llvm-project/llvm/lib/Target/ARM/ARMMCCodeEmitter.cpp

317 lines
10 KiB
C++

//===-- ARM/ARMMCCodeEmitter.cpp - Convert ARM code to machine code -------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the ARMMCCodeEmitter class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "arm-emitter"
#include "ARM.h"
#include "ARMAddressingModes.h"
#include "ARMInstrInfo.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(MCNumEmitted, "Number of MC instructions emitted");
namespace {
class ARMMCCodeEmitter : public MCCodeEmitter {
ARMMCCodeEmitter(const ARMMCCodeEmitter &); // DO NOT IMPLEMENT
void operator=(const ARMMCCodeEmitter &); // DO NOT IMPLEMENT
const TargetMachine &TM;
const TargetInstrInfo &TII;
MCContext &Ctx;
public:
ARMMCCodeEmitter(TargetMachine &tm, MCContext &ctx)
: TM(tm), TII(*TM.getInstrInfo()), Ctx(ctx) {
}
~ARMMCCodeEmitter() {}
unsigned getMachineSoImmOpValue(unsigned SoImm) const;
// getBinaryCodeForInstr - TableGen'erated function for getting the
// binary encoding for an instruction.
unsigned getBinaryCodeForInstr(const MCInst &MI) const;
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MCInst &MI,const MCOperand &MO) const;
/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
/// operand.
unsigned getAddrModeImm12OpValue(const MCInst &MI, unsigned Op) const;
/// getCCOutOpValue - Return encoding of the 's' bit.
unsigned getCCOutOpValue(const MCInst &MI, unsigned Op) const {
// The operand is either reg0 or CPSR. The 's' bit is encoded as '0' or
// '1' respectively.
return MI.getOperand(Op).getReg() == ARM::CPSR;
}
/// getSOImmOpValue - Return an encoded 12-bit shifted-immediate value.
unsigned getSOImmOpValue(const MCInst &MI, unsigned Op) const {
unsigned SoImm = MI.getOperand(Op).getImm();
int SoImmVal = ARM_AM::getSOImmVal(SoImm);
assert(SoImmVal != -1 && "Not a valid so_imm value!");
// Encode rotate_imm.
unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
<< ARMII::SoRotImmShift;
// Encode immed_8.
Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
return Binary;
}
/// getSORegOpValue - Return an encoded so_reg shifted register value.
unsigned getSORegOpValue(const MCInst &MI, unsigned Op) const;
unsigned getRotImmOpValue(const MCInst &MI, unsigned Op) const {
switch (MI.getOperand(Op).getImm()) {
default: assert (0 && "Not a valid rot_imm value!");
case 0: return 0;
case 8: return 1;
case 16: return 2;
case 24: return 3;
}
}
unsigned getImmMinusOneOpValue(const MCInst &MI, unsigned Op) const {
return MI.getOperand(Op).getImm() - 1;
}
unsigned getNEONVcvtImm32(const MCInst &MI, unsigned Op) const {
return 64 - MI.getOperand(Op).getImm();
}
unsigned getBitfieldInvertedMaskOpValue(const MCInst &MI, unsigned Op) const;
unsigned getNumFixupKinds() const {
assert(0 && "ARMMCCodeEmitter::getNumFixupKinds() not yet implemented.");
return 0;
}
const MCFixupKindInfo &getFixupKindInfo(MCFixupKind Kind) const {
static MCFixupKindInfo rtn;
assert(0 && "ARMMCCodeEmitter::getFixupKindInfo() not yet implemented.");
return rtn;
}
void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
OS << (char)C;
++CurByte;
}
void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
raw_ostream &OS) const {
// Output the constant in little endian byte order.
for (unsigned i = 0; i != Size; ++i) {
EmitByte(Val & 255, CurByte, OS);
Val >>= 8;
}
}
void EmitImmediate(const MCOperand &Disp,
unsigned ImmSize, MCFixupKind FixupKind,
unsigned &CurByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups,
int ImmOffset = 0) const;
void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const;
};
} // end anonymous namespace
MCCodeEmitter *llvm::createARMMCCodeEmitter(const Target &,
TargetMachine &TM,
MCContext &Ctx) {
return new ARMMCCodeEmitter(TM, Ctx);
}
void ARMMCCodeEmitter::
EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind,
unsigned &CurByte, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
assert(0 && "ARMMCCodeEmitter::EmitImmediate() not yet implemented.");
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMMCCodeEmitter::getMachineOpValue(const MCInst &MI,
const MCOperand &MO) const {
if (MO.isReg()) {
unsigned regno = getARMRegisterNumbering(MO.getReg());
// Q registers are encodes as 2x their register number.
switch (MO.getReg()) {
case ARM::Q0: case ARM::Q1: case ARM::Q2: case ARM::Q3:
case ARM::Q4: case ARM::Q5: case ARM::Q6: case ARM::Q7:
case ARM::Q8: case ARM::Q9: case ARM::Q10: case ARM::Q11:
case ARM::Q12: case ARM::Q13: case ARM::Q14: case ARM::Q15:
return 2 * regno;
default:
return regno;
}
} else if (MO.isImm()) {
return static_cast<unsigned>(MO.getImm());
} else if (MO.isFPImm()) {
return static_cast<unsigned>(APFloat(MO.getFPImm())
.bitcastToAPInt().getHiBits(32).getLimitedValue());
} else {
#ifndef NDEBUG
errs() << MO;
#endif
llvm_unreachable(0);
}
return 0;
}
/// getAddrModeImm12OpValue - Return encoding info for 'reg +/- imm12'
/// operand.
unsigned ARMMCCodeEmitter::getAddrModeImm12OpValue(const MCInst &MI,
unsigned OpIdx) const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
unsigned Reg = getARMRegisterNumbering(MO.getReg());
int32_t Imm12 = MO1.getImm();
bool isAdd = Imm12 >= 0;
// Special value for #-0
if (Imm12 == INT32_MIN)
Imm12 = 0;
// Immediate is always encoded as positive. The 'U' bit controls add vs sub.
if (Imm12 < 0)
Imm12 = -Imm12;
uint32_t Binary = Imm12 & 0xfff;
if (isAdd)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
unsigned ARMMCCodeEmitter::getSORegOpValue(const MCInst &MI,
unsigned OpIdx) const {
// Sub-operands are [reg, reg, imm]. The first register is Rm, the reg
// to be shifted. The second is either Rs, the amount to shift by, or
// reg0 in which case the imm contains the amount to shift by.
// {3-0} = Rm.
// {4} = 1 if reg shift, 0 if imm shift
// {6-5} = type
// If reg shift:
// {7} = 0
// {11-8} = Rs
// else (imm shift)
// {11-7} = imm
const MCOperand &MO = MI.getOperand(OpIdx);
const MCOperand &MO1 = MI.getOperand(OpIdx + 1);
const MCOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode Rm.
unsigned Binary = getARMRegisterNumbering(MO.getReg());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
case ARM_AM::rrx: SBits = 0x6; break;
}
} else {
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
}
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode the shift operation Rs or shift_imm (except rrx).
if (Rs) {
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
}
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}
unsigned ARMMCCodeEmitter::getBitfieldInvertedMaskOpValue(const MCInst &MI,
unsigned Op) const {
// 10 bits. lower 5 bits are are the lsb of the mask, high five bits are the
// msb of the mask.
const MCOperand &MO = MI.getOperand(Op);
uint32_t v = ~MO.getImm();
uint32_t lsb = CountTrailingZeros_32(v);
uint32_t msb = (32 - CountLeadingZeros_32 (v)) - 1;
assert (v != 0 && lsb < 32 && msb < 32 && "Illegal bitfield mask!");
return lsb | (msb << 5);
}
void ARMMCCodeEmitter::
EncodeInstruction(const MCInst &MI, raw_ostream &OS,
SmallVectorImpl<MCFixup> &Fixups) const {
unsigned Opcode = MI.getOpcode();
const TargetInstrDesc &Desc = TII.get(Opcode);
uint64_t TSFlags = Desc.TSFlags;
// Keep track of the current byte being emitted.
unsigned CurByte = 0;
// Pseudo instructions don't get encoded.
if ((TSFlags & ARMII::FormMask) == ARMII::Pseudo)
return;
++MCNumEmitted; // Keep track of the # of mi's emitted
unsigned Value = getBinaryCodeForInstr(MI);
switch (Opcode) {
default: break;
}
EmitConstant(Value, 4, CurByte, OS);
}
// FIXME: These #defines shouldn't be necessary. Instead, tblgen should
// be able to generate code emitter helpers for either variant, like it
// does for the AsmWriter.
#define ARMCodeEmitter ARMMCCodeEmitter
#define MachineInstr MCInst
#include "ARMGenCodeEmitter.inc"
#undef ARMCodeEmitter
#undef MachineInstr