forked from OSchip/llvm-project
1309 lines
36 KiB
C
1309 lines
36 KiB
C
/*
|
|
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, K.U.Leuven, Departement
|
|
* Computerwetenschappen, Celestijnenlaan 200A, B-3001 Leuven, Belgium
|
|
*/
|
|
|
|
#include <isl_ctx_private.h>
|
|
#include <isl_map_private.h>
|
|
#include "isl_sample.h"
|
|
#include <isl/vec.h>
|
|
#include <isl/mat.h>
|
|
#include <isl_seq.h>
|
|
#include "isl_equalities.h"
|
|
#include "isl_tab.h"
|
|
#include "isl_basis_reduction.h"
|
|
#include <isl_factorization.h>
|
|
#include <isl_point_private.h>
|
|
#include <isl_options_private.h>
|
|
#include <isl_vec_private.h>
|
|
|
|
#include <bset_from_bmap.c>
|
|
#include <set_to_map.c>
|
|
|
|
static __isl_give isl_vec *empty_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
struct isl_vec *vec;
|
|
|
|
vec = isl_vec_alloc(bset->ctx, 0);
|
|
isl_basic_set_free(bset);
|
|
return vec;
|
|
}
|
|
|
|
/* Construct a zero sample of the same dimension as bset.
|
|
* As a special case, if bset is zero-dimensional, this
|
|
* function creates a zero-dimensional sample point.
|
|
*/
|
|
static __isl_give isl_vec *zero_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
unsigned dim;
|
|
struct isl_vec *sample;
|
|
|
|
dim = isl_basic_set_total_dim(bset);
|
|
sample = isl_vec_alloc(bset->ctx, 1 + dim);
|
|
if (sample) {
|
|
isl_int_set_si(sample->el[0], 1);
|
|
isl_seq_clr(sample->el + 1, dim);
|
|
}
|
|
isl_basic_set_free(bset);
|
|
return sample;
|
|
}
|
|
|
|
static __isl_give isl_vec *interval_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
int i;
|
|
isl_int t;
|
|
struct isl_vec *sample;
|
|
|
|
bset = isl_basic_set_simplify(bset);
|
|
if (!bset)
|
|
return NULL;
|
|
if (isl_basic_set_plain_is_empty(bset))
|
|
return empty_sample(bset);
|
|
if (bset->n_eq == 0 && bset->n_ineq == 0)
|
|
return zero_sample(bset);
|
|
|
|
sample = isl_vec_alloc(bset->ctx, 2);
|
|
if (!sample)
|
|
goto error;
|
|
if (!bset)
|
|
return NULL;
|
|
isl_int_set_si(sample->block.data[0], 1);
|
|
|
|
if (bset->n_eq > 0) {
|
|
isl_assert(bset->ctx, bset->n_eq == 1, goto error);
|
|
isl_assert(bset->ctx, bset->n_ineq == 0, goto error);
|
|
if (isl_int_is_one(bset->eq[0][1]))
|
|
isl_int_neg(sample->el[1], bset->eq[0][0]);
|
|
else {
|
|
isl_assert(bset->ctx, isl_int_is_negone(bset->eq[0][1]),
|
|
goto error);
|
|
isl_int_set(sample->el[1], bset->eq[0][0]);
|
|
}
|
|
isl_basic_set_free(bset);
|
|
return sample;
|
|
}
|
|
|
|
isl_int_init(t);
|
|
if (isl_int_is_one(bset->ineq[0][1]))
|
|
isl_int_neg(sample->block.data[1], bset->ineq[0][0]);
|
|
else
|
|
isl_int_set(sample->block.data[1], bset->ineq[0][0]);
|
|
for (i = 1; i < bset->n_ineq; ++i) {
|
|
isl_seq_inner_product(sample->block.data,
|
|
bset->ineq[i], 2, &t);
|
|
if (isl_int_is_neg(t))
|
|
break;
|
|
}
|
|
isl_int_clear(t);
|
|
if (i < bset->n_ineq) {
|
|
isl_vec_free(sample);
|
|
return empty_sample(bset);
|
|
}
|
|
|
|
isl_basic_set_free(bset);
|
|
return sample;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_vec_free(sample);
|
|
return NULL;
|
|
}
|
|
|
|
/* Find a sample integer point, if any, in bset, which is known
|
|
* to have equalities. If bset contains no integer points, then
|
|
* return a zero-length vector.
|
|
* We simply remove the known equalities, compute a sample
|
|
* in the resulting bset, using the specified recurse function,
|
|
* and then transform the sample back to the original space.
|
|
*/
|
|
static __isl_give isl_vec *sample_eq(__isl_take isl_basic_set *bset,
|
|
__isl_give isl_vec *(*recurse)(__isl_take isl_basic_set *))
|
|
{
|
|
struct isl_mat *T;
|
|
struct isl_vec *sample;
|
|
|
|
if (!bset)
|
|
return NULL;
|
|
|
|
bset = isl_basic_set_remove_equalities(bset, &T, NULL);
|
|
sample = recurse(bset);
|
|
if (!sample || sample->size == 0)
|
|
isl_mat_free(T);
|
|
else
|
|
sample = isl_mat_vec_product(T, sample);
|
|
return sample;
|
|
}
|
|
|
|
/* Return a matrix containing the equalities of the tableau
|
|
* in constraint form. The tableau is assumed to have
|
|
* an associated bset that has been kept up-to-date.
|
|
*/
|
|
static struct isl_mat *tab_equalities(struct isl_tab *tab)
|
|
{
|
|
int i, j;
|
|
int n_eq;
|
|
struct isl_mat *eq;
|
|
struct isl_basic_set *bset;
|
|
|
|
if (!tab)
|
|
return NULL;
|
|
|
|
bset = isl_tab_peek_bset(tab);
|
|
isl_assert(tab->mat->ctx, bset, return NULL);
|
|
|
|
n_eq = tab->n_var - tab->n_col + tab->n_dead;
|
|
if (tab->empty || n_eq == 0)
|
|
return isl_mat_alloc(tab->mat->ctx, 0, tab->n_var);
|
|
if (n_eq == tab->n_var)
|
|
return isl_mat_identity(tab->mat->ctx, tab->n_var);
|
|
|
|
eq = isl_mat_alloc(tab->mat->ctx, n_eq, tab->n_var);
|
|
if (!eq)
|
|
return NULL;
|
|
for (i = 0, j = 0; i < tab->n_con; ++i) {
|
|
if (tab->con[i].is_row)
|
|
continue;
|
|
if (tab->con[i].index >= 0 && tab->con[i].index >= tab->n_dead)
|
|
continue;
|
|
if (i < bset->n_eq)
|
|
isl_seq_cpy(eq->row[j], bset->eq[i] + 1, tab->n_var);
|
|
else
|
|
isl_seq_cpy(eq->row[j],
|
|
bset->ineq[i - bset->n_eq] + 1, tab->n_var);
|
|
++j;
|
|
}
|
|
isl_assert(bset->ctx, j == n_eq, goto error);
|
|
return eq;
|
|
error:
|
|
isl_mat_free(eq);
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute and return an initial basis for the bounded tableau "tab".
|
|
*
|
|
* If the tableau is either full-dimensional or zero-dimensional,
|
|
* the we simply return an identity matrix.
|
|
* Otherwise, we construct a basis whose first directions correspond
|
|
* to equalities.
|
|
*/
|
|
static struct isl_mat *initial_basis(struct isl_tab *tab)
|
|
{
|
|
int n_eq;
|
|
struct isl_mat *eq;
|
|
struct isl_mat *Q;
|
|
|
|
tab->n_unbounded = 0;
|
|
tab->n_zero = n_eq = tab->n_var - tab->n_col + tab->n_dead;
|
|
if (tab->empty || n_eq == 0 || n_eq == tab->n_var)
|
|
return isl_mat_identity(tab->mat->ctx, 1 + tab->n_var);
|
|
|
|
eq = tab_equalities(tab);
|
|
eq = isl_mat_left_hermite(eq, 0, NULL, &Q);
|
|
if (!eq)
|
|
return NULL;
|
|
isl_mat_free(eq);
|
|
|
|
Q = isl_mat_lin_to_aff(Q);
|
|
return Q;
|
|
}
|
|
|
|
/* Compute the minimum of the current ("level") basis row over "tab"
|
|
* and store the result in position "level" of "min".
|
|
*
|
|
* This function assumes that at least one more row and at least
|
|
* one more element in the constraint array are available in the tableau.
|
|
*/
|
|
static enum isl_lp_result compute_min(isl_ctx *ctx, struct isl_tab *tab,
|
|
__isl_keep isl_vec *min, int level)
|
|
{
|
|
return isl_tab_min(tab, tab->basis->row[1 + level],
|
|
ctx->one, &min->el[level], NULL, 0);
|
|
}
|
|
|
|
/* Compute the maximum of the current ("level") basis row over "tab"
|
|
* and store the result in position "level" of "max".
|
|
*
|
|
* This function assumes that at least one more row and at least
|
|
* one more element in the constraint array are available in the tableau.
|
|
*/
|
|
static enum isl_lp_result compute_max(isl_ctx *ctx, struct isl_tab *tab,
|
|
__isl_keep isl_vec *max, int level)
|
|
{
|
|
enum isl_lp_result res;
|
|
unsigned dim = tab->n_var;
|
|
|
|
isl_seq_neg(tab->basis->row[1 + level] + 1,
|
|
tab->basis->row[1 + level] + 1, dim);
|
|
res = isl_tab_min(tab, tab->basis->row[1 + level],
|
|
ctx->one, &max->el[level], NULL, 0);
|
|
isl_seq_neg(tab->basis->row[1 + level] + 1,
|
|
tab->basis->row[1 + level] + 1, dim);
|
|
isl_int_neg(max->el[level], max->el[level]);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Perform a greedy search for an integer point in the set represented
|
|
* by "tab", given that the minimal rational value (rounded up to the
|
|
* nearest integer) at "level" is smaller than the maximal rational
|
|
* value (rounded down to the nearest integer).
|
|
*
|
|
* Return 1 if we have found an integer point (if tab->n_unbounded > 0
|
|
* then we may have only found integer values for the bounded dimensions
|
|
* and it is the responsibility of the caller to extend this solution
|
|
* to the unbounded dimensions).
|
|
* Return 0 if greedy search did not result in a solution.
|
|
* Return -1 if some error occurred.
|
|
*
|
|
* We assign a value half-way between the minimum and the maximum
|
|
* to the current dimension and check if the minimal value of the
|
|
* next dimension is still smaller than (or equal) to the maximal value.
|
|
* We continue this process until either
|
|
* - the minimal value (rounded up) is greater than the maximal value
|
|
* (rounded down). In this case, greedy search has failed.
|
|
* - we have exhausted all bounded dimensions, meaning that we have
|
|
* found a solution.
|
|
* - the sample value of the tableau is integral.
|
|
* - some error has occurred.
|
|
*/
|
|
static int greedy_search(isl_ctx *ctx, struct isl_tab *tab,
|
|
__isl_keep isl_vec *min, __isl_keep isl_vec *max, int level)
|
|
{
|
|
struct isl_tab_undo *snap;
|
|
enum isl_lp_result res;
|
|
|
|
snap = isl_tab_snap(tab);
|
|
|
|
do {
|
|
isl_int_add(tab->basis->row[1 + level][0],
|
|
min->el[level], max->el[level]);
|
|
isl_int_fdiv_q_ui(tab->basis->row[1 + level][0],
|
|
tab->basis->row[1 + level][0], 2);
|
|
isl_int_neg(tab->basis->row[1 + level][0],
|
|
tab->basis->row[1 + level][0]);
|
|
if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
|
|
return -1;
|
|
isl_int_set_si(tab->basis->row[1 + level][0], 0);
|
|
|
|
if (++level >= tab->n_var - tab->n_unbounded)
|
|
return 1;
|
|
if (isl_tab_sample_is_integer(tab))
|
|
return 1;
|
|
|
|
res = compute_min(ctx, tab, min, level);
|
|
if (res == isl_lp_error)
|
|
return -1;
|
|
if (res != isl_lp_ok)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting bounded rational solution",
|
|
return -1);
|
|
res = compute_max(ctx, tab, max, level);
|
|
if (res == isl_lp_error)
|
|
return -1;
|
|
if (res != isl_lp_ok)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting bounded rational solution",
|
|
return -1);
|
|
} while (isl_int_le(min->el[level], max->el[level]));
|
|
|
|
if (isl_tab_rollback(tab, snap) < 0)
|
|
return -1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given a tableau representing a set, find and return
|
|
* an integer point in the set, if there is any.
|
|
*
|
|
* We perform a depth first search
|
|
* for an integer point, by scanning all possible values in the range
|
|
* attained by a basis vector, where an initial basis may have been set
|
|
* by the calling function. Otherwise an initial basis that exploits
|
|
* the equalities in the tableau is created.
|
|
* tab->n_zero is currently ignored and is clobbered by this function.
|
|
*
|
|
* The tableau is allowed to have unbounded direction, but then
|
|
* the calling function needs to set an initial basis, with the
|
|
* unbounded directions last and with tab->n_unbounded set
|
|
* to the number of unbounded directions.
|
|
* Furthermore, the calling functions needs to add shifted copies
|
|
* of all constraints involving unbounded directions to ensure
|
|
* that any feasible rational value in these directions can be rounded
|
|
* up to yield a feasible integer value.
|
|
* In particular, let B define the given basis x' = B x
|
|
* and let T be the inverse of B, i.e., X = T x'.
|
|
* Let a x + c >= 0 be a constraint of the set represented by the tableau,
|
|
* or a T x' + c >= 0 in terms of the given basis. Assume that
|
|
* the bounded directions have an integer value, then we can safely
|
|
* round up the values for the unbounded directions if we make sure
|
|
* that x' not only satisfies the original constraint, but also
|
|
* the constraint "a T x' + c + s >= 0" with s the sum of all
|
|
* negative values in the last n_unbounded entries of "a T".
|
|
* The calling function therefore needs to add the constraint
|
|
* a x + c + s >= 0. The current function then scans the first
|
|
* directions for an integer value and once those have been found,
|
|
* it can compute "T ceil(B x)" to yield an integer point in the set.
|
|
* Note that during the search, the first rows of B may be changed
|
|
* by a basis reduction, but the last n_unbounded rows of B remain
|
|
* unaltered and are also not mixed into the first rows.
|
|
*
|
|
* The search is implemented iteratively. "level" identifies the current
|
|
* basis vector. "init" is true if we want the first value at the current
|
|
* level and false if we want the next value.
|
|
*
|
|
* At the start of each level, we first check if we can find a solution
|
|
* using greedy search. If not, we continue with the exhaustive search.
|
|
*
|
|
* The initial basis is the identity matrix. If the range in some direction
|
|
* contains more than one integer value, we perform basis reduction based
|
|
* on the value of ctx->opt->gbr
|
|
* - ISL_GBR_NEVER: never perform basis reduction
|
|
* - ISL_GBR_ONCE: only perform basis reduction the first
|
|
* time such a range is encountered
|
|
* - ISL_GBR_ALWAYS: always perform basis reduction when
|
|
* such a range is encountered
|
|
*
|
|
* When ctx->opt->gbr is set to ISL_GBR_ALWAYS, then we allow the basis
|
|
* reduction computation to return early. That is, as soon as it
|
|
* finds a reasonable first direction.
|
|
*/
|
|
struct isl_vec *isl_tab_sample(struct isl_tab *tab)
|
|
{
|
|
unsigned dim;
|
|
unsigned gbr;
|
|
struct isl_ctx *ctx;
|
|
struct isl_vec *sample;
|
|
struct isl_vec *min;
|
|
struct isl_vec *max;
|
|
enum isl_lp_result res;
|
|
int level;
|
|
int init;
|
|
int reduced;
|
|
struct isl_tab_undo **snap;
|
|
|
|
if (!tab)
|
|
return NULL;
|
|
if (tab->empty)
|
|
return isl_vec_alloc(tab->mat->ctx, 0);
|
|
|
|
if (!tab->basis)
|
|
tab->basis = initial_basis(tab);
|
|
if (!tab->basis)
|
|
return NULL;
|
|
isl_assert(tab->mat->ctx, tab->basis->n_row == tab->n_var + 1,
|
|
return NULL);
|
|
isl_assert(tab->mat->ctx, tab->basis->n_col == tab->n_var + 1,
|
|
return NULL);
|
|
|
|
ctx = tab->mat->ctx;
|
|
dim = tab->n_var;
|
|
gbr = ctx->opt->gbr;
|
|
|
|
if (tab->n_unbounded == tab->n_var) {
|
|
sample = isl_tab_get_sample_value(tab);
|
|
sample = isl_mat_vec_product(isl_mat_copy(tab->basis), sample);
|
|
sample = isl_vec_ceil(sample);
|
|
sample = isl_mat_vec_inverse_product(isl_mat_copy(tab->basis),
|
|
sample);
|
|
return sample;
|
|
}
|
|
|
|
if (isl_tab_extend_cons(tab, dim + 1) < 0)
|
|
return NULL;
|
|
|
|
min = isl_vec_alloc(ctx, dim);
|
|
max = isl_vec_alloc(ctx, dim);
|
|
snap = isl_alloc_array(ctx, struct isl_tab_undo *, dim);
|
|
|
|
if (!min || !max || !snap)
|
|
goto error;
|
|
|
|
level = 0;
|
|
init = 1;
|
|
reduced = 0;
|
|
|
|
while (level >= 0) {
|
|
if (init) {
|
|
int choice;
|
|
|
|
res = compute_min(ctx, tab, min, level);
|
|
if (res == isl_lp_error)
|
|
goto error;
|
|
if (res != isl_lp_ok)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting bounded rational solution",
|
|
goto error);
|
|
if (isl_tab_sample_is_integer(tab))
|
|
break;
|
|
res = compute_max(ctx, tab, max, level);
|
|
if (res == isl_lp_error)
|
|
goto error;
|
|
if (res != isl_lp_ok)
|
|
isl_die(ctx, isl_error_internal,
|
|
"expecting bounded rational solution",
|
|
goto error);
|
|
if (isl_tab_sample_is_integer(tab))
|
|
break;
|
|
choice = isl_int_lt(min->el[level], max->el[level]);
|
|
if (choice) {
|
|
int g;
|
|
g = greedy_search(ctx, tab, min, max, level);
|
|
if (g < 0)
|
|
goto error;
|
|
if (g)
|
|
break;
|
|
}
|
|
if (!reduced && choice &&
|
|
ctx->opt->gbr != ISL_GBR_NEVER) {
|
|
unsigned gbr_only_first;
|
|
if (ctx->opt->gbr == ISL_GBR_ONCE)
|
|
ctx->opt->gbr = ISL_GBR_NEVER;
|
|
tab->n_zero = level;
|
|
gbr_only_first = ctx->opt->gbr_only_first;
|
|
ctx->opt->gbr_only_first =
|
|
ctx->opt->gbr == ISL_GBR_ALWAYS;
|
|
tab = isl_tab_compute_reduced_basis(tab);
|
|
ctx->opt->gbr_only_first = gbr_only_first;
|
|
if (!tab || !tab->basis)
|
|
goto error;
|
|
reduced = 1;
|
|
continue;
|
|
}
|
|
reduced = 0;
|
|
snap[level] = isl_tab_snap(tab);
|
|
} else
|
|
isl_int_add_ui(min->el[level], min->el[level], 1);
|
|
|
|
if (isl_int_gt(min->el[level], max->el[level])) {
|
|
level--;
|
|
init = 0;
|
|
if (level >= 0)
|
|
if (isl_tab_rollback(tab, snap[level]) < 0)
|
|
goto error;
|
|
continue;
|
|
}
|
|
isl_int_neg(tab->basis->row[1 + level][0], min->el[level]);
|
|
if (isl_tab_add_valid_eq(tab, tab->basis->row[1 + level]) < 0)
|
|
goto error;
|
|
isl_int_set_si(tab->basis->row[1 + level][0], 0);
|
|
if (level + tab->n_unbounded < dim - 1) {
|
|
++level;
|
|
init = 1;
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (level >= 0) {
|
|
sample = isl_tab_get_sample_value(tab);
|
|
if (!sample)
|
|
goto error;
|
|
if (tab->n_unbounded && !isl_int_is_one(sample->el[0])) {
|
|
sample = isl_mat_vec_product(isl_mat_copy(tab->basis),
|
|
sample);
|
|
sample = isl_vec_ceil(sample);
|
|
sample = isl_mat_vec_inverse_product(
|
|
isl_mat_copy(tab->basis), sample);
|
|
}
|
|
} else
|
|
sample = isl_vec_alloc(ctx, 0);
|
|
|
|
ctx->opt->gbr = gbr;
|
|
isl_vec_free(min);
|
|
isl_vec_free(max);
|
|
free(snap);
|
|
return sample;
|
|
error:
|
|
ctx->opt->gbr = gbr;
|
|
isl_vec_free(min);
|
|
isl_vec_free(max);
|
|
free(snap);
|
|
return NULL;
|
|
}
|
|
|
|
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset);
|
|
|
|
/* Compute a sample point of the given basic set, based on the given,
|
|
* non-trivial factorization.
|
|
*/
|
|
static __isl_give isl_vec *factored_sample(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_factorizer *f)
|
|
{
|
|
int i, n;
|
|
isl_vec *sample = NULL;
|
|
isl_ctx *ctx;
|
|
unsigned nparam;
|
|
unsigned nvar;
|
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
|
if (!ctx)
|
|
goto error;
|
|
|
|
nparam = isl_basic_set_dim(bset, isl_dim_param);
|
|
nvar = isl_basic_set_dim(bset, isl_dim_set);
|
|
|
|
sample = isl_vec_alloc(ctx, 1 + isl_basic_set_total_dim(bset));
|
|
if (!sample)
|
|
goto error;
|
|
isl_int_set_si(sample->el[0], 1);
|
|
|
|
bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
|
|
|
|
for (i = 0, n = 0; i < f->n_group; ++i) {
|
|
isl_basic_set *bset_i;
|
|
isl_vec *sample_i;
|
|
|
|
bset_i = isl_basic_set_copy(bset);
|
|
bset_i = isl_basic_set_drop_constraints_involving(bset_i,
|
|
nparam + n + f->len[i], nvar - n - f->len[i]);
|
|
bset_i = isl_basic_set_drop_constraints_involving(bset_i,
|
|
nparam, n);
|
|
bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
|
|
n + f->len[i], nvar - n - f->len[i]);
|
|
bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
|
|
|
|
sample_i = sample_bounded(bset_i);
|
|
if (!sample_i)
|
|
goto error;
|
|
if (sample_i->size == 0) {
|
|
isl_basic_set_free(bset);
|
|
isl_factorizer_free(f);
|
|
isl_vec_free(sample);
|
|
return sample_i;
|
|
}
|
|
isl_seq_cpy(sample->el + 1 + nparam + n,
|
|
sample_i->el + 1, f->len[i]);
|
|
isl_vec_free(sample_i);
|
|
|
|
n += f->len[i];
|
|
}
|
|
|
|
f->morph = isl_morph_inverse(f->morph);
|
|
sample = isl_morph_vec(isl_morph_copy(f->morph), sample);
|
|
|
|
isl_basic_set_free(bset);
|
|
isl_factorizer_free(f);
|
|
return sample;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_factorizer_free(f);
|
|
isl_vec_free(sample);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a basic set that is known to be bounded, find and return
|
|
* an integer point in the basic set, if there is any.
|
|
*
|
|
* After handling some trivial cases, we construct a tableau
|
|
* and then use isl_tab_sample to find a sample, passing it
|
|
* the identity matrix as initial basis.
|
|
*/
|
|
static __isl_give isl_vec *sample_bounded(__isl_take isl_basic_set *bset)
|
|
{
|
|
unsigned dim;
|
|
struct isl_vec *sample;
|
|
struct isl_tab *tab = NULL;
|
|
isl_factorizer *f;
|
|
|
|
if (!bset)
|
|
return NULL;
|
|
|
|
if (isl_basic_set_plain_is_empty(bset))
|
|
return empty_sample(bset);
|
|
|
|
dim = isl_basic_set_total_dim(bset);
|
|
if (dim == 0)
|
|
return zero_sample(bset);
|
|
if (dim == 1)
|
|
return interval_sample(bset);
|
|
if (bset->n_eq > 0)
|
|
return sample_eq(bset, sample_bounded);
|
|
|
|
f = isl_basic_set_factorizer(bset);
|
|
if (!f)
|
|
goto error;
|
|
if (f->n_group != 0)
|
|
return factored_sample(bset, f);
|
|
isl_factorizer_free(f);
|
|
|
|
tab = isl_tab_from_basic_set(bset, 1);
|
|
if (tab && tab->empty) {
|
|
isl_tab_free(tab);
|
|
ISL_F_SET(bset, ISL_BASIC_SET_EMPTY);
|
|
sample = isl_vec_alloc(isl_basic_set_get_ctx(bset), 0);
|
|
isl_basic_set_free(bset);
|
|
return sample;
|
|
}
|
|
|
|
if (!ISL_F_ISSET(bset, ISL_BASIC_SET_NO_IMPLICIT))
|
|
if (isl_tab_detect_implicit_equalities(tab) < 0)
|
|
goto error;
|
|
|
|
sample = isl_tab_sample(tab);
|
|
if (!sample)
|
|
goto error;
|
|
|
|
if (sample->size > 0) {
|
|
isl_vec_free(bset->sample);
|
|
bset->sample = isl_vec_copy(sample);
|
|
}
|
|
|
|
isl_basic_set_free(bset);
|
|
isl_tab_free(tab);
|
|
return sample;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_tab_free(tab);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a basic set "bset" and a value "sample" for the first coordinates
|
|
* of bset, plug in these values and drop the corresponding coordinates.
|
|
*
|
|
* We do this by computing the preimage of the transformation
|
|
*
|
|
* [ 1 0 ]
|
|
* x = [ s 0 ] x'
|
|
* [ 0 I ]
|
|
*
|
|
* where [1 s] is the sample value and I is the identity matrix of the
|
|
* appropriate dimension.
|
|
*/
|
|
static __isl_give isl_basic_set *plug_in(__isl_take isl_basic_set *bset,
|
|
__isl_take isl_vec *sample)
|
|
{
|
|
int i;
|
|
unsigned total;
|
|
struct isl_mat *T;
|
|
|
|
if (!bset || !sample)
|
|
goto error;
|
|
|
|
total = isl_basic_set_total_dim(bset);
|
|
T = isl_mat_alloc(bset->ctx, 1 + total, 1 + total - (sample->size - 1));
|
|
if (!T)
|
|
goto error;
|
|
|
|
for (i = 0; i < sample->size; ++i) {
|
|
isl_int_set(T->row[i][0], sample->el[i]);
|
|
isl_seq_clr(T->row[i] + 1, T->n_col - 1);
|
|
}
|
|
for (i = 0; i < T->n_col - 1; ++i) {
|
|
isl_seq_clr(T->row[sample->size + i], T->n_col);
|
|
isl_int_set_si(T->row[sample->size + i][1 + i], 1);
|
|
}
|
|
isl_vec_free(sample);
|
|
|
|
bset = isl_basic_set_preimage(bset, T);
|
|
return bset;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_vec_free(sample);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a basic set "bset", return any (possibly non-integer) point
|
|
* in the basic set.
|
|
*/
|
|
static __isl_give isl_vec *rational_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
struct isl_tab *tab;
|
|
struct isl_vec *sample;
|
|
|
|
if (!bset)
|
|
return NULL;
|
|
|
|
tab = isl_tab_from_basic_set(bset, 0);
|
|
sample = isl_tab_get_sample_value(tab);
|
|
isl_tab_free(tab);
|
|
|
|
isl_basic_set_free(bset);
|
|
|
|
return sample;
|
|
}
|
|
|
|
/* Given a linear cone "cone" and a rational point "vec",
|
|
* construct a polyhedron with shifted copies of the constraints in "cone",
|
|
* i.e., a polyhedron with "cone" as its recession cone, such that each
|
|
* point x in this polyhedron is such that the unit box positioned at x
|
|
* lies entirely inside the affine cone 'vec + cone'.
|
|
* Any rational point in this polyhedron may therefore be rounded up
|
|
* to yield an integer point that lies inside said affine cone.
|
|
*
|
|
* Denote the constraints of cone by "<a_i, x> >= 0" and the rational
|
|
* point "vec" by v/d.
|
|
* Let b_i = <a_i, v>. Then the affine cone 'vec + cone' is given
|
|
* by <a_i, x> - b/d >= 0.
|
|
* The polyhedron <a_i, x> - ceil{b/d} >= 0 is a subset of this affine cone.
|
|
* We prefer this polyhedron over the actual affine cone because it doesn't
|
|
* require a scaling of the constraints.
|
|
* If each of the vertices of the unit cube positioned at x lies inside
|
|
* this polyhedron, then the whole unit cube at x lies inside the affine cone.
|
|
* We therefore impose that x' = x + \sum e_i, for any selection of unit
|
|
* vectors lies inside the polyhedron, i.e.,
|
|
*
|
|
* <a_i, x'> - ceil{b/d} = <a_i, x> + sum a_i - ceil{b/d} >= 0
|
|
*
|
|
* The most stringent of these constraints is the one that selects
|
|
* all negative a_i, so the polyhedron we are looking for has constraints
|
|
*
|
|
* <a_i, x> + sum_{a_i < 0} a_i - ceil{b/d} >= 0
|
|
*
|
|
* Note that if cone were known to have only non-negative rays
|
|
* (which can be accomplished by a unimodular transformation),
|
|
* then we would only have to check the points x' = x + e_i
|
|
* and we only have to add the smallest negative a_i (if any)
|
|
* instead of the sum of all negative a_i.
|
|
*/
|
|
static __isl_give isl_basic_set *shift_cone(__isl_take isl_basic_set *cone,
|
|
__isl_take isl_vec *vec)
|
|
{
|
|
int i, j, k;
|
|
unsigned total;
|
|
|
|
struct isl_basic_set *shift = NULL;
|
|
|
|
if (!cone || !vec)
|
|
goto error;
|
|
|
|
isl_assert(cone->ctx, cone->n_eq == 0, goto error);
|
|
|
|
total = isl_basic_set_total_dim(cone);
|
|
|
|
shift = isl_basic_set_alloc_space(isl_basic_set_get_space(cone),
|
|
0, 0, cone->n_ineq);
|
|
|
|
for (i = 0; i < cone->n_ineq; ++i) {
|
|
k = isl_basic_set_alloc_inequality(shift);
|
|
if (k < 0)
|
|
goto error;
|
|
isl_seq_cpy(shift->ineq[k] + 1, cone->ineq[i] + 1, total);
|
|
isl_seq_inner_product(shift->ineq[k] + 1, vec->el + 1, total,
|
|
&shift->ineq[k][0]);
|
|
isl_int_cdiv_q(shift->ineq[k][0],
|
|
shift->ineq[k][0], vec->el[0]);
|
|
isl_int_neg(shift->ineq[k][0], shift->ineq[k][0]);
|
|
for (j = 0; j < total; ++j) {
|
|
if (isl_int_is_nonneg(shift->ineq[k][1 + j]))
|
|
continue;
|
|
isl_int_add(shift->ineq[k][0],
|
|
shift->ineq[k][0], shift->ineq[k][1 + j]);
|
|
}
|
|
}
|
|
|
|
isl_basic_set_free(cone);
|
|
isl_vec_free(vec);
|
|
|
|
return isl_basic_set_finalize(shift);
|
|
error:
|
|
isl_basic_set_free(shift);
|
|
isl_basic_set_free(cone);
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a rational point vec in a (transformed) basic set,
|
|
* such that cone is the recession cone of the original basic set,
|
|
* "round up" the rational point to an integer point.
|
|
*
|
|
* We first check if the rational point just happens to be integer.
|
|
* If not, we transform the cone in the same way as the basic set,
|
|
* pick a point x in this cone shifted to the rational point such that
|
|
* the whole unit cube at x is also inside this affine cone.
|
|
* Then we simply round up the coordinates of x and return the
|
|
* resulting integer point.
|
|
*/
|
|
static __isl_give isl_vec *round_up_in_cone(__isl_take isl_vec *vec,
|
|
__isl_take isl_basic_set *cone, __isl_take isl_mat *U)
|
|
{
|
|
unsigned total;
|
|
|
|
if (!vec || !cone || !U)
|
|
goto error;
|
|
|
|
isl_assert(vec->ctx, vec->size != 0, goto error);
|
|
if (isl_int_is_one(vec->el[0])) {
|
|
isl_mat_free(U);
|
|
isl_basic_set_free(cone);
|
|
return vec;
|
|
}
|
|
|
|
total = isl_basic_set_total_dim(cone);
|
|
cone = isl_basic_set_preimage(cone, U);
|
|
cone = isl_basic_set_remove_dims(cone, isl_dim_set,
|
|
0, total - (vec->size - 1));
|
|
|
|
cone = shift_cone(cone, vec);
|
|
|
|
vec = rational_sample(cone);
|
|
vec = isl_vec_ceil(vec);
|
|
return vec;
|
|
error:
|
|
isl_mat_free(U);
|
|
isl_vec_free(vec);
|
|
isl_basic_set_free(cone);
|
|
return NULL;
|
|
}
|
|
|
|
/* Concatenate two integer vectors, i.e., two vectors with denominator
|
|
* (stored in element 0) equal to 1.
|
|
*/
|
|
static __isl_give isl_vec *vec_concat(__isl_take isl_vec *vec1,
|
|
__isl_take isl_vec *vec2)
|
|
{
|
|
struct isl_vec *vec;
|
|
|
|
if (!vec1 || !vec2)
|
|
goto error;
|
|
isl_assert(vec1->ctx, vec1->size > 0, goto error);
|
|
isl_assert(vec2->ctx, vec2->size > 0, goto error);
|
|
isl_assert(vec1->ctx, isl_int_is_one(vec1->el[0]), goto error);
|
|
isl_assert(vec2->ctx, isl_int_is_one(vec2->el[0]), goto error);
|
|
|
|
vec = isl_vec_alloc(vec1->ctx, vec1->size + vec2->size - 1);
|
|
if (!vec)
|
|
goto error;
|
|
|
|
isl_seq_cpy(vec->el, vec1->el, vec1->size);
|
|
isl_seq_cpy(vec->el + vec1->size, vec2->el + 1, vec2->size - 1);
|
|
|
|
isl_vec_free(vec1);
|
|
isl_vec_free(vec2);
|
|
|
|
return vec;
|
|
error:
|
|
isl_vec_free(vec1);
|
|
isl_vec_free(vec2);
|
|
return NULL;
|
|
}
|
|
|
|
/* Give a basic set "bset" with recession cone "cone", compute and
|
|
* return an integer point in bset, if any.
|
|
*
|
|
* If the recession cone is full-dimensional, then we know that
|
|
* bset contains an infinite number of integer points and it is
|
|
* fairly easy to pick one of them.
|
|
* If the recession cone is not full-dimensional, then we first
|
|
* transform bset such that the bounded directions appear as
|
|
* the first dimensions of the transformed basic set.
|
|
* We do this by using a unimodular transformation that transforms
|
|
* the equalities in the recession cone to equalities on the first
|
|
* dimensions.
|
|
*
|
|
* The transformed set is then projected onto its bounded dimensions.
|
|
* Note that to compute this projection, we can simply drop all constraints
|
|
* involving any of the unbounded dimensions since these constraints
|
|
* cannot be combined to produce a constraint on the bounded dimensions.
|
|
* To see this, assume that there is such a combination of constraints
|
|
* that produces a constraint on the bounded dimensions. This means
|
|
* that some combination of the unbounded dimensions has both an upper
|
|
* bound and a lower bound in terms of the bounded dimensions, but then
|
|
* this combination would be a bounded direction too and would have been
|
|
* transformed into a bounded dimensions.
|
|
*
|
|
* We then compute a sample value in the bounded dimensions.
|
|
* If no such value can be found, then the original set did not contain
|
|
* any integer points and we are done.
|
|
* Otherwise, we plug in the value we found in the bounded dimensions,
|
|
* project out these bounded dimensions and end up with a set with
|
|
* a full-dimensional recession cone.
|
|
* A sample point in this set is computed by "rounding up" any
|
|
* rational point in the set.
|
|
*
|
|
* The sample points in the bounded and unbounded dimensions are
|
|
* then combined into a single sample point and transformed back
|
|
* to the original space.
|
|
*/
|
|
__isl_give isl_vec *isl_basic_set_sample_with_cone(
|
|
__isl_take isl_basic_set *bset, __isl_take isl_basic_set *cone)
|
|
{
|
|
unsigned total;
|
|
unsigned cone_dim;
|
|
struct isl_mat *M, *U;
|
|
struct isl_vec *sample;
|
|
struct isl_vec *cone_sample;
|
|
struct isl_ctx *ctx;
|
|
struct isl_basic_set *bounded;
|
|
|
|
if (!bset || !cone)
|
|
goto error;
|
|
|
|
ctx = isl_basic_set_get_ctx(bset);
|
|
total = isl_basic_set_total_dim(cone);
|
|
cone_dim = total - cone->n_eq;
|
|
|
|
M = isl_mat_sub_alloc6(ctx, cone->eq, 0, cone->n_eq, 1, total);
|
|
M = isl_mat_left_hermite(M, 0, &U, NULL);
|
|
if (!M)
|
|
goto error;
|
|
isl_mat_free(M);
|
|
|
|
U = isl_mat_lin_to_aff(U);
|
|
bset = isl_basic_set_preimage(bset, isl_mat_copy(U));
|
|
|
|
bounded = isl_basic_set_copy(bset);
|
|
bounded = isl_basic_set_drop_constraints_involving(bounded,
|
|
total - cone_dim, cone_dim);
|
|
bounded = isl_basic_set_drop_dims(bounded, total - cone_dim, cone_dim);
|
|
sample = sample_bounded(bounded);
|
|
if (!sample || sample->size == 0) {
|
|
isl_basic_set_free(bset);
|
|
isl_basic_set_free(cone);
|
|
isl_mat_free(U);
|
|
return sample;
|
|
}
|
|
bset = plug_in(bset, isl_vec_copy(sample));
|
|
cone_sample = rational_sample(bset);
|
|
cone_sample = round_up_in_cone(cone_sample, cone, isl_mat_copy(U));
|
|
sample = vec_concat(sample, cone_sample);
|
|
sample = isl_mat_vec_product(U, sample);
|
|
return sample;
|
|
error:
|
|
isl_basic_set_free(cone);
|
|
isl_basic_set_free(bset);
|
|
return NULL;
|
|
}
|
|
|
|
static void vec_sum_of_neg(struct isl_vec *v, isl_int *s)
|
|
{
|
|
int i;
|
|
|
|
isl_int_set_si(*s, 0);
|
|
|
|
for (i = 0; i < v->size; ++i)
|
|
if (isl_int_is_neg(v->el[i]))
|
|
isl_int_add(*s, *s, v->el[i]);
|
|
}
|
|
|
|
/* Given a tableau "tab", a tableau "tab_cone" that corresponds
|
|
* to the recession cone and the inverse of a new basis U = inv(B),
|
|
* with the unbounded directions in B last,
|
|
* add constraints to "tab" that ensure any rational value
|
|
* in the unbounded directions can be rounded up to an integer value.
|
|
*
|
|
* The new basis is given by x' = B x, i.e., x = U x'.
|
|
* For any rational value of the last tab->n_unbounded coordinates
|
|
* in the update tableau, the value that is obtained by rounding
|
|
* up this value should be contained in the original tableau.
|
|
* For any constraint "a x + c >= 0", we therefore need to add
|
|
* a constraint "a x + c + s >= 0", with s the sum of all negative
|
|
* entries in the last elements of "a U".
|
|
*
|
|
* Since we are not interested in the first entries of any of the "a U",
|
|
* we first drop the columns of U that correpond to bounded directions.
|
|
*/
|
|
static int tab_shift_cone(struct isl_tab *tab,
|
|
struct isl_tab *tab_cone, struct isl_mat *U)
|
|
{
|
|
int i;
|
|
isl_int v;
|
|
struct isl_basic_set *bset = NULL;
|
|
|
|
if (tab && tab->n_unbounded == 0) {
|
|
isl_mat_free(U);
|
|
return 0;
|
|
}
|
|
isl_int_init(v);
|
|
if (!tab || !tab_cone || !U)
|
|
goto error;
|
|
bset = isl_tab_peek_bset(tab_cone);
|
|
U = isl_mat_drop_cols(U, 0, tab->n_var - tab->n_unbounded);
|
|
for (i = 0; i < bset->n_ineq; ++i) {
|
|
int ok;
|
|
struct isl_vec *row = NULL;
|
|
if (isl_tab_is_equality(tab_cone, tab_cone->n_eq + i))
|
|
continue;
|
|
row = isl_vec_alloc(bset->ctx, tab_cone->n_var);
|
|
if (!row)
|
|
goto error;
|
|
isl_seq_cpy(row->el, bset->ineq[i] + 1, tab_cone->n_var);
|
|
row = isl_vec_mat_product(row, isl_mat_copy(U));
|
|
if (!row)
|
|
goto error;
|
|
vec_sum_of_neg(row, &v);
|
|
isl_vec_free(row);
|
|
if (isl_int_is_zero(v))
|
|
continue;
|
|
if (isl_tab_extend_cons(tab, 1) < 0)
|
|
goto error;
|
|
isl_int_add(bset->ineq[i][0], bset->ineq[i][0], v);
|
|
ok = isl_tab_add_ineq(tab, bset->ineq[i]) >= 0;
|
|
isl_int_sub(bset->ineq[i][0], bset->ineq[i][0], v);
|
|
if (!ok)
|
|
goto error;
|
|
}
|
|
|
|
isl_mat_free(U);
|
|
isl_int_clear(v);
|
|
return 0;
|
|
error:
|
|
isl_mat_free(U);
|
|
isl_int_clear(v);
|
|
return -1;
|
|
}
|
|
|
|
/* Compute and return an initial basis for the possibly
|
|
* unbounded tableau "tab". "tab_cone" is a tableau
|
|
* for the corresponding recession cone.
|
|
* Additionally, add constraints to "tab" that ensure
|
|
* that any rational value for the unbounded directions
|
|
* can be rounded up to an integer value.
|
|
*
|
|
* If the tableau is bounded, i.e., if the recession cone
|
|
* is zero-dimensional, then we just use inital_basis.
|
|
* Otherwise, we construct a basis whose first directions
|
|
* correspond to equalities, followed by bounded directions,
|
|
* i.e., equalities in the recession cone.
|
|
* The remaining directions are then unbounded.
|
|
*/
|
|
int isl_tab_set_initial_basis_with_cone(struct isl_tab *tab,
|
|
struct isl_tab *tab_cone)
|
|
{
|
|
struct isl_mat *eq;
|
|
struct isl_mat *cone_eq;
|
|
struct isl_mat *U, *Q;
|
|
|
|
if (!tab || !tab_cone)
|
|
return -1;
|
|
|
|
if (tab_cone->n_col == tab_cone->n_dead) {
|
|
tab->basis = initial_basis(tab);
|
|
return tab->basis ? 0 : -1;
|
|
}
|
|
|
|
eq = tab_equalities(tab);
|
|
if (!eq)
|
|
return -1;
|
|
tab->n_zero = eq->n_row;
|
|
cone_eq = tab_equalities(tab_cone);
|
|
eq = isl_mat_concat(eq, cone_eq);
|
|
if (!eq)
|
|
return -1;
|
|
tab->n_unbounded = tab->n_var - (eq->n_row - tab->n_zero);
|
|
eq = isl_mat_left_hermite(eq, 0, &U, &Q);
|
|
if (!eq)
|
|
return -1;
|
|
isl_mat_free(eq);
|
|
tab->basis = isl_mat_lin_to_aff(Q);
|
|
if (tab_shift_cone(tab, tab_cone, U) < 0)
|
|
return -1;
|
|
if (!tab->basis)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
/* Compute and return a sample point in bset using generalized basis
|
|
* reduction. We first check if the input set has a non-trivial
|
|
* recession cone. If so, we perform some extra preprocessing in
|
|
* sample_with_cone. Otherwise, we directly perform generalized basis
|
|
* reduction.
|
|
*/
|
|
static __isl_give isl_vec *gbr_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
unsigned dim;
|
|
struct isl_basic_set *cone;
|
|
|
|
dim = isl_basic_set_total_dim(bset);
|
|
|
|
cone = isl_basic_set_recession_cone(isl_basic_set_copy(bset));
|
|
if (!cone)
|
|
goto error;
|
|
|
|
if (cone->n_eq < dim)
|
|
return isl_basic_set_sample_with_cone(bset, cone);
|
|
|
|
isl_basic_set_free(cone);
|
|
return sample_bounded(bset);
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
return NULL;
|
|
}
|
|
|
|
static __isl_give isl_vec *basic_set_sample(__isl_take isl_basic_set *bset,
|
|
int bounded)
|
|
{
|
|
struct isl_ctx *ctx;
|
|
unsigned dim;
|
|
if (!bset)
|
|
return NULL;
|
|
|
|
ctx = bset->ctx;
|
|
if (isl_basic_set_plain_is_empty(bset))
|
|
return empty_sample(bset);
|
|
|
|
dim = isl_basic_set_n_dim(bset);
|
|
isl_assert(ctx, isl_basic_set_n_param(bset) == 0, goto error);
|
|
isl_assert(ctx, bset->n_div == 0, goto error);
|
|
|
|
if (bset->sample && bset->sample->size == 1 + dim) {
|
|
int contains = isl_basic_set_contains(bset, bset->sample);
|
|
if (contains < 0)
|
|
goto error;
|
|
if (contains) {
|
|
struct isl_vec *sample = isl_vec_copy(bset->sample);
|
|
isl_basic_set_free(bset);
|
|
return sample;
|
|
}
|
|
}
|
|
isl_vec_free(bset->sample);
|
|
bset->sample = NULL;
|
|
|
|
if (bset->n_eq > 0)
|
|
return sample_eq(bset, bounded ? isl_basic_set_sample_bounded
|
|
: isl_basic_set_sample_vec);
|
|
if (dim == 0)
|
|
return zero_sample(bset);
|
|
if (dim == 1)
|
|
return interval_sample(bset);
|
|
|
|
return bounded ? sample_bounded(bset) : gbr_sample(bset);
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_vec *isl_basic_set_sample_vec(__isl_take isl_basic_set *bset)
|
|
{
|
|
return basic_set_sample(bset, 0);
|
|
}
|
|
|
|
/* Compute an integer sample in "bset", where the caller guarantees
|
|
* that "bset" is bounded.
|
|
*/
|
|
__isl_give isl_vec *isl_basic_set_sample_bounded(__isl_take isl_basic_set *bset)
|
|
{
|
|
return basic_set_sample(bset, 1);
|
|
}
|
|
|
|
__isl_give isl_basic_set *isl_basic_set_from_vec(__isl_take isl_vec *vec)
|
|
{
|
|
int i;
|
|
int k;
|
|
struct isl_basic_set *bset = NULL;
|
|
struct isl_ctx *ctx;
|
|
unsigned dim;
|
|
|
|
if (!vec)
|
|
return NULL;
|
|
ctx = vec->ctx;
|
|
isl_assert(ctx, vec->size != 0, goto error);
|
|
|
|
bset = isl_basic_set_alloc(ctx, 0, vec->size - 1, 0, vec->size - 1, 0);
|
|
if (!bset)
|
|
goto error;
|
|
dim = isl_basic_set_n_dim(bset);
|
|
for (i = dim - 1; i >= 0; --i) {
|
|
k = isl_basic_set_alloc_equality(bset);
|
|
if (k < 0)
|
|
goto error;
|
|
isl_seq_clr(bset->eq[k], 1 + dim);
|
|
isl_int_neg(bset->eq[k][0], vec->el[1 + i]);
|
|
isl_int_set(bset->eq[k][1 + i], vec->el[0]);
|
|
}
|
|
bset->sample = vec;
|
|
|
|
return bset;
|
|
error:
|
|
isl_basic_set_free(bset);
|
|
isl_vec_free(vec);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_basic_map *isl_basic_map_sample(__isl_take isl_basic_map *bmap)
|
|
{
|
|
struct isl_basic_set *bset;
|
|
struct isl_vec *sample_vec;
|
|
|
|
bset = isl_basic_map_underlying_set(isl_basic_map_copy(bmap));
|
|
sample_vec = isl_basic_set_sample_vec(bset);
|
|
if (!sample_vec)
|
|
goto error;
|
|
if (sample_vec->size == 0) {
|
|
isl_vec_free(sample_vec);
|
|
return isl_basic_map_set_to_empty(bmap);
|
|
}
|
|
isl_vec_free(bmap->sample);
|
|
bmap->sample = isl_vec_copy(sample_vec);
|
|
bset = isl_basic_set_from_vec(sample_vec);
|
|
return isl_basic_map_overlying_set(bset, bmap);
|
|
error:
|
|
isl_basic_map_free(bmap);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_basic_set *isl_basic_set_sample(__isl_take isl_basic_set *bset)
|
|
{
|
|
return isl_basic_map_sample(bset);
|
|
}
|
|
|
|
__isl_give isl_basic_map *isl_map_sample(__isl_take isl_map *map)
|
|
{
|
|
int i;
|
|
isl_basic_map *sample = NULL;
|
|
|
|
if (!map)
|
|
goto error;
|
|
|
|
for (i = 0; i < map->n; ++i) {
|
|
sample = isl_basic_map_sample(isl_basic_map_copy(map->p[i]));
|
|
if (!sample)
|
|
goto error;
|
|
if (!ISL_F_ISSET(sample, ISL_BASIC_MAP_EMPTY))
|
|
break;
|
|
isl_basic_map_free(sample);
|
|
}
|
|
if (i == map->n)
|
|
sample = isl_basic_map_empty(isl_map_get_space(map));
|
|
isl_map_free(map);
|
|
return sample;
|
|
error:
|
|
isl_map_free(map);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_basic_set *isl_set_sample(__isl_take isl_set *set)
|
|
{
|
|
return bset_from_bmap(isl_map_sample(set_to_map(set)));
|
|
}
|
|
|
|
__isl_give isl_point *isl_basic_set_sample_point(__isl_take isl_basic_set *bset)
|
|
{
|
|
isl_vec *vec;
|
|
isl_space *dim;
|
|
|
|
dim = isl_basic_set_get_space(bset);
|
|
bset = isl_basic_set_underlying_set(bset);
|
|
vec = isl_basic_set_sample_vec(bset);
|
|
|
|
return isl_point_alloc(dim, vec);
|
|
}
|
|
|
|
__isl_give isl_point *isl_set_sample_point(__isl_take isl_set *set)
|
|
{
|
|
int i;
|
|
isl_point *pnt;
|
|
|
|
if (!set)
|
|
return NULL;
|
|
|
|
for (i = 0; i < set->n; ++i) {
|
|
pnt = isl_basic_set_sample_point(isl_basic_set_copy(set->p[i]));
|
|
if (!pnt)
|
|
goto error;
|
|
if (!isl_point_is_void(pnt))
|
|
break;
|
|
isl_point_free(pnt);
|
|
}
|
|
if (i == set->n)
|
|
pnt = isl_point_void(isl_set_get_space(set));
|
|
|
|
isl_set_free(set);
|
|
return pnt;
|
|
error:
|
|
isl_set_free(set);
|
|
return NULL;
|
|
}
|