llvm-project/llvm/lib/Target/X86/InstPrinter/X86ATTInstPrinter.cpp

324 lines
10 KiB
C++

//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as AT&T-style
// assembly.
//
//===----------------------------------------------------------------------===//
#include "X86ATTInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86InstComments.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cinttypes>
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
// Include the auto-generated portion of the assembly writer.
#define PRINT_ALIAS_INSTR
#include "X86GenAsmWriter.inc"
void X86ATTInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
OS << markup("<reg:") << '%' << getRegisterName(RegNo) << markup(">");
}
void X86ATTInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
StringRef Annot, const MCSubtargetInfo &STI) {
const MCInstrDesc &Desc = MII.get(MI->getOpcode());
uint64_t TSFlags = Desc.TSFlags;
// If verbose assembly is enabled, we can print some informative comments.
if (CommentStream)
HasCustomInstComment =
EmitAnyX86InstComments(MI, *CommentStream, MII, getRegisterName);
unsigned Flags = MI->getFlags();
if ((TSFlags & X86II::LOCK) || (Flags & X86::IP_HAS_LOCK))
OS << "\tlock\t";
if ((TSFlags & X86II::NOTRACK) || (Flags & X86::IP_HAS_NOTRACK))
OS << "\tnotrack\t";
if (Flags & X86::IP_HAS_REPEAT_NE)
OS << "\trepne\t";
else if (Flags & X86::IP_HAS_REPEAT)
OS << "\trep\t";
// Output CALLpcrel32 as "callq" in 64-bit mode.
// In Intel annotation it's always emitted as "call".
//
// TODO: Probably this hack should be redesigned via InstAlias in
// InstrInfo.td as soon as Requires clause is supported properly
// for InstAlias.
if (MI->getOpcode() == X86::CALLpcrel32 &&
(STI.getFeatureBits()[X86::Mode64Bit])) {
OS << "\tcallq\t";
printPCRelImm(MI, 0, OS);
}
// data16 and data32 both have the same encoding of 0x66. While data32 is
// valid only in 16 bit systems, data16 is valid in the rest.
// There seems to be some lack of support of the Requires clause that causes
// 0x66 to be interpreted as "data16" by the asm printer.
// Thus we add an adjustment here in order to print the "right" instruction.
else if (MI->getOpcode() == X86::DATA16_PREFIX &&
(STI.getFeatureBits()[X86::Mode16Bit])) {
MCInst Data32MI(*MI);
Data32MI.setOpcode(X86::DATA32_PREFIX);
printInstruction(&Data32MI, OS);
}
// Try to print any aliases first.
else if (!printAliasInstr(MI, OS))
printInstruction(MI, OS);
// Next always print the annotation.
printAnnotation(OS, Annot);
}
void X86ATTInstPrinter::printSSEAVXCC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
switch (Imm) {
default: llvm_unreachable("Invalid ssecc/avxcc argument!");
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
case 8: O << "eq_uq"; break;
case 9: O << "nge"; break;
case 0xa: O << "ngt"; break;
case 0xb: O << "false"; break;
case 0xc: O << "neq_oq"; break;
case 0xd: O << "ge"; break;
case 0xe: O << "gt"; break;
case 0xf: O << "true"; break;
case 0x10: O << "eq_os"; break;
case 0x11: O << "lt_oq"; break;
case 0x12: O << "le_oq"; break;
case 0x13: O << "unord_s"; break;
case 0x14: O << "neq_us"; break;
case 0x15: O << "nlt_uq"; break;
case 0x16: O << "nle_uq"; break;
case 0x17: O << "ord_s"; break;
case 0x18: O << "eq_us"; break;
case 0x19: O << "nge_uq"; break;
case 0x1a: O << "ngt_uq"; break;
case 0x1b: O << "false_os"; break;
case 0x1c: O << "neq_os"; break;
case 0x1d: O << "ge_oq"; break;
case 0x1e: O << "gt_oq"; break;
case 0x1f: O << "true_us"; break;
}
}
void X86ATTInstPrinter::printXOPCC(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm();
switch (Imm) {
default: llvm_unreachable("Invalid xopcc argument!");
case 0: O << "lt"; break;
case 1: O << "le"; break;
case 2: O << "gt"; break;
case 3: O << "ge"; break;
case 4: O << "eq"; break;
case 5: O << "neq"; break;
case 6: O << "false"; break;
case 7: O << "true"; break;
}
}
void X86ATTInstPrinter::printRoundingControl(const MCInst *MI, unsigned Op,
raw_ostream &O) {
int64_t Imm = MI->getOperand(Op).getImm() & 0x3;
switch (Imm) {
case 0: O << "{rn-sae}"; break;
case 1: O << "{rd-sae}"; break;
case 2: O << "{ru-sae}"; break;
case 3: O << "{rz-sae}"; break;
}
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value (e.g. for jumps and calls). These
/// print slightly differently than normal immediates. For example, a $ is not
/// emitted.
void X86ATTInstPrinter::printPCRelImm(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isImm())
O << formatImm(Op.getImm());
else {
assert(Op.isExpr() && "unknown pcrel immediate operand");
// If a symbolic branch target was added as a constant expression then print
// that address in hex.
const MCConstantExpr *BranchTarget = dyn_cast<MCConstantExpr>(Op.getExpr());
int64_t Address;
if (BranchTarget && BranchTarget->evaluateAsAbsolute(Address)) {
O << formatHex((uint64_t)Address);
} else {
// Otherwise, just print the expression.
Op.getExpr()->print(O, &MAI);
}
}
}
void X86ATTInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
raw_ostream &O) {
const MCOperand &Op = MI->getOperand(OpNo);
if (Op.isReg()) {
printRegName(O, Op.getReg());
} else if (Op.isImm()) {
// Print immediates as signed values.
int64_t Imm = Op.getImm();
O << markup("<imm:") << '$' << formatImm(Imm) << markup(">");
// TODO: This should be in a helper function in the base class, so it can
// be used by other printers.
// If there are no instruction-specific comments, add a comment clarifying
// the hex value of the immediate operand when it isn't in the range
// [-256,255].
if (CommentStream && !HasCustomInstComment && (Imm > 255 || Imm < -256)) {
// Don't print unnecessary hex sign bits.
if (Imm == (int16_t)(Imm))
*CommentStream << format("imm = 0x%" PRIX16 "\n", (uint16_t)Imm);
else if (Imm == (int32_t)(Imm))
*CommentStream << format("imm = 0x%" PRIX32 "\n", (uint32_t)Imm);
else
*CommentStream << format("imm = 0x%" PRIX64 "\n", (uint64_t)Imm);
}
} else {
assert(Op.isExpr() && "unknown operand kind in printOperand");
O << markup("<imm:") << '$';
Op.getExpr()->print(O, &MAI);
O << markup(">");
}
}
void X86ATTInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &BaseReg = MI->getOperand(Op + X86::AddrBaseReg);
const MCOperand &IndexReg = MI->getOperand(Op + X86::AddrIndexReg);
const MCOperand &DispSpec = MI->getOperand(Op + X86::AddrDisp);
const MCOperand &SegReg = MI->getOperand(Op + X86::AddrSegmentReg);
O << markup("<mem:");
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op + X86::AddrSegmentReg, O);
O << ':';
}
if (DispSpec.isImm()) {
int64_t DispVal = DispSpec.getImm();
if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg()))
O << formatImm(DispVal);
} else {
assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
DispSpec.getExpr()->print(O, &MAI);
}
if (IndexReg.getReg() || BaseReg.getReg()) {
O << '(';
if (BaseReg.getReg())
printOperand(MI, Op + X86::AddrBaseReg, O);
if (IndexReg.getReg()) {
O << ',';
printOperand(MI, Op + X86::AddrIndexReg, O);
unsigned ScaleVal = MI->getOperand(Op + X86::AddrScaleAmt).getImm();
if (ScaleVal != 1) {
O << ',' << markup("<imm:") << ScaleVal // never printed in hex.
<< markup(">");
}
}
O << ')';
}
O << markup(">");
}
void X86ATTInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &SegReg = MI->getOperand(Op + 1);
O << markup("<mem:");
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op + 1, O);
O << ':';
}
O << "(";
printOperand(MI, Op, O);
O << ")";
O << markup(">");
}
void X86ATTInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
raw_ostream &O) {
O << markup("<mem:");
O << "%es:(";
printOperand(MI, Op, O);
O << ")";
O << markup(">");
}
void X86ATTInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
raw_ostream &O) {
const MCOperand &DispSpec = MI->getOperand(Op);
const MCOperand &SegReg = MI->getOperand(Op + 1);
O << markup("<mem:");
// If this has a segment register, print it.
if (SegReg.getReg()) {
printOperand(MI, Op + 1, O);
O << ':';
}
if (DispSpec.isImm()) {
O << formatImm(DispSpec.getImm());
} else {
assert(DispSpec.isExpr() && "non-immediate displacement?");
DispSpec.getExpr()->print(O, &MAI);
}
O << markup(">");
}
void X86ATTInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
raw_ostream &O) {
if (MI->getOperand(Op).isExpr())
return printOperand(MI, Op, O);
O << markup("<imm:") << '$' << formatImm(MI->getOperand(Op).getImm() & 0xff)
<< markup(">");
}