to default
// descriptor decoding to define builtins mixing target-dependent and target-
// independent types. This function allows decoding one type descriptor with
// default decoding.
QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
GetBuiltinTypeError &Error, bool &RequireICE,
bool AllowTypeModifiers) const {
return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
}
/// GetBuiltinType - Return the type for the specified builtin.
QualType ASTContext::GetBuiltinType(unsigned Id,
GetBuiltinTypeError &Error,
unsigned *IntegerConstantArgs) const {
const char *TypeStr = BuiltinInfo.getTypeString(Id);
if (TypeStr[0] == '\0') {
Error = GE_Missing_type;
return {};
}
SmallVector<QualType, 8> ArgTypes;
bool RequiresICE = false;
Error = GE_None;
QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
RequiresICE, true);
if (Error != GE_None)
return {};
assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE");
while (TypeStr[0] && TypeStr[0] != '.') {
QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
if (Error != GE_None)
return {};
// If this argument is required to be an IntegerConstantExpression and the
// caller cares, fill in the bitmask we return.
if (RequiresICE && IntegerConstantArgs)
*IntegerConstantArgs |= 1 << ArgTypes.size();
// Do array -> pointer decay. The builtin should use the decayed type.
if (Ty->isArrayType())
Ty = getArrayDecayedType(Ty);
ArgTypes.push_back(Ty);
}
if (Id == Builtin::BI__GetExceptionInfo)
return {};
assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
"'.' should only occur at end of builtin type list!");
bool Variadic = (TypeStr[0] == '.');
FunctionType::ExtInfo EI(getDefaultCallingConvention(
Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
// We really shouldn't be making a no-proto type here.
if (ArgTypes.empty() && Variadic && !getLangOpts().CPlusPlus)
return getFunctionNoProtoType(ResType, EI);
FunctionProtoType::ExtProtoInfo EPI;
EPI.ExtInfo = EI;
EPI.Variadic = Variadic;
if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
EPI.ExceptionSpec.Type =
getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
return getFunctionType(ResType, ArgTypes, EPI);
}
static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
const FunctionDecl *FD) {
if (!FD->isExternallyVisible())
return GVA_Internal;
// Non-user-provided functions get emitted as weak definitions with every
// use, no matter whether they've been explicitly instantiated etc.
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
if (!MD->isUserProvided())
return GVA_DiscardableODR;
GVALinkage External;
switch (FD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
External = GVA_StrongExternal;
break;
case TSK_ExplicitInstantiationDefinition:
return GVA_StrongODR;
// C++11 [temp.explicit]p10:
// [ Note: The intent is that an inline function that is the subject of
// an explicit instantiation declaration will still be implicitly
// instantiated when used so that the body can be considered for
// inlining, but that no out-of-line copy of the inline function would be
// generated in the translation unit. -- end note ]
case TSK_ExplicitInstantiationDeclaration:
return GVA_AvailableExternally;
case TSK_ImplicitInstantiation:
External = GVA_DiscardableODR;
break;
}
if (!FD->isInlined())
return External;
if ((!Context.getLangOpts().CPlusPlus &&
!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
!FD->hasAttr<DLLExportAttr>()) ||
FD->hasAttr<GNUInlineAttr>()) {
// FIXME: This doesn't match gcc's behavior for dllexport inline functions.
// GNU or C99 inline semantics. Determine whether this symbol should be
// externally visible.
if (FD->isInlineDefinitionExternallyVisible())
return External;
// C99 inline semantics, where the symbol is not externally visible.
return GVA_AvailableExternally;
}
// Functions specified with extern and inline in -fms-compatibility mode
// forcibly get emitted. While the body of the function cannot be later
// replaced, the function definition cannot be discarded.
if (FD->isMSExternInline())
return GVA_StrongODR;
return GVA_DiscardableODR;
}
static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
const Decl *D, GVALinkage L) {
// See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
// dllexport/dllimport on inline functions.
if (D->hasAttr<DLLImportAttr>()) {
if (L == GVA_DiscardableODR || L == GVA_StrongODR)
return GVA_AvailableExternally;
} else if (D->hasAttr<DLLExportAttr>()) {
if (L == GVA_DiscardableODR)
return GVA_StrongODR;
} else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
// Device-side functions with __global__ attribute must always be
// visible externally so they can be launched from host.
if (D->hasAttr<CUDAGlobalAttr>() &&
(L == GVA_DiscardableODR || L == GVA_Internal))
return GVA_StrongODR;
// Single source offloading languages like CUDA/HIP need to be able to
// access static device variables from host code of the same compilation
// unit. This is done by externalizing the static variable.
if (Context.shouldExternalizeStaticVar(D))
return GVA_StrongExternal;
}
return L;
}
/// Adjust the GVALinkage for a declaration based on what an external AST source
/// knows about whether there can be other definitions of this declaration.
static GVALinkage
adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
GVALinkage L) {
ExternalASTSource *Source = Ctx.getExternalSource();
if (!Source)
return L;
switch (Source->hasExternalDefinitions(D)) {
case ExternalASTSource::EK_Never:
// Other translation units rely on us to provide the definition.
if (L == GVA_DiscardableODR)
return GVA_StrongODR;
break;
case ExternalASTSource::EK_Always:
return GVA_AvailableExternally;
case ExternalASTSource::EK_ReplyHazy:
break;
}
return L;
}
GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
return adjustGVALinkageForExternalDefinitionKind(*this, FD,
adjustGVALinkageForAttributes(*this, FD,
basicGVALinkageForFunction(*this, FD)));
}
static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
const VarDecl *VD) {
if (!VD->isExternallyVisible())
return GVA_Internal;
if (VD->isStaticLocal()) {
const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
LexicalContext = LexicalContext->getLexicalParent();
// ObjC Blocks can create local variables that don't have a FunctionDecl
// LexicalContext.
if (!LexicalContext)
return GVA_DiscardableODR;
// Otherwise, let the static local variable inherit its linkage from the
// nearest enclosing function.
auto StaticLocalLinkage =
Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
// Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
// be emitted in any object with references to the symbol for the object it
// contains, whether inline or out-of-line."
// Similar behavior is observed with MSVC. An alternative ABI could use
// StrongODR/AvailableExternally to match the function, but none are
// known/supported currently.
if (StaticLocalLinkage == GVA_StrongODR ||
StaticLocalLinkage == GVA_AvailableExternally)
return GVA_DiscardableODR;
return StaticLocalLinkage;
}
// MSVC treats in-class initialized static data members as definitions.
// By giving them non-strong linkage, out-of-line definitions won't
// cause link errors.
if (Context.isMSStaticDataMemberInlineDefinition(VD))
return GVA_DiscardableODR;
// Most non-template variables have strong linkage; inline variables are
// linkonce_odr or (occasionally, for compatibility) weak_odr.
GVALinkage StrongLinkage;
switch (Context.getInlineVariableDefinitionKind(VD)) {
case ASTContext::InlineVariableDefinitionKind::None:
StrongLinkage = GVA_StrongExternal;
break;
case ASTContext::InlineVariableDefinitionKind::Weak:
case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
StrongLinkage = GVA_DiscardableODR;
break;
case ASTContext::InlineVariableDefinitionKind::Strong:
StrongLinkage = GVA_StrongODR;
break;
}
switch (VD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
return StrongLinkage;
case TSK_ExplicitSpecialization:
return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
VD->isStaticDataMember()
? GVA_StrongODR
: StrongLinkage;
case TSK_ExplicitInstantiationDefinition:
return GVA_StrongODR;
case TSK_ExplicitInstantiationDeclaration:
return GVA_AvailableExternally;
case TSK_ImplicitInstantiation:
return GVA_DiscardableODR;
}
llvm_unreachable("Invalid Linkage!");
}
GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) {
return adjustGVALinkageForExternalDefinitionKind(*this, VD,
adjustGVALinkageForAttributes(*this, VD,
basicGVALinkageForVariable(*this, VD)));
}
bool ASTContext::DeclMustBeEmitted(const Decl *D) {
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (!VD->isFileVarDecl())
return false;
// Global named register variables (GNU extension) are never emitted.
if (VD->getStorageClass() == SC_Register)
return false;
if (VD->getDescribedVarTemplate() ||
isa<VarTemplatePartialSpecializationDecl>(VD))
return false;
} else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// We never need to emit an uninstantiated function template.
if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
return false;
} else if (isa<PragmaCommentDecl>(D))
return true;
else if (isa<PragmaDetectMismatchDecl>(D))
return true;
else if (isa<OMPRequiresDecl>(D))
return true;
else if (isa<OMPThreadPrivateDecl>(D))
return !D->getDeclContext()->isDependentContext();
else if (isa<OMPAllocateDecl>(D))
return !D->getDeclContext()->isDependentContext();
else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
return !D->getDeclContext()->isDependentContext();
else if (isa<ImportDecl>(D))
return true;
else
return false;
// If this is a member of a class template, we do not need to emit it.
if (D->getDeclContext()->isDependentContext())
return false;
// Weak references don't produce any output by themselves.
if (D->hasAttr<WeakRefAttr>())
return false;
// Aliases and used decls are required.
if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
return true;
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
// Forward declarations aren't required.
if (!FD->doesThisDeclarationHaveABody())
return FD->doesDeclarationForceExternallyVisibleDefinition();
// Constructors and destructors are required.
if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
return true;
// The key function for a class is required. This rule only comes
// into play when inline functions can be key functions, though.
if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
const CXXRecordDecl *RD = MD->getParent();
if (MD->isOutOfLine() && RD->isDynamicClass()) {
const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
return true;
}
}
}
GVALinkage Linkage = GetGVALinkageForFunction(FD);
// static, static inline, always_inline, and extern inline functions can
// always be deferred. Normal inline functions can be deferred in C99/C++.
// Implicit template instantiations can also be deferred in C++.
return !isDiscardableGVALinkage(Linkage);
}
const auto *VD = cast<VarDecl>(D);
assert(VD->isFileVarDecl() && "Expected file scoped var");
// If the decl is marked as `declare target to`, it should be emitted for the
// host and for the device.
if (LangOpts.OpenMP &&
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
return true;
if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
!isMSStaticDataMemberInlineDefinition(VD))
return false;
// Variables that can be needed in other TUs are required.
auto Linkage = GetGVALinkageForVariable(VD);
if (!isDiscardableGVALinkage(Linkage))
return true;
// We never need to emit a variable that is available in another TU.
if (Linkage == GVA_AvailableExternally)
return false;
// Variables that have destruction with side-effects are required.
if (VD->needsDestruction(*this))
return true;
// Variables that have initialization with side-effects are required.
if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
// We can get a value-dependent initializer during error recovery.
(VD->getInit()->isValueDependent() || !VD->evaluateValue()))
return true;
// Likewise, variables with tuple-like bindings are required if their
// bindings have side-effects.
if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
for (const auto *BD : DD->bindings())
if (const auto *BindingVD = BD->getHoldingVar())
if (DeclMustBeEmitted(BindingVD))
return true;
return false;
}
void ASTContext::forEachMultiversionedFunctionVersion(
const FunctionDecl *FD,
llvm::function_ref<void(FunctionDecl *)> Pred) const {
assert(FD->isMultiVersion() && "Only valid for multiversioned functions");
llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
FD = FD->getMostRecentDecl();
for (auto *CurDecl :
FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
std::end(SeenDecls) == llvm::find(SeenDecls, CurFD)) {
SeenDecls.insert(CurFD);
Pred(CurFD);
}
}
}
CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
bool IsCXXMethod,
bool IsBuiltin) const {
// Pass through to the C++ ABI object
if (IsCXXMethod)
return ABI->getDefaultMethodCallConv(IsVariadic);
// Builtins ignore user-specified default calling convention and remain the
// Target's default calling convention.
if (!IsBuiltin) {
switch (LangOpts.getDefaultCallingConv()) {
case LangOptions::DCC_None:
break;
case LangOptions::DCC_CDecl:
return CC_C;
case LangOptions::DCC_FastCall:
if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
return CC_X86FastCall;
break;
case LangOptions::DCC_StdCall:
if (!IsVariadic)
return CC_X86StdCall;
break;
case LangOptions::DCC_VectorCall:
// __vectorcall cannot be applied to variadic functions.
if (!IsVariadic)
return CC_X86VectorCall;
break;
case LangOptions::DCC_RegCall:
// __regcall cannot be applied to variadic functions.
if (!IsVariadic)
return CC_X86RegCall;
break;
}
}
return Target->getDefaultCallingConv();
}
bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
// Pass through to the C++ ABI object
return ABI->isNearlyEmpty(RD);
}
VTableContextBase *ASTContext::getVTableContext() {
if (!VTContext.get()) {
auto ABI = Target->getCXXABI();
if (ABI.isMicrosoft())
VTContext.reset(new MicrosoftVTableContext(*this));
else {
auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
? ItaniumVTableContext::Relative
: ItaniumVTableContext::Pointer;
VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
}
}
return VTContext.get();
}
MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
if (!T)
T = Target;
switch (T->getCXXABI().getKind()) {
case TargetCXXABI::AppleARM64:
case TargetCXXABI::Fuchsia:
case TargetCXXABI::GenericAArch64:
case TargetCXXABI::GenericItanium:
case TargetCXXABI::GenericARM:
case TargetCXXABI::GenericMIPS:
case TargetCXXABI::iOS:
case TargetCXXABI::WebAssembly:
case TargetCXXABI::WatchOS:
case TargetCXXABI::XL:
return ItaniumMangleContext::create(*this, getDiagnostics());
case TargetCXXABI::Microsoft:
return MicrosoftMangleContext::create(*this, getDiagnostics());
}
llvm_unreachable("Unsupported ABI");
}
CXXABI::~CXXABI() = default;
size_t ASTContext::getSideTableAllocatedMemory() const {
return ASTRecordLayouts.getMemorySize() +
llvm::capacity_in_bytes(ObjCLayouts) +
llvm::capacity_in_bytes(KeyFunctions) +
llvm::capacity_in_bytes(ObjCImpls) +
llvm::capacity_in_bytes(BlockVarCopyInits) +
llvm::capacity_in_bytes(DeclAttrs) +
llvm::capacity_in_bytes(TemplateOrInstantiation) +
llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
llvm::capacity_in_bytes(OverriddenMethods) +
llvm::capacity_in_bytes(Types) +
llvm::capacity_in_bytes(VariableArrayTypes);
}
/// getIntTypeForBitwidth -
/// sets integer QualTy according to specified details:
/// bitwidth, signed/unsigned.
/// Returns empty type if there is no appropriate target types.
QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
unsigned Signed) const {
TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
CanQualType QualTy = getFromTargetType(Ty);
if (!QualTy && DestWidth == 128)
return Signed ? Int128Ty : UnsignedInt128Ty;
return QualTy;
}
/// getRealTypeForBitwidth -
/// sets floating point QualTy according to specified bitwidth.
/// Returns empty type if there is no appropriate target types.
QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
bool ExplicitIEEE) const {
TargetInfo::RealType Ty =
getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitIEEE);
switch (Ty) {
case TargetInfo::Float:
return FloatTy;
case TargetInfo::Double:
return DoubleTy;
case TargetInfo::LongDouble:
return LongDoubleTy;
case TargetInfo::Float128:
return Float128Ty;
case TargetInfo::NoFloat:
return {};
}
llvm_unreachable("Unhandled TargetInfo::RealType value");
}
void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
if (Number > 1)
MangleNumbers[ND] = Number;
}
unsigned ASTContext::getManglingNumber(const NamedDecl *ND) const {
auto I = MangleNumbers.find(ND);
return I != MangleNumbers.end() ? I->second : 1;
}
void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
if (Number > 1)
StaticLocalNumbers[VD] = Number;
}
unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
auto I = StaticLocalNumbers.find(VD);
return I != StaticLocalNumbers.end() ? I->second : 1;
}
MangleNumberingContext &
ASTContext::getManglingNumberContext(const DeclContext *DC) {
assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
if (!MCtx)
MCtx = createMangleNumberingContext();
return *MCtx;
}
MangleNumberingContext &
ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
assert(LangOpts.CPlusPlus); // We don't need mangling numbers for plain C.
std::unique_ptr<MangleNumberingContext> &MCtx =
ExtraMangleNumberingContexts[D];
if (!MCtx)
MCtx = createMangleNumberingContext();
return *MCtx;
}
std::unique_ptr<MangleNumberingContext>
ASTContext::createMangleNumberingContext() const {
return ABI->createMangleNumberingContext();
}
const CXXConstructorDecl *
ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
return ABI->getCopyConstructorForExceptionObject(
cast<CXXRecordDecl>(RD->getFirstDecl()));
}
void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
CXXConstructorDecl *CD) {
return ABI->addCopyConstructorForExceptionObject(
cast<CXXRecordDecl>(RD->getFirstDecl()),
cast<CXXConstructorDecl>(CD->getFirstDecl()));
}
void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
TypedefNameDecl *DD) {
return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
}
TypedefNameDecl *
ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
return ABI->getTypedefNameForUnnamedTagDecl(TD);
}
void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
DeclaratorDecl *DD) {
return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
}
DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
return ABI->getDeclaratorForUnnamedTagDecl(TD);
}
void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
ParamIndices[D] = index;
}
unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
ParameterIndexTable::const_iterator I = ParamIndices.find(D);
assert(I != ParamIndices.end() &&
"ParmIndices lacks entry set by ParmVarDecl");
return I->second;
}
QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
unsigned Length) const {
// A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
EltTy = EltTy.withConst();
EltTy = adjustStringLiteralBaseType(EltTy);
// Get an array type for the string, according to C99 6.4.5. This includes
// the null terminator character.
return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
ArrayType::Normal, /*IndexTypeQuals*/ 0);
}
StringLiteral *
ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
StringLiteral *&Result = StringLiteralCache[Key];
if (!Result)
Result = StringLiteral::Create(
*this, Key, StringLiteral::Ascii,
/*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
SourceLocation());
return Result;
}
MSGuidDecl *
ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
assert(MSGuidTagDecl && "building MS GUID without MS extensions?");
llvm::FoldingSetNodeID ID;
MSGuidDecl::Profile(ID, Parts);
void *InsertPos;
if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
return Existing;
QualType GUIDType = getMSGuidType().withConst();
MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
MSGuidDecls.InsertNode(New, InsertPos);
return New;
}
TemplateParamObjectDecl *
ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
assert(T->isRecordType() && "template param object of unexpected type");
// C++ [temp.param]p8:
// [...] a static storage duration object of type 'const T' [...]
T.addConst();
llvm::FoldingSetNodeID ID;
TemplateParamObjectDecl::Profile(ID, T, V);
void *InsertPos;
if (TemplateParamObjectDecl *Existing =
TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
return Existing;
TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
TemplateParamObjectDecls.InsertNode(New, InsertPos);
return New;
}
bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
const llvm::Triple &T = getTargetInfo().getTriple();
if (!T.isOSDarwin())
return false;
if (!(T.isiOS() && T.isOSVersionLT(7)) &&
!(T.isMacOSX() && T.isOSVersionLT(10, 9)))
return false;
QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
uint64_t Size = sizeChars.getQuantity();
CharUnits alignChars = getTypeAlignInChars(AtomicTy);
unsigned Align = alignChars.getQuantity();
unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
}
bool
ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
const ObjCMethodDecl *MethodImpl) {
// No point trying to match an unavailable/deprecated mothod.
if (MethodDecl->hasAttr<UnavailableAttr>()
|| MethodDecl->hasAttr<DeprecatedAttr>())
return false;
if (MethodDecl->getObjCDeclQualifier() !=
MethodImpl->getObjCDeclQualifier())
return false;
if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
return false;
if (MethodDecl->param_size() != MethodImpl->param_size())
return false;
for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
EF = MethodDecl->param_end();
IM != EM && IF != EF; ++IM, ++IF) {
const ParmVarDecl *DeclVar = (*IF);
const ParmVarDecl *ImplVar = (*IM);
if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
return false;
if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
return false;
}
return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
}
uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
LangAS AS;
if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
AS = LangAS::Default;
else
AS = QT->getPointeeType().getAddressSpace();
return getTargetInfo().getNullPointerValue(AS);
}
unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
if (isTargetAddressSpace(AS))
return toTargetAddressSpace(AS);
else
return (*AddrSpaceMap)[(unsigned)AS];
}
QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
assert(Ty->isFixedPointType());
if (Ty->isSaturatedFixedPointType()) return Ty;
switch (Ty->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("Not a fixed point type!");
case BuiltinType::ShortAccum:
return SatShortAccumTy;
case BuiltinType::Accum:
return SatAccumTy;
case BuiltinType::LongAccum:
return SatLongAccumTy;
case BuiltinType::UShortAccum:
return SatUnsignedShortAccumTy;
case BuiltinType::UAccum:
return SatUnsignedAccumTy;
case BuiltinType::ULongAccum:
return SatUnsignedLongAccumTy;
case BuiltinType::ShortFract:
return SatShortFractTy;
case BuiltinType::Fract:
return SatFractTy;
case BuiltinType::LongFract:
return SatLongFractTy;
case BuiltinType::UShortFract:
return SatUnsignedShortFractTy;
case BuiltinType::UFract:
return SatUnsignedFractTy;
case BuiltinType::ULongFract:
return SatUnsignedLongFractTy;
}
}
LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
if (LangOpts.OpenCL)
return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
if (LangOpts.CUDA)
return getTargetInfo().getCUDABuiltinAddressSpace(AS);
return getLangASFromTargetAS(AS);
}
// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
// doesn't include ASTContext.h
template
clang::LazyGenerationalUpdatePtr<
const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
clang::LazyGenerationalUpdatePtr<
const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
const clang::ASTContext &Ctx, Decl *Value);
unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
assert(Ty->isFixedPointType());
const TargetInfo &Target = getTargetInfo();
switch (Ty->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("Not a fixed point type!");
case BuiltinType::ShortAccum:
case BuiltinType::SatShortAccum:
return Target.getShortAccumScale();
case BuiltinType::Accum:
case BuiltinType::SatAccum:
return Target.getAccumScale();
case BuiltinType::LongAccum:
case BuiltinType::SatLongAccum:
return Target.getLongAccumScale();
case BuiltinType::UShortAccum:
case BuiltinType::SatUShortAccum:
return Target.getUnsignedShortAccumScale();
case BuiltinType::UAccum:
case BuiltinType::SatUAccum:
return Target.getUnsignedAccumScale();
case BuiltinType::ULongAccum:
case BuiltinType::SatULongAccum:
return Target.getUnsignedLongAccumScale();
case BuiltinType::ShortFract:
case BuiltinType::SatShortFract:
return Target.getShortFractScale();
case BuiltinType::Fract:
case BuiltinType::SatFract:
return Target.getFractScale();
case BuiltinType::LongFract:
case BuiltinType::SatLongFract:
return Target.getLongFractScale();
case BuiltinType::UShortFract:
case BuiltinType::SatUShortFract:
return Target.getUnsignedShortFractScale();
case BuiltinType::UFract:
case BuiltinType::SatUFract:
return Target.getUnsignedFractScale();
case BuiltinType::ULongFract:
case BuiltinType::SatULongFract:
return Target.getUnsignedLongFractScale();
}
}
unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
assert(Ty->isFixedPointType());
const TargetInfo &Target = getTargetInfo();
switch (Ty->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("Not a fixed point type!");
case BuiltinType::ShortAccum:
case BuiltinType::SatShortAccum:
return Target.getShortAccumIBits();
case BuiltinType::Accum:
case BuiltinType::SatAccum:
return Target.getAccumIBits();
case BuiltinType::LongAccum:
case BuiltinType::SatLongAccum:
return Target.getLongAccumIBits();
case BuiltinType::UShortAccum:
case BuiltinType::SatUShortAccum:
return Target.getUnsignedShortAccumIBits();
case BuiltinType::UAccum:
case BuiltinType::SatUAccum:
return Target.getUnsignedAccumIBits();
case BuiltinType::ULongAccum:
case BuiltinType::SatULongAccum:
return Target.getUnsignedLongAccumIBits();
case BuiltinType::ShortFract:
case BuiltinType::SatShortFract:
case BuiltinType::Fract:
case BuiltinType::SatFract:
case BuiltinType::LongFract:
case BuiltinType::SatLongFract:
case BuiltinType::UShortFract:
case BuiltinType::SatUShortFract:
case BuiltinType::UFract:
case BuiltinType::SatUFract:
case BuiltinType::ULongFract:
case BuiltinType::SatULongFract:
return 0;
}
}
llvm::FixedPointSemantics
ASTContext::getFixedPointSemantics(QualType Ty) const {
assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&
"Can only get the fixed point semantics for a "
"fixed point or integer type.");
if (Ty->isIntegerType())
return llvm::FixedPointSemantics::GetIntegerSemantics(
getIntWidth(Ty), Ty->isSignedIntegerType());
bool isSigned = Ty->isSignedFixedPointType();
return llvm::FixedPointSemantics(
static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
Ty->isSaturatedFixedPointType(),
!isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
}
llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
assert(Ty->isFixedPointType());
return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
}
llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
assert(Ty->isFixedPointType());
return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
}
QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
assert(Ty->isUnsignedFixedPointType() &&
"Expected unsigned fixed point type");
switch (Ty->castAs<BuiltinType>()->getKind()) {
case BuiltinType::UShortAccum:
return ShortAccumTy;
case BuiltinType::UAccum:
return AccumTy;
case BuiltinType::ULongAccum:
return LongAccumTy;
case BuiltinType::SatUShortAccum:
return SatShortAccumTy;
case BuiltinType::SatUAccum:
return SatAccumTy;
case BuiltinType::SatULongAccum:
return SatLongAccumTy;
case BuiltinType::UShortFract:
return ShortFractTy;
case BuiltinType::UFract:
return FractTy;
case BuiltinType::ULongFract:
return LongFractTy;
case BuiltinType::SatUShortFract:
return SatShortFractTy;
case BuiltinType::SatUFract:
return SatFractTy;
case BuiltinType::SatULongFract:
return SatLongFractTy;
default:
llvm_unreachable("Unexpected unsigned fixed point type");
}
}
ParsedTargetAttr
ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
assert(TD != nullptr);
ParsedTargetAttr ParsedAttr = TD->parse();
ParsedAttr.Features.erase(
llvm::remove_if(ParsedAttr.Features,
[&](const std::string &Feat) {
return !Target->isValidFeatureName(
StringRef{Feat}.substr(1));
}),
ParsedAttr.Features.end());
return ParsedAttr;
}
void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
const FunctionDecl *FD) const {
if (FD)
getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
else
Target->initFeatureMap(FeatureMap, getDiagnostics(),
Target->getTargetOpts().CPU,
Target->getTargetOpts().Features);
}
// Fills in the supplied string map with the set of target features for the
// passed in function.
void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
GlobalDecl GD) const {
StringRef TargetCPU = Target->getTargetOpts().CPU;
const FunctionDecl *FD = GD.getDecl()->getAsFunction();
if (const auto *TD = FD->getAttr<TargetAttr>()) {
ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
// Make a copy of the features as passed on the command line into the
// beginning of the additional features from the function to override.
ParsedAttr.Features.insert(
ParsedAttr.Features.begin(),
Target->getTargetOpts().FeaturesAsWritten.begin(),
Target->getTargetOpts().FeaturesAsWritten.end());
if (ParsedAttr.Architecture != "" &&
Target->isValidCPUName(ParsedAttr.Architecture))
TargetCPU = ParsedAttr.Architecture;
// Now populate the feature map, first with the TargetCPU which is either
// the default or a new one from the target attribute string. Then we'll use
// the passed in features (FeaturesAsWritten) along with the new ones from
// the attribute.
Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
ParsedAttr.Features);
} else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
llvm::SmallVector<StringRef, 32> FeaturesTmp;
Target->getCPUSpecificCPUDispatchFeatures(
SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
} else {
FeatureMap = Target->getTargetOpts().FeatureMap;
}
}
OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
return *OMPTraitInfoVector.back();
}
const StreamingDiagnostic &clang::
operator<<(const StreamingDiagnostic &DB,
const ASTContext::SectionInfo &Section) {
if (Section.Decl)
return DB << Section.Decl;
return DB << "a prior #pragma section";
}
bool ASTContext::mayExternalizeStaticVar(const Decl *D) const {
return !getLangOpts().GPURelocatableDeviceCode &&
((D->hasAttr<CUDADeviceAttr>() &&
!D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
(D->hasAttr<CUDAConstantAttr>() &&
!D->getAttr<CUDAConstantAttr>()->isImplicit())) &&
isa<VarDecl>(D) && cast<VarDecl>(D)->isFileVarDecl() &&
cast<VarDecl>(D)->getStorageClass() == SC_Static;
}
bool ASTContext::shouldExternalizeStaticVar(const Decl *D) const {
return mayExternalizeStaticVar(D) &&
CUDAStaticDeviceVarReferencedByHost.count(cast<VarDecl>(D));
}