llvm-project/llvm/tools/llvm-readobj/ELFDumper.cpp

1636 lines
56 KiB
C++

//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file implements the ELF-specific dumper for llvm-readobj.
///
//===----------------------------------------------------------------------===//
#include "llvm-readobj.h"
#include "ARMAttributeParser.h"
#include "ARMEHABIPrinter.h"
#include "Error.h"
#include "ObjDumper.h"
#include "StackMapPrinter.h"
#include "StreamWriter.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/ARMBuildAttributes.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MipsABIFlags.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
using namespace llvm::object;
using namespace ELF;
#define LLVM_READOBJ_ENUM_CASE(ns, enum) \
case ns::enum: return #enum;
namespace {
template<typename ELFT>
class ELFDumper : public ObjDumper {
public:
ELFDumper(const ELFFile<ELFT> *Obj, StreamWriter &Writer)
: ObjDumper(Writer), Obj(Obj) {}
void printFileHeaders() override;
void printSections() override;
void printRelocations() override;
void printDynamicRelocations() override;
void printSymbols() override;
void printDynamicSymbols() override;
void printUnwindInfo() override;
void printDynamicTable() override;
void printNeededLibraries() override;
void printProgramHeaders() override;
void printHashTable() override;
void printAttributes() override;
void printMipsPLTGOT() override;
void printMipsABIFlags() override;
void printMipsReginfo() override;
void printStackMap() const override;
private:
typedef ELFFile<ELFT> ELFO;
typedef typename ELFO::Elf_Shdr Elf_Shdr;
typedef typename ELFO::Elf_Sym Elf_Sym;
void printSymbol(const Elf_Sym *Symbol, bool IsDynamic);
void printRelocations(const Elf_Shdr *Sec);
void printRelocation(const Elf_Shdr *Sec, typename ELFO::Elf_Rela Rel);
const ELFO *Obj;
};
template <class T> T errorOrDefault(ErrorOr<T> Val, T Default = T()) {
if (!Val) {
error(Val.getError());
return Default;
}
return *Val;
}
} // namespace
namespace llvm {
template <class ELFT>
static std::error_code createELFDumper(const ELFFile<ELFT> *Obj,
StreamWriter &Writer,
std::unique_ptr<ObjDumper> &Result) {
Result.reset(new ELFDumper<ELFT>(Obj, Writer));
return readobj_error::success;
}
std::error_code createELFDumper(const object::ObjectFile *Obj,
StreamWriter &Writer,
std::unique_ptr<ObjDumper> &Result) {
// Little-endian 32-bit
if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Big-endian 32-bit
if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Little-endian 64-bit
if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
// Big-endian 64-bit
if (const ELF64BEObjectFile *ELFObj = dyn_cast<ELF64BEObjectFile>(Obj))
return createELFDumper(ELFObj->getELFFile(), Writer, Result);
return readobj_error::unsupported_obj_file_format;
}
} // namespace llvm
template <typename ELFO>
static std::string getFullSymbolName(const ELFO &Obj,
const typename ELFO::Elf_Sym *Symbol,
bool IsDynamic) {
StringRef SymbolName = errorOrDefault(Obj.getSymbolName(Symbol, IsDynamic));
if (!IsDynamic)
return SymbolName;
std::string FullSymbolName(SymbolName);
bool IsDefault;
ErrorOr<StringRef> Version =
Obj.getSymbolVersion(nullptr, &*Symbol, IsDefault);
if (Version) {
FullSymbolName += (IsDefault ? "@@" : "@");
FullSymbolName += *Version;
} else
error(Version.getError());
return FullSymbolName;
}
template <typename ELFO>
static void
getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol,
StringRef &SectionName, unsigned &SectionIndex) {
SectionIndex = Symbol->st_shndx;
if (Symbol->isUndefined())
SectionName = "Undefined";
else if (Symbol->isProcessorSpecific())
SectionName = "Processor Specific";
else if (Symbol->isOSSpecific())
SectionName = "Operating System Specific";
else if (Symbol->isAbsolute())
SectionName = "Absolute";
else if (Symbol->isCommon())
SectionName = "Common";
else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX)
SectionName = "Reserved";
else {
if (SectionIndex == SHN_XINDEX)
SectionIndex = Obj.getExtendedSymbolTableIndex(&*Symbol);
ErrorOr<const typename ELFO::Elf_Shdr *> Sec = Obj.getSection(SectionIndex);
error(Sec.getError());
SectionName = errorOrDefault(Obj.getSectionName(*Sec));
}
}
template <class ELFT>
static const typename ELFFile<ELFT>::Elf_Shdr *
findSectionByAddress(const ELFFile<ELFT> *Obj, uint64_t Addr) {
for (const auto &Shdr : Obj->sections())
if (Shdr.sh_addr == Addr)
return &Shdr;
return nullptr;
}
template <class ELFT>
static const typename ELFFile<ELFT>::Elf_Shdr *
findSectionByName(const ELFFile<ELFT> &Obj, StringRef Name) {
for (const auto &Shdr : Obj.sections()) {
if (Name == errorOrDefault(Obj.getSectionName(&Shdr)))
return &Shdr;
}
return nullptr;
}
static const EnumEntry<unsigned> ElfClass[] = {
{ "None", ELF::ELFCLASSNONE },
{ "32-bit", ELF::ELFCLASS32 },
{ "64-bit", ELF::ELFCLASS64 },
};
static const EnumEntry<unsigned> ElfDataEncoding[] = {
{ "None", ELF::ELFDATANONE },
{ "LittleEndian", ELF::ELFDATA2LSB },
{ "BigEndian", ELF::ELFDATA2MSB },
};
static const EnumEntry<unsigned> ElfObjectFileType[] = {
{ "None", ELF::ET_NONE },
{ "Relocatable", ELF::ET_REL },
{ "Executable", ELF::ET_EXEC },
{ "SharedObject", ELF::ET_DYN },
{ "Core", ELF::ET_CORE },
};
static const EnumEntry<unsigned> ElfOSABI[] = {
{ "SystemV", ELF::ELFOSABI_NONE },
{ "HPUX", ELF::ELFOSABI_HPUX },
{ "NetBSD", ELF::ELFOSABI_NETBSD },
{ "GNU/Linux", ELF::ELFOSABI_LINUX },
{ "GNU/Hurd", ELF::ELFOSABI_HURD },
{ "Solaris", ELF::ELFOSABI_SOLARIS },
{ "AIX", ELF::ELFOSABI_AIX },
{ "IRIX", ELF::ELFOSABI_IRIX },
{ "FreeBSD", ELF::ELFOSABI_FREEBSD },
{ "TRU64", ELF::ELFOSABI_TRU64 },
{ "Modesto", ELF::ELFOSABI_MODESTO },
{ "OpenBSD", ELF::ELFOSABI_OPENBSD },
{ "OpenVMS", ELF::ELFOSABI_OPENVMS },
{ "NSK", ELF::ELFOSABI_NSK },
{ "AROS", ELF::ELFOSABI_AROS },
{ "FenixOS", ELF::ELFOSABI_FENIXOS },
{ "CloudABI", ELF::ELFOSABI_CLOUDABI },
{ "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI },
{ "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX },
{ "ARM", ELF::ELFOSABI_ARM },
{ "Standalone" , ELF::ELFOSABI_STANDALONE }
};
static const EnumEntry<unsigned> ElfMachineType[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_386 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_88K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_IAMCU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_860 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_S370 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_960 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_S390 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_V800 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SH ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_V850 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_C166 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CE ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_8051 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5 ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX ),
LLVM_READOBJ_ENUM_ENT(ELF, EM_AMDGPU )
};
static const EnumEntry<unsigned> ElfSymbolBindings[] = {
{ "Local", ELF::STB_LOCAL },
{ "Global", ELF::STB_GLOBAL },
{ "Weak", ELF::STB_WEAK },
{ "Unique", ELF::STB_GNU_UNIQUE }
};
static const EnumEntry<unsigned> ElfSymbolTypes[] = {
{ "None", ELF::STT_NOTYPE },
{ "Object", ELF::STT_OBJECT },
{ "Function", ELF::STT_FUNC },
{ "Section", ELF::STT_SECTION },
{ "File", ELF::STT_FILE },
{ "Common", ELF::STT_COMMON },
{ "TLS", ELF::STT_TLS },
{ "GNU_IFunc", ELF::STT_GNU_IFUNC }
};
static const char *getElfSectionType(unsigned Arch, unsigned Type) {
switch (Arch) {
case ELF::EM_ARM:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION);
}
case ELF::EM_HEXAGON:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); }
case ELF::EM_X86_64:
switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); }
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS);
}
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed );
LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym );
default: return "";
}
}
static const EnumEntry<unsigned> ElfSectionFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP ),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS ),
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION),
LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION),
LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP )
};
static const char *getElfSegmentType(unsigned Arch, unsigned Type) {
// Check potentially overlapped processor-specific
// program header type.
switch (Arch) {
case ELF::EM_ARM:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX);
}
case ELF::EM_MIPS:
case ELF::EM_MIPS_RS3_LE:
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
}
}
switch (Type) {
LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL );
LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD );
LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP );
LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE );
LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB );
LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR );
LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS );
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
default: return "";
}
}
static const EnumEntry<unsigned> ElfSegmentFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
};
static const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6),
LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6)
};
template<class ELFT>
void ELFDumper<ELFT>::printFileHeaders() {
const typename ELFO::Elf_Ehdr *Header = Obj->getHeader();
{
DictScope D(W, "ElfHeader");
{
DictScope D(W, "Ident");
W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0,
4));
W.printEnum ("Class", Header->e_ident[ELF::EI_CLASS],
makeArrayRef(ElfClass));
W.printEnum ("DataEncoding", Header->e_ident[ELF::EI_DATA],
makeArrayRef(ElfDataEncoding));
W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]);
// Handle architecture specific OS/ABI values.
if (Header->e_machine == ELF::EM_AMDGPU &&
Header->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA)
W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA);
else
W.printEnum ("OS/ABI", Header->e_ident[ELF::EI_OSABI],
makeArrayRef(ElfOSABI));
W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]);
W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD));
}
W.printEnum ("Type", Header->e_type, makeArrayRef(ElfObjectFileType));
W.printEnum ("Machine", Header->e_machine, makeArrayRef(ElfMachineType));
W.printNumber("Version", Header->e_version);
W.printHex ("Entry", Header->e_entry);
W.printHex ("ProgramHeaderOffset", Header->e_phoff);
W.printHex ("SectionHeaderOffset", Header->e_shoff);
if (Header->e_machine == EM_MIPS)
W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags),
unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
unsigned(ELF::EF_MIPS_MACH));
else
W.printFlags("Flags", Header->e_flags);
W.printNumber("HeaderSize", Header->e_ehsize);
W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize);
W.printNumber("ProgramHeaderCount", Header->e_phnum);
W.printNumber("SectionHeaderEntrySize", Header->e_shentsize);
W.printNumber("SectionHeaderCount", Header->e_shnum);
W.printNumber("StringTableSectionIndex", Header->e_shstrndx);
}
}
template<class ELFT>
void ELFDumper<ELFT>::printSections() {
ListScope SectionsD(W, "Sections");
int SectionIndex = -1;
for (const typename ELFO::Elf_Shdr &Sec : Obj->sections()) {
++SectionIndex;
StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
DictScope SectionD(W, "Section");
W.printNumber("Index", SectionIndex);
W.printNumber("Name", Name, Sec.sh_name);
W.printHex("Type",
getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type),
Sec.sh_type);
W.printFlags("Flags", Sec.sh_flags, makeArrayRef(ElfSectionFlags));
W.printHex("Address", Sec.sh_addr);
W.printHex("Offset", Sec.sh_offset);
W.printNumber("Size", Sec.sh_size);
W.printNumber("Link", Sec.sh_link);
W.printNumber("Info", Sec.sh_info);
W.printNumber("AddressAlignment", Sec.sh_addralign);
W.printNumber("EntrySize", Sec.sh_entsize);
if (opts::SectionRelocations) {
ListScope D(W, "Relocations");
printRelocations(&Sec);
}
if (opts::SectionSymbols) {
ListScope D(W, "Symbols");
for (const typename ELFO::Elf_Sym &Sym : Obj->symbols()) {
ErrorOr<const Elf_Shdr *> SymSec = Obj->getSection(&Sym);
if (!SymSec)
continue;
if (*SymSec == &Sec)
printSymbol(&Sym, false);
}
}
if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
ArrayRef<uint8_t> Data = errorOrDefault(Obj->getSectionContents(&Sec));
W.printBinaryBlock("SectionData",
StringRef((const char *)Data.data(), Data.size()));
}
}
}
template<class ELFT>
void ELFDumper<ELFT>::printRelocations() {
ListScope D(W, "Relocations");
int SectionNumber = -1;
for (const typename ELFO::Elf_Shdr &Sec : Obj->sections()) {
++SectionNumber;
if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA)
continue;
StringRef Name = errorOrDefault(Obj->getSectionName(&Sec));
W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n";
W.indent();
printRelocations(&Sec);
W.unindent();
W.startLine() << "}\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printDynamicRelocations() {
W.startLine() << "Dynamic Relocations {\n";
W.indent();
for (const typename ELFO::Elf_Rela &Rel : Obj->dyn_relas()) {
SmallString<32> RelocName;
Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
StringRef SymbolName;
uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL());
const typename ELFO::Elf_Sym *Sym = Obj->dynamic_symbol_begin() + SymIndex;
SymbolName = errorOrDefault(Obj->getSymbolName(Sym, true));
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Rel.r_offset);
W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-");
W.printHex("Addend", Rel.r_addend);
}
else {
raw_ostream& OS = W.startLine();
OS << W.hex(Rel.r_offset) << " " << RelocName << " "
<< (SymbolName.size() > 0 ? SymbolName : "-") << " "
<< W.hex(Rel.r_addend) << "\n";
}
}
W.unindent();
W.startLine() << "}\n";
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocations(const Elf_Shdr *Sec) {
switch (Sec->sh_type) {
case ELF::SHT_REL:
for (const typename ELFO::Elf_Rel &R : Obj->rels(Sec)) {
typename ELFO::Elf_Rela Rela;
Rela.r_offset = R.r_offset;
Rela.r_info = R.r_info;
Rela.r_addend = 0;
printRelocation(Sec, Rela);
}
break;
case ELF::SHT_RELA:
for (const typename ELFO::Elf_Rela &R : Obj->relas(Sec))
printRelocation(Sec, R);
break;
}
}
template <class ELFT>
void ELFDumper<ELFT>::printRelocation(const Elf_Shdr *Sec,
typename ELFO::Elf_Rela Rel) {
SmallString<32> RelocName;
Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName);
StringRef TargetName;
std::pair<const Elf_Shdr *, const Elf_Sym *> Sym =
Obj->getRelocationSymbol(Sec, &Rel);
if (Sym.second && Sym.second->getType() == ELF::STT_SECTION) {
ErrorOr<const Elf_Shdr *> Sec = Obj->getSection(Sym.second);
error(Sec.getError());
ErrorOr<StringRef> SecName = Obj->getSectionName(*Sec);
if (SecName)
TargetName = SecName.get();
} else if (Sym.first) {
const Elf_Shdr *SymTable = Sym.first;
ErrorOr<const Elf_Shdr *> StrTableSec = Obj->getSection(SymTable->sh_link);
error(StrTableSec.getError());
ErrorOr<StringRef> StrTableOrErr = Obj->getStringTable(*StrTableSec);
error(StrTableOrErr.getError());
TargetName = errorOrDefault(Sym.second->getName(*StrTableOrErr));
}
if (opts::ExpandRelocs) {
DictScope Group(W, "Relocation");
W.printHex("Offset", Rel.r_offset);
W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL()));
W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-",
Rel.getSymbol(Obj->isMips64EL()));
W.printHex("Addend", Rel.r_addend);
} else {
raw_ostream& OS = W.startLine();
OS << W.hex(Rel.r_offset) << " " << RelocName << " "
<< (TargetName.size() > 0 ? TargetName : "-") << " "
<< W.hex(Rel.r_addend) << "\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printSymbols() {
ListScope Group(W, "Symbols");
for (const typename ELFO::Elf_Sym &Sym : Obj->symbols())
printSymbol(&Sym, false);
}
template<class ELFT>
void ELFDumper<ELFT>::printDynamicSymbols() {
ListScope Group(W, "DynamicSymbols");
for (const typename ELFO::Elf_Sym &Sym : Obj->dynamic_symbols())
printSymbol(&Sym, true);
}
template <class ELFT>
void ELFDumper<ELFT>::printSymbol(const typename ELFO::Elf_Sym *Symbol,
bool IsDynamic) {
unsigned SectionIndex = 0;
StringRef SectionName;
getSectionNameIndex(*Obj, Symbol, SectionName, SectionIndex);
std::string FullSymbolName = getFullSymbolName(*Obj, Symbol, IsDynamic);
DictScope D(W, "Symbol");
W.printNumber("Name", FullSymbolName, Symbol->st_name);
W.printHex ("Value", Symbol->st_value);
W.printNumber("Size", Symbol->st_size);
W.printEnum ("Binding", Symbol->getBinding(),
makeArrayRef(ElfSymbolBindings));
W.printEnum ("Type", Symbol->getType(), makeArrayRef(ElfSymbolTypes));
W.printNumber("Other", Symbol->st_other);
W.printHex("Section", SectionName, SectionIndex);
}
#define LLVM_READOBJ_TYPE_CASE(name) \
case DT_##name: return #name
static const char *getTypeString(uint64_t Type) {
switch (Type) {
LLVM_READOBJ_TYPE_CASE(BIND_NOW);
LLVM_READOBJ_TYPE_CASE(DEBUG);
LLVM_READOBJ_TYPE_CASE(FINI);
LLVM_READOBJ_TYPE_CASE(FINI_ARRAY);
LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(FLAGS);
LLVM_READOBJ_TYPE_CASE(FLAGS_1);
LLVM_READOBJ_TYPE_CASE(HASH);
LLVM_READOBJ_TYPE_CASE(INIT);
LLVM_READOBJ_TYPE_CASE(INIT_ARRAY);
LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY);
LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ);
LLVM_READOBJ_TYPE_CASE(JMPREL);
LLVM_READOBJ_TYPE_CASE(NEEDED);
LLVM_READOBJ_TYPE_CASE(NULL);
LLVM_READOBJ_TYPE_CASE(PLTGOT);
LLVM_READOBJ_TYPE_CASE(PLTREL);
LLVM_READOBJ_TYPE_CASE(PLTRELSZ);
LLVM_READOBJ_TYPE_CASE(REL);
LLVM_READOBJ_TYPE_CASE(RELA);
LLVM_READOBJ_TYPE_CASE(RELENT);
LLVM_READOBJ_TYPE_CASE(RELSZ);
LLVM_READOBJ_TYPE_CASE(RELAENT);
LLVM_READOBJ_TYPE_CASE(RELASZ);
LLVM_READOBJ_TYPE_CASE(RPATH);
LLVM_READOBJ_TYPE_CASE(RUNPATH);
LLVM_READOBJ_TYPE_CASE(SONAME);
LLVM_READOBJ_TYPE_CASE(STRSZ);
LLVM_READOBJ_TYPE_CASE(STRTAB);
LLVM_READOBJ_TYPE_CASE(SYMBOLIC);
LLVM_READOBJ_TYPE_CASE(SYMENT);
LLVM_READOBJ_TYPE_CASE(SYMTAB);
LLVM_READOBJ_TYPE_CASE(TEXTREL);
LLVM_READOBJ_TYPE_CASE(VERNEED);
LLVM_READOBJ_TYPE_CASE(VERNEEDNUM);
LLVM_READOBJ_TYPE_CASE(VERSYM);
LLVM_READOBJ_TYPE_CASE(RELCOUNT);
LLVM_READOBJ_TYPE_CASE(GNU_HASH);
LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION);
LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS);
LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS);
LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO);
LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO);
LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO);
LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM);
LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP);
LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT);
LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS);
default: return "unknown";
}
}
#undef LLVM_READOBJ_TYPE_CASE
#define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
{ #enum, prefix##_##enum }
static const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
};
static const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON)
};
static const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
};
#undef LLVM_READOBJ_DT_FLAG_ENT
template <typename T, typename TFlag>
void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
typedef EnumEntry<TFlag> FlagEntry;
typedef SmallVector<FlagEntry, 10> FlagVector;
FlagVector SetFlags;
for (const auto &Flag : Flags) {
if (Flag.Value == 0)
continue;
if ((Value & Flag.Value) == Flag.Value)
SetFlags.push_back(Flag);
}
for (const auto &Flag : SetFlags) {
OS << Flag.Name << " ";
}
}
template <class ELFT>
static const char *getDynamicString(const ELFFile<ELFT> &O, uint64_t Value) {
const char *Ret = O.getDynamicString(Value);
if (!Ret)
reportError("Invalid dynamic string table reference");
return Ret;
}
template <class ELFT>
static void printValue(const ELFFile<ELFT> *O, uint64_t Type, uint64_t Value,
bool Is64, raw_ostream &OS) {
switch (Type) {
case DT_PLTREL:
if (Value == DT_REL) {
OS << "REL";
break;
} else if (Value == DT_RELA) {
OS << "RELA";
break;
}
// Fallthrough.
case DT_PLTGOT:
case DT_HASH:
case DT_STRTAB:
case DT_SYMTAB:
case DT_RELA:
case DT_INIT:
case DT_FINI:
case DT_REL:
case DT_JMPREL:
case DT_INIT_ARRAY:
case DT_FINI_ARRAY:
case DT_PREINIT_ARRAY:
case DT_DEBUG:
case DT_VERNEED:
case DT_VERSYM:
case DT_GNU_HASH:
case DT_NULL:
case DT_MIPS_BASE_ADDRESS:
case DT_MIPS_GOTSYM:
case DT_MIPS_RLD_MAP:
case DT_MIPS_PLTGOT:
case DT_MIPS_OPTIONS:
OS << format("0x%" PRIX64, Value);
break;
case DT_RELCOUNT:
case DT_VERNEEDNUM:
case DT_MIPS_RLD_VERSION:
case DT_MIPS_LOCAL_GOTNO:
case DT_MIPS_SYMTABNO:
case DT_MIPS_UNREFEXTNO:
OS << Value;
break;
case DT_PLTRELSZ:
case DT_RELASZ:
case DT_RELAENT:
case DT_STRSZ:
case DT_SYMENT:
case DT_RELSZ:
case DT_RELENT:
case DT_INIT_ARRAYSZ:
case DT_FINI_ARRAYSZ:
case DT_PREINIT_ARRAYSZ:
OS << Value << " (bytes)";
break;
case DT_NEEDED:
OS << "SharedLibrary (" << getDynamicString(*O, Value) << ")";
break;
case DT_SONAME:
OS << "LibrarySoname (" << getDynamicString(*O, Value) << ")";
break;
case DT_RPATH:
case DT_RUNPATH:
OS << getDynamicString(*O, Value);
break;
case DT_MIPS_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS);
break;
case DT_FLAGS:
printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS);
break;
case DT_FLAGS_1:
printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS);
break;
default:
OS << format("0x%" PRIX64, Value);
break;
}
}
template<class ELFT>
void ELFDumper<ELFT>::printUnwindInfo() {
W.startLine() << "UnwindInfo not implemented.\n";
}
namespace {
template <> void ELFDumper<ELFType<support::little, false>>::printUnwindInfo() {
const unsigned Machine = Obj->getHeader()->e_machine;
if (Machine == EM_ARM) {
ARM::EHABI::PrinterContext<ELFType<support::little, false>> Ctx(W, Obj);
return Ctx.PrintUnwindInformation();
}
W.startLine() << "UnwindInfo not implemented.\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printDynamicTable() {
auto I = Obj->dynamic_table_begin();
auto E = Obj->dynamic_table_end();
if (I == E)
return;
--E;
while (I != E && E->getTag() == ELF::DT_NULL)
--E;
if (E->getTag() != ELF::DT_NULL)
++E;
++E;
ptrdiff_t Total = std::distance(I, E);
if (Total == 0)
return;
raw_ostream &OS = W.getOStream();
W.startLine() << "DynamicSection [ (" << Total << " entries)\n";
bool Is64 = ELFT::Is64Bits;
W.startLine()
<< " Tag" << (Is64 ? " " : " ") << "Type"
<< " " << "Name/Value\n";
while (I != E) {
const typename ELFO::Elf_Dyn &Entry = *I;
++I;
W.startLine()
<< " "
<< format(Is64 ? "0x%016" PRIX64 : "0x%08" PRIX64, Entry.getTag())
<< " " << format("%-21s", getTypeString(Entry.getTag()));
printValue(Obj, Entry.getTag(), Entry.getVal(), Is64, OS);
OS << "\n";
}
W.startLine() << "]\n";
}
template<class ELFT>
void ELFDumper<ELFT>::printNeededLibraries() {
ListScope D(W, "NeededLibraries");
typedef std::vector<StringRef> LibsTy;
LibsTy Libs;
for (const auto &Entry : Obj->dynamic_table())
if (Entry.d_tag == ELF::DT_NEEDED)
Libs.push_back(getDynamicString(*Obj, Entry.d_un.d_val));
std::stable_sort(Libs.begin(), Libs.end());
for (LibsTy::const_iterator I = Libs.begin(), E = Libs.end(); I != E; ++I) {
outs() << " " << *I << "\n";
}
}
template<class ELFT>
void ELFDumper<ELFT>::printProgramHeaders() {
ListScope L(W, "ProgramHeaders");
for (const typename ELFO::Elf_Phdr &Phdr : Obj->program_headers()) {
DictScope P(W, "ProgramHeader");
W.printHex("Type",
getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type),
Phdr.p_type);
W.printHex("Offset", Phdr.p_offset);
W.printHex("VirtualAddress", Phdr.p_vaddr);
W.printHex("PhysicalAddress", Phdr.p_paddr);
W.printNumber("FileSize", Phdr.p_filesz);
W.printNumber("MemSize", Phdr.p_memsz);
W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags));
W.printNumber("Alignment", Phdr.p_align);
}
}
template <typename ELFT>
void ELFDumper<ELFT>::printHashTable() {
DictScope D(W, "HashTable");
auto HT = Obj->getHashTable();
if (!HT)
return;
W.printNumber("Num Buckets", HT->nbucket);
W.printNumber("Num Chains", HT->nchain);
W.printList("Buckets", HT->buckets());
W.printList("Chains", HT->chains());
}
template <class ELFT>
void ELFDumper<ELFT>::printAttributes() {
W.startLine() << "Attributes not implemented.\n";
}
namespace {
template <> void ELFDumper<ELFType<support::little, false>>::printAttributes() {
if (Obj->getHeader()->e_machine != EM_ARM) {
W.startLine() << "Attributes not implemented.\n";
return;
}
DictScope BA(W, "BuildAttributes");
for (const ELFO::Elf_Shdr &Sec : Obj->sections()) {
if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES)
continue;
ErrorOr<ArrayRef<uint8_t>> Contents = Obj->getSectionContents(&Sec);
if (!Contents)
continue;
if ((*Contents)[0] != ARMBuildAttrs::Format_Version) {
errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0])
<< '\n';
continue;
}
W.printHex("FormatVersion", (*Contents)[0]);
if (Contents->size() == 1)
continue;
ARMAttributeParser(W).Parse(*Contents);
}
}
}
namespace {
template <class ELFT> class MipsGOTParser {
public:
typedef object::ELFFile<ELFT> ObjectFile;
typedef typename ObjectFile::Elf_Shdr Elf_Shdr;
typedef typename ObjectFile::Elf_Sym Elf_Sym;
MipsGOTParser(const ObjectFile *Obj, StreamWriter &W);
void parseGOT();
void parsePLT();
private:
typedef typename ObjectFile::Elf_Addr GOTEntry;
typedef typename ObjectFile::template ELFEntityIterator<const GOTEntry>
GOTIter;
const ObjectFile *Obj;
StreamWriter &W;
llvm::Optional<uint64_t> DtPltGot;
llvm::Optional<uint64_t> DtLocalGotNum;
llvm::Optional<uint64_t> DtGotSym;
llvm::Optional<uint64_t> DtMipsPltGot;
llvm::Optional<uint64_t> DtJmpRel;
std::size_t getGOTTotal(ArrayRef<uint8_t> GOT) const;
GOTIter makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum);
void printGotEntry(uint64_t GotAddr, GOTIter BeginIt, GOTIter It);
void printGlobalGotEntry(uint64_t GotAddr, GOTIter BeginIt, GOTIter It,
const Elf_Sym *Sym, bool IsDynamic);
void printPLTEntry(uint64_t PLTAddr, GOTIter BeginIt, GOTIter It,
StringRef Purpose);
void printPLTEntry(uint64_t PLTAddr, GOTIter BeginIt, GOTIter It,
const Elf_Sym *Sym);
};
}
template <class ELFT>
MipsGOTParser<ELFT>::MipsGOTParser(const ObjectFile *Obj, StreamWriter &W)
: Obj(Obj), W(W) {
for (const auto &Entry : Obj->dynamic_table()) {
switch (Entry.getTag()) {
case ELF::DT_PLTGOT:
DtPltGot = Entry.getVal();
break;
case ELF::DT_MIPS_LOCAL_GOTNO:
DtLocalGotNum = Entry.getVal();
break;
case ELF::DT_MIPS_GOTSYM:
DtGotSym = Entry.getVal();
break;
case ELF::DT_MIPS_PLTGOT:
DtMipsPltGot = Entry.getVal();
break;
case ELF::DT_JMPREL:
DtJmpRel = Entry.getVal();
break;
}
}
}
template <class ELFT> void MipsGOTParser<ELFT>::parseGOT() {
// See "Global Offset Table" in Chapter 5 in the following document
// for detailed GOT description.
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
if (!DtPltGot) {
W.startLine() << "Cannot find PLTGOT dynamic table tag.\n";
return;
}
if (!DtLocalGotNum) {
W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n";
return;
}
if (!DtGotSym) {
W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n";
return;
}
const Elf_Shdr *GOTShdr = findSectionByAddress(Obj, *DtPltGot);
if (!GOTShdr) {
W.startLine() << "There is no .got section in the file.\n";
return;
}
ErrorOr<ArrayRef<uint8_t>> GOT = Obj->getSectionContents(GOTShdr);
if (!GOT) {
W.startLine() << "The .got section is empty.\n";
return;
}
if (*DtLocalGotNum > getGOTTotal(*GOT)) {
W.startLine() << "MIPS_LOCAL_GOTNO exceeds a number of GOT entries.\n";
return;
}
const Elf_Sym *DynSymBegin = Obj->dynamic_symbol_begin();
const Elf_Sym *DynSymEnd = Obj->dynamic_symbol_end();
std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd));
if (*DtGotSym > DynSymTotal) {
W.startLine() << "MIPS_GOTSYM exceeds a number of dynamic symbols.\n";
return;
}
std::size_t GlobalGotNum = DynSymTotal - *DtGotSym;
if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(*GOT)) {
W.startLine() << "Number of global GOT entries exceeds the size of GOT.\n";
return;
}
GOTIter GotBegin = makeGOTIter(*GOT, 0);
GOTIter GotLocalEnd = makeGOTIter(*GOT, *DtLocalGotNum);
GOTIter It = GotBegin;
DictScope GS(W, "Primary GOT");
W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0);
{
ListScope RS(W, "Reserved entries");
{
DictScope D(W, "Entry");
printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
W.printString("Purpose", StringRef("Lazy resolver"));
}
if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) {
DictScope D(W, "Entry");
printGotEntry(GOTShdr->sh_addr, GotBegin, It++);
W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
}
}
{
ListScope LS(W, "Local entries");
for (; It != GotLocalEnd; ++It) {
DictScope D(W, "Entry");
printGotEntry(GOTShdr->sh_addr, GotBegin, It);
}
}
{
ListScope GS(W, "Global entries");
GOTIter GotGlobalEnd = makeGOTIter(*GOT, *DtLocalGotNum + GlobalGotNum);
const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym;
for (; It != GotGlobalEnd; ++It) {
DictScope D(W, "Entry");
printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++, true);
}
}
std::size_t SpecGotNum = getGOTTotal(*GOT) - *DtLocalGotNum - GlobalGotNum;
W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum));
}
template <class ELFT> void MipsGOTParser<ELFT>::parsePLT() {
if (!DtMipsPltGot) {
W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n";
return;
}
if (!DtJmpRel) {
W.startLine() << "Cannot find JMPREL dynamic table tag.\n";
return;
}
const Elf_Shdr *PLTShdr = findSectionByAddress(Obj, *DtMipsPltGot);
if (!PLTShdr) {
W.startLine() << "There is no .got.plt section in the file.\n";
return;
}
ErrorOr<ArrayRef<uint8_t>> PLT = Obj->getSectionContents(PLTShdr);
if (!PLT) {
W.startLine() << "The .got.plt section is empty.\n";
return;
}
const Elf_Shdr *PLTRelShdr = findSectionByAddress(Obj, *DtJmpRel);
if (!PLTShdr) {
W.startLine() << "There is no .rel.plt section in the file.\n";
return;
}
GOTIter PLTBegin = makeGOTIter(*PLT, 0);
GOTIter PLTEnd = makeGOTIter(*PLT, getGOTTotal(*PLT));
GOTIter It = PLTBegin;
DictScope GS(W, "PLT GOT");
{
ListScope RS(W, "Reserved entries");
printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver");
if (It != PLTEnd)
printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer");
}
{
ListScope GS(W, "Entries");
switch (PLTRelShdr->sh_type) {
case ELF::SHT_REL:
for (const typename ObjectFile::Elf_Rel *RI = Obj->rel_begin(PLTRelShdr),
*RE = Obj->rel_end(PLTRelShdr);
RI != RE && It != PLTEnd; ++RI, ++It) {
const Elf_Sym *Sym =
Obj->getRelocationSymbol(&*PLTRelShdr, &*RI).second;
printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, Sym);
}
break;
case ELF::SHT_RELA:
for (const typename ObjectFile::Elf_Rela
*RI = Obj->rela_begin(PLTRelShdr),
*RE = Obj->rela_end(PLTRelShdr);
RI != RE && It != PLTEnd; ++RI, ++It) {
const Elf_Sym *Sym =
Obj->getRelocationSymbol(&*PLTRelShdr, &*RI).second;
printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, Sym);
}
break;
}
}
}
template <class ELFT>
std::size_t MipsGOTParser<ELFT>::getGOTTotal(ArrayRef<uint8_t> GOT) const {
return GOT.size() / sizeof(GOTEntry);
}
template <class ELFT>
typename MipsGOTParser<ELFT>::GOTIter
MipsGOTParser<ELFT>::makeGOTIter(ArrayRef<uint8_t> GOT, std::size_t EntryNum) {
const char *Data = reinterpret_cast<const char *>(GOT.data());
return GOTIter(sizeof(GOTEntry), Data + EntryNum * sizeof(GOTEntry));
}
template <class ELFT>
void MipsGOTParser<ELFT>::printGotEntry(uint64_t GotAddr, GOTIter BeginIt,
GOTIter It) {
int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
W.printHex("Address", GotAddr + Offset);
W.printNumber("Access", Offset - 0x7ff0);
W.printHex("Initial", *It);
}
template <class ELFT>
void MipsGOTParser<ELFT>::printGlobalGotEntry(uint64_t GotAddr, GOTIter BeginIt,
GOTIter It, const Elf_Sym *Sym,
bool IsDynamic) {
printGotEntry(GotAddr, BeginIt, It);
W.printHex("Value", Sym->st_value);
W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
unsigned SectionIndex = 0;
StringRef SectionName;
getSectionNameIndex(*Obj, Sym, SectionName, SectionIndex);
W.printHex("Section", SectionName, SectionIndex);
std::string FullSymbolName = getFullSymbolName(*Obj, Sym, IsDynamic);
W.printNumber("Name", FullSymbolName, Sym->st_name);
}
template <class ELFT>
void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr, GOTIter BeginIt,
GOTIter It, StringRef Purpose) {
DictScope D(W, "Entry");
int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
W.printHex("Address", PLTAddr + Offset);
W.printHex("Initial", *It);
W.printString("Purpose", Purpose);
}
template <class ELFT>
void MipsGOTParser<ELFT>::printPLTEntry(uint64_t PLTAddr, GOTIter BeginIt,
GOTIter It, const Elf_Sym *Sym) {
DictScope D(W, "Entry");
int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry);
W.printHex("Address", PLTAddr + Offset);
W.printHex("Initial", *It);
W.printHex("Value", Sym->st_value);
W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes));
unsigned SectionIndex = 0;
StringRef SectionName;
getSectionNameIndex(*Obj, Sym, SectionName, SectionIndex);
W.printHex("Section", SectionName, SectionIndex);
std::string FullSymbolName = getFullSymbolName(*Obj, Sym, true);
W.printNumber("Name", FullSymbolName, Sym->st_name);
}
template <class ELFT> void ELFDumper<ELFT>::printMipsPLTGOT() {
if (Obj->getHeader()->e_machine != EM_MIPS) {
W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n";
return;
}
MipsGOTParser<ELFT> GOTParser(Obj, W);
GOTParser.parseGOT();
GOTParser.parsePLT();
}
static const EnumEntry<unsigned> ElfMipsISAExtType[] = {
{"None", Mips::AFL_EXT_NONE},
{"Broadcom SB-1", Mips::AFL_EXT_SB1},
{"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
{"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
{"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
{"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
{"LSI R4010", Mips::AFL_EXT_4010},
{"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
{"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
{"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
{"MIPS R4650", Mips::AFL_EXT_4650},
{"MIPS R5900", Mips::AFL_EXT_5900},
{"MIPS R10000", Mips::AFL_EXT_10000},
{"NEC VR4100", Mips::AFL_EXT_4100},
{"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
{"NEC VR4120", Mips::AFL_EXT_4120},
{"NEC VR5400", Mips::AFL_EXT_5400},
{"NEC VR5500", Mips::AFL_EXT_5500},
{"RMI Xlr", Mips::AFL_EXT_XLR},
{"Toshiba R3900", Mips::AFL_EXT_3900}
};
static const EnumEntry<unsigned> ElfMipsASEFlags[] = {
{"DSP", Mips::AFL_ASE_DSP},
{"DSPR2", Mips::AFL_ASE_DSPR2},
{"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
{"MCU", Mips::AFL_ASE_MCU},
{"MDMX", Mips::AFL_ASE_MDMX},
{"MIPS-3D", Mips::AFL_ASE_MIPS3D},
{"MT", Mips::AFL_ASE_MT},
{"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
{"VZ", Mips::AFL_ASE_VIRT},
{"MSA", Mips::AFL_ASE_MSA},
{"MIPS16", Mips::AFL_ASE_MIPS16},
{"microMIPS", Mips::AFL_ASE_MICROMIPS},
{"XPA", Mips::AFL_ASE_XPA}
};
static const EnumEntry<unsigned> ElfMipsFpABIType[] = {
{"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
{"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
{"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
{"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
{"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
{"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
{"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
{"Hard float compat (32-bit CPU, 64-bit FPU)",
Mips::Val_GNU_MIPS_ABI_FP_64A}
};
static const EnumEntry<unsigned> ElfMipsFlags1[] {
{"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
};
static int getMipsRegisterSize(uint8_t Flag) {
switch (Flag) {
case Mips::AFL_REG_NONE:
return 0;
case Mips::AFL_REG_32:
return 32;
case Mips::AFL_REG_64:
return 64;
case Mips::AFL_REG_128:
return 128;
default:
return -1;
}
}
template <class ELFT> void ELFDumper<ELFT>::printMipsABIFlags() {
const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags");
if (!Shdr) {
W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
return;
}
ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
if (!Sec) {
W.startLine() << "The .MIPS.abiflags section is empty.\n";
return;
}
if (Sec->size() != sizeof(Elf_Mips_ABIFlags<ELFT>)) {
W.startLine() << "The .MIPS.abiflags section has a wrong size.\n";
return;
}
auto *Flags = reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(Sec->data());
raw_ostream &OS = W.getOStream();
DictScope GS(W, "MIPS ABI Flags");
W.printNumber("Version", Flags->version);
W.startLine() << "ISA: ";
if (Flags->isa_rev <= 1)
OS << format("MIPS%u", Flags->isa_level);
else
OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
OS << "\n";
W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType));
W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags));
W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType));
W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1));
W.printHex("Flags 2", Flags->flags2);
}
template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo");
if (!Shdr) {
W.startLine() << "There is no .reginfo section in the file.\n";
return;
}
ErrorOr<ArrayRef<uint8_t>> Sec = Obj->getSectionContents(Shdr);
if (!Sec) {
W.startLine() << "The .reginfo section is empty.\n";
return;
}
if (Sec->size() != sizeof(Elf_Mips_RegInfo<ELFT>)) {
W.startLine() << "The .reginfo section has a wrong size.\n";
return;
}
auto *Reginfo = reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(Sec->data());
DictScope GS(W, "MIPS RegInfo");
W.printHex("GP", Reginfo->ri_gp_value);
W.printHex("General Mask", Reginfo->ri_gprmask);
W.printHex("Co-Proc Mask0", Reginfo->ri_cprmask[0]);
W.printHex("Co-Proc Mask1", Reginfo->ri_cprmask[1]);
W.printHex("Co-Proc Mask2", Reginfo->ri_cprmask[2]);
W.printHex("Co-Proc Mask3", Reginfo->ri_cprmask[3]);
}
template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
const typename ELFFile<ELFT>::Elf_Shdr *StackMapSection = nullptr;
for (const auto &Sec : Obj->sections()) {
ErrorOr<StringRef> Name = Obj->getSectionName(&Sec);
if (*Name == ".llvm_stackmaps") {
StackMapSection = &Sec;
break;
}
}
if (!StackMapSection)
return;
StringRef StackMapContents;
ErrorOr<ArrayRef<uint8_t>> StackMapContentsArray =
Obj->getSectionContents(StackMapSection);
prettyPrintStackMap(
llvm::outs(),
StackMapV1Parser<ELFT::TargetEndianness>(*StackMapContentsArray));
}