forked from OSchip/llvm-project
2630 lines
102 KiB
C++
2630 lines
102 KiB
C++
//=== DWARFLinker.cpp -----------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/DWARFLinker/DWARFLinker.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/CodeGen/NonRelocatableStringpool.h"
|
|
#include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
|
|
#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
|
|
#include "llvm/Support/DataExtractor.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/ErrorOr.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/ThreadPool.h"
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
/// Hold the input and output of the debug info size in bytes.
|
|
struct DebugInfoSize {
|
|
uint64_t Input;
|
|
uint64_t Output;
|
|
};
|
|
|
|
/// Compute the total size of the debug info.
|
|
static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
|
|
uint64_t Size = 0;
|
|
for (auto &Unit : Dwarf.compile_units()) {
|
|
Size += Unit->getLength();
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
/// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
|
|
/// CompileUnit object instead.
|
|
static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
|
|
auto CU = llvm::upper_bound(
|
|
Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
|
|
return LHS < RHS->getOrigUnit().getNextUnitOffset();
|
|
});
|
|
return CU != Units.end() ? CU->get() : nullptr;
|
|
}
|
|
|
|
/// Resolve the DIE attribute reference that has been extracted in \p RefValue.
|
|
/// The resulting DIE might be in another CompileUnit which is stored into \p
|
|
/// ReferencedCU. \returns null if resolving fails for any reason.
|
|
DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
|
|
const UnitListTy &Units,
|
|
const DWARFFormValue &RefValue,
|
|
const DWARFDie &DIE,
|
|
CompileUnit *&RefCU) {
|
|
assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
|
|
uint64_t RefOffset = *RefValue.getAsReference();
|
|
if ((RefCU = getUnitForOffset(Units, RefOffset)))
|
|
if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
|
|
// In a file with broken references, an attribute might point to a NULL
|
|
// DIE.
|
|
if (!RefDie.isNULL())
|
|
return RefDie;
|
|
}
|
|
|
|
reportWarning("could not find referenced DIE", File, &DIE);
|
|
return DWARFDie();
|
|
}
|
|
|
|
/// \returns whether the passed \a Attr type might contain a DIE reference
|
|
/// suitable for ODR uniquing.
|
|
static bool isODRAttribute(uint16_t Attr) {
|
|
switch (Attr) {
|
|
default:
|
|
return false;
|
|
case dwarf::DW_AT_type:
|
|
case dwarf::DW_AT_containing_type:
|
|
case dwarf::DW_AT_specification:
|
|
case dwarf::DW_AT_abstract_origin:
|
|
case dwarf::DW_AT_import:
|
|
return true;
|
|
}
|
|
llvm_unreachable("Improper attribute.");
|
|
}
|
|
|
|
static bool isTypeTag(uint16_t Tag) {
|
|
switch (Tag) {
|
|
case dwarf::DW_TAG_array_type:
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
case dwarf::DW_TAG_pointer_type:
|
|
case dwarf::DW_TAG_reference_type:
|
|
case dwarf::DW_TAG_string_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_subroutine_type:
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_ptr_to_member_type:
|
|
case dwarf::DW_TAG_set_type:
|
|
case dwarf::DW_TAG_subrange_type:
|
|
case dwarf::DW_TAG_base_type:
|
|
case dwarf::DW_TAG_const_type:
|
|
case dwarf::DW_TAG_constant:
|
|
case dwarf::DW_TAG_file_type:
|
|
case dwarf::DW_TAG_namelist:
|
|
case dwarf::DW_TAG_packed_type:
|
|
case dwarf::DW_TAG_volatile_type:
|
|
case dwarf::DW_TAG_restrict_type:
|
|
case dwarf::DW_TAG_atomic_type:
|
|
case dwarf::DW_TAG_interface_type:
|
|
case dwarf::DW_TAG_unspecified_type:
|
|
case dwarf::DW_TAG_shared_type:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
AddressesMap::~AddressesMap() {}
|
|
|
|
DwarfEmitter::~DwarfEmitter() {}
|
|
|
|
static Optional<StringRef> StripTemplateParameters(StringRef Name) {
|
|
// We are looking for template parameters to strip from Name. e.g.
|
|
//
|
|
// operator<<B>
|
|
//
|
|
// We look for > at the end but if it does not contain any < then we
|
|
// have something like operator>>. We check for the operator<=> case.
|
|
if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
|
|
return {};
|
|
|
|
// How many < until we have the start of the template parameters.
|
|
size_t NumLeftAnglesToSkip = 1;
|
|
|
|
// If we have operator<=> then we need to skip its < as well.
|
|
NumLeftAnglesToSkip += Name.count("<=>");
|
|
|
|
size_t RightAngleCount = Name.count('>');
|
|
size_t LeftAngleCount = Name.count('<');
|
|
|
|
// If we have more < than > we have operator< or operator<<
|
|
// we to account for their < as well.
|
|
if (LeftAngleCount > RightAngleCount)
|
|
NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
|
|
|
|
size_t StartOfTemplate = 0;
|
|
while (NumLeftAnglesToSkip--)
|
|
StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
|
|
|
|
return Name.substr(0, StartOfTemplate - 1);
|
|
}
|
|
|
|
bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
|
|
AttributesInfo &Info,
|
|
OffsetsStringPool &StringPool,
|
|
bool StripTemplate) {
|
|
// This function will be called on DIEs having low_pcs and
|
|
// ranges. As getting the name might be more expansive, filter out
|
|
// blocks directly.
|
|
if (Die.getTag() == dwarf::DW_TAG_lexical_block)
|
|
return false;
|
|
|
|
if (!Info.MangledName)
|
|
if (const char *MangledName = Die.getLinkageName())
|
|
Info.MangledName = StringPool.getEntry(MangledName);
|
|
|
|
if (!Info.Name)
|
|
if (const char *Name = Die.getShortName())
|
|
Info.Name = StringPool.getEntry(Name);
|
|
|
|
if (!Info.MangledName)
|
|
Info.MangledName = Info.Name;
|
|
|
|
if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
|
|
StringRef Name = Info.Name.getString();
|
|
if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
|
|
Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
|
|
}
|
|
|
|
return Info.Name || Info.MangledName;
|
|
}
|
|
|
|
/// Resolve the relative path to a build artifact referenced by DWARF by
|
|
/// applying DW_AT_comp_dir.
|
|
static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
|
|
sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
|
|
}
|
|
|
|
/// Collect references to parseable Swift interfaces in imported
|
|
/// DW_TAG_module blocks.
|
|
static void analyzeImportedModule(
|
|
const DWARFDie &DIE, CompileUnit &CU,
|
|
swiftInterfacesMap *ParseableSwiftInterfaces,
|
|
std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
|
|
if (CU.getLanguage() != dwarf::DW_LANG_Swift)
|
|
return;
|
|
|
|
if (!ParseableSwiftInterfaces)
|
|
return;
|
|
|
|
StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
|
|
if (!Path.endswith(".swiftinterface"))
|
|
return;
|
|
// Don't track interfaces that are part of the SDK.
|
|
StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
|
|
if (SysRoot.empty())
|
|
SysRoot = CU.getSysRoot();
|
|
if (!SysRoot.empty() && Path.startswith(SysRoot))
|
|
return;
|
|
if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
|
|
if (Optional<const char *> Name = Val->getAsCString()) {
|
|
auto &Entry = (*ParseableSwiftInterfaces)[*Name];
|
|
// The prepend path is applied later when copying.
|
|
DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
|
|
SmallString<128> ResolvedPath;
|
|
if (sys::path::is_relative(Path))
|
|
resolveRelativeObjectPath(ResolvedPath, CUDie);
|
|
sys::path::append(ResolvedPath, Path);
|
|
if (!Entry.empty() && Entry != ResolvedPath)
|
|
ReportWarning(
|
|
Twine("Conflicting parseable interfaces for Swift Module ") +
|
|
*Name + ": " + Entry + " and " + Path,
|
|
DIE);
|
|
Entry = std::string(ResolvedPath.str());
|
|
}
|
|
}
|
|
|
|
/// The distinct types of work performed by the work loop in
|
|
/// analyzeContextInfo.
|
|
enum class ContextWorklistItemType : uint8_t {
|
|
AnalyzeContextInfo,
|
|
UpdateChildPruning,
|
|
UpdatePruning,
|
|
};
|
|
|
|
/// This class represents an item in the work list. The type defines what kind
|
|
/// of work needs to be performed when processing the current item. Everything
|
|
/// but the Type and Die fields are optional based on the type.
|
|
struct ContextWorklistItem {
|
|
DWARFDie Die;
|
|
unsigned ParentIdx;
|
|
union {
|
|
CompileUnit::DIEInfo *OtherInfo;
|
|
DeclContext *Context;
|
|
};
|
|
ContextWorklistItemType Type;
|
|
bool InImportedModule;
|
|
|
|
ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
|
|
CompileUnit::DIEInfo *OtherInfo = nullptr)
|
|
: Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
|
|
InImportedModule(false) {}
|
|
|
|
ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
|
|
bool InImportedModule)
|
|
: Die(Die), ParentIdx(ParentIdx), Context(Context),
|
|
Type(ContextWorklistItemType::AnalyzeContextInfo),
|
|
InImportedModule(InImportedModule) {}
|
|
};
|
|
|
|
static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
|
|
uint64_t ModulesEndOffset) {
|
|
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
|
|
|
|
// Prune this DIE if it is either a forward declaration inside a
|
|
// DW_TAG_module or a DW_TAG_module that contains nothing but
|
|
// forward declarations.
|
|
Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
|
|
(isTypeTag(Die.getTag()) &&
|
|
dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
|
|
|
|
// Only prune forward declarations inside a DW_TAG_module for which a
|
|
// definition exists elsewhere.
|
|
if (ModulesEndOffset == 0)
|
|
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
|
|
else
|
|
Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
|
|
Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
|
|
|
|
return Info.Prune;
|
|
}
|
|
|
|
static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
|
|
CompileUnit::DIEInfo &ChildInfo) {
|
|
CompileUnit::DIEInfo &Info = CU.getInfo(Die);
|
|
Info.Prune &= ChildInfo.Prune;
|
|
}
|
|
|
|
/// Recursive helper to build the global DeclContext information and
|
|
/// gather the child->parent relationships in the original compile unit.
|
|
///
|
|
/// This function uses the same work list approach as lookForDIEsToKeep.
|
|
///
|
|
/// \return true when this DIE and all of its children are only
|
|
/// forward declarations to types defined in external clang modules
|
|
/// (i.e., forward declarations that are children of a DW_TAG_module).
|
|
static bool analyzeContextInfo(
|
|
const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
|
|
DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
|
|
uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
|
|
std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
|
|
bool InImportedModule = false) {
|
|
// LIFO work list.
|
|
std::vector<ContextWorklistItem> Worklist;
|
|
Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
|
|
|
|
while (!Worklist.empty()) {
|
|
ContextWorklistItem Current = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
switch (Current.Type) {
|
|
case ContextWorklistItemType::UpdatePruning:
|
|
updatePruning(Current.Die, CU, ModulesEndOffset);
|
|
continue;
|
|
case ContextWorklistItemType::UpdateChildPruning:
|
|
updateChildPruning(Current.Die, CU, *Current.OtherInfo);
|
|
continue;
|
|
case ContextWorklistItemType::AnalyzeContextInfo:
|
|
break;
|
|
}
|
|
|
|
unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
|
|
CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
|
|
|
|
// Clang imposes an ODR on modules(!) regardless of the language:
|
|
// "The module-id should consist of only a single identifier,
|
|
// which provides the name of the module being defined. Each
|
|
// module shall have a single definition."
|
|
//
|
|
// This does not extend to the types inside the modules:
|
|
// "[I]n C, this implies that if two structs are defined in
|
|
// different submodules with the same name, those two types are
|
|
// distinct types (but may be compatible types if their
|
|
// definitions match)."
|
|
//
|
|
// We treat non-C++ modules like namespaces for this reason.
|
|
if (Current.Die.getTag() == dwarf::DW_TAG_module &&
|
|
Current.ParentIdx == 0 &&
|
|
dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
|
|
CU.getClangModuleName()) {
|
|
Current.InImportedModule = true;
|
|
analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
|
|
ReportWarning);
|
|
}
|
|
|
|
Info.ParentIdx = Current.ParentIdx;
|
|
bool InClangModule = CU.isClangModule() || Current.InImportedModule;
|
|
if (CU.hasODR() || InClangModule) {
|
|
if (Current.Context) {
|
|
auto PtrInvalidPair = Contexts.getChildDeclContext(
|
|
*Current.Context, Current.Die, CU, InClangModule);
|
|
Current.Context = PtrInvalidPair.getPointer();
|
|
Info.Ctxt =
|
|
PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
|
|
if (Info.Ctxt)
|
|
Info.Ctxt->setDefinedInClangModule(InClangModule);
|
|
} else
|
|
Info.Ctxt = Current.Context = nullptr;
|
|
}
|
|
|
|
Info.Prune = Current.InImportedModule;
|
|
// Add children in reverse order to the worklist to effectively process
|
|
// them in order.
|
|
Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
|
|
for (auto Child : reverse(Current.Die.children())) {
|
|
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
|
|
Worklist.emplace_back(
|
|
Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
|
|
Worklist.emplace_back(Child, Current.Context, Idx,
|
|
Current.InImportedModule);
|
|
}
|
|
}
|
|
|
|
return CU.getInfo(DIE).Prune;
|
|
}
|
|
|
|
static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
|
|
switch (Tag) {
|
|
default:
|
|
return false;
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_common_block:
|
|
case dwarf::DW_TAG_lexical_block:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_subprogram:
|
|
case dwarf::DW_TAG_subroutine_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
return true;
|
|
}
|
|
llvm_unreachable("Invalid Tag");
|
|
}
|
|
|
|
void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
|
|
Context.clear();
|
|
|
|
for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
|
|
(*I)->~DIEBlock();
|
|
for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
|
|
(*I)->~DIELoc();
|
|
|
|
DIEBlocks.clear();
|
|
DIELocs.clear();
|
|
DIEAlloc.Reset();
|
|
}
|
|
|
|
/// Check if a variable describing DIE should be kept.
|
|
/// \returns updated TraversalFlags.
|
|
unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
|
|
const DWARFDie &DIE,
|
|
CompileUnit::DIEInfo &MyInfo,
|
|
unsigned Flags) {
|
|
const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
|
|
|
|
// Global variables with constant value can always be kept.
|
|
if (!(Flags & TF_InFunctionScope) &&
|
|
Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
|
|
MyInfo.InDebugMap = true;
|
|
return Flags | TF_Keep;
|
|
}
|
|
|
|
// See if there is a relocation to a valid debug map entry inside this
|
|
// variable's location. The order is important here. We want to always check
|
|
// if the variable has a valid relocation, so that the DIEInfo is filled.
|
|
// However, we don't want a static variable in a function to force us to keep
|
|
// the enclosing function, unless requested explicitly.
|
|
const bool HasLiveMemoryLocation =
|
|
RelocMgr.hasLiveMemoryLocation(DIE, MyInfo);
|
|
if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
|
|
!LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
|
|
return Flags;
|
|
|
|
if (Options.Verbose) {
|
|
outs() << "Keeping variable DIE:";
|
|
DIDumpOptions DumpOpts;
|
|
DumpOpts.ChildRecurseDepth = 0;
|
|
DumpOpts.Verbose = Options.Verbose;
|
|
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
|
|
}
|
|
|
|
return Flags | TF_Keep;
|
|
}
|
|
|
|
/// Check if a function describing DIE should be kept.
|
|
/// \returns updated TraversalFlags.
|
|
unsigned DWARFLinker::shouldKeepSubprogramDIE(
|
|
AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
|
|
const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
|
|
unsigned Flags) {
|
|
Flags |= TF_InFunctionScope;
|
|
|
|
auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
|
|
if (!LowPc)
|
|
return Flags;
|
|
|
|
assert(LowPc.hasValue() && "low_pc attribute is not an address.");
|
|
if (!RelocMgr.hasLiveAddressRange(DIE, MyInfo))
|
|
return Flags;
|
|
|
|
if (Options.Verbose) {
|
|
outs() << "Keeping subprogram DIE:";
|
|
DIDumpOptions DumpOpts;
|
|
DumpOpts.ChildRecurseDepth = 0;
|
|
DumpOpts.Verbose = Options.Verbose;
|
|
DIE.dump(outs(), 8 /* Indent */, DumpOpts);
|
|
}
|
|
|
|
if (DIE.getTag() == dwarf::DW_TAG_label) {
|
|
if (Unit.hasLabelAt(*LowPc))
|
|
return Flags;
|
|
|
|
DWARFUnit &OrigUnit = Unit.getOrigUnit();
|
|
// FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
|
|
// that don't fall into the CU's aranges. This is wrong IMO. Debug info
|
|
// generation bugs aside, this is really wrong in the case of labels, where
|
|
// a label marking the end of a function will have a PC == CU's high_pc.
|
|
if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
|
|
.getValueOr(UINT64_MAX) <= LowPc)
|
|
return Flags;
|
|
Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
|
|
return Flags | TF_Keep;
|
|
}
|
|
|
|
Flags |= TF_Keep;
|
|
|
|
Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
|
|
if (!HighPc) {
|
|
reportWarning("Function without high_pc. Range will be discarded.\n", File,
|
|
&DIE);
|
|
return Flags;
|
|
}
|
|
|
|
// Replace the debug map range with a more accurate one.
|
|
Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
|
|
Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
|
|
return Flags;
|
|
}
|
|
|
|
/// Check if a DIE should be kept.
|
|
/// \returns updated TraversalFlags.
|
|
unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
|
|
const DWARFDie &DIE, const DWARFFile &File,
|
|
CompileUnit &Unit,
|
|
CompileUnit::DIEInfo &MyInfo,
|
|
unsigned Flags) {
|
|
switch (DIE.getTag()) {
|
|
case dwarf::DW_TAG_constant:
|
|
case dwarf::DW_TAG_variable:
|
|
return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
|
|
case dwarf::DW_TAG_subprogram:
|
|
case dwarf::DW_TAG_label:
|
|
return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
|
|
Flags);
|
|
case dwarf::DW_TAG_base_type:
|
|
// DWARF Expressions may reference basic types, but scanning them
|
|
// is expensive. Basic types are tiny, so just keep all of them.
|
|
case dwarf::DW_TAG_imported_module:
|
|
case dwarf::DW_TAG_imported_declaration:
|
|
case dwarf::DW_TAG_imported_unit:
|
|
// We always want to keep these.
|
|
return Flags | TF_Keep;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return Flags;
|
|
}
|
|
|
|
/// Helper that updates the completeness of the current DIE based on the
|
|
/// completeness of one of its children. It depends on the incompleteness of
|
|
/// the children already being computed.
|
|
static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
|
|
CompileUnit::DIEInfo &ChildInfo) {
|
|
switch (Die.getTag()) {
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_class_type:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
|
|
|
|
if (ChildInfo.Incomplete || ChildInfo.Prune)
|
|
MyInfo.Incomplete = true;
|
|
}
|
|
|
|
/// Helper that updates the completeness of the current DIE based on the
|
|
/// completeness of the DIEs it references. It depends on the incompleteness of
|
|
/// the referenced DIE already being computed.
|
|
static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
|
|
CompileUnit::DIEInfo &RefInfo) {
|
|
switch (Die.getTag()) {
|
|
case dwarf::DW_TAG_typedef:
|
|
case dwarf::DW_TAG_member:
|
|
case dwarf::DW_TAG_reference_type:
|
|
case dwarf::DW_TAG_ptr_to_member_type:
|
|
case dwarf::DW_TAG_pointer_type:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
|
|
|
|
if (MyInfo.Incomplete)
|
|
return;
|
|
|
|
if (RefInfo.Incomplete)
|
|
MyInfo.Incomplete = true;
|
|
}
|
|
|
|
/// Look at the children of the given DIE and decide whether they should be
|
|
/// kept.
|
|
void DWARFLinker::lookForChildDIEsToKeep(
|
|
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
|
|
SmallVectorImpl<WorklistItem> &Worklist) {
|
|
// The TF_ParentWalk flag tells us that we are currently walking up the
|
|
// parent chain of a required DIE, and we don't want to mark all the children
|
|
// of the parents as kept (consider for example a DW_TAG_namespace node in
|
|
// the parent chain). There are however a set of DIE types for which we want
|
|
// to ignore that directive and still walk their children.
|
|
if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
|
|
Flags &= ~DWARFLinker::TF_ParentWalk;
|
|
|
|
// We're finished if this DIE has no children or we're walking the parent
|
|
// chain.
|
|
if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
|
|
return;
|
|
|
|
// Add children in reverse order to the worklist to effectively process them
|
|
// in order.
|
|
for (auto Child : reverse(Die.children())) {
|
|
// Add a worklist item before every child to calculate incompleteness right
|
|
// after the current child is processed.
|
|
CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
|
|
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
|
|
&ChildInfo);
|
|
Worklist.emplace_back(Child, CU, Flags);
|
|
}
|
|
}
|
|
|
|
/// Look at DIEs referenced by the given DIE and decide whether they should be
|
|
/// kept. All DIEs referenced though attributes should be kept.
|
|
void DWARFLinker::lookForRefDIEsToKeep(
|
|
const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
|
|
const UnitListTy &Units, const DWARFFile &File,
|
|
SmallVectorImpl<WorklistItem> &Worklist) {
|
|
bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
|
|
? (Flags & DWARFLinker::TF_ODR)
|
|
: CU.hasODR();
|
|
DWARFUnit &Unit = CU.getOrigUnit();
|
|
DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
|
|
const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
|
|
uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
|
|
|
|
SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
|
|
for (const auto &AttrSpec : Abbrev->attributes()) {
|
|
DWARFFormValue Val(AttrSpec.Form);
|
|
if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
|
|
AttrSpec.Attr == dwarf::DW_AT_sibling) {
|
|
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
|
|
Unit.getFormParams());
|
|
continue;
|
|
}
|
|
|
|
Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
|
|
CompileUnit *ReferencedCU;
|
|
if (auto RefDie =
|
|
resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
|
|
CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
|
|
bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
|
|
Info.Ctxt->isDefinedInClangModule();
|
|
// If the referenced DIE has a DeclContext that has already been
|
|
// emitted, then do not keep the one in this CU. We'll link to
|
|
// the canonical DIE in cloneDieReferenceAttribute.
|
|
//
|
|
// FIXME: compatibility with dsymutil-classic. UseODR shouldn't
|
|
// be necessary and could be advantageously replaced by
|
|
// ReferencedCU->hasODR() && CU.hasODR().
|
|
//
|
|
// FIXME: compatibility with dsymutil-classic. There is no
|
|
// reason not to unique ref_addr references.
|
|
if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
|
|
Info.Ctxt &&
|
|
Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
|
|
Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
|
|
continue;
|
|
|
|
// Keep a module forward declaration if there is no definition.
|
|
if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
|
|
Info.Ctxt->getCanonicalDIEOffset()))
|
|
Info.Prune = false;
|
|
ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
|
|
}
|
|
}
|
|
|
|
unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
|
|
|
|
// Add referenced DIEs in reverse order to the worklist to effectively
|
|
// process them in order.
|
|
for (auto &P : reverse(ReferencedDIEs)) {
|
|
// Add a worklist item before every child to calculate incompleteness right
|
|
// after the current child is processed.
|
|
CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
|
|
Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
|
|
&Info);
|
|
Worklist.emplace_back(P.first, P.second,
|
|
DWARFLinker::TF_Keep |
|
|
DWARFLinker::TF_DependencyWalk | ODRFlag);
|
|
}
|
|
}
|
|
|
|
/// Look at the parent of the given DIE and decide whether they should be kept.
|
|
void DWARFLinker::lookForParentDIEsToKeep(
|
|
unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
|
|
SmallVectorImpl<WorklistItem> &Worklist) {
|
|
// Stop if we encounter an ancestor that's already marked as kept.
|
|
if (CU.getInfo(AncestorIdx).Keep)
|
|
return;
|
|
|
|
DWARFUnit &Unit = CU.getOrigUnit();
|
|
DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
|
|
Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
|
|
Worklist.emplace_back(ParentDIE, CU, Flags);
|
|
}
|
|
|
|
/// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
|
|
/// information in \p CU's DIEInfo.
|
|
///
|
|
/// This function is the entry point of the DIE selection algorithm. It is
|
|
/// expected to walk the DIE tree in file order and (though the mediation of
|
|
/// its helper) call hasValidRelocation() on each DIE that might be a 'root
|
|
/// DIE' (See DwarfLinker class comment).
|
|
///
|
|
/// While walking the dependencies of root DIEs, this function is also called,
|
|
/// but during these dependency walks the file order is not respected. The
|
|
/// TF_DependencyWalk flag tells us which kind of traversal we are currently
|
|
/// doing.
|
|
///
|
|
/// The recursive algorithm is implemented iteratively as a work list because
|
|
/// very deep recursion could exhaust the stack for large projects. The work
|
|
/// list acts as a scheduler for different types of work that need to be
|
|
/// performed.
|
|
///
|
|
/// The recursive nature of the algorithm is simulated by running the "main"
|
|
/// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
|
|
/// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
|
|
/// fixing up a computed property (UpdateChildIncompleteness,
|
|
/// UpdateRefIncompleteness).
|
|
///
|
|
/// The return value indicates whether the DIE is incomplete.
|
|
void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
|
|
RangesTy &Ranges, const UnitListTy &Units,
|
|
const DWARFDie &Die, const DWARFFile &File,
|
|
CompileUnit &Cu, unsigned Flags) {
|
|
// LIFO work list.
|
|
SmallVector<WorklistItem, 4> Worklist;
|
|
Worklist.emplace_back(Die, Cu, Flags);
|
|
|
|
while (!Worklist.empty()) {
|
|
WorklistItem Current = Worklist.pop_back_val();
|
|
|
|
// Look at the worklist type to decide what kind of work to perform.
|
|
switch (Current.Type) {
|
|
case WorklistItemType::UpdateChildIncompleteness:
|
|
updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
|
|
continue;
|
|
case WorklistItemType::UpdateRefIncompleteness:
|
|
updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
|
|
continue;
|
|
case WorklistItemType::LookForChildDIEsToKeep:
|
|
lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
|
|
continue;
|
|
case WorklistItemType::LookForRefDIEsToKeep:
|
|
lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
|
|
Worklist);
|
|
continue;
|
|
case WorklistItemType::LookForParentDIEsToKeep:
|
|
lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
|
|
Worklist);
|
|
continue;
|
|
case WorklistItemType::LookForDIEsToKeep:
|
|
break;
|
|
}
|
|
|
|
unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
|
|
CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
|
|
|
|
if (MyInfo.Prune)
|
|
continue;
|
|
|
|
// If the Keep flag is set, we are marking a required DIE's dependencies.
|
|
// If our target is already marked as kept, we're all set.
|
|
bool AlreadyKept = MyInfo.Keep;
|
|
if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
|
|
continue;
|
|
|
|
// We must not call shouldKeepDIE while called from keepDIEAndDependencies,
|
|
// because it would screw up the relocation finding logic.
|
|
if (!(Current.Flags & TF_DependencyWalk))
|
|
Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
|
|
Current.CU, MyInfo, Current.Flags);
|
|
|
|
// Finish by looking for child DIEs. Because of the LIFO worklist we need
|
|
// to schedule that work before any subsequent items are added to the
|
|
// worklist.
|
|
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
|
|
WorklistItemType::LookForChildDIEsToKeep);
|
|
|
|
if (AlreadyKept || !(Current.Flags & TF_Keep))
|
|
continue;
|
|
|
|
// If it is a newly kept DIE mark it as well as all its dependencies as
|
|
// kept.
|
|
MyInfo.Keep = true;
|
|
|
|
// We're looking for incomplete types.
|
|
MyInfo.Incomplete =
|
|
Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
|
|
Current.Die.getTag() != dwarf::DW_TAG_member &&
|
|
dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
|
|
|
|
// After looking at the parent chain, look for referenced DIEs. Because of
|
|
// the LIFO worklist we need to schedule that work before any subsequent
|
|
// items are added to the worklist.
|
|
Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
|
|
WorklistItemType::LookForRefDIEsToKeep);
|
|
|
|
bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
|
|
: Current.CU.hasODR();
|
|
unsigned ODRFlag = UseOdr ? TF_ODR : 0;
|
|
unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
|
|
|
|
// Now schedule the parent walk.
|
|
Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
|
|
}
|
|
}
|
|
|
|
/// Assign an abbreviation number to \p Abbrev.
|
|
///
|
|
/// Our DIEs get freed after every DebugMapObject has been processed,
|
|
/// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
|
|
/// the instances hold by the DIEs. When we encounter an abbreviation
|
|
/// that we don't know, we create a permanent copy of it.
|
|
void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
|
|
// Check the set for priors.
|
|
FoldingSetNodeID ID;
|
|
Abbrev.Profile(ID);
|
|
void *InsertToken;
|
|
DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
|
|
|
|
// If it's newly added.
|
|
if (InSet) {
|
|
// Assign existing abbreviation number.
|
|
Abbrev.setNumber(InSet->getNumber());
|
|
} else {
|
|
// Add to abbreviation list.
|
|
Abbreviations.push_back(
|
|
std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
|
|
for (const auto &Attr : Abbrev.getData())
|
|
Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
|
|
AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
|
|
// Assign the unique abbreviation number.
|
|
Abbrev.setNumber(Abbreviations.size());
|
|
Abbreviations.back()->setNumber(Abbreviations.size());
|
|
}
|
|
}
|
|
|
|
unsigned DWARFLinker::DIECloner::cloneStringAttribute(
|
|
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
|
|
const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
|
|
Optional<const char *> String = Val.getAsCString();
|
|
if (!String)
|
|
return 0;
|
|
|
|
// Switch everything to out of line strings.
|
|
auto StringEntry = StringPool.getEntry(*String);
|
|
|
|
// Update attributes info.
|
|
if (AttrSpec.Attr == dwarf::DW_AT_name)
|
|
Info.Name = StringEntry;
|
|
else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
|
|
AttrSpec.Attr == dwarf::DW_AT_linkage_name)
|
|
Info.MangledName = StringEntry;
|
|
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
|
|
DIEInteger(StringEntry.getOffset()));
|
|
|
|
return 4;
|
|
}
|
|
|
|
unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
|
|
DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
|
|
unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
|
|
CompileUnit &Unit) {
|
|
const DWARFUnit &U = Unit.getOrigUnit();
|
|
uint64_t Ref = *Val.getAsReference();
|
|
|
|
DIE *NewRefDie = nullptr;
|
|
CompileUnit *RefUnit = nullptr;
|
|
DeclContext *Ctxt = nullptr;
|
|
|
|
DWARFDie RefDie =
|
|
Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
|
|
|
|
// If the referenced DIE is not found, drop the attribute.
|
|
if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
|
|
return 0;
|
|
|
|
CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
|
|
|
|
// If we already have emitted an equivalent DeclContext, just point
|
|
// at it.
|
|
if (isODRAttribute(AttrSpec.Attr)) {
|
|
Ctxt = RefInfo.Ctxt;
|
|
if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
|
|
DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::DW_FORM_ref_addr, Attr);
|
|
return U.getRefAddrByteSize();
|
|
}
|
|
}
|
|
|
|
if (!RefInfo.Clone) {
|
|
assert(Ref > InputDIE.getOffset());
|
|
// We haven't cloned this DIE yet. Just create an empty one and
|
|
// store it. It'll get really cloned when we process it.
|
|
RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
|
|
}
|
|
NewRefDie = RefInfo.Clone;
|
|
|
|
if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
|
|
(Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
|
|
// We cannot currently rely on a DIEEntry to emit ref_addr
|
|
// references, because the implementation calls back to DwarfDebug
|
|
// to find the unit offset. (We don't have a DwarfDebug)
|
|
// FIXME: we should be able to design DIEEntry reliance on
|
|
// DwarfDebug away.
|
|
uint64_t Attr;
|
|
if (Ref < InputDIE.getOffset()) {
|
|
// We must have already cloned that DIE.
|
|
uint32_t NewRefOffset =
|
|
RefUnit->getStartOffset() + NewRefDie->getOffset();
|
|
Attr = NewRefOffset;
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
|
|
} else {
|
|
// A forward reference. Note and fixup later.
|
|
Attr = 0xBADDEF;
|
|
Unit.noteForwardReference(
|
|
NewRefDie, RefUnit, Ctxt,
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
|
|
}
|
|
return U.getRefAddrByteSize();
|
|
}
|
|
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
|
|
|
|
return AttrSize;
|
|
}
|
|
|
|
void DWARFLinker::DIECloner::cloneExpression(
|
|
DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
|
|
CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
|
|
using Encoding = DWARFExpression::Operation::Encoding;
|
|
|
|
uint64_t OpOffset = 0;
|
|
for (auto &Op : Expression) {
|
|
auto Description = Op.getDescription();
|
|
// DW_OP_const_type is variable-length and has 3
|
|
// operands. DWARFExpression thus far only supports 2.
|
|
auto Op0 = Description.Op[0];
|
|
auto Op1 = Description.Op[1];
|
|
if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
|
|
(Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
|
|
Linker.reportWarning("Unsupported DW_OP encoding.", File);
|
|
|
|
if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
|
|
(Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
|
|
// This code assumes that the other non-typeref operand fits into 1 byte.
|
|
assert(OpOffset < Op.getEndOffset());
|
|
uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
|
|
assert(ULEBsize <= 16);
|
|
|
|
// Copy over the operation.
|
|
OutputBuffer.push_back(Op.getCode());
|
|
uint64_t RefOffset;
|
|
if (Op1 == Encoding::SizeNA) {
|
|
RefOffset = Op.getRawOperand(0);
|
|
} else {
|
|
OutputBuffer.push_back(Op.getRawOperand(0));
|
|
RefOffset = Op.getRawOperand(1);
|
|
}
|
|
uint32_t Offset = 0;
|
|
// Look up the base type. For DW_OP_convert, the operand may be 0 to
|
|
// instead indicate the generic type. The same holds for
|
|
// DW_OP_reinterpret, which is currently not supported.
|
|
if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
|
|
auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
|
|
CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
|
|
if (DIE *Clone = Info.Clone)
|
|
Offset = Clone->getOffset();
|
|
else
|
|
Linker.reportWarning(
|
|
"base type ref doesn't point to DW_TAG_base_type.", File);
|
|
}
|
|
uint8_t ULEB[16];
|
|
unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
|
|
if (RealSize > ULEBsize) {
|
|
// Emit the generic type as a fallback.
|
|
RealSize = encodeULEB128(0, ULEB, ULEBsize);
|
|
Linker.reportWarning("base type ref doesn't fit.", File);
|
|
}
|
|
assert(RealSize == ULEBsize && "padding failed");
|
|
ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
|
|
OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
|
|
} else {
|
|
// Copy over everything else unmodified.
|
|
StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
|
|
OutputBuffer.append(Bytes.begin(), Bytes.end());
|
|
}
|
|
OpOffset = Op.getEndOffset();
|
|
}
|
|
}
|
|
|
|
unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
|
|
DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
|
|
const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
|
|
DIEValueList *Attr;
|
|
DIEValue Value;
|
|
DIELoc *Loc = nullptr;
|
|
DIEBlock *Block = nullptr;
|
|
if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
|
|
Loc = new (DIEAlloc) DIELoc;
|
|
Linker.DIELocs.push_back(Loc);
|
|
} else {
|
|
Block = new (DIEAlloc) DIEBlock;
|
|
Linker.DIEBlocks.push_back(Block);
|
|
}
|
|
Attr = Loc ? static_cast<DIEValueList *>(Loc)
|
|
: static_cast<DIEValueList *>(Block);
|
|
|
|
if (Loc)
|
|
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), Loc);
|
|
else
|
|
Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), Block);
|
|
|
|
// If the block is a DWARF Expression, clone it into the temporary
|
|
// buffer using cloneExpression(), otherwise copy the data directly.
|
|
SmallVector<uint8_t, 32> Buffer;
|
|
ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
|
|
if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
|
|
(Val.isFormClass(DWARFFormValue::FC_Block) ||
|
|
Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
|
|
DWARFUnit &OrigUnit = Unit.getOrigUnit();
|
|
DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
|
|
IsLittleEndian, OrigUnit.getAddressByteSize());
|
|
DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
|
|
OrigUnit.getFormParams().Format);
|
|
cloneExpression(Data, Expr, File, Unit, Buffer);
|
|
Bytes = Buffer;
|
|
}
|
|
for (auto Byte : Bytes)
|
|
Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
|
|
dwarf::DW_FORM_data1, DIEInteger(Byte));
|
|
|
|
// FIXME: If DIEBlock and DIELoc just reuses the Size field of
|
|
// the DIE class, this "if" could be replaced by
|
|
// Attr->setSize(Bytes.size()).
|
|
if (Loc)
|
|
Loc->setSize(Bytes.size());
|
|
else
|
|
Block->setSize(Bytes.size());
|
|
|
|
Die.addValue(DIEAlloc, Value);
|
|
return AttrSize;
|
|
}
|
|
|
|
unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
|
|
DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
|
|
const CompileUnit &Unit, AttributesInfo &Info) {
|
|
if (LLVM_UNLIKELY(Linker.Options.Update)) {
|
|
if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
|
|
Info.HasLowPc = true;
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
|
|
return Unit.getOrigUnit().getAddressByteSize();
|
|
}
|
|
|
|
dwarf::Form Form = AttrSpec.Form;
|
|
uint64_t Addr = 0;
|
|
if (Form == dwarf::DW_FORM_addrx) {
|
|
if (Optional<uint64_t> AddrOffsetSectionBase =
|
|
Unit.getOrigUnit().getAddrOffsetSectionBase()) {
|
|
uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue();
|
|
uint64_t EndOffset =
|
|
StartOffset + Unit.getOrigUnit().getAddressByteSize();
|
|
if (llvm::Expected<uint64_t> RelocAddr =
|
|
ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
|
|
Addr = *RelocAddr;
|
|
else
|
|
Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
|
|
} else
|
|
Linker.reportWarning("no base offset for address table", ObjFile);
|
|
|
|
// If this is an indexed address emit the debug_info address.
|
|
Form = dwarf::DW_FORM_addr;
|
|
} else
|
|
Addr = *Val.getAsAddress();
|
|
|
|
if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
|
|
if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
|
|
Die.getTag() == dwarf::DW_TAG_lexical_block ||
|
|
Die.getTag() == dwarf::DW_TAG_label) {
|
|
// The low_pc of a block or inline subroutine might get
|
|
// relocated because it happens to match the low_pc of the
|
|
// enclosing subprogram. To prevent issues with that, always use
|
|
// the low_pc from the input DIE if relocations have been applied.
|
|
Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
|
|
? Info.OrigLowPc
|
|
: Addr) +
|
|
Info.PCOffset;
|
|
} else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
|
|
Addr = Unit.getLowPc();
|
|
if (Addr == std::numeric_limits<uint64_t>::max())
|
|
return 0;
|
|
}
|
|
Info.HasLowPc = true;
|
|
} else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
|
|
if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
|
|
if (uint64_t HighPc = Unit.getHighPc())
|
|
Addr = HighPc;
|
|
else
|
|
return 0;
|
|
} else
|
|
// If we have a high_pc recorded for the input DIE, use
|
|
// it. Otherwise (when no relocations where applied) just use the
|
|
// one we just decoded.
|
|
Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
|
|
} else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
|
|
// Relocate a return PC address within a call site entry.
|
|
if (Die.getTag() == dwarf::DW_TAG_call_site)
|
|
Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
|
|
Info.PCOffset;
|
|
} else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
|
|
// Relocate the address of a branch instruction within a call site entry.
|
|
if (Die.getTag() == dwarf::DW_TAG_call_site)
|
|
Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
|
|
}
|
|
|
|
Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
|
|
static_cast<dwarf::Form>(Form), DIEInteger(Addr));
|
|
return Unit.getOrigUnit().getAddressByteSize();
|
|
}
|
|
|
|
unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
|
|
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
|
|
CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
|
|
unsigned AttrSize, AttributesInfo &Info) {
|
|
uint64_t Value;
|
|
|
|
if (LLVM_UNLIKELY(Linker.Options.Update)) {
|
|
if (auto OptionalValue = Val.getAsUnsignedConstant())
|
|
Value = *OptionalValue;
|
|
else if (auto OptionalValue = Val.getAsSignedConstant())
|
|
Value = *OptionalValue;
|
|
else if (auto OptionalValue = Val.getAsSectionOffset())
|
|
Value = *OptionalValue;
|
|
else {
|
|
Linker.reportWarning(
|
|
"Unsupported scalar attribute form. Dropping attribute.", File,
|
|
&InputDIE);
|
|
return 0;
|
|
}
|
|
if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
|
|
Info.IsDeclaration = true;
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
|
|
return AttrSize;
|
|
}
|
|
|
|
if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
|
|
Die.getTag() == dwarf::DW_TAG_compile_unit) {
|
|
if (Unit.getLowPc() == -1ULL)
|
|
return 0;
|
|
// Dwarf >= 4 high_pc is an size, not an address.
|
|
Value = Unit.getHighPc() - Unit.getLowPc();
|
|
} else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
|
|
Value = *Val.getAsSectionOffset();
|
|
else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
|
|
Value = *Val.getAsSignedConstant();
|
|
else if (auto OptionalValue = Val.getAsUnsignedConstant())
|
|
Value = *OptionalValue;
|
|
else {
|
|
Linker.reportWarning(
|
|
"Unsupported scalar attribute form. Dropping attribute.", File,
|
|
&InputDIE);
|
|
return 0;
|
|
}
|
|
PatchLocation Patch =
|
|
Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
|
|
dwarf::Form(AttrSpec.Form), DIEInteger(Value));
|
|
if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
|
|
Unit.noteRangeAttribute(Die, Patch);
|
|
Info.HasRanges = true;
|
|
}
|
|
|
|
// A more generic way to check for location attributes would be
|
|
// nice, but it's very unlikely that any other attribute needs a
|
|
// location list.
|
|
// FIXME: use DWARFAttribute::mayHaveLocationDescription().
|
|
else if (AttrSpec.Attr == dwarf::DW_AT_location ||
|
|
AttrSpec.Attr == dwarf::DW_AT_frame_base) {
|
|
Unit.noteLocationAttribute(Patch, Info.PCOffset);
|
|
} else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
|
|
Info.IsDeclaration = true;
|
|
|
|
return AttrSize;
|
|
}
|
|
|
|
/// Clone \p InputDIE's attribute described by \p AttrSpec with
|
|
/// value \p Val, and add it to \p Die.
|
|
/// \returns the size of the cloned attribute.
|
|
unsigned DWARFLinker::DIECloner::cloneAttribute(
|
|
DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
|
|
CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
|
|
const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
|
|
bool IsLittleEndian) {
|
|
const DWARFUnit &U = Unit.getOrigUnit();
|
|
|
|
switch (AttrSpec.Form) {
|
|
case dwarf::DW_FORM_strp:
|
|
case dwarf::DW_FORM_string:
|
|
case dwarf::DW_FORM_strx:
|
|
case dwarf::DW_FORM_strx1:
|
|
case dwarf::DW_FORM_strx2:
|
|
case dwarf::DW_FORM_strx3:
|
|
case dwarf::DW_FORM_strx4:
|
|
return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
|
|
case dwarf::DW_FORM_ref_addr:
|
|
case dwarf::DW_FORM_ref1:
|
|
case dwarf::DW_FORM_ref2:
|
|
case dwarf::DW_FORM_ref4:
|
|
case dwarf::DW_FORM_ref8:
|
|
return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
|
|
File, Unit);
|
|
case dwarf::DW_FORM_block:
|
|
case dwarf::DW_FORM_block1:
|
|
case dwarf::DW_FORM_block2:
|
|
case dwarf::DW_FORM_block4:
|
|
case dwarf::DW_FORM_exprloc:
|
|
return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
|
|
IsLittleEndian);
|
|
case dwarf::DW_FORM_addr:
|
|
case dwarf::DW_FORM_addrx:
|
|
return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
|
|
case dwarf::DW_FORM_data1:
|
|
case dwarf::DW_FORM_data2:
|
|
case dwarf::DW_FORM_data4:
|
|
case dwarf::DW_FORM_data8:
|
|
case dwarf::DW_FORM_udata:
|
|
case dwarf::DW_FORM_sdata:
|
|
case dwarf::DW_FORM_sec_offset:
|
|
case dwarf::DW_FORM_flag:
|
|
case dwarf::DW_FORM_flag_present:
|
|
return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
|
|
AttrSize, Info);
|
|
default:
|
|
Linker.reportWarning("Unsupported attribute form " +
|
|
dwarf::FormEncodingString(AttrSpec.Form) +
|
|
" in cloneAttribute. Dropping.",
|
|
File, &InputDIE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool isObjCSelector(StringRef Name) {
|
|
return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
|
|
(Name[1] == '[');
|
|
}
|
|
|
|
void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
|
|
const DIE *Die,
|
|
DwarfStringPoolEntryRef Name,
|
|
OffsetsStringPool &StringPool,
|
|
bool SkipPubSection) {
|
|
assert(isObjCSelector(Name.getString()) && "not an objc selector");
|
|
// Objective C method or class function.
|
|
// "- [Class(Category) selector :withArg ...]"
|
|
StringRef ClassNameStart(Name.getString().drop_front(2));
|
|
size_t FirstSpace = ClassNameStart.find(' ');
|
|
if (FirstSpace == StringRef::npos)
|
|
return;
|
|
|
|
StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
|
|
if (!SelectorStart.size())
|
|
return;
|
|
|
|
StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
|
|
Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
|
|
|
|
// Add an entry for the class name that points to this
|
|
// method/class function.
|
|
StringRef ClassName(ClassNameStart.data(), FirstSpace);
|
|
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
|
|
|
|
if (ClassName[ClassName.size() - 1] == ')') {
|
|
size_t OpenParens = ClassName.find('(');
|
|
if (OpenParens != StringRef::npos) {
|
|
StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
|
|
Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
|
|
SkipPubSection);
|
|
|
|
std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
|
|
// FIXME: The missing space here may be a bug, but
|
|
// dsymutil-classic also does it this way.
|
|
MethodNameNoCategory.append(std::string(SelectorStart));
|
|
Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
|
|
SkipPubSection);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool
|
|
shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
|
|
uint16_t Tag, bool InDebugMap, bool SkipPC,
|
|
bool InFunctionScope) {
|
|
switch (AttrSpec.Attr) {
|
|
default:
|
|
return false;
|
|
case dwarf::DW_AT_low_pc:
|
|
case dwarf::DW_AT_high_pc:
|
|
case dwarf::DW_AT_ranges:
|
|
return SkipPC;
|
|
case dwarf::DW_AT_str_offsets_base:
|
|
// FIXME: Use the string offset table with Dwarf 5.
|
|
return true;
|
|
case dwarf::DW_AT_location:
|
|
case dwarf::DW_AT_frame_base:
|
|
// FIXME: for some reason dsymutil-classic keeps the location attributes
|
|
// when they are of block type (i.e. not location lists). This is totally
|
|
// wrong for globals where we will keep a wrong address. It is mostly
|
|
// harmless for locals, but there is no point in keeping these anyway when
|
|
// the function wasn't linked.
|
|
return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
|
|
!InDebugMap)) &&
|
|
!DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
|
|
}
|
|
}
|
|
|
|
DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
|
|
const DWARFFile &File, CompileUnit &Unit,
|
|
OffsetsStringPool &StringPool,
|
|
int64_t PCOffset, uint32_t OutOffset,
|
|
unsigned Flags, bool IsLittleEndian,
|
|
DIE *Die) {
|
|
DWARFUnit &U = Unit.getOrigUnit();
|
|
unsigned Idx = U.getDIEIndex(InputDIE);
|
|
CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
|
|
|
|
// Should the DIE appear in the output?
|
|
if (!Unit.getInfo(Idx).Keep)
|
|
return nullptr;
|
|
|
|
uint64_t Offset = InputDIE.getOffset();
|
|
assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
|
|
if (!Die) {
|
|
// The DIE might have been already created by a forward reference
|
|
// (see cloneDieReferenceAttribute()).
|
|
if (!Info.Clone)
|
|
Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
|
|
Die = Info.Clone;
|
|
}
|
|
|
|
assert(Die->getTag() == InputDIE.getTag());
|
|
Die->setOffset(OutOffset);
|
|
if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
|
|
Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
|
|
Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
|
|
!Info.Ctxt->getCanonicalDIEOffset()) {
|
|
// We are about to emit a DIE that is the root of its own valid
|
|
// DeclContext tree. Make the current offset the canonical offset
|
|
// for this context.
|
|
Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
|
|
}
|
|
|
|
// Extract and clone every attribute.
|
|
DWARFDataExtractor Data = U.getDebugInfoExtractor();
|
|
// Point to the next DIE (generally there is always at least a NULL
|
|
// entry after the current one). If this is a lone
|
|
// DW_TAG_compile_unit without any children, point to the next unit.
|
|
uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
|
|
? U.getDIEAtIndex(Idx + 1).getOffset()
|
|
: U.getNextUnitOffset();
|
|
AttributesInfo AttrInfo;
|
|
|
|
// We could copy the data only if we need to apply a relocation to it. After
|
|
// testing, it seems there is no performance downside to doing the copy
|
|
// unconditionally, and it makes the code simpler.
|
|
SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
|
|
Data =
|
|
DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
|
|
|
|
// Modify the copy with relocated addresses.
|
|
if (ObjFile.Addresses->areRelocationsResolved() &&
|
|
ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
|
|
Data.isLittleEndian())) {
|
|
// If we applied relocations, we store the value of high_pc that was
|
|
// potentially stored in the input DIE. If high_pc is an address
|
|
// (Dwarf version == 2), then it might have been relocated to a
|
|
// totally unrelated value (because the end address in the object
|
|
// file might be start address of another function which got moved
|
|
// independently by the linker). The computation of the actual
|
|
// high_pc value is done in cloneAddressAttribute().
|
|
AttrInfo.OrigHighPc =
|
|
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
|
|
// Also store the low_pc. It might get relocated in an
|
|
// inline_subprogram that happens at the beginning of its
|
|
// inlining function.
|
|
AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
|
|
std::numeric_limits<uint64_t>::max());
|
|
AttrInfo.OrigCallReturnPc =
|
|
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
|
|
AttrInfo.OrigCallPc =
|
|
dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
|
|
}
|
|
|
|
// Reset the Offset to 0 as we will be working on the local copy of
|
|
// the data.
|
|
Offset = 0;
|
|
|
|
const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
|
|
Offset += getULEB128Size(Abbrev->getCode());
|
|
|
|
// We are entering a subprogram. Get and propagate the PCOffset.
|
|
if (Die->getTag() == dwarf::DW_TAG_subprogram)
|
|
PCOffset = Info.AddrAdjust;
|
|
AttrInfo.PCOffset = PCOffset;
|
|
|
|
if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
|
|
Flags |= TF_InFunctionScope;
|
|
if (!Info.InDebugMap && LLVM_LIKELY(!Update))
|
|
Flags |= TF_SkipPC;
|
|
}
|
|
|
|
for (const auto &AttrSpec : Abbrev->attributes()) {
|
|
if (LLVM_LIKELY(!Update) &&
|
|
shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
|
|
Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
|
|
DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
|
|
U.getFormParams());
|
|
continue;
|
|
}
|
|
|
|
DWARFFormValue Val(AttrSpec.Form);
|
|
uint64_t AttrSize = Offset;
|
|
Val.extractValue(Data, &Offset, U.getFormParams(), &U);
|
|
AttrSize = Offset - AttrSize;
|
|
|
|
OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
|
|
AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
|
|
}
|
|
|
|
// Look for accelerator entries.
|
|
uint16_t Tag = InputDIE.getTag();
|
|
// FIXME: This is slightly wrong. An inline_subroutine without a
|
|
// low_pc, but with AT_ranges might be interesting to get into the
|
|
// accelerator tables too. For now stick with dsymutil's behavior.
|
|
if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
|
|
Tag != dwarf::DW_TAG_compile_unit &&
|
|
getDIENames(InputDIE, AttrInfo, StringPool,
|
|
Tag != dwarf::DW_TAG_inlined_subroutine)) {
|
|
if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
|
|
Unit.addNameAccelerator(Die, AttrInfo.MangledName,
|
|
Tag == dwarf::DW_TAG_inlined_subroutine);
|
|
if (AttrInfo.Name) {
|
|
if (AttrInfo.NameWithoutTemplate)
|
|
Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
|
|
/* SkipPubSection */ true);
|
|
Unit.addNameAccelerator(Die, AttrInfo.Name,
|
|
Tag == dwarf::DW_TAG_inlined_subroutine);
|
|
}
|
|
if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
|
|
addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
|
|
/* SkipPubSection =*/true);
|
|
|
|
} else if (Tag == dwarf::DW_TAG_namespace) {
|
|
if (!AttrInfo.Name)
|
|
AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
|
|
Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
|
|
} else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
|
|
getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
|
|
AttrInfo.Name.getString()[0]) {
|
|
uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
|
|
uint64_t RuntimeLang =
|
|
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
|
|
.getValueOr(0);
|
|
bool ObjCClassIsImplementation =
|
|
(RuntimeLang == dwarf::DW_LANG_ObjC ||
|
|
RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
|
|
dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
|
|
.getValueOr(0);
|
|
Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
|
|
Hash);
|
|
}
|
|
|
|
// Determine whether there are any children that we want to keep.
|
|
bool HasChildren = false;
|
|
for (auto Child : InputDIE.children()) {
|
|
unsigned Idx = U.getDIEIndex(Child);
|
|
if (Unit.getInfo(Idx).Keep) {
|
|
HasChildren = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
DIEAbbrev NewAbbrev = Die->generateAbbrev();
|
|
if (HasChildren)
|
|
NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
|
|
// Assign a permanent abbrev number
|
|
Linker.assignAbbrev(NewAbbrev);
|
|
Die->setAbbrevNumber(NewAbbrev.getNumber());
|
|
|
|
// Add the size of the abbreviation number to the output offset.
|
|
OutOffset += getULEB128Size(Die->getAbbrevNumber());
|
|
|
|
if (!HasChildren) {
|
|
// Update our size.
|
|
Die->setSize(OutOffset - Die->getOffset());
|
|
return Die;
|
|
}
|
|
|
|
// Recursively clone children.
|
|
for (auto Child : InputDIE.children()) {
|
|
if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
|
|
OutOffset, Flags, IsLittleEndian)) {
|
|
Die->addChild(Clone);
|
|
OutOffset = Clone->getOffset() + Clone->getSize();
|
|
}
|
|
}
|
|
|
|
// Account for the end of children marker.
|
|
OutOffset += sizeof(int8_t);
|
|
// Update our size.
|
|
Die->setSize(OutOffset - Die->getOffset());
|
|
return Die;
|
|
}
|
|
|
|
/// Patch the input object file relevant debug_ranges entries
|
|
/// and emit them in the output file. Update the relevant attributes
|
|
/// to point at the new entries.
|
|
void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
|
|
DWARFContext &OrigDwarf,
|
|
const DWARFFile &File) const {
|
|
DWARFDebugRangeList RangeList;
|
|
const auto &FunctionRanges = Unit.getFunctionRanges();
|
|
unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
|
|
DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
|
|
OrigDwarf.getDWARFObj().getRangesSection(),
|
|
OrigDwarf.isLittleEndian(), AddressSize);
|
|
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
|
|
DWARFUnit &OrigUnit = Unit.getOrigUnit();
|
|
auto OrigUnitDie = OrigUnit.getUnitDIE(false);
|
|
uint64_t OrigLowPc =
|
|
dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
|
|
// Ranges addresses are based on the unit's low_pc. Compute the
|
|
// offset we need to apply to adapt to the new unit's low_pc.
|
|
int64_t UnitPcOffset = 0;
|
|
if (OrigLowPc != -1ULL)
|
|
UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
|
|
|
|
for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
|
|
uint64_t Offset = RangeAttribute.get();
|
|
RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
|
|
if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
|
|
llvm::consumeError(std::move(E));
|
|
reportWarning("invalid range list ignored.", File);
|
|
RangeList.clear();
|
|
}
|
|
const auto &Entries = RangeList.getEntries();
|
|
if (!Entries.empty()) {
|
|
const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
|
|
|
|
if (CurrRange == InvalidRange ||
|
|
First.StartAddress + OrigLowPc < CurrRange.start() ||
|
|
First.StartAddress + OrigLowPc >= CurrRange.stop()) {
|
|
CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
|
|
if (CurrRange == InvalidRange ||
|
|
CurrRange.start() > First.StartAddress + OrigLowPc) {
|
|
reportWarning("no mapping for range.", File);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
|
|
Entries, AddressSize);
|
|
}
|
|
}
|
|
|
|
/// Generate the debug_aranges entries for \p Unit and if the
|
|
/// unit has a DW_AT_ranges attribute, also emit the debug_ranges
|
|
/// contribution for this attribute.
|
|
/// FIXME: this could actually be done right in patchRangesForUnit,
|
|
/// but for the sake of initial bit-for-bit compatibility with legacy
|
|
/// dsymutil, we have to do it in a delayed pass.
|
|
void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
|
|
auto Attr = Unit.getUnitRangesAttribute();
|
|
if (Attr)
|
|
Attr->set(TheDwarfEmitter->getRangesSectionSize());
|
|
TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
|
|
}
|
|
|
|
/// Insert the new line info sequence \p Seq into the current
|
|
/// set of already linked line info \p Rows.
|
|
static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
|
|
std::vector<DWARFDebugLine::Row> &Rows) {
|
|
if (Seq.empty())
|
|
return;
|
|
|
|
if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
|
|
llvm::append_range(Rows, Seq);
|
|
Seq.clear();
|
|
return;
|
|
}
|
|
|
|
object::SectionedAddress Front = Seq.front().Address;
|
|
auto InsertPoint = partition_point(
|
|
Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
|
|
|
|
// FIXME: this only removes the unneeded end_sequence if the
|
|
// sequences have been inserted in order. Using a global sort like
|
|
// described in patchLineTableForUnit() and delaying the end_sequene
|
|
// elimination to emitLineTableForUnit() we can get rid of all of them.
|
|
if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
|
|
InsertPoint->EndSequence) {
|
|
*InsertPoint = Seq.front();
|
|
Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
|
|
} else {
|
|
Rows.insert(InsertPoint, Seq.begin(), Seq.end());
|
|
}
|
|
|
|
Seq.clear();
|
|
}
|
|
|
|
static void patchStmtList(DIE &Die, DIEInteger Offset) {
|
|
for (auto &V : Die.values())
|
|
if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
|
|
V = DIEValue(V.getAttribute(), V.getForm(), Offset);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
|
|
}
|
|
|
|
/// Extract the line table for \p Unit from \p OrigDwarf, and
|
|
/// recreate a relocated version of these for the address ranges that
|
|
/// are present in the binary.
|
|
void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
|
|
DWARFContext &OrigDwarf,
|
|
const DWARFFile &File) {
|
|
DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
|
|
auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
|
|
if (!StmtList)
|
|
return;
|
|
|
|
// Update the cloned DW_AT_stmt_list with the correct debug_line offset.
|
|
if (auto *OutputDIE = Unit.getOutputUnitDIE())
|
|
patchStmtList(*OutputDIE,
|
|
DIEInteger(TheDwarfEmitter->getLineSectionSize()));
|
|
|
|
RangesTy &Ranges = File.Addresses->getValidAddressRanges();
|
|
|
|
// Parse the original line info for the unit.
|
|
DWARFDebugLine::LineTable LineTable;
|
|
uint64_t StmtOffset = *StmtList;
|
|
DWARFDataExtractor LineExtractor(
|
|
OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
|
|
OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
|
|
if (needToTranslateStrings())
|
|
return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
|
|
|
|
if (Error Err =
|
|
LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
|
|
&Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
|
|
OrigDwarf.getWarningHandler()(std::move(Err));
|
|
|
|
// This vector is the output line table.
|
|
std::vector<DWARFDebugLine::Row> NewRows;
|
|
NewRows.reserve(LineTable.Rows.size());
|
|
|
|
// Current sequence of rows being extracted, before being inserted
|
|
// in NewRows.
|
|
std::vector<DWARFDebugLine::Row> Seq;
|
|
const auto &FunctionRanges = Unit.getFunctionRanges();
|
|
auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
|
|
|
|
// FIXME: This logic is meant to generate exactly the same output as
|
|
// Darwin's classic dsymutil. There is a nicer way to implement this
|
|
// by simply putting all the relocated line info in NewRows and simply
|
|
// sorting NewRows before passing it to emitLineTableForUnit. This
|
|
// should be correct as sequences for a function should stay
|
|
// together in the sorted output. There are a few corner cases that
|
|
// look suspicious though, and that required to implement the logic
|
|
// this way. Revisit that once initial validation is finished.
|
|
|
|
// Iterate over the object file line info and extract the sequences
|
|
// that correspond to linked functions.
|
|
for (auto &Row : LineTable.Rows) {
|
|
// Check whether we stepped out of the range. The range is
|
|
// half-open, but consider accept the end address of the range if
|
|
// it is marked as end_sequence in the input (because in that
|
|
// case, the relocation offset is accurate and that entry won't
|
|
// serve as the start of another function).
|
|
if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
|
|
Row.Address.Address > CurrRange.stop() ||
|
|
(Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
|
|
// We just stepped out of a known range. Insert a end_sequence
|
|
// corresponding to the end of the range.
|
|
uint64_t StopAddress = CurrRange != InvalidRange
|
|
? CurrRange.stop() + CurrRange.value()
|
|
: -1ULL;
|
|
CurrRange = FunctionRanges.find(Row.Address.Address);
|
|
bool CurrRangeValid =
|
|
CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
|
|
if (!CurrRangeValid) {
|
|
CurrRange = InvalidRange;
|
|
if (StopAddress != -1ULL) {
|
|
// Try harder by looking in the Address ranges map.
|
|
// There are corner cases where this finds a
|
|
// valid entry. It's unclear if this is right or wrong, but
|
|
// for now do as dsymutil.
|
|
// FIXME: Understand exactly what cases this addresses and
|
|
// potentially remove it along with the Ranges map.
|
|
auto Range = Ranges.lower_bound(Row.Address.Address);
|
|
if (Range != Ranges.begin() && Range != Ranges.end())
|
|
--Range;
|
|
|
|
if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
|
|
Range->second.HighPC >= Row.Address.Address) {
|
|
StopAddress = Row.Address.Address + Range->second.Offset;
|
|
}
|
|
}
|
|
}
|
|
if (StopAddress != -1ULL && !Seq.empty()) {
|
|
// Insert end sequence row with the computed end address, but
|
|
// the same line as the previous one.
|
|
auto NextLine = Seq.back();
|
|
NextLine.Address.Address = StopAddress;
|
|
NextLine.EndSequence = 1;
|
|
NextLine.PrologueEnd = 0;
|
|
NextLine.BasicBlock = 0;
|
|
NextLine.EpilogueBegin = 0;
|
|
Seq.push_back(NextLine);
|
|
insertLineSequence(Seq, NewRows);
|
|
}
|
|
|
|
if (!CurrRangeValid)
|
|
continue;
|
|
}
|
|
|
|
// Ignore empty sequences.
|
|
if (Row.EndSequence && Seq.empty())
|
|
continue;
|
|
|
|
// Relocate row address and add it to the current sequence.
|
|
Row.Address.Address += CurrRange.value();
|
|
Seq.emplace_back(Row);
|
|
|
|
if (Row.EndSequence)
|
|
insertLineSequence(Seq, NewRows);
|
|
}
|
|
|
|
// Finished extracting, now emit the line tables.
|
|
// FIXME: LLVM hard-codes its prologue values. We just copy the
|
|
// prologue over and that works because we act as both producer and
|
|
// consumer. It would be nicer to have a real configurable line
|
|
// table emitter.
|
|
if (LineTable.Prologue.getVersion() < 2 ||
|
|
LineTable.Prologue.getVersion() > 5 ||
|
|
LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
|
|
LineTable.Prologue.OpcodeBase > 13)
|
|
reportWarning("line table parameters mismatch. Cannot emit.", File);
|
|
else {
|
|
uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
|
|
// DWARF v5 has an extra 2 bytes of information before the header_length
|
|
// field.
|
|
if (LineTable.Prologue.getVersion() == 5)
|
|
PrologueEnd += 2;
|
|
StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
|
|
MCDwarfLineTableParams Params;
|
|
Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
|
|
Params.DWARF2LineBase = LineTable.Prologue.LineBase;
|
|
Params.DWARF2LineRange = LineTable.Prologue.LineRange;
|
|
TheDwarfEmitter->emitLineTableForUnit(
|
|
Params, LineData.slice(*StmtList + 4, PrologueEnd),
|
|
LineTable.Prologue.MinInstLength, NewRows,
|
|
Unit.getOrigUnit().getAddressByteSize());
|
|
}
|
|
}
|
|
|
|
void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
|
|
switch (Options.TheAccelTableKind) {
|
|
case AccelTableKind::Apple:
|
|
emitAppleAcceleratorEntriesForUnit(Unit);
|
|
break;
|
|
case AccelTableKind::Dwarf:
|
|
emitDwarfAcceleratorEntriesForUnit(Unit);
|
|
break;
|
|
case AccelTableKind::Pub:
|
|
emitPubAcceleratorEntriesForUnit(Unit);
|
|
break;
|
|
case AccelTableKind::Default:
|
|
llvm_unreachable("The default must be updated to a concrete value.");
|
|
break;
|
|
}
|
|
}
|
|
|
|
void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
|
|
// Add namespaces.
|
|
for (const auto &Namespace : Unit.getNamespaces())
|
|
AppleNamespaces.addName(Namespace.Name,
|
|
Namespace.Die->getOffset() + Unit.getStartOffset());
|
|
|
|
/// Add names.
|
|
for (const auto &Pubname : Unit.getPubnames())
|
|
AppleNames.addName(Pubname.Name,
|
|
Pubname.Die->getOffset() + Unit.getStartOffset());
|
|
|
|
/// Add types.
|
|
for (const auto &Pubtype : Unit.getPubtypes())
|
|
AppleTypes.addName(
|
|
Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
|
|
Pubtype.Die->getTag(),
|
|
Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
|
|
: 0,
|
|
Pubtype.QualifiedNameHash);
|
|
|
|
/// Add ObjC names.
|
|
for (const auto &ObjC : Unit.getObjC())
|
|
AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
|
|
}
|
|
|
|
void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
|
|
for (const auto &Namespace : Unit.getNamespaces())
|
|
DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
|
|
Namespace.Die->getTag(), Unit.getUniqueID());
|
|
for (const auto &Pubname : Unit.getPubnames())
|
|
DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
|
|
Pubname.Die->getTag(), Unit.getUniqueID());
|
|
for (const auto &Pubtype : Unit.getPubtypes())
|
|
DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
|
|
Pubtype.Die->getTag(), Unit.getUniqueID());
|
|
}
|
|
|
|
void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) {
|
|
TheDwarfEmitter->emitPubNamesForUnit(Unit);
|
|
TheDwarfEmitter->emitPubTypesForUnit(Unit);
|
|
}
|
|
|
|
/// Read the frame info stored in the object, and emit the
|
|
/// patched frame descriptions for the resulting file.
|
|
///
|
|
/// This is actually pretty easy as the data of the CIEs and FDEs can
|
|
/// be considered as black boxes and moved as is. The only thing to do
|
|
/// is to patch the addresses in the headers.
|
|
void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
|
|
RangesTy &Ranges,
|
|
DWARFContext &OrigDwarf,
|
|
unsigned AddrSize) {
|
|
StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
|
|
if (FrameData.empty())
|
|
return;
|
|
|
|
DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
|
|
uint64_t InputOffset = 0;
|
|
|
|
// Store the data of the CIEs defined in this object, keyed by their
|
|
// offsets.
|
|
DenseMap<uint64_t, StringRef> LocalCIES;
|
|
|
|
while (Data.isValidOffset(InputOffset)) {
|
|
uint64_t EntryOffset = InputOffset;
|
|
uint32_t InitialLength = Data.getU32(&InputOffset);
|
|
if (InitialLength == 0xFFFFFFFF)
|
|
return reportWarning("Dwarf64 bits no supported", File);
|
|
|
|
uint32_t CIEId = Data.getU32(&InputOffset);
|
|
if (CIEId == 0xFFFFFFFF) {
|
|
// This is a CIE, store it.
|
|
StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
|
|
LocalCIES[EntryOffset] = CIEData;
|
|
// The -4 is to account for the CIEId we just read.
|
|
InputOffset += InitialLength - 4;
|
|
continue;
|
|
}
|
|
|
|
uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
|
|
|
|
// Some compilers seem to emit frame info that doesn't start at
|
|
// the function entry point, thus we can't just lookup the address
|
|
// in the debug map. Use the AddressInfo's range map to see if the FDE
|
|
// describes something that we can relocate.
|
|
auto Range = Ranges.upper_bound(Loc);
|
|
if (Range != Ranges.begin())
|
|
--Range;
|
|
if (Range == Ranges.end() || Range->first > Loc ||
|
|
Range->second.HighPC <= Loc) {
|
|
// The +4 is to account for the size of the InitialLength field itself.
|
|
InputOffset = EntryOffset + InitialLength + 4;
|
|
continue;
|
|
}
|
|
|
|
// This is an FDE, and we have a mapping.
|
|
// Have we already emitted a corresponding CIE?
|
|
StringRef CIEData = LocalCIES[CIEId];
|
|
if (CIEData.empty())
|
|
return reportWarning("Inconsistent debug_frame content. Dropping.", File);
|
|
|
|
// Look if we already emitted a CIE that corresponds to the
|
|
// referenced one (the CIE data is the key of that lookup).
|
|
auto IteratorInserted = EmittedCIEs.insert(
|
|
std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
|
|
// If there is no CIE yet for this ID, emit it.
|
|
if (IteratorInserted.second) {
|
|
LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
|
|
IteratorInserted.first->getValue() = LastCIEOffset;
|
|
TheDwarfEmitter->emitCIE(CIEData);
|
|
}
|
|
|
|
// Emit the FDE with updated address and CIE pointer.
|
|
// (4 + AddrSize) is the size of the CIEId + initial_location
|
|
// fields that will get reconstructed by emitFDE().
|
|
unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
|
|
TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
|
|
Loc + Range->second.Offset,
|
|
FrameData.substr(InputOffset, FDERemainingBytes));
|
|
InputOffset += FDERemainingBytes;
|
|
}
|
|
}
|
|
|
|
uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
|
|
CompileUnit &U,
|
|
const DWARFFile &File,
|
|
int ChildRecurseDepth) {
|
|
const char *Name = nullptr;
|
|
DWARFUnit *OrigUnit = &U.getOrigUnit();
|
|
CompileUnit *CU = &U;
|
|
Optional<DWARFFormValue> Ref;
|
|
|
|
while (1) {
|
|
if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
|
|
Name = CurrentName;
|
|
|
|
if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
|
|
!(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
|
|
break;
|
|
|
|
if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
|
|
break;
|
|
|
|
CompileUnit *RefCU;
|
|
if (auto RefDIE =
|
|
Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
|
|
CU = RefCU;
|
|
OrigUnit = &RefCU->getOrigUnit();
|
|
DIE = RefDIE;
|
|
}
|
|
}
|
|
|
|
unsigned Idx = OrigUnit->getDIEIndex(DIE);
|
|
if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
|
|
Name = "(anonymous namespace)";
|
|
|
|
if (CU->getInfo(Idx).ParentIdx == 0 ||
|
|
// FIXME: dsymutil-classic compatibility. Ignore modules.
|
|
CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
|
|
dwarf::DW_TAG_module)
|
|
return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
|
|
|
|
DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
|
|
return djbHash(
|
|
(Name ? Name : ""),
|
|
djbHash((Name ? "::" : ""),
|
|
hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
|
|
}
|
|
|
|
static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
|
|
auto DwoId = dwarf::toUnsigned(
|
|
CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
|
|
if (DwoId)
|
|
return *DwoId;
|
|
return 0;
|
|
}
|
|
|
|
static std::string remapPath(StringRef Path,
|
|
const objectPrefixMap &ObjectPrefixMap) {
|
|
if (ObjectPrefixMap.empty())
|
|
return Path.str();
|
|
|
|
SmallString<256> p = Path;
|
|
for (const auto &Entry : ObjectPrefixMap)
|
|
if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
|
|
break;
|
|
return p.str().str();
|
|
}
|
|
|
|
bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit,
|
|
const DWARFFile &File,
|
|
OffsetsStringPool &StringPool,
|
|
DeclContextTree &ODRContexts,
|
|
uint64_t ModulesEndOffset,
|
|
unsigned &UnitID, bool IsLittleEndian,
|
|
unsigned Indent, bool Quiet) {
|
|
std::string PCMfile = dwarf::toString(
|
|
CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
|
|
if (PCMfile.empty())
|
|
return false;
|
|
if (Options.ObjectPrefixMap)
|
|
PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap);
|
|
|
|
// Clang module DWARF skeleton CUs abuse this for the path to the module.
|
|
uint64_t DwoId = getDwoId(CUDie, Unit);
|
|
|
|
std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
|
|
if (Name.empty()) {
|
|
if (!Quiet)
|
|
reportWarning("Anonymous module skeleton CU for " + PCMfile, File);
|
|
return true;
|
|
}
|
|
|
|
if (!Quiet && Options.Verbose) {
|
|
outs().indent(Indent);
|
|
outs() << "Found clang module reference " << PCMfile;
|
|
}
|
|
|
|
auto Cached = ClangModules.find(PCMfile);
|
|
if (Cached != ClangModules.end()) {
|
|
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
|
|
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
|
|
// ASTFileSignatures will change randomly when a module is rebuilt.
|
|
if (!Quiet && Options.Verbose && (Cached->second != DwoId))
|
|
reportWarning(Twine("hash mismatch: this object file was built against a "
|
|
"different version of the module ") +
|
|
PCMfile,
|
|
File);
|
|
if (!Quiet && Options.Verbose)
|
|
outs() << " [cached].\n";
|
|
return true;
|
|
}
|
|
if (!Quiet && Options.Verbose)
|
|
outs() << " ...\n";
|
|
|
|
// Cyclic dependencies are disallowed by Clang, but we still
|
|
// shouldn't run into an infinite loop, so mark it as processed now.
|
|
ClangModules.insert({PCMfile, DwoId});
|
|
|
|
if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool,
|
|
ODRContexts, ModulesEndOffset, UnitID,
|
|
IsLittleEndian, Indent + 2, Quiet)) {
|
|
consumeError(std::move(E));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Error DWARFLinker::loadClangModule(
|
|
DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
|
|
const DWARFFile &File, OffsetsStringPool &StringPool,
|
|
DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
|
|
bool IsLittleEndian, unsigned Indent, bool Quiet) {
|
|
/// Using a SmallString<0> because loadClangModule() is recursive.
|
|
SmallString<0> Path(Options.PrependPath);
|
|
if (sys::path::is_relative(Filename))
|
|
resolveRelativeObjectPath(Path, CUDie);
|
|
sys::path::append(Path, Filename);
|
|
// Don't use the cached binary holder because we have no thread-safety
|
|
// guarantee and the lifetime is limited.
|
|
|
|
if (Options.ObjFileLoader == nullptr)
|
|
return Error::success();
|
|
|
|
auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path);
|
|
if (!ErrOrObj)
|
|
return Error::success();
|
|
|
|
std::unique_ptr<CompileUnit> Unit;
|
|
|
|
for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
|
|
updateDwarfVersion(CU->getVersion());
|
|
// Recursively get all modules imported by this one.
|
|
auto CUDie = CU->getUnitDIE(false);
|
|
if (!CUDie)
|
|
continue;
|
|
if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts,
|
|
ModulesEndOffset, UnitID, IsLittleEndian,
|
|
Indent, Quiet)) {
|
|
if (Unit) {
|
|
std::string Err =
|
|
(Filename +
|
|
": Clang modules are expected to have exactly 1 compile unit.\n")
|
|
.str();
|
|
reportError(Err, File);
|
|
return make_error<StringError>(Err, inconvertibleErrorCode());
|
|
}
|
|
// FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
|
|
// fixed in clang, only warn about DWO_id mismatches in verbose mode.
|
|
// ASTFileSignatures will change randomly when a module is rebuilt.
|
|
uint64_t PCMDwoId = getDwoId(CUDie, *CU);
|
|
if (PCMDwoId != DwoId) {
|
|
if (!Quiet && Options.Verbose)
|
|
reportWarning(
|
|
Twine("hash mismatch: this object file was built against a "
|
|
"different version of the module ") +
|
|
Filename,
|
|
File);
|
|
// Update the cache entry with the DwoId of the module loaded from disk.
|
|
ClangModules[Filename] = PCMDwoId;
|
|
}
|
|
|
|
// Add this module.
|
|
Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
|
|
ModuleName);
|
|
Unit->setHasInterestingContent();
|
|
analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts,
|
|
ModulesEndOffset, Options.ParseableSwiftInterfaces,
|
|
[&](const Twine &Warning, const DWARFDie &DIE) {
|
|
reportWarning(Warning, File, &DIE);
|
|
});
|
|
// Keep everything.
|
|
Unit->markEverythingAsKept();
|
|
}
|
|
}
|
|
assert(Unit && "CompileUnit is not set!");
|
|
if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
|
|
return Error::success();
|
|
if (!Quiet && Options.Verbose) {
|
|
outs().indent(Indent);
|
|
outs() << "cloning .debug_info from " << Filename << "\n";
|
|
}
|
|
|
|
UnitListTy CompileUnits;
|
|
CompileUnits.push_back(std::move(Unit));
|
|
assert(TheDwarfEmitter);
|
|
DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits,
|
|
Options.Update)
|
|
.cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool,
|
|
IsLittleEndian);
|
|
return Error::success();
|
|
}
|
|
|
|
uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
|
|
DWARFContext &DwarfContext, const DWARFFile &File,
|
|
OffsetsStringPool &StringPool, bool IsLittleEndian) {
|
|
uint64_t OutputDebugInfoSize =
|
|
Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
|
|
const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
|
|
|
|
for (auto &CurrentUnit : CompileUnits) {
|
|
const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
|
|
const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
|
|
auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
|
|
CurrentUnit->setStartOffset(OutputDebugInfoSize);
|
|
if (!InputDIE) {
|
|
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
|
|
continue;
|
|
}
|
|
if (CurrentUnit->getInfo(0).Keep) {
|
|
// Clone the InputDIE into your Unit DIE in our compile unit since it
|
|
// already has a DIE inside of it.
|
|
CurrentUnit->createOutputDIE();
|
|
cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
|
|
UnitHeaderSize, 0, IsLittleEndian,
|
|
CurrentUnit->getOutputUnitDIE());
|
|
}
|
|
|
|
OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
|
|
|
|
if (!Linker.Options.NoOutput) {
|
|
assert(Emitter);
|
|
|
|
if (LLVM_LIKELY(!Linker.Options.Update) ||
|
|
Linker.needToTranslateStrings())
|
|
Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
|
|
|
|
Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
|
|
|
|
if (LLVM_UNLIKELY(Linker.Options.Update))
|
|
continue;
|
|
|
|
Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
|
|
auto ProcessExpr = [&](StringRef Bytes,
|
|
SmallVectorImpl<uint8_t> &Buffer) {
|
|
DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
|
|
DataExtractor Data(Bytes, IsLittleEndian,
|
|
OrigUnit.getAddressByteSize());
|
|
cloneExpression(Data,
|
|
DWARFExpression(Data, OrigUnit.getAddressByteSize(),
|
|
OrigUnit.getFormParams().Format),
|
|
File, *CurrentUnit, Buffer);
|
|
};
|
|
Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
|
|
}
|
|
}
|
|
|
|
if (!Linker.Options.NoOutput) {
|
|
assert(Emitter);
|
|
// Emit all the compile unit's debug information.
|
|
for (auto &CurrentUnit : CompileUnits) {
|
|
if (LLVM_LIKELY(!Linker.Options.Update))
|
|
Linker.generateUnitRanges(*CurrentUnit);
|
|
|
|
CurrentUnit->fixupForwardReferences();
|
|
|
|
if (!CurrentUnit->getOutputUnitDIE())
|
|
continue;
|
|
|
|
unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
|
|
|
|
assert(Emitter->getDebugInfoSectionSize() ==
|
|
CurrentUnit->getStartOffset());
|
|
Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
|
|
Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
|
|
assert(Emitter->getDebugInfoSectionSize() ==
|
|
CurrentUnit->computeNextUnitOffset(DwarfVersion));
|
|
}
|
|
}
|
|
|
|
return OutputDebugInfoSize - StartOutputDebugInfoSize;
|
|
}
|
|
|
|
void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
|
|
if (Options.TheAccelTableKind != AccelTableKind::Default)
|
|
return;
|
|
|
|
auto &DwarfObj = Dwarf.getDWARFObj();
|
|
|
|
if (!AtLeastOneDwarfAccelTable &&
|
|
(!DwarfObj.getAppleNamesSection().Data.empty() ||
|
|
!DwarfObj.getAppleTypesSection().Data.empty() ||
|
|
!DwarfObj.getAppleNamespacesSection().Data.empty() ||
|
|
!DwarfObj.getAppleObjCSection().Data.empty())) {
|
|
AtLeastOneAppleAccelTable = true;
|
|
}
|
|
|
|
if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
|
|
AtLeastOneDwarfAccelTable = true;
|
|
}
|
|
}
|
|
|
|
bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
|
|
OffsetsStringPool &StringPool) {
|
|
|
|
if (File.Warnings.empty())
|
|
return false;
|
|
|
|
DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
|
|
CUDie->setOffset(11);
|
|
StringRef Producer;
|
|
StringRef WarningHeader;
|
|
|
|
switch (DwarfLinkerClientID) {
|
|
case DwarfLinkerClient::Dsymutil:
|
|
Producer = StringPool.internString("dsymutil");
|
|
WarningHeader = "dsymutil_warning";
|
|
break;
|
|
|
|
default:
|
|
Producer = StringPool.internString("dwarfopt");
|
|
WarningHeader = "dwarfopt_warning";
|
|
break;
|
|
}
|
|
|
|
StringRef FileName = StringPool.internString(File.FileName);
|
|
CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
|
|
DIEInteger(StringPool.getStringOffset(Producer)));
|
|
DIEBlock *String = new (DIEAlloc) DIEBlock();
|
|
DIEBlocks.push_back(String);
|
|
for (auto &C : FileName)
|
|
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
|
|
DIEInteger(C));
|
|
String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
|
|
DIEInteger(0));
|
|
|
|
CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
|
|
for (const auto &Warning : File.Warnings) {
|
|
DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
|
|
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
|
|
DIEInteger(StringPool.getStringOffset(WarningHeader)));
|
|
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
|
|
DIEInteger(1));
|
|
ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
|
|
DIEInteger(StringPool.getStringOffset(Warning)));
|
|
}
|
|
unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
|
|
File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
|
|
DIEAbbrev Abbrev = CUDie->generateAbbrev();
|
|
assignAbbrev(Abbrev);
|
|
CUDie->setAbbrevNumber(Abbrev.getNumber());
|
|
Size += getULEB128Size(Abbrev.getNumber());
|
|
// Abbreviation ordering needed for classic compatibility.
|
|
for (auto &Child : CUDie->children()) {
|
|
Abbrev = Child.generateAbbrev();
|
|
assignAbbrev(Abbrev);
|
|
Child.setAbbrevNumber(Abbrev.getNumber());
|
|
Size += getULEB128Size(Abbrev.getNumber());
|
|
}
|
|
CUDie->setSize(Size);
|
|
TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
|
|
|
|
return true;
|
|
}
|
|
|
|
void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
|
|
if (!needToTranslateStrings())
|
|
TheDwarfEmitter->emitSectionContents(
|
|
Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
|
|
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
|
|
"debug_loc");
|
|
TheDwarfEmitter->emitSectionContents(
|
|
Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
|
|
TheDwarfEmitter->emitSectionContents(
|
|
Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
|
|
TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
|
|
"debug_aranges");
|
|
}
|
|
|
|
void DWARFLinker::addObjectFile(DWARFFile &File) {
|
|
ObjectContexts.emplace_back(LinkContext(File));
|
|
|
|
if (ObjectContexts.back().File.Dwarf)
|
|
updateAccelKind(*ObjectContexts.back().File.Dwarf);
|
|
}
|
|
|
|
bool DWARFLinker::link() {
|
|
assert(Options.NoOutput || TheDwarfEmitter);
|
|
|
|
// A unique ID that identifies each compile unit.
|
|
unsigned UnitID = 0;
|
|
|
|
// First populate the data structure we need for each iteration of the
|
|
// parallel loop.
|
|
unsigned NumObjects = ObjectContexts.size();
|
|
|
|
// This Dwarf string pool which is used for emission. It must be used
|
|
// serially as the order of calling getStringOffset matters for
|
|
// reproducibility.
|
|
OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
|
|
|
|
// ODR Contexts for the optimize.
|
|
DeclContextTree ODRContexts;
|
|
|
|
// If we haven't decided on an accelerator table kind yet, we base ourselves
|
|
// on the DWARF we have seen so far. At this point we haven't pulled in debug
|
|
// information from modules yet, so it is technically possible that they
|
|
// would affect the decision. However, as they're built with the same
|
|
// compiler and flags, it is safe to assume that they will follow the
|
|
// decision made here.
|
|
if (Options.TheAccelTableKind == AccelTableKind::Default) {
|
|
if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
|
|
Options.TheAccelTableKind = AccelTableKind::Dwarf;
|
|
else
|
|
Options.TheAccelTableKind = AccelTableKind::Apple;
|
|
}
|
|
|
|
for (LinkContext &OptContext : ObjectContexts) {
|
|
if (Options.Verbose) {
|
|
if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
|
|
outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
|
|
else
|
|
outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
|
|
}
|
|
|
|
if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
|
|
continue;
|
|
|
|
if (!OptContext.File.Dwarf)
|
|
continue;
|
|
// Look for relocations that correspond to address map entries.
|
|
|
|
// there was findvalidrelocations previously ... probably we need to gather
|
|
// info here
|
|
if (LLVM_LIKELY(!Options.Update) &&
|
|
!OptContext.File.Addresses->hasValidRelocs()) {
|
|
if (Options.Verbose)
|
|
outs() << "No valid relocations found. Skipping.\n";
|
|
|
|
// Set "Skip" flag as a signal to other loops that we should not
|
|
// process this iteration.
|
|
OptContext.Skip = true;
|
|
continue;
|
|
}
|
|
|
|
// Setup access to the debug info.
|
|
if (!OptContext.File.Dwarf)
|
|
continue;
|
|
|
|
// In a first phase, just read in the debug info and load all clang modules.
|
|
OptContext.CompileUnits.reserve(
|
|
OptContext.File.Dwarf->getNumCompileUnits());
|
|
|
|
for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
|
|
updateDwarfVersion(CU->getVersion());
|
|
auto CUDie = CU->getUnitDIE(false);
|
|
if (Options.Verbose) {
|
|
outs() << "Input compilation unit:";
|
|
DIDumpOptions DumpOpts;
|
|
DumpOpts.ChildRecurseDepth = 0;
|
|
DumpOpts.Verbose = Options.Verbose;
|
|
CUDie.dump(outs(), 0, DumpOpts);
|
|
}
|
|
if (CUDie && !LLVM_UNLIKELY(Options.Update))
|
|
registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool,
|
|
ODRContexts, 0, UnitID,
|
|
OptContext.File.Dwarf->isLittleEndian());
|
|
}
|
|
}
|
|
|
|
// If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
|
|
if (MaxDwarfVersion == 0)
|
|
MaxDwarfVersion = 3;
|
|
|
|
// At this point we know how much data we have emitted. We use this value to
|
|
// compare canonical DIE offsets in analyzeContextInfo to see if a definition
|
|
// is already emitted, without being affected by canonical die offsets set
|
|
// later. This prevents undeterminism when analyze and clone execute
|
|
// concurrently, as clone set the canonical DIE offset and analyze reads it.
|
|
const uint64_t ModulesEndOffset =
|
|
Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
|
|
|
|
// These variables manage the list of processed object files.
|
|
// The mutex and condition variable are to ensure that this is thread safe.
|
|
std::mutex ProcessedFilesMutex;
|
|
std::condition_variable ProcessedFilesConditionVariable;
|
|
BitVector ProcessedFiles(NumObjects, false);
|
|
|
|
// Analyzing the context info is particularly expensive so it is executed in
|
|
// parallel with emitting the previous compile unit.
|
|
auto AnalyzeLambda = [&](size_t I) {
|
|
auto &Context = ObjectContexts[I];
|
|
|
|
if (Context.Skip || !Context.File.Dwarf)
|
|
return;
|
|
|
|
for (const auto &CU : Context.File.Dwarf->compile_units()) {
|
|
updateDwarfVersion(CU->getVersion());
|
|
// The !registerModuleReference() condition effectively skips
|
|
// over fully resolved skeleton units. This second pass of
|
|
// registerModuleReferences doesn't do any new work, but it
|
|
// will collect top-level errors, which are suppressed. Module
|
|
// warnings were already displayed in the first iteration.
|
|
bool Quiet = true;
|
|
auto CUDie = CU->getUnitDIE(false);
|
|
if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
|
|
!registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool,
|
|
ODRContexts, ModulesEndOffset, UnitID,
|
|
Quiet)) {
|
|
Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
|
|
*CU, UnitID++, !Options.NoODR && !Options.Update, ""));
|
|
}
|
|
}
|
|
|
|
// Now build the DIE parent links that we will use during the next phase.
|
|
for (auto &CurrentUnit : Context.CompileUnits) {
|
|
auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
|
|
if (!CUDie)
|
|
continue;
|
|
analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
|
|
*CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
|
|
ModulesEndOffset, Options.ParseableSwiftInterfaces,
|
|
[&](const Twine &Warning, const DWARFDie &DIE) {
|
|
reportWarning(Warning, Context.File, &DIE);
|
|
});
|
|
}
|
|
};
|
|
|
|
// For each object file map how many bytes were emitted.
|
|
StringMap<DebugInfoSize> SizeByObject;
|
|
|
|
// And then the remaining work in serial again.
|
|
// Note, although this loop runs in serial, it can run in parallel with
|
|
// the analyzeContextInfo loop so long as we process files with indices >=
|
|
// than those processed by analyzeContextInfo.
|
|
auto CloneLambda = [&](size_t I) {
|
|
auto &OptContext = ObjectContexts[I];
|
|
if (OptContext.Skip || !OptContext.File.Dwarf)
|
|
return;
|
|
|
|
// Then mark all the DIEs that need to be present in the generated output
|
|
// and collect some information about them.
|
|
// Note that this loop can not be merged with the previous one because
|
|
// cross-cu references require the ParentIdx to be setup for every CU in
|
|
// the object file before calling this.
|
|
if (LLVM_UNLIKELY(Options.Update)) {
|
|
for (auto &CurrentUnit : OptContext.CompileUnits)
|
|
CurrentUnit->markEverythingAsKept();
|
|
copyInvariantDebugSection(*OptContext.File.Dwarf);
|
|
} else {
|
|
for (auto &CurrentUnit : OptContext.CompileUnits)
|
|
lookForDIEsToKeep(*OptContext.File.Addresses,
|
|
OptContext.File.Addresses->getValidAddressRanges(),
|
|
OptContext.CompileUnits,
|
|
CurrentUnit->getOrigUnit().getUnitDIE(),
|
|
OptContext.File, *CurrentUnit, 0);
|
|
}
|
|
|
|
// The calls to applyValidRelocs inside cloneDIE will walk the reloc
|
|
// array again (in the same way findValidRelocsInDebugInfo() did). We
|
|
// need to reset the NextValidReloc index to the beginning.
|
|
if (OptContext.File.Addresses->hasValidRelocs() ||
|
|
LLVM_UNLIKELY(Options.Update)) {
|
|
SizeByObject[OptContext.File.FileName].Input =
|
|
getDebugInfoSize(*OptContext.File.Dwarf);
|
|
SizeByObject[OptContext.File.FileName].Output =
|
|
DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
|
|
OptContext.CompileUnits, Options.Update)
|
|
.cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
|
|
OffsetsStringPool,
|
|
OptContext.File.Dwarf->isLittleEndian());
|
|
}
|
|
if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
|
|
LLVM_LIKELY(!Options.Update))
|
|
patchFrameInfoForObject(
|
|
OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
|
|
*OptContext.File.Dwarf,
|
|
OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
|
|
|
|
// Clean-up before starting working on the next object.
|
|
cleanupAuxiliarryData(OptContext);
|
|
};
|
|
|
|
auto EmitLambda = [&]() {
|
|
// Emit everything that's global.
|
|
if (!Options.NoOutput) {
|
|
TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion);
|
|
TheDwarfEmitter->emitStrings(OffsetsStringPool);
|
|
switch (Options.TheAccelTableKind) {
|
|
case AccelTableKind::Apple:
|
|
TheDwarfEmitter->emitAppleNames(AppleNames);
|
|
TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
|
|
TheDwarfEmitter->emitAppleTypes(AppleTypes);
|
|
TheDwarfEmitter->emitAppleObjc(AppleObjc);
|
|
break;
|
|
case AccelTableKind::Dwarf:
|
|
TheDwarfEmitter->emitDebugNames(DebugNames);
|
|
break;
|
|
case AccelTableKind::Pub:
|
|
// Already emitted by emitPubAcceleratorEntriesForUnit.
|
|
break;
|
|
case AccelTableKind::Default:
|
|
llvm_unreachable("Default should have already been resolved.");
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
auto AnalyzeAll = [&]() {
|
|
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
|
|
AnalyzeLambda(I);
|
|
|
|
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
|
|
ProcessedFiles.set(I);
|
|
ProcessedFilesConditionVariable.notify_one();
|
|
}
|
|
};
|
|
|
|
auto CloneAll = [&]() {
|
|
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
|
|
{
|
|
std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
|
|
if (!ProcessedFiles[I]) {
|
|
ProcessedFilesConditionVariable.wait(
|
|
LockGuard, [&]() { return ProcessedFiles[I]; });
|
|
}
|
|
}
|
|
|
|
CloneLambda(I);
|
|
}
|
|
EmitLambda();
|
|
};
|
|
|
|
// To limit memory usage in the single threaded case, analyze and clone are
|
|
// run sequentially so the OptContext is freed after processing each object
|
|
// in endDebugObject.
|
|
if (Options.Threads == 1) {
|
|
for (unsigned I = 0, E = NumObjects; I != E; ++I) {
|
|
AnalyzeLambda(I);
|
|
CloneLambda(I);
|
|
}
|
|
EmitLambda();
|
|
} else {
|
|
ThreadPool Pool(hardware_concurrency(2));
|
|
Pool.async(AnalyzeAll);
|
|
Pool.async(CloneAll);
|
|
Pool.wait();
|
|
}
|
|
|
|
if (Options.Statistics) {
|
|
// Create a vector sorted in descending order by output size.
|
|
std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
|
|
for (auto &E : SizeByObject)
|
|
Sorted.emplace_back(E.first(), E.second);
|
|
llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
|
|
return LHS.second.Output > RHS.second.Output;
|
|
});
|
|
|
|
auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
|
|
const float Difference = Output - Input;
|
|
const float Sum = Input + Output;
|
|
if (Sum == 0)
|
|
return 0;
|
|
return (Difference / (Sum / 2));
|
|
};
|
|
|
|
int64_t InputTotal = 0;
|
|
int64_t OutputTotal = 0;
|
|
const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
|
|
|
|
// Print header.
|
|
outs() << ".debug_info section size (in bytes)\n";
|
|
outs() << "----------------------------------------------------------------"
|
|
"---------------\n";
|
|
outs() << "Filename Object "
|
|
" dSYM Change\n";
|
|
outs() << "----------------------------------------------------------------"
|
|
"---------------\n";
|
|
|
|
// Print body.
|
|
for (auto &E : Sorted) {
|
|
InputTotal += E.second.Input;
|
|
OutputTotal += E.second.Output;
|
|
llvm::outs() << formatv(
|
|
FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
|
|
E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
|
|
}
|
|
// Print total and footer.
|
|
outs() << "----------------------------------------------------------------"
|
|
"---------------\n";
|
|
llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
|
|
ComputePercentange(InputTotal, OutputTotal));
|
|
outs() << "----------------------------------------------------------------"
|
|
"---------------\n\n";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace llvm
|