forked from OSchip/llvm-project
1125 lines
44 KiB
C++
1125 lines
44 KiB
C++
//===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of AddressSanitizer, an address sanity checker.
|
|
// Details of the algorithm:
|
|
// http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "asan"
|
|
|
|
#include "FunctionBlackList.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/IRBuilder.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/OwningPtr.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Support/system_error.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Instrumentation.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
#include <string>
|
|
#include <algorithm>
|
|
|
|
using namespace llvm;
|
|
|
|
static const uint64_t kDefaultShadowScale = 3;
|
|
static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
|
|
static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
|
|
static const uint64_t kDefaultShadowOffsetAndroid = 0;
|
|
|
|
static const size_t kMaxStackMallocSize = 1 << 16; // 64K
|
|
static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
|
|
static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
|
|
|
|
static const char *kAsanModuleCtorName = "asan.module_ctor";
|
|
static const char *kAsanModuleDtorName = "asan.module_dtor";
|
|
static const int kAsanCtorAndCtorPriority = 1;
|
|
static const char *kAsanReportErrorTemplate = "__asan_report_";
|
|
static const char *kAsanRegisterGlobalsName = "__asan_register_globals";
|
|
static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals";
|
|
static const char *kAsanInitName = "__asan_init";
|
|
static const char *kAsanHandleNoReturnName = "__asan_handle_no_return";
|
|
static const char *kAsanMappingOffsetName = "__asan_mapping_offset";
|
|
static const char *kAsanMappingScaleName = "__asan_mapping_scale";
|
|
static const char *kAsanStackMallocName = "__asan_stack_malloc";
|
|
static const char *kAsanStackFreeName = "__asan_stack_free";
|
|
|
|
static const int kAsanStackLeftRedzoneMagic = 0xf1;
|
|
static const int kAsanStackMidRedzoneMagic = 0xf2;
|
|
static const int kAsanStackRightRedzoneMagic = 0xf3;
|
|
static const int kAsanStackPartialRedzoneMagic = 0xf4;
|
|
|
|
// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
|
|
static const size_t kNumberOfAccessSizes = 5;
|
|
|
|
// Command-line flags.
|
|
|
|
// This flag may need to be replaced with -f[no-]asan-reads.
|
|
static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
|
|
cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
|
|
cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
|
|
cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
|
|
cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> ClMergeCallbacks("asan-merge-callbacks",
|
|
cl::desc("merge __asan_report_ callbacks to create fewer BBs"),
|
|
cl::Hidden, cl::init(false));
|
|
// This flag limits the number of instructions to be instrumented
|
|
// in any given BB. Normally, this should be set to unlimited (INT_MAX),
|
|
// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
|
|
// set it to 10000.
|
|
static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
|
|
cl::init(10000),
|
|
cl::desc("maximal number of instructions to instrument in any given BB"),
|
|
cl::Hidden);
|
|
// This flag may need to be replaced with -f[no]asan-stack.
|
|
static cl::opt<bool> ClStack("asan-stack",
|
|
cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
|
|
// This flag may need to be replaced with -f[no]asan-use-after-return.
|
|
static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
|
|
cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
|
|
// This flag may need to be replaced with -f[no]asan-globals.
|
|
static cl::opt<bool> ClGlobals("asan-globals",
|
|
cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> ClMemIntrin("asan-memintrin",
|
|
cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
|
|
// This flag may need to be replaced with -fasan-blacklist.
|
|
static cl::opt<std::string> ClBlackListFile("asan-blacklist",
|
|
cl::desc("File containing the list of functions to ignore "
|
|
"during instrumentation"), cl::Hidden);
|
|
|
|
// These flags allow to change the shadow mapping.
|
|
// The shadow mapping looks like
|
|
// Shadow = (Mem >> scale) + (1 << offset_log)
|
|
static cl::opt<int> ClMappingScale("asan-mapping-scale",
|
|
cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
|
|
static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
|
|
cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
|
|
|
|
// Optimization flags. Not user visible, used mostly for testing
|
|
// and benchmarking the tool.
|
|
static cl::opt<bool> ClOpt("asan-opt",
|
|
cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
|
|
static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
|
|
cl::desc("Instrument the same temp just once"), cl::Hidden,
|
|
cl::init(true));
|
|
static cl::opt<bool> ClOptGlobals("asan-opt-globals",
|
|
cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
|
|
|
|
// Debug flags.
|
|
static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
|
|
cl::init(0));
|
|
static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
|
|
cl::Hidden, cl::init(0));
|
|
static cl::opt<std::string> ClDebugFunc("asan-debug-func",
|
|
cl::Hidden, cl::desc("Debug func"));
|
|
static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
|
|
cl::Hidden, cl::init(-1));
|
|
|
|
namespace {
|
|
|
|
/// When the crash callbacks are merged, they receive some amount of arguments
|
|
/// that are merged in a PHI node. This struct represents arguments from one
|
|
/// call site.
|
|
struct CrashArg {
|
|
Value *Arg1;
|
|
Value *Arg2;
|
|
};
|
|
|
|
/// An object of this type is created while instrumenting every function.
|
|
struct AsanFunctionContext {
|
|
AsanFunctionContext(Function &Function) : F(Function), CrashBlock() { }
|
|
|
|
Function &F;
|
|
// These are initially zero. If we require at least one call to
|
|
// __asan_report_{read,write}{1,2,4,8,16}, an appropriate BB is created.
|
|
BasicBlock *CrashBlock[2][kNumberOfAccessSizes];
|
|
typedef SmallVector<CrashArg, 8> CrashArgsVec;
|
|
CrashArgsVec CrashArgs[2][kNumberOfAccessSizes];
|
|
};
|
|
|
|
/// AddressSanitizer: instrument the code in module to find memory bugs.
|
|
struct AddressSanitizer : public ModulePass {
|
|
AddressSanitizer();
|
|
virtual const char *getPassName() const;
|
|
void instrumentMop(AsanFunctionContext &AFC, Instruction *I);
|
|
void instrumentAddress(AsanFunctionContext &AFC,
|
|
Instruction *OrigIns, IRBuilder<> &IRB,
|
|
Value *Addr, uint32_t TypeSize, bool IsWrite);
|
|
Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
|
|
Value *ShadowValue, uint32_t TypeSize);
|
|
Instruction *generateCrashCode(BasicBlock *BB, Value *Addr, Value *PC,
|
|
bool IsWrite, size_t AccessSizeIndex);
|
|
bool instrumentMemIntrinsic(AsanFunctionContext &AFC, MemIntrinsic *MI);
|
|
void instrumentMemIntrinsicParam(AsanFunctionContext &AFC,
|
|
Instruction *OrigIns, Value *Addr,
|
|
Value *Size,
|
|
Instruction *InsertBefore, bool IsWrite);
|
|
Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
|
|
bool handleFunction(Module &M, Function &F);
|
|
bool maybeInsertAsanInitAtFunctionEntry(Function &F);
|
|
bool poisonStackInFunction(Module &M, Function &F);
|
|
virtual bool runOnModule(Module &M);
|
|
bool insertGlobalRedzones(Module &M);
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
private:
|
|
|
|
uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
|
|
Type *Ty = AI->getAllocatedType();
|
|
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
|
|
return SizeInBytes;
|
|
}
|
|
uint64_t getAlignedSize(uint64_t SizeInBytes) {
|
|
return ((SizeInBytes + RedzoneSize - 1)
|
|
/ RedzoneSize) * RedzoneSize;
|
|
}
|
|
uint64_t getAlignedAllocaSize(AllocaInst *AI) {
|
|
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
|
|
return getAlignedSize(SizeInBytes);
|
|
}
|
|
|
|
Function *checkInterfaceFunction(Constant *FuncOrBitcast);
|
|
void PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
|
|
Value *ShadowBase, bool DoPoison);
|
|
bool LooksLikeCodeInBug11395(Instruction *I);
|
|
|
|
LLVMContext *C;
|
|
TargetData *TD;
|
|
uint64_t MappingOffset;
|
|
int MappingScale;
|
|
size_t RedzoneSize;
|
|
int LongSize;
|
|
Type *IntptrTy;
|
|
Type *IntptrPtrTy;
|
|
Function *AsanCtorFunction;
|
|
Function *AsanInitFunction;
|
|
Instruction *CtorInsertBefore;
|
|
OwningPtr<FunctionBlackList> BL;
|
|
// This array is indexed by AccessIsWrite and log2(AccessSize).
|
|
Function *AsanErrorCallback[2][kNumberOfAccessSizes];
|
|
InlineAsm *EmptyAsm;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
char AddressSanitizer::ID = 0;
|
|
INITIALIZE_PASS(AddressSanitizer, "asan",
|
|
"AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
|
|
false, false)
|
|
AddressSanitizer::AddressSanitizer() : ModulePass(ID) { }
|
|
ModulePass *llvm::createAddressSanitizerPass() {
|
|
return new AddressSanitizer();
|
|
}
|
|
|
|
const char *AddressSanitizer::getPassName() const {
|
|
return "AddressSanitizer";
|
|
}
|
|
|
|
static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
|
|
size_t Res = CountTrailingZeros_32(TypeSize / 8);
|
|
assert(Res < kNumberOfAccessSizes);
|
|
return Res;
|
|
}
|
|
|
|
// Create a constant for Str so that we can pass it to the run-time lib.
|
|
static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
|
|
Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
|
|
return new GlobalVariable(M, StrConst->getType(), true,
|
|
GlobalValue::PrivateLinkage, StrConst, "");
|
|
}
|
|
|
|
// Split the basic block and insert an if-then code.
|
|
// Before:
|
|
// Head
|
|
// Cmp
|
|
// Tail
|
|
// After:
|
|
// Head
|
|
// if (Cmp)
|
|
// ThenBlock
|
|
// Tail
|
|
//
|
|
// If ThenBlock is zero, a new block is created and its terminator is returned.
|
|
// Otherwize 0 is returned.
|
|
static BranchInst *splitBlockAndInsertIfThen(Value *Cmp,
|
|
BasicBlock *ThenBlock = 0) {
|
|
Instruction *SplitBefore = cast<Instruction>(Cmp)->getNextNode();
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore);
|
|
TerminatorInst *HeadOldTerm = Head->getTerminator();
|
|
BranchInst *CheckTerm = 0;
|
|
if (!ThenBlock) {
|
|
LLVMContext &C = Head->getParent()->getParent()->getContext();
|
|
ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
CheckTerm = BranchInst::Create(Tail, ThenBlock);
|
|
}
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cmp);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
|
|
return CheckTerm;
|
|
}
|
|
|
|
Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
|
|
// Shadow >> scale
|
|
Shadow = IRB.CreateLShr(Shadow, MappingScale);
|
|
if (MappingOffset == 0)
|
|
return Shadow;
|
|
// (Shadow >> scale) | offset
|
|
return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy,
|
|
MappingOffset));
|
|
}
|
|
|
|
void AddressSanitizer::instrumentMemIntrinsicParam(
|
|
AsanFunctionContext &AFC, Instruction *OrigIns,
|
|
Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
|
|
// Check the first byte.
|
|
{
|
|
IRBuilder<> IRB(InsertBefore);
|
|
instrumentAddress(AFC, OrigIns, IRB, Addr, 8, IsWrite);
|
|
}
|
|
// Check the last byte.
|
|
{
|
|
IRBuilder<> IRB(InsertBefore);
|
|
Value *SizeMinusOne = IRB.CreateSub(
|
|
Size, ConstantInt::get(Size->getType(), 1));
|
|
SizeMinusOne = IRB.CreateIntCast(SizeMinusOne, IntptrTy, false);
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
Value *AddrPlusSizeMinisOne = IRB.CreateAdd(AddrLong, SizeMinusOne);
|
|
instrumentAddress(AFC, OrigIns, IRB, AddrPlusSizeMinisOne, 8, IsWrite);
|
|
}
|
|
}
|
|
|
|
// Instrument memset/memmove/memcpy
|
|
bool AddressSanitizer::instrumentMemIntrinsic(AsanFunctionContext &AFC,
|
|
MemIntrinsic *MI) {
|
|
Value *Dst = MI->getDest();
|
|
MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
|
|
Value *Src = MemTran ? MemTran->getSource() : 0;
|
|
Value *Length = MI->getLength();
|
|
|
|
Constant *ConstLength = dyn_cast<Constant>(Length);
|
|
Instruction *InsertBefore = MI;
|
|
if (ConstLength) {
|
|
if (ConstLength->isNullValue()) return false;
|
|
} else {
|
|
// The size is not a constant so it could be zero -- check at run-time.
|
|
IRBuilder<> IRB(InsertBefore);
|
|
|
|
Value *Cmp = IRB.CreateICmpNE(Length,
|
|
Constant::getNullValue(Length->getType()));
|
|
InsertBefore = splitBlockAndInsertIfThen(Cmp);
|
|
}
|
|
|
|
instrumentMemIntrinsicParam(AFC, MI, Dst, Length, InsertBefore, true);
|
|
if (Src)
|
|
instrumentMemIntrinsicParam(AFC, MI, Src, Length, InsertBefore, false);
|
|
return true;
|
|
}
|
|
|
|
// If I is an interesting memory access, return the PointerOperand
|
|
// and set IsWrite. Otherwise return NULL.
|
|
static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
if (!ClInstrumentReads) return NULL;
|
|
*IsWrite = false;
|
|
return LI->getPointerOperand();
|
|
}
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
if (!ClInstrumentWrites) return NULL;
|
|
*IsWrite = true;
|
|
return SI->getPointerOperand();
|
|
}
|
|
if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
|
|
if (!ClInstrumentAtomics) return NULL;
|
|
*IsWrite = true;
|
|
return RMW->getPointerOperand();
|
|
}
|
|
if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
|
|
if (!ClInstrumentAtomics) return NULL;
|
|
*IsWrite = true;
|
|
return XCHG->getPointerOperand();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
void AddressSanitizer::instrumentMop(AsanFunctionContext &AFC, Instruction *I) {
|
|
bool IsWrite;
|
|
Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
|
|
assert(Addr);
|
|
if (ClOpt && ClOptGlobals && isa<GlobalVariable>(Addr)) {
|
|
// We are accessing a global scalar variable. Nothing to catch here.
|
|
return;
|
|
}
|
|
Type *OrigPtrTy = Addr->getType();
|
|
Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
|
|
|
|
assert(OrigTy->isSized());
|
|
uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
|
|
|
|
if (TypeSize != 8 && TypeSize != 16 &&
|
|
TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
|
|
// Ignore all unusual sizes.
|
|
return;
|
|
}
|
|
|
|
IRBuilder<> IRB(I);
|
|
instrumentAddress(AFC, I, IRB, Addr, TypeSize, IsWrite);
|
|
}
|
|
|
|
// Validate the result of Module::getOrInsertFunction called for an interface
|
|
// function of AddressSanitizer. If the instrumented module defines a function
|
|
// with the same name, their prototypes must match, otherwise
|
|
// getOrInsertFunction returns a bitcast.
|
|
Function *AddressSanitizer::checkInterfaceFunction(Constant *FuncOrBitcast) {
|
|
if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
|
|
FuncOrBitcast->dump();
|
|
report_fatal_error("trying to redefine an AddressSanitizer "
|
|
"interface function");
|
|
}
|
|
|
|
Instruction *AddressSanitizer::generateCrashCode(
|
|
BasicBlock *BB, Value *Addr, Value *PC,
|
|
bool IsWrite, size_t AccessSizeIndex) {
|
|
IRBuilder<> IRB(BB->getFirstNonPHI());
|
|
CallInst *Call;
|
|
if (PC)
|
|
Call = IRB.CreateCall2(AsanErrorCallback[IsWrite][AccessSizeIndex],
|
|
Addr, PC);
|
|
else
|
|
Call = IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
|
|
// We don't do Call->setDoesNotReturn() because the BB already has
|
|
// UnreachableInst at the end.
|
|
// This EmptyAsm is required to avoid callback merge.
|
|
IRB.CreateCall(EmptyAsm);
|
|
return Call;
|
|
}
|
|
|
|
Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
|
|
Value *ShadowValue,
|
|
uint32_t TypeSize) {
|
|
size_t Granularity = 1 << MappingScale;
|
|
// Addr & (Granularity - 1)
|
|
Value *LastAccessedByte = IRB.CreateAnd(
|
|
AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
|
|
// (Addr & (Granularity - 1)) + size - 1
|
|
if (TypeSize / 8 > 1)
|
|
LastAccessedByte = IRB.CreateAdd(
|
|
LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
|
|
// (uint8_t) ((Addr & (Granularity-1)) + size - 1)
|
|
LastAccessedByte = IRB.CreateIntCast(
|
|
LastAccessedByte, IRB.getInt8Ty(), false);
|
|
// ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
|
|
return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
|
|
}
|
|
|
|
void AddressSanitizer::instrumentAddress(AsanFunctionContext &AFC,
|
|
Instruction *OrigIns,
|
|
IRBuilder<> &IRB, Value *Addr,
|
|
uint32_t TypeSize, bool IsWrite) {
|
|
Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
|
|
|
|
Type *ShadowTy = IntegerType::get(
|
|
*C, std::max(8U, TypeSize >> MappingScale));
|
|
Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
|
|
Value *ShadowPtr = memToShadow(AddrLong, IRB);
|
|
Value *CmpVal = Constant::getNullValue(ShadowTy);
|
|
Value *ShadowValue = IRB.CreateLoad(
|
|
IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
|
|
|
|
Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
|
|
|
|
BasicBlock *CrashBlock = 0;
|
|
if (ClMergeCallbacks) {
|
|
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
|
|
BasicBlock **Cached = &AFC.CrashBlock[IsWrite][AccessSizeIndex];
|
|
if (!*Cached) {
|
|
std::string BBName("crash_bb-");
|
|
BBName += (IsWrite ? "w-" : "r-") + itostr(1 << AccessSizeIndex);
|
|
BasicBlock *BB = BasicBlock::Create(*C, BBName, &AFC.F);
|
|
new UnreachableInst(*C, BB);
|
|
*Cached = BB;
|
|
}
|
|
CrashBlock = *Cached;
|
|
// We need to pass the PC as the second parameter to __asan_report_*.
|
|
// There are few problems:
|
|
// - Some architectures (e.g. x86_32) don't have a cheap way to get the PC.
|
|
// - LLVM doesn't have the appropriate intrinsic.
|
|
// For now, put a random number into the PC, just to allow experiments.
|
|
Value *PC = ConstantInt::get(IntptrTy, rand());
|
|
CrashArg Arg = {AddrLong, PC};
|
|
AFC.CrashArgs[IsWrite][AccessSizeIndex].push_back(Arg);
|
|
} else {
|
|
CrashBlock = BasicBlock::Create(*C, "crash_bb", &AFC.F);
|
|
new UnreachableInst(*C, CrashBlock);
|
|
size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
|
|
Instruction *Crash =
|
|
generateCrashCode(CrashBlock, AddrLong, 0, IsWrite, AccessSizeIndex);
|
|
Crash->setDebugLoc(OrigIns->getDebugLoc());
|
|
}
|
|
|
|
size_t Granularity = 1 << MappingScale;
|
|
if (TypeSize < 8 * Granularity) {
|
|
BranchInst *CheckTerm = splitBlockAndInsertIfThen(Cmp);
|
|
assert(CheckTerm->isUnconditional());
|
|
BasicBlock *NextBB = CheckTerm->getSuccessor(0);
|
|
IRB.SetInsertPoint(CheckTerm);
|
|
Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
|
|
BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
|
|
ReplaceInstWithInst(CheckTerm, NewTerm);
|
|
} else {
|
|
splitBlockAndInsertIfThen(Cmp, CrashBlock);
|
|
}
|
|
}
|
|
|
|
// This function replaces all global variables with new variables that have
|
|
// trailing redzones. It also creates a function that poisons
|
|
// redzones and inserts this function into llvm.global_ctors.
|
|
bool AddressSanitizer::insertGlobalRedzones(Module &M) {
|
|
SmallVector<GlobalVariable *, 16> GlobalsToChange;
|
|
|
|
for (Module::GlobalListType::iterator G = M.getGlobalList().begin(),
|
|
E = M.getGlobalList().end(); G != E; ++G) {
|
|
Type *Ty = cast<PointerType>(G->getType())->getElementType();
|
|
DEBUG(dbgs() << "GLOBAL: " << *G);
|
|
|
|
if (!Ty->isSized()) continue;
|
|
if (!G->hasInitializer()) continue;
|
|
// Touch only those globals that will not be defined in other modules.
|
|
// Don't handle ODR type linkages since other modules may be built w/o asan.
|
|
if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
|
|
G->getLinkage() != GlobalVariable::PrivateLinkage &&
|
|
G->getLinkage() != GlobalVariable::InternalLinkage)
|
|
continue;
|
|
// Two problems with thread-locals:
|
|
// - The address of the main thread's copy can't be computed at link-time.
|
|
// - Need to poison all copies, not just the main thread's one.
|
|
if (G->isThreadLocal())
|
|
continue;
|
|
// For now, just ignore this Alloca if the alignment is large.
|
|
if (G->getAlignment() > RedzoneSize) continue;
|
|
|
|
// Ignore all the globals with the names starting with "\01L_OBJC_".
|
|
// Many of those are put into the .cstring section. The linker compresses
|
|
// that section by removing the spare \0s after the string terminator, so
|
|
// our redzones get broken.
|
|
if ((G->getName().find("\01L_OBJC_") == 0) ||
|
|
(G->getName().find("\01l_OBJC_") == 0)) {
|
|
DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
|
|
continue;
|
|
}
|
|
|
|
if (G->hasSection()) {
|
|
StringRef Section(G->getSection());
|
|
// Ignore the globals from the __OBJC section. The ObjC runtime assumes
|
|
// those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
|
|
// them.
|
|
if ((Section.find("__OBJC,") == 0) ||
|
|
(Section.find("__DATA, __objc_") == 0)) {
|
|
DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
|
|
continue;
|
|
}
|
|
// See http://code.google.com/p/address-sanitizer/issues/detail?id=32
|
|
// Constant CFString instances are compiled in the following way:
|
|
// -- the string buffer is emitted into
|
|
// __TEXT,__cstring,cstring_literals
|
|
// -- the constant NSConstantString structure referencing that buffer
|
|
// is placed into __DATA,__cfstring
|
|
// Therefore there's no point in placing redzones into __DATA,__cfstring.
|
|
// Moreover, it causes the linker to crash on OS X 10.7
|
|
if (Section.find("__DATA,__cfstring") == 0) {
|
|
DEBUG(dbgs() << "Ignoring CFString: " << *G);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
GlobalsToChange.push_back(G);
|
|
}
|
|
|
|
size_t n = GlobalsToChange.size();
|
|
if (n == 0) return false;
|
|
|
|
// A global is described by a structure
|
|
// size_t beg;
|
|
// size_t size;
|
|
// size_t size_with_redzone;
|
|
// const char *name;
|
|
// We initialize an array of such structures and pass it to a run-time call.
|
|
StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
|
|
IntptrTy, IntptrTy, NULL);
|
|
SmallVector<Constant *, 16> Initializers(n);
|
|
|
|
IRBuilder<> IRB(CtorInsertBefore);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
GlobalVariable *G = GlobalsToChange[i];
|
|
PointerType *PtrTy = cast<PointerType>(G->getType());
|
|
Type *Ty = PtrTy->getElementType();
|
|
uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
|
|
uint64_t RightRedzoneSize = RedzoneSize +
|
|
(RedzoneSize - (SizeInBytes % RedzoneSize));
|
|
Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
|
|
|
|
StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
|
|
Constant *NewInitializer = ConstantStruct::get(
|
|
NewTy, G->getInitializer(),
|
|
Constant::getNullValue(RightRedZoneTy), NULL);
|
|
|
|
SmallString<2048> DescriptionOfGlobal = G->getName();
|
|
DescriptionOfGlobal += " (";
|
|
DescriptionOfGlobal += M.getModuleIdentifier();
|
|
DescriptionOfGlobal += ")";
|
|
GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal);
|
|
|
|
// Create a new global variable with enough space for a redzone.
|
|
GlobalVariable *NewGlobal = new GlobalVariable(
|
|
M, NewTy, G->isConstant(), G->getLinkage(),
|
|
NewInitializer, "", G, G->getThreadLocalMode());
|
|
NewGlobal->copyAttributesFrom(G);
|
|
NewGlobal->setAlignment(RedzoneSize);
|
|
|
|
Value *Indices2[2];
|
|
Indices2[0] = IRB.getInt32(0);
|
|
Indices2[1] = IRB.getInt32(0);
|
|
|
|
G->replaceAllUsesWith(
|
|
ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
|
|
NewGlobal->takeName(G);
|
|
G->eraseFromParent();
|
|
|
|
Initializers[i] = ConstantStruct::get(
|
|
GlobalStructTy,
|
|
ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
|
|
ConstantInt::get(IntptrTy, SizeInBytes),
|
|
ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
|
|
ConstantExpr::getPointerCast(Name, IntptrTy),
|
|
NULL);
|
|
DEBUG(dbgs() << "NEW GLOBAL:\n" << *NewGlobal);
|
|
}
|
|
|
|
ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
|
|
GlobalVariable *AllGlobals = new GlobalVariable(
|
|
M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage,
|
|
ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
|
|
|
|
Function *AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
|
|
kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
|
|
AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
|
|
|
|
IRB.CreateCall2(AsanRegisterGlobals,
|
|
IRB.CreatePointerCast(AllGlobals, IntptrTy),
|
|
ConstantInt::get(IntptrTy, n));
|
|
|
|
// We also need to unregister globals at the end, e.g. when a shared library
|
|
// gets closed.
|
|
Function *AsanDtorFunction = Function::Create(
|
|
FunctionType::get(Type::getVoidTy(*C), false),
|
|
GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
|
|
BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
|
|
IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
|
|
Function *AsanUnregisterGlobals =
|
|
checkInterfaceFunction(M.getOrInsertFunction(
|
|
kAsanUnregisterGlobalsName,
|
|
IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
|
|
AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
|
|
|
|
IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
|
|
IRB.CreatePointerCast(AllGlobals, IntptrTy),
|
|
ConstantInt::get(IntptrTy, n));
|
|
appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
|
|
|
|
DEBUG(dbgs() << M);
|
|
return true;
|
|
}
|
|
|
|
// virtual
|
|
bool AddressSanitizer::runOnModule(Module &M) {
|
|
// Initialize the private fields. No one has accessed them before.
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
if (!TD)
|
|
return false;
|
|
BL.reset(new FunctionBlackList(ClBlackListFile));
|
|
|
|
C = &(M.getContext());
|
|
LongSize = TD->getPointerSizeInBits();
|
|
IntptrTy = Type::getIntNTy(*C, LongSize);
|
|
IntptrPtrTy = PointerType::get(IntptrTy, 0);
|
|
|
|
AsanCtorFunction = Function::Create(
|
|
FunctionType::get(Type::getVoidTy(*C), false),
|
|
GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
|
|
BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
|
|
CtorInsertBefore = ReturnInst::Create(*C, AsanCtorBB);
|
|
|
|
// call __asan_init in the module ctor.
|
|
IRBuilder<> IRB(CtorInsertBefore);
|
|
AsanInitFunction = checkInterfaceFunction(
|
|
M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
|
|
AsanInitFunction->setLinkage(Function::ExternalLinkage);
|
|
IRB.CreateCall(AsanInitFunction);
|
|
|
|
// Create __asan_report* callbacks.
|
|
for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
|
|
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
|
|
AccessSizeIndex++) {
|
|
// IsWrite and TypeSize are encoded in the function name.
|
|
std::string FunctionName = std::string(kAsanReportErrorTemplate) +
|
|
(AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
|
|
// If we are merging crash callbacks, they have two parameters.
|
|
if (ClMergeCallbacks)
|
|
AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = cast<Function>(
|
|
M.getOrInsertFunction(FunctionName, IRB.getVoidTy(), IntptrTy,
|
|
IntptrTy, NULL));
|
|
else
|
|
AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = cast<Function>(
|
|
M.getOrInsertFunction(FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
|
|
}
|
|
}
|
|
// We insert an empty inline asm after __asan_report* to avoid callback merge.
|
|
EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
|
|
StringRef(""), StringRef(""),
|
|
/*hasSideEffects=*/true);
|
|
|
|
llvm::Triple targetTriple(M.getTargetTriple());
|
|
bool isAndroid = targetTriple.getEnvironment() == llvm::Triple::ANDROIDEABI;
|
|
|
|
MappingOffset = isAndroid ? kDefaultShadowOffsetAndroid :
|
|
(LongSize == 32 ? kDefaultShadowOffset32 : kDefaultShadowOffset64);
|
|
if (ClMappingOffsetLog >= 0) {
|
|
if (ClMappingOffsetLog == 0) {
|
|
// special case
|
|
MappingOffset = 0;
|
|
} else {
|
|
MappingOffset = 1ULL << ClMappingOffsetLog;
|
|
}
|
|
}
|
|
MappingScale = kDefaultShadowScale;
|
|
if (ClMappingScale) {
|
|
MappingScale = ClMappingScale;
|
|
}
|
|
// Redzone used for stack and globals is at least 32 bytes.
|
|
// For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
|
|
RedzoneSize = std::max(32, (int)(1 << MappingScale));
|
|
|
|
bool Res = false;
|
|
|
|
if (ClGlobals)
|
|
Res |= insertGlobalRedzones(M);
|
|
|
|
if (ClMappingOffsetLog >= 0) {
|
|
// Tell the run-time the current values of mapping offset and scale.
|
|
GlobalValue *asan_mapping_offset =
|
|
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
|
|
ConstantInt::get(IntptrTy, MappingOffset),
|
|
kAsanMappingOffsetName);
|
|
// Read the global, otherwise it may be optimized away.
|
|
IRB.CreateLoad(asan_mapping_offset, true);
|
|
}
|
|
if (ClMappingScale) {
|
|
GlobalValue *asan_mapping_scale =
|
|
new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
|
|
ConstantInt::get(IntptrTy, MappingScale),
|
|
kAsanMappingScaleName);
|
|
// Read the global, otherwise it may be optimized away.
|
|
IRB.CreateLoad(asan_mapping_scale, true);
|
|
}
|
|
|
|
|
|
for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if (F->isDeclaration()) continue;
|
|
Res |= handleFunction(M, *F);
|
|
}
|
|
|
|
appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
|
|
|
|
return Res;
|
|
}
|
|
|
|
bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
|
|
// For each NSObject descendant having a +load method, this method is invoked
|
|
// by the ObjC runtime before any of the static constructors is called.
|
|
// Therefore we need to instrument such methods with a call to __asan_init
|
|
// at the beginning in order to initialize our runtime before any access to
|
|
// the shadow memory.
|
|
// We cannot just ignore these methods, because they may call other
|
|
// instrumented functions.
|
|
if (F.getName().find(" load]") != std::string::npos) {
|
|
IRBuilder<> IRB(F.begin()->begin());
|
|
IRB.CreateCall(AsanInitFunction);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AddressSanitizer::handleFunction(Module &M, Function &F) {
|
|
if (BL->isIn(F)) return false;
|
|
if (&F == AsanCtorFunction) return false;
|
|
|
|
// If needed, insert __asan_init before checking for AddressSafety attr.
|
|
maybeInsertAsanInitAtFunctionEntry(F);
|
|
|
|
if (!F.hasFnAttr(Attribute::AddressSafety)) return false;
|
|
|
|
if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
|
|
return false;
|
|
// We want to instrument every address only once per basic block
|
|
// (unless there are calls between uses).
|
|
SmallSet<Value*, 16> TempsToInstrument;
|
|
SmallVector<Instruction*, 16> ToInstrument;
|
|
SmallVector<Instruction*, 8> NoReturnCalls;
|
|
bool IsWrite;
|
|
|
|
// Fill the set of memory operations to instrument.
|
|
for (Function::iterator FI = F.begin(), FE = F.end();
|
|
FI != FE; ++FI) {
|
|
TempsToInstrument.clear();
|
|
int NumInsnsPerBB = 0;
|
|
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
|
|
BI != BE; ++BI) {
|
|
if (LooksLikeCodeInBug11395(BI)) return false;
|
|
if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
|
|
if (ClOpt && ClOptSameTemp) {
|
|
if (!TempsToInstrument.insert(Addr))
|
|
continue; // We've seen this temp in the current BB.
|
|
}
|
|
} else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
|
|
// ok, take it.
|
|
} else {
|
|
if (CallInst *CI = dyn_cast<CallInst>(BI)) {
|
|
// A call inside BB.
|
|
TempsToInstrument.clear();
|
|
if (CI->doesNotReturn()) {
|
|
NoReturnCalls.push_back(CI);
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
ToInstrument.push_back(BI);
|
|
NumInsnsPerBB++;
|
|
if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
|
|
break;
|
|
}
|
|
}
|
|
|
|
AsanFunctionContext AFC(F);
|
|
|
|
// Instrument.
|
|
int NumInstrumented = 0;
|
|
for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
|
|
Instruction *Inst = ToInstrument[i];
|
|
if (ClDebugMin < 0 || ClDebugMax < 0 ||
|
|
(NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
|
|
if (isInterestingMemoryAccess(Inst, &IsWrite))
|
|
instrumentMop(AFC, Inst);
|
|
else
|
|
instrumentMemIntrinsic(AFC, cast<MemIntrinsic>(Inst));
|
|
}
|
|
NumInstrumented++;
|
|
}
|
|
|
|
// Create PHI nodes and crash callbacks if we are merging crash callbacks.
|
|
if (NumInstrumented) {
|
|
for (size_t IsWrite = 0; IsWrite <= 1; IsWrite++) {
|
|
for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
|
|
AccessSizeIndex++) {
|
|
BasicBlock *BB = AFC.CrashBlock[IsWrite][AccessSizeIndex];
|
|
if (!BB) continue;
|
|
assert(ClMergeCallbacks);
|
|
AsanFunctionContext::CrashArgsVec &Args =
|
|
AFC.CrashArgs[IsWrite][AccessSizeIndex];
|
|
IRBuilder<> IRB(BB->getFirstNonPHI());
|
|
size_t n = Args.size();
|
|
PHINode *PN1 = IRB.CreatePHI(IntptrTy, n);
|
|
PHINode *PN2 = IRB.CreatePHI(IntptrTy, n);
|
|
// We need to match crash parameters and the predecessors.
|
|
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
PI != PE; ++PI) {
|
|
n--;
|
|
PN1->addIncoming(Args[n].Arg1, *PI);
|
|
PN2->addIncoming(Args[n].Arg2, *PI);
|
|
}
|
|
assert(n == 0);
|
|
generateCrashCode(BB, PN1, PN2, IsWrite, AccessSizeIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << F);
|
|
|
|
bool ChangedStack = poisonStackInFunction(M, F);
|
|
|
|
// We must unpoison the stack before every NoReturn call (throw, _exit, etc).
|
|
// See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
|
|
for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
|
|
Instruction *CI = NoReturnCalls[i];
|
|
IRBuilder<> IRB(CI);
|
|
IRB.CreateCall(M.getOrInsertFunction(kAsanHandleNoReturnName,
|
|
IRB.getVoidTy(), NULL));
|
|
}
|
|
|
|
return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
|
|
}
|
|
|
|
static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
|
|
if (ShadowRedzoneSize == 1) return PoisonByte;
|
|
if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
|
|
if (ShadowRedzoneSize == 4)
|
|
return (PoisonByte << 24) + (PoisonByte << 16) +
|
|
(PoisonByte << 8) + (PoisonByte);
|
|
llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
|
|
}
|
|
|
|
static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
|
|
size_t Size,
|
|
size_t RedzoneSize,
|
|
size_t ShadowGranularity,
|
|
uint8_t Magic) {
|
|
for (size_t i = 0; i < RedzoneSize;
|
|
i+= ShadowGranularity, Shadow++) {
|
|
if (i + ShadowGranularity <= Size) {
|
|
*Shadow = 0; // fully addressable
|
|
} else if (i >= Size) {
|
|
*Shadow = Magic; // unaddressable
|
|
} else {
|
|
*Shadow = Size - i; // first Size-i bytes are addressable
|
|
}
|
|
}
|
|
}
|
|
|
|
void AddressSanitizer::PoisonStack(const ArrayRef<AllocaInst*> &AllocaVec,
|
|
IRBuilder<> IRB,
|
|
Value *ShadowBase, bool DoPoison) {
|
|
size_t ShadowRZSize = RedzoneSize >> MappingScale;
|
|
assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
|
|
Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
|
|
Type *RZPtrTy = PointerType::get(RZTy, 0);
|
|
|
|
Value *PoisonLeft = ConstantInt::get(RZTy,
|
|
ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
|
|
Value *PoisonMid = ConstantInt::get(RZTy,
|
|
ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
|
|
Value *PoisonRight = ConstantInt::get(RZTy,
|
|
ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
|
|
|
|
// poison the first red zone.
|
|
IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
|
|
|
|
// poison all other red zones.
|
|
uint64_t Pos = RedzoneSize;
|
|
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
|
|
AllocaInst *AI = AllocaVec[i];
|
|
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
|
|
uint64_t AlignedSize = getAlignedAllocaSize(AI);
|
|
assert(AlignedSize - SizeInBytes < RedzoneSize);
|
|
Value *Ptr = NULL;
|
|
|
|
Pos += AlignedSize;
|
|
|
|
assert(ShadowBase->getType() == IntptrTy);
|
|
if (SizeInBytes < AlignedSize) {
|
|
// Poison the partial redzone at right
|
|
Ptr = IRB.CreateAdd(
|
|
ShadowBase, ConstantInt::get(IntptrTy,
|
|
(Pos >> MappingScale) - ShadowRZSize));
|
|
size_t AddressableBytes = RedzoneSize - (AlignedSize - SizeInBytes);
|
|
uint32_t Poison = 0;
|
|
if (DoPoison) {
|
|
PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
|
|
RedzoneSize,
|
|
1ULL << MappingScale,
|
|
kAsanStackPartialRedzoneMagic);
|
|
}
|
|
Value *PartialPoison = ConstantInt::get(RZTy, Poison);
|
|
IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
|
|
}
|
|
|
|
// Poison the full redzone at right.
|
|
Ptr = IRB.CreateAdd(ShadowBase,
|
|
ConstantInt::get(IntptrTy, Pos >> MappingScale));
|
|
Value *Poison = i == AllocaVec.size() - 1 ? PoisonRight : PoisonMid;
|
|
IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
|
|
|
|
Pos += RedzoneSize;
|
|
}
|
|
}
|
|
|
|
// Workaround for bug 11395: we don't want to instrument stack in functions
|
|
// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
|
|
// FIXME: remove once the bug 11395 is fixed.
|
|
bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
|
|
if (LongSize != 32) return false;
|
|
CallInst *CI = dyn_cast<CallInst>(I);
|
|
if (!CI || !CI->isInlineAsm()) return false;
|
|
if (CI->getNumArgOperands() <= 5) return false;
|
|
// We have inline assembly with quite a few arguments.
|
|
return true;
|
|
}
|
|
|
|
// Find all static Alloca instructions and put
|
|
// poisoned red zones around all of them.
|
|
// Then unpoison everything back before the function returns.
|
|
//
|
|
// Stack poisoning does not play well with exception handling.
|
|
// When an exception is thrown, we essentially bypass the code
|
|
// that unpoisones the stack. This is why the run-time library has
|
|
// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
|
|
// stack in the interceptor. This however does not work inside the
|
|
// actual function which catches the exception. Most likely because the
|
|
// compiler hoists the load of the shadow value somewhere too high.
|
|
// This causes asan to report a non-existing bug on 453.povray.
|
|
// It sounds like an LLVM bug.
|
|
bool AddressSanitizer::poisonStackInFunction(Module &M, Function &F) {
|
|
if (!ClStack) return false;
|
|
SmallVector<AllocaInst*, 16> AllocaVec;
|
|
SmallVector<Instruction*, 8> RetVec;
|
|
uint64_t TotalSize = 0;
|
|
|
|
// Filter out Alloca instructions we want (and can) handle.
|
|
// Collect Ret instructions.
|
|
for (Function::iterator FI = F.begin(), FE = F.end();
|
|
FI != FE; ++FI) {
|
|
BasicBlock &BB = *FI;
|
|
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end();
|
|
BI != BE; ++BI) {
|
|
if (isa<ReturnInst>(BI)) {
|
|
RetVec.push_back(BI);
|
|
continue;
|
|
}
|
|
|
|
AllocaInst *AI = dyn_cast<AllocaInst>(BI);
|
|
if (!AI) continue;
|
|
if (AI->isArrayAllocation()) continue;
|
|
if (!AI->isStaticAlloca()) continue;
|
|
if (!AI->getAllocatedType()->isSized()) continue;
|
|
if (AI->getAlignment() > RedzoneSize) continue;
|
|
AllocaVec.push_back(AI);
|
|
uint64_t AlignedSize = getAlignedAllocaSize(AI);
|
|
TotalSize += AlignedSize;
|
|
}
|
|
}
|
|
|
|
if (AllocaVec.empty()) return false;
|
|
|
|
uint64_t LocalStackSize = TotalSize + (AllocaVec.size() + 1) * RedzoneSize;
|
|
|
|
bool DoStackMalloc = ClUseAfterReturn
|
|
&& LocalStackSize <= kMaxStackMallocSize;
|
|
|
|
Instruction *InsBefore = AllocaVec[0];
|
|
IRBuilder<> IRB(InsBefore);
|
|
|
|
|
|
Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
|
|
AllocaInst *MyAlloca =
|
|
new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
|
|
MyAlloca->setAlignment(RedzoneSize);
|
|
assert(MyAlloca->isStaticAlloca());
|
|
Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
|
|
Value *LocalStackBase = OrigStackBase;
|
|
|
|
if (DoStackMalloc) {
|
|
Value *AsanStackMallocFunc = M.getOrInsertFunction(
|
|
kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL);
|
|
LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
|
|
ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
|
|
}
|
|
|
|
// This string will be parsed by the run-time (DescribeStackAddress).
|
|
SmallString<2048> StackDescriptionStorage;
|
|
raw_svector_ostream StackDescription(StackDescriptionStorage);
|
|
StackDescription << F.getName() << " " << AllocaVec.size() << " ";
|
|
|
|
uint64_t Pos = RedzoneSize;
|
|
// Replace Alloca instructions with base+offset.
|
|
for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
|
|
AllocaInst *AI = AllocaVec[i];
|
|
uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
|
|
StringRef Name = AI->getName();
|
|
StackDescription << Pos << " " << SizeInBytes << " "
|
|
<< Name.size() << " " << Name << " ";
|
|
uint64_t AlignedSize = getAlignedAllocaSize(AI);
|
|
assert((AlignedSize % RedzoneSize) == 0);
|
|
AI->replaceAllUsesWith(
|
|
IRB.CreateIntToPtr(
|
|
IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
|
|
AI->getType()));
|
|
Pos += AlignedSize + RedzoneSize;
|
|
}
|
|
assert(Pos == LocalStackSize);
|
|
|
|
// Write the Magic value and the frame description constant to the redzone.
|
|
Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
|
|
IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
|
|
BasePlus0);
|
|
Value *BasePlus1 = IRB.CreateAdd(LocalStackBase,
|
|
ConstantInt::get(IntptrTy, LongSize/8));
|
|
BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy);
|
|
Value *Description = IRB.CreatePointerCast(
|
|
createPrivateGlobalForString(M, StackDescription.str()),
|
|
IntptrTy);
|
|
IRB.CreateStore(Description, BasePlus1);
|
|
|
|
// Poison the stack redzones at the entry.
|
|
Value *ShadowBase = memToShadow(LocalStackBase, IRB);
|
|
PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRB, ShadowBase, true);
|
|
|
|
Value *AsanStackFreeFunc = NULL;
|
|
if (DoStackMalloc) {
|
|
AsanStackFreeFunc = M.getOrInsertFunction(
|
|
kAsanStackFreeName, IRB.getVoidTy(),
|
|
IntptrTy, IntptrTy, IntptrTy, NULL);
|
|
}
|
|
|
|
// Unpoison the stack before all ret instructions.
|
|
for (size_t i = 0, n = RetVec.size(); i < n; i++) {
|
|
Instruction *Ret = RetVec[i];
|
|
IRBuilder<> IRBRet(Ret);
|
|
|
|
// Mark the current frame as retired.
|
|
IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
|
|
BasePlus0);
|
|
// Unpoison the stack.
|
|
PoisonStack(ArrayRef<AllocaInst*>(AllocaVec), IRBRet, ShadowBase, false);
|
|
|
|
if (DoStackMalloc) {
|
|
IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
|
|
ConstantInt::get(IntptrTy, LocalStackSize),
|
|
OrigStackBase);
|
|
}
|
|
}
|
|
|
|
if (ClDebugStack) {
|
|
DEBUG(dbgs() << F);
|
|
}
|
|
|
|
return true;
|
|
}
|