forked from OSchip/llvm-project
661 lines
25 KiB
C++
661 lines
25 KiB
C++
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Tooling/Syntax/BuildTree.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/Tooling/Syntax/Nodes.h"
|
|
#include "clang/Tooling/Syntax/Tokens.h"
|
|
#include "clang/Tooling/Syntax/Tree.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <map>
|
|
|
|
using namespace clang;
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
|
|
|
|
/// A helper class for constructing the syntax tree while traversing a clang
|
|
/// AST.
|
|
///
|
|
/// At each point of the traversal we maintain a list of pending nodes.
|
|
/// Initially all tokens are added as pending nodes. When processing a clang AST
|
|
/// node, the clients need to:
|
|
/// - create a corresponding syntax node,
|
|
/// - assign roles to all pending child nodes with 'markChild' and
|
|
/// 'markChildToken',
|
|
/// - replace the child nodes with the new syntax node in the pending list
|
|
/// with 'foldNode'.
|
|
///
|
|
/// Note that all children are expected to be processed when building a node.
|
|
///
|
|
/// Call finalize() to finish building the tree and consume the root node.
|
|
class syntax::TreeBuilder {
|
|
public:
|
|
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
|
|
for (const auto &T : Arena.tokenBuffer().expandedTokens())
|
|
LocationToToken.insert({T.location().getRawEncoding(), &T});
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
|
|
|
|
/// Populate children for \p New node, assuming it covers tokens from \p
|
|
/// Range.
|
|
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New);
|
|
|
|
/// Must be called with the range of each `DeclaratorDecl`. Ensures the
|
|
/// corresponding declarator nodes are covered by `SimpleDeclaration`.
|
|
void noticeDeclaratorRange(llvm::ArrayRef<syntax::Token> Range);
|
|
|
|
/// Notifies that we should not consume trailing semicolon when computing
|
|
/// token range of \p D.
|
|
void noticeDeclaratorWithoutSemicolon(Decl *D);
|
|
|
|
/// Mark the \p Child node with a corresponding \p Role. All marked children
|
|
/// should be consumed by foldNode.
|
|
/// (!) when called on expressions (clang::Expr is derived from clang::Stmt),
|
|
/// wraps expressions into expression statement.
|
|
void markStmtChild(Stmt *Child, NodeRole Role);
|
|
/// Should be called for expressions in non-statement position to avoid
|
|
/// wrapping into expression statement.
|
|
void markExprChild(Expr *Child, NodeRole Role);
|
|
|
|
/// Set role for a token starting at \p Loc.
|
|
void markChildToken(SourceLocation Loc, NodeRole R);
|
|
|
|
/// Finish building the tree and consume the root node.
|
|
syntax::TranslationUnit *finalize() && {
|
|
auto Tokens = Arena.tokenBuffer().expandedTokens();
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() == tok::eof);
|
|
|
|
// Build the root of the tree, consuming all the children.
|
|
Pending.foldChildren(Arena, Tokens.drop_back(),
|
|
new (Arena.allocator()) syntax::TranslationUnit);
|
|
|
|
return cast<syntax::TranslationUnit>(std::move(Pending).finalize());
|
|
}
|
|
|
|
/// getRange() finds the syntax tokens corresponding to the passed source
|
|
/// locations.
|
|
/// \p First is the start position of the first token and \p Last is the start
|
|
/// position of the last token.
|
|
llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
|
|
SourceLocation Last) const {
|
|
assert(First.isValid());
|
|
assert(Last.isValid());
|
|
assert(First == Last ||
|
|
Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
|
|
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
|
|
}
|
|
llvm::ArrayRef<syntax::Token> getRange(const Decl *D) const {
|
|
auto Tokens = getRange(D->getBeginLoc(), D->getEndLoc());
|
|
if (llvm::isa<NamespaceDecl>(D))
|
|
return Tokens;
|
|
if (DeclsWithoutSemicolons.count(D))
|
|
return Tokens;
|
|
// FIXME: do not consume trailing semicolon on function definitions.
|
|
// Most declarations own a semicolon in syntax trees, but not in clang AST.
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
|
|
return getRange(E->getBeginLoc(), E->getEndLoc());
|
|
}
|
|
/// Find the adjusted range for the statement, consuming the trailing
|
|
/// semicolon when needed.
|
|
llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
|
|
auto Tokens = getRange(S->getBeginLoc(), S->getEndLoc());
|
|
if (isa<CompoundStmt>(S))
|
|
return Tokens;
|
|
|
|
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
|
|
// all statements that end with those. Consume this semicolon here.
|
|
if (Tokens.back().kind() == tok::semi)
|
|
return Tokens;
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
|
|
private:
|
|
llvm::ArrayRef<syntax::Token>
|
|
withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() != tok::eof);
|
|
// (!) we never consume 'eof', so looking at the next token is ok.
|
|
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
|
|
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
|
|
return Tokens;
|
|
}
|
|
|
|
/// Finds a token starting at \p L. The token must exist.
|
|
const syntax::Token *findToken(SourceLocation L) const;
|
|
|
|
/// A collection of trees covering the input tokens.
|
|
/// When created, each tree corresponds to a single token in the file.
|
|
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
|
|
/// node and update the list of trees accordingly.
|
|
///
|
|
/// Ensures that added nodes properly nest and cover the whole token stream.
|
|
struct Forest {
|
|
Forest(syntax::Arena &A) {
|
|
assert(!A.tokenBuffer().expandedTokens().empty());
|
|
assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
|
|
// Create all leaf nodes.
|
|
// Note that we do not have 'eof' in the tree.
|
|
for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
|
|
auto *L = new (A.allocator()) syntax::Leaf(&T);
|
|
L->Original = true;
|
|
L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
|
|
Trees.insert(Trees.end(), {&T, NodeAndRole{L}});
|
|
}
|
|
}
|
|
|
|
~Forest() { assert(DelayedFolds.empty()); }
|
|
|
|
void assignRole(llvm::ArrayRef<syntax::Token> Range,
|
|
syntax::NodeRole Role) {
|
|
assert(!Range.empty());
|
|
auto It = Trees.lower_bound(Range.begin());
|
|
assert(It != Trees.end() && "no node found");
|
|
assert(It->first == Range.begin() && "no child with the specified range");
|
|
assert((std::next(It) == Trees.end() ||
|
|
std::next(It)->first == Range.end()) &&
|
|
"no child with the specified range");
|
|
It->second.Role = Role;
|
|
}
|
|
|
|
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
|
|
void foldChildren(const syntax::Arena &A,
|
|
llvm::ArrayRef<syntax::Token> Tokens,
|
|
syntax::Tree *Node) {
|
|
// Execute delayed folds inside `Tokens`.
|
|
auto BeginExecuted = DelayedFolds.lower_bound(Tokens.begin());
|
|
auto It = BeginExecuted;
|
|
for (; It != DelayedFolds.end() && It->second.End <= Tokens.end(); ++It)
|
|
foldChildrenEager(A, llvm::makeArrayRef(It->first, It->second.End),
|
|
It->second.Node);
|
|
DelayedFolds.erase(BeginExecuted, It);
|
|
|
|
// Attach children to `Node`.
|
|
foldChildrenEager(A, Tokens, Node);
|
|
}
|
|
|
|
/// Schedule a call to `foldChildren` that will only be executed when
|
|
/// containing node is folded. The range of delayed nodes can be extended by
|
|
/// calling `extendDelayedFold`. Only one delayed node for each starting
|
|
/// token is allowed.
|
|
void foldChildrenDelayed(llvm::ArrayRef<syntax::Token> Tokens,
|
|
syntax::Tree *Node) {
|
|
assert(!Tokens.empty());
|
|
bool Inserted =
|
|
DelayedFolds.insert({Tokens.begin(), DelayedFold{Tokens.end(), Node}})
|
|
.second;
|
|
(void)Inserted;
|
|
assert(Inserted && "Multiple delayed folds start at the same token");
|
|
}
|
|
|
|
/// If there a delayed fold, starting at `ExtendedRange.begin()`, extends
|
|
/// its endpoint to `ExtendedRange.end()` and returns true.
|
|
/// Otherwise, returns false.
|
|
bool extendDelayedFold(llvm::ArrayRef<syntax::Token> ExtendedRange) {
|
|
assert(!ExtendedRange.empty());
|
|
auto It = DelayedFolds.find(ExtendedRange.data());
|
|
if (It == DelayedFolds.end())
|
|
return false;
|
|
assert(It->second.End <= ExtendedRange.end());
|
|
It->second.End = ExtendedRange.end();
|
|
return true;
|
|
}
|
|
|
|
// EXPECTS: all tokens were consumed and are owned by a single root node.
|
|
syntax::Node *finalize() && {
|
|
assert(Trees.size() == 1);
|
|
auto *Root = Trees.begin()->second.Node;
|
|
Trees = {};
|
|
return Root;
|
|
}
|
|
|
|
std::string str(const syntax::Arena &A) const {
|
|
std::string R;
|
|
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
|
|
unsigned CoveredTokens =
|
|
It != Trees.end()
|
|
? (std::next(It)->first - It->first)
|
|
: A.tokenBuffer().expandedTokens().end() - It->first;
|
|
|
|
R += llvm::formatv("- '{0}' covers '{1}'+{2} tokens\n",
|
|
It->second.Node->kind(),
|
|
It->first->text(A.sourceManager()), CoveredTokens);
|
|
R += It->second.Node->dump(A);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
private:
|
|
/// Implementation detail of `foldChildren`, does acutal folding ignoring
|
|
/// delayed folds.
|
|
void foldChildrenEager(const syntax::Arena &A,
|
|
llvm::ArrayRef<syntax::Token> Tokens,
|
|
syntax::Tree *Node) {
|
|
assert(Node->firstChild() == nullptr && "node already has children");
|
|
|
|
auto *FirstToken = Tokens.begin();
|
|
auto BeginChildren = Trees.lower_bound(FirstToken);
|
|
assert((BeginChildren == Trees.end() ||
|
|
BeginChildren->first == FirstToken) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
auto EndChildren = Trees.lower_bound(Tokens.end());
|
|
assert(
|
|
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
|
|
// (!) we need to go in reverse order, because we can only prepend.
|
|
for (auto It = EndChildren; It != BeginChildren; --It)
|
|
Node->prependChildLowLevel(std::prev(It)->second.Node,
|
|
std::prev(It)->second.Role);
|
|
|
|
// Mark that this node came from the AST and is backed by the source code.
|
|
Node->Original = true;
|
|
Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
|
|
|
|
Trees.erase(BeginChildren, EndChildren);
|
|
Trees.insert({FirstToken, NodeAndRole(Node)});
|
|
}
|
|
/// A with a role that should be assigned to it when adding to a parent.
|
|
struct NodeAndRole {
|
|
explicit NodeAndRole(syntax::Node *Node)
|
|
: Node(Node), Role(NodeRole::Unknown) {}
|
|
|
|
syntax::Node *Node;
|
|
NodeRole Role;
|
|
};
|
|
|
|
/// Maps from the start token to a subtree starting at that token.
|
|
/// Keys in the map are pointers into the array of expanded tokens, so
|
|
/// pointer order corresponds to the order of preprocessor tokens.
|
|
/// FIXME: storing the end tokens is redundant.
|
|
/// FIXME: the key of a map is redundant, it is also stored in NodeForRange.
|
|
std::map<const syntax::Token *, NodeAndRole> Trees;
|
|
|
|
/// See documentation of `foldChildrenDelayed` for details.
|
|
struct DelayedFold {
|
|
const syntax::Token *End = nullptr;
|
|
syntax::Tree *Node = nullptr;
|
|
};
|
|
std::map<const syntax::Token *, DelayedFold> DelayedFolds;
|
|
};
|
|
|
|
/// For debugging purposes.
|
|
std::string str() { return Pending.str(Arena); }
|
|
|
|
syntax::Arena &Arena;
|
|
/// To quickly find tokens by their start location.
|
|
llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
|
|
LocationToToken;
|
|
Forest Pending;
|
|
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
|
|
};
|
|
|
|
namespace {
|
|
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
|
|
public:
|
|
explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
|
|
: Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
|
|
|
|
bool shouldTraversePostOrder() const { return true; }
|
|
|
|
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *D) {
|
|
// Ensure declarators are covered by SimpleDeclaration.
|
|
Builder.noticeDeclaratorRange(Builder.getRange(D));
|
|
// FIXME: build nodes for the declarator too.
|
|
return true;
|
|
}
|
|
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *D) {
|
|
// Also a declarator.
|
|
Builder.noticeDeclaratorRange(Builder.getRange(D));
|
|
// FIXME: build nodes for the declarator too.
|
|
return true;
|
|
}
|
|
|
|
bool VisitDecl(Decl *D) {
|
|
assert(!D->isImplicit());
|
|
Builder.foldNode(Builder.getRange(D),
|
|
new (allocator()) syntax::UnknownDeclaration());
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTagDecl(TagDecl *C) {
|
|
// Avoid building UnknownDeclaration here, syntatically 'struct X {}' and
|
|
// similar are part of declaration specifiers and do not introduce a new
|
|
// top-level declaration.
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
|
|
// (!) we do not want to call VisitDecl(), the declaration for translation
|
|
// unit is built by finalize().
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
|
|
using NodeRole = syntax::NodeRole;
|
|
|
|
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
|
|
for (auto *Child : S->body())
|
|
Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
|
|
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
|
|
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CompoundStatement);
|
|
return true;
|
|
}
|
|
|
|
// Some statements are not yet handled by syntax trees.
|
|
bool WalkUpFromStmt(Stmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::UnknownStatement);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
// We override to traverse range initializer as VarDecl.
|
|
// RAV traverses it as a statement, we produce invalid node kinds in that
|
|
// case.
|
|
// FIXME: should do this in RAV instead?
|
|
if (S->getInit() && !TraverseStmt(S->getInit()))
|
|
return false;
|
|
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
|
|
return false;
|
|
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
|
|
return false;
|
|
if (S->getBody() && !TraverseStmt(S->getBody()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
|
|
// We want to consume the semicolon, make sure SimpleDeclaration does not.
|
|
for (auto *D : DS->decls())
|
|
Builder.noticeDeclaratorWithoutSemicolon(D);
|
|
} else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
|
|
// (!) do not recurse into subexpressions.
|
|
// we do not have syntax trees for expressions yet, so we only want to see
|
|
// the first top-level expression.
|
|
return WalkUpFromExpr(E->IgnoreImplicit());
|
|
}
|
|
return RecursiveASTVisitor::TraverseStmt(S);
|
|
}
|
|
|
|
// Some expressions are not yet handled by syntax trees.
|
|
bool WalkUpFromExpr(Expr *E) {
|
|
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
|
|
Builder.foldNode(Builder.getExprRange(E),
|
|
new (allocator()) syntax::UnknownExpression);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
|
|
auto Tokens = Builder.getRange(S);
|
|
if (Tokens.front().kind() == tok::coloncolon) {
|
|
// Handle nested namespace definitions. Those start at '::' token, e.g.
|
|
// namespace a^::b {}
|
|
// FIXME: build corresponding nodes for the name of this namespace.
|
|
return true;
|
|
}
|
|
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition);
|
|
return true;
|
|
}
|
|
|
|
// The code below is very regular, it could even be generated with some
|
|
// preprocessor magic. We merely assign roles to the corresponding children
|
|
// and fold resulting nodes.
|
|
bool WalkUpFromDeclStmt(DeclStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DeclarationStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNullStmt(NullStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::EmptyStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
|
|
Builder.markChildToken(S->getSwitchLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::SwitchStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCaseStmt(CaseStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CaseStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DefaultStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromIfStmt(IfStmt *S) {
|
|
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getThen(),
|
|
syntax::NodeRole::IfStatement_thenStatement);
|
|
Builder.markChildToken(S->getElseLoc(),
|
|
syntax::NodeRole::IfStatement_elseKeyword);
|
|
Builder.markStmtChild(S->getElse(),
|
|
syntax::NodeRole::IfStatement_elseStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::IfStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromForStmt(ForStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ForStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromWhileStmt(WhileStmt *S) {
|
|
Builder.markChildToken(S->getWhileLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::WhileStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromContinueStmt(ContinueStmt *S) {
|
|
Builder.markChildToken(S->getContinueLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ContinueStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromBreakStmt(BreakStmt *S) {
|
|
Builder.markChildToken(S->getBreakLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::BreakStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromReturnStmt(ReturnStmt *S) {
|
|
Builder.markChildToken(S->getReturnLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getRetValue(),
|
|
syntax::NodeRole::ReturnStatement_value);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ReturnStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::RangeBasedForStatement);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::EmptyDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
|
|
Builder.markExprChild(S->getAssertExpr(),
|
|
syntax::NodeRole::StaticAssertDeclaration_condition);
|
|
Builder.markExprChild(S->getMessage(),
|
|
syntax::NodeRole::StaticAssertDeclaration_message);
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::StaticAssertDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::LinkageSpecificationDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::NamespaceAliasDefinition);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::UsingNamespaceDirective);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDecl(UsingDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::UsingDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::UsingDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::UsingDeclaration);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
|
|
Builder.foldNode(Builder.getRange(S),
|
|
new (allocator()) syntax::TypeAliasDeclaration);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
/// A small helper to save some typing.
|
|
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
|
|
|
|
syntax::TreeBuilder &Builder;
|
|
const LangOptions &LangOpts;
|
|
};
|
|
} // namespace
|
|
|
|
void syntax::TreeBuilder::foldNode(llvm::ArrayRef<syntax::Token> Range,
|
|
syntax::Tree *New) {
|
|
Pending.foldChildren(Arena, Range, New);
|
|
}
|
|
|
|
void syntax::TreeBuilder::noticeDeclaratorRange(
|
|
llvm::ArrayRef<syntax::Token> Range) {
|
|
if (Pending.extendDelayedFold(Range))
|
|
return;
|
|
Pending.foldChildrenDelayed(Range,
|
|
new (allocator()) syntax::SimpleDeclaration);
|
|
}
|
|
|
|
void syntax::TreeBuilder::noticeDeclaratorWithoutSemicolon(Decl *D) {
|
|
DeclsWithoutSemicolons.insert(D);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
|
|
if (Loc.isInvalid())
|
|
return;
|
|
Pending.assignRole(*findToken(Loc), Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
|
|
auto Range = getStmtRange(Child);
|
|
// This is an expression in a statement position, consume the trailing
|
|
// semicolon and form an 'ExpressionStatement' node.
|
|
if (auto *E = dyn_cast<Expr>(Child)) {
|
|
Pending.assignRole(getExprRange(E),
|
|
NodeRole::ExpressionStatement_expression);
|
|
// (!) 'getRange(Stmt)' ensures this already covers a trailing semicolon.
|
|
Pending.foldChildren(Arena, Range,
|
|
new (allocator()) syntax::ExpressionStatement);
|
|
}
|
|
Pending.assignRole(Range, Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
|
|
Pending.assignRole(getExprRange(Child), Role);
|
|
}
|
|
|
|
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
|
|
auto It = LocationToToken.find(L.getRawEncoding());
|
|
assert(It != LocationToToken.end());
|
|
return It->second;
|
|
}
|
|
|
|
syntax::TranslationUnit *
|
|
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
|
|
TreeBuilder Builder(A);
|
|
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
|
|
return std::move(Builder).finalize();
|
|
}
|